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Abstract

Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health
crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic meta-
bolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine
dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated
condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite
advances in nutritional science and public health initiatives, sustained weight management success rates and preven-
tion in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environ-
mental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger
populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy
and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major
complications—including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver dis-
ease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments,
malignancies, and psychological comorbidities—and critically evaluate current anti-obesity strategies. Particular
emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds
such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By
integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for devel-
oping safe, accessible, and effective obesity treatments.
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Introduction

As a chronic disease, Obesity characterized by excessive
or abnormally distributed adipose tissue (AT) accumula-
tion, is clinically defined by body mass index (BMI >30
kg/m?) and recognized as a multifactorial disorder driven
by systemic energy imbalance [1-3]. Beyond caloric sur-
plus, emerging evidence implicates interconnected etio-
logical drivers, including obesogenic environments (e.g.,
hyperpalatable diets, sedentary technologies), gut dys-
biosis, genetic predispositions, and epigenetic modifica-
tions, which collectively disrupt metabolic homeostasis
[4]. Critically, obesity propagates a self-reinforcing cycle
of complications—T2DM, CVD, NAFLD, respiratory
diseases, ORN, malignancies, musculoskeletal disorders,
and psychological comorbidities-contributing to elevated
morbidity, mortality, and healthcare expenditures glob-
ally [5, 6].

Alarmingly, global obesity prevalence has surged
over five decades, with projections indicating 1.9 bil-
lion affected adults by 2035 [7, 8]. In China, a nation-
wide cross-sectional research (n =15.8 million) revealed
34.8% overweight (BMI 24-27.9 kg/m?) and 14.1% obese
(BMI >28 kg/m?) individuals, with obesity-associated
comorbidities disproportionately burdening this cohort
(P <0.001) [9]. This escalating epidemic underscores an
urgent need for innovative therapeutic strategies, as cur-
rent interventions, lifestyle modification, pharmacother-
apy and bariatric surgery, face limitations: suboptimal
efficacy (5-15% weight loss), adverse effects (e.g., gastro-
intestinal intolerance, surgical risks), and poor long-term
adherence.

Against this backdrop, natural compounds like BBR,
an isoquinoline alkaloid from Coptis chinensis, emerge
as promising candidates. With a 70-year safety record in
treating infectious diarrhea in China and preclinical evi-
dence of multi-target anti-obesity actions (e.g., AMPK
activation, gut microbiota modulation), BBR represents
a paradigm shift toward accessible, low-cost therapies
[10]. However, translational barriers persist, notably poor
oral bioavailability (< 5%) and insufficient obesity-specific
clinical validation.

This review synthesizes obesity’s pathophysiologi-
cal axes, expounds the pathogenesis of common obesity
complications, focuses on summarizing new anti-obesity
drugs and targets, evaluates therapeutic gaps, and high-
lights BBR’s mechanistic novelty—including adipose
browning and epigenetic regulation—while propos-
ing formulation innovations (e.g., nanoparticle delivery,
structural analogs) to bridge preclinical promise to clini-
cal impact. By contextualizing BBR within the obesity
therapeutic landscape, this work advances a roadmap for
next-generation anti-obesity agents combining efficacy,
safety, and scalability.
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Pathophysiology of obesity

Considering the substantial differences in how indi-
viduals respond to obesity treatment and the intricate
etiology of obesity, a profound comprehension of the
pathophysiological mechanisms underlying obesity is of
utmost consequence for formulating reasonable, effica-
cious, and cost-efficient intervention strategies. Through
a comprehensive review of the existing literature on the
pathophysiology of obesity, the following is a summary of
its pathophysiological mechanisms.

The imbalance of energy homeostasis and metabolic
adaptation

The three primary components of energy homeosta-
sis are energy intake, expenditure, and storage. Long-
term energy storage occurs in adipocytes as intracellular
droplets of triacylglycerol (TG). Adipocytes are mostly
arranged in distinct AT depots where can be divided into
five main categories: subcutaneous, visceral or intraperi-
toneal, pelvic and retroperitoneal, intra- or extra-peri-
cardial and intramuscular [11, 12]. An energy imbalance
is a hallmark of obesity (Fig. 1), where energy intake
surpasses energy expenditure and the extra energy is
retained in adipocytes [7].

AT predominantly exists in two primary forms: brown
AT (BAT) and white AT (WAT), each of which has dis-
tinct physiological roles (Fig. 1). While WAT is dispersed
throughout the body, BAT is predominantly located in
the cervical and subscapular regionsis [13]. WAT pri-
marily functions to store energy by converting glucose
and fatty acids (FA) into triglycerides, which are housed
in large unilocular lipid droplets. Subsequently, these
are released as free fatty acids (FFA) within adipocytes
[14]. In contrast, BAT is mitochondrial and essential for
promoting energy expenditure and non-shivering ther-
mogenesis [15, 16]. The thermogenic properties of BAT
are largely due to its high mitochondrial density and the
presence of uncoupling protein 1 (UCP1), which facili-
tates heat production by disrupting the normal process of
oxidative phosphorylation [17].

Apart from WAT and BAT, another intermediate
form between the WAT and BAT is beige adipose tissue
(BeAT) (Fig. 1), which is frequently found inside WAT.
Despite BeAT resembles BAT in morphology, it typically
originate from a Myf5-negative cell lineage, akin to WAT.
Beige adipocytes are adept at producing heat by separat-
ing lipid oxidation from ATP synthesis [13]. Research
indicates that beige adipocytes can develop from spe-
cific preadipocyte populations [18] inside subcutane-
ous WAT or trans-differentiate pre-existing WAT [19,
20]. The process of WAT browning (Fig. 1) describes the
process by which BeAT is generated within WAT. This
transformation enhances energy expenditure, reduces the
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Fig. 1 Energy Homeostasis and Metabolic Adaptation of Obesity. Obesity arises from disrupted energy homeostasis, characterized by excessive TG
storage in WAT and impaired thermogenic capacity of BAT/BeAT. Mitochondrial dysfunction and suppressed WAT browning perpetuate metabolic
inflexibility, driving IR and systemic metabolic disease. Interventions targeting adipose plasticity and mitochondrial health hold therapeutic
potential. Figure 1 was created with BioGDP.com. AT, adipose tissue; WAT, white adipose tissue; BAT, brown adipose tissue; BeAT, beige adipose

tissue; UCP1, uncoupling protein 1; FFA, free fatty acids; TG, triglycerides

detrimental impacts of excessive WAT storage, and ulti-
mately improves metabolic wellbeing [15, 21, 22].

The coordinated operation of the three types of AT
guarantees an optimal metabolic state. This process
involves a precisely coordinated structural and meta-
bolic reorganization in response to physiological cues,
enabling metabolic adaptability to satisfy the body’s
requirements [23]. These metabolic and thermogenic
reactions are mainly propelled by the distinctive fea-
tures of the mitochondrial population. Mitochondrial
malfunction disrupts the metabolic flexibility of adi-
pocytes, contributing to metabolic disorders such
as insulin resistance (IR), obesity and T2DM [24].
These metabolic changes initiate a vicious cycle that
exerts a negative influence on the functionality of AT
and undermines overall metabolic homeostasis [25].
According to Huang et al., the HFD group mice’s and
obese individuals’ WAT browning processes were

inhibited, which in turn inhibited local energy expendi-
ture and exacerbation of obesity-related conditions
[26].

Hormonal regulation

Adipocytes secrete a range of cytokines, including lep-
tin, vastatin, interleukin- 6 (IL—6), adiponectin, tumor
necrosis factor-alpha (TNF-a), resistin, angiotensinogen,
aromatase, and adipsin. These bioactive molecules are
integral to the regulation of appetite, satiety, and body fat
content. When their normal regulatory mechanisms are
disrupted, it can lead to IR associated with obesity as well
as obesity itself, as illustrated in Fig. 2 [27, 28]. Gjermeni
et al. claims that the primary factors regulating energy
balance are insulin and leptin [29].

Leptin, encoded by the obese gene, mediates its bio-
logical functions through binding and activation of
specific leptin receptor (LepR) following its production
and release by adipocytes within WAT (Fig. 2) [30]. This
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Fig. 2 Hormonal Regulation Associated with Obesity. Obesity involves dysregulation of key hormones: Leptin resistance drives hyperphagia

and energy imbalance. Insulin resistance promotes ectopic lipid accumulation and systemic metabolic dysfunction. Ghrelin suppression fails

to counteract overeating. Adiponectin deficiency impairs lipid oxidation. GLP- 1 analogs offer therapeutic benefits by enhancing satiety. Ovarian
hormones modulate hedonic and cognitive aspects of eating. Targeting leptin/insulin signaling, enhancing GLP- 1 activity, and restoring
adiponectin levels may mitigate obesity-related metabolic disorders. Figure 2 was created with BioGDP.com. LepR, leptin receptor; POMC,
pro-opiomelanocortin; ARC, arcuate nucleus; NPY, neuropeptide Y; NF-kB, nuclear factor-kB; IKKB3, NF-kB kinase-3; INSR, insulin receptor;
AgRP/NPY, agouti-related peptide and neuropeptide Y; GHSR, growth hormone secretagogue receptor; SIRT1, sirtuin 1; CaMKK2, calcium/
calmodulin-dependent protein kinase kinase 2; AMPK, AMP-activated protein kinase; ACO, acetyl CoA oxidase; UCPs, uncoupling proteins; GLP- 1,
Glucagon-like peptide- 1; GLP- 1R, GLP- 1 receptor; Gas, G protein a subunit; CAMP, cyclic AMP; PKA, protein kinase A; MAPK, mitogen-activated

protein kinase; NTS, nucleus tractus solitarius

adipocyte-derived hormone serves as a signaling mol-
ecule that communicates the body’s nutritional state,
particularly during conditions of energy deficit. Con-
sequently, physiological states characterized by caloric
restriction or reduced adiposity demonstrate signifi-
cant decreases in circulating leptin concentrations
[31]. Leptin can influence appetite and calorie intake
by binding to receptors that express pro-opiomelano-
cortin (POMC) in the brainstem, hypothalamus and
arcuate nucleus (ARC) [32]. Mechanistically, leptin
suppresses the activity of hypothalamic ARC neurons
responsible for secreting neuropeptide Y (NPY), a
potent orexigenic mediator that enhances hunger sig-
nals and reduces metabolic energy utilization, thereby
promoting adipose accumulation [33]. HFD can trigger

the activation of nuclear factor-kB (NF-kB) and its
upstream regulatory factor, inhibitor of NF-«B kinase-3
(IKKP). This activation occurs by increasing endoplas-
mic reticulum (ER) stress within the hypothalamus.
Such a series of events potentially results in the devel-
opment of leptin resistance [34]. Leptin resistance man-
ifests as diminished satiety signaling, hyperphagia, and
progressive body mass accumulation, serving as key
contributors to metabolic dysregulation in obesity [30].
The active free form of circulating leptin in individu-
als with obesity accounts for 85% of total leptin, induc-
ing long-form leptin receptor (LepRb) desensitization
through chronic overstimulation [35]. Although the
actual quantity of leptin present in the cerebrospinal
fluid (CSF) of overweight individuals might be greater
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compared to that of slender people, the efficacy of lep-
tin’s transportation across the blood—brain barrier
(BBB) (quantified by the ratio of CSF to plasma leptin)
drops by up to 80% among the obese [36, 37]. Similarly,
HED rapidly activates astrocytes, causing inflammation
and hyperleptinemia. In addition, a prolonged HFD
further rouses astrocytes and promotes inflammation,
which decreases the amount of leptin that reaches the
brain [38, 39]. Based on these discoveries, it can be
concluded that the transportation of leptin across the
BBB is impaired in obese individuals.

The body can effectively handle the burden of dietary
fat (such as triglycerides), protein, and carbohydrates
thanks to the post-meal elevation in plasma insulin levels.
Three signaling pathways, namely the mitogen-activated
protein (MAP) kinase (extracellular signal-regulated
kinase, ERK) pathway, the metabolic (phosphatidylinosi-
tol 3-kinase-protein kinase B, PI3K-AKT) pathway, and
the oxidative transport chain pathway, are used by Wil-
liams et al. to summarize the underlying mechanisms
[40]. As illustrated in Fig. 2, insulin-mediated satia-
tion occurs via receptor activation within ARC nucleus
POMC and agouti-related peptide and NPY (AgRP/NPY)
neural circuits that govern energy homeostasis, nutrient
partitioning, and glucose regulation [41]. Additionally,
numerous researches indicated that prolonged overeat-
ing, temporary inactivity, sedentary behavior, and sleep
deprivation all raised whole-body IR [42—44]. Because of
enhanced lipolysis, hyperinsulinemia results in decreased
development of AT while promoting lipolytic release of
FFAs from triglyceride depots. However, a major cause of
IR, ectopic lipid deposition and lipotoxicity are brought
on by the excessive accumulation of FFAs in insulin-sen-
sitive non-AT in obese individuals [45]. The pathophysi-
ological progression of insulin resistance demonstrates
bidirectional interactions with obesity (Fig. 2), constitut-
ing a fundamental mechanism underlying obesity-associ-
ated metabolic comorbidities [46].

Initially characterized as a growth hormone (GH)-
releasing peptide, ghrelin (Fig. 2) has emerged as a plei-
otropic regulator of energy balance, exhibiting inverse
correlations with BMI and direct involvement in appetite
modulation [47, 48]. In situations of positive energy bal-
ance, such as obesity, the expression of ghrelin is down-
regulated. Conversely, in states of under-nutrition, like
anorexia nervosa, its expression is up-regulated [49,
50]. In the ventromedial nucleus of the hypothalamus
(VMH), ghrelin activates the cellular energy sensor
AMP-activated protein kinase (AMPK) [51] via binding
to growth hormone secretagogue receptor (GHSR) and
stimulating the calcium/calmodulin-dependent protein
kinase kinase 2 (CaMKK2)-AMPK axis [52] and hypotha-
lamic sirtuin 1 (SIRT1)-p53 axis [53]. In both mice and
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humans, ghrelin-dependent hyperphagia and obesity are
promoted by chronic AMPK activation [54]. Addition-
ally, obese mice have lower levels of GHSR expression
and ghrelin transport across the BBB, which results in
decreased ghrelin sensitivity and may encourage hypo-
thalamic ghrelin resistance [55, 56].

Through its autocrine activity, adiponectin (AdipoQ)
(Fig. 2), an adipocyte-derived cytokine encoded by the
chromosome’s AdipoQ gene, aids in the development
of adipocyte cells [57]. By significantly boosting PPAR-a
expression and activity, which leads to the up-regulation
of acetyl CoA oxidase (ACO) and uncoupling proteins
(UCPs), AdipoQ stimulates FA oxidation and energy
expenditure (Fig. 2) [58]. AdipoQ demonstrates propor-
tional relationships with insulin sensitivity that become
attenuated in obese states, as evidenced by clinical bio-
marker studies [59, 60]. According to Singh’s research, AT
in obese individuals exhibits decreased AdipoQ secretion
due to compromised leptin signaling and elevated caveo-
lin- 1 expression [61].

The gut, brainstem, and endocrine pancreas all
express Glucagon-like peptide- 1 (GLP- 1), which binds
to GLP- 1 receptor (GLP- 1R) to regulate energy bal-
ance (Fig. 2) [62]. Through G protein a subunit (Gas),
GLP- 1R stimulates adenylate cyclase and raises cyclic
AMP (cAMP) levels in the pancreas. This, in turn, ini-
tiates protein kinase A (PKA)-dependent intracellular
signaling pathways, which ultimately trigger the release
of insulin and induce genetic modifications [63-66].
Through Gas and PKA, GLP- 1R stimulates mitogen-
activated protein kinase (MAPK) and AMPK and
improves calcium influx through VGCCs in the brain
[67]. When nutrients pass through the gut, they cause
the release of GLP- land then interact with GLP- 1Rs
on the vagus nerve to activate the vagal afferent neu-
rons. These neurons release glutamate, which excites
postsynaptic nucleus tractus solitarius (NTS) neurons
with specific phenotypes. The axons of NTS neurons
project monosynaptically to anatomically distributed
targets in the central nervous system (CNS), influenc-
ing the excitability of neurons in identified nuclei. This
process leads to the release of GLP- 1 in the brain and
contributes to the inhibitory regulation of food intake
[68, 69]. Experimental models utilizing transgenic
reporter mice revealed that liraglutide potentiates
GABAergic neurotransmission, directly stimulating
POMC neurons while indirectly suppressing AgRP/
NPY activity through GABA receptor-mediated inhibi-
tion [70]. Furthermore, GLP- 1 lowers the rate of gas-
tric emptying (GE) by activating myenteric neurons and
vagal afferent nerves, it promotes satiety, reduces calo-
rie intake, and has anorexigenic effects. GLP- 1 is linked
to the mechanism that promotes meal termination for
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Fig. 3 The Neural Control of Obesity. The hypothalamic arcuate nucleus (ARC) regulates feeding behavior and energy homeostasis through two
opposing neuronal populations: anorexigenic POMC neurons (reducing food intake via MC4R activation and increasing energy expenditure)
and orexigenic NPY/AgRP neurons (promoting hunger and suppressing energy use). Chronic overnutrition (e.g., HFD, leptin deficiency) disrupts
ARC plasticity, impairing homeostatic regulation through mechanisms like leptin signaling defects, ER stress, and metabolic inflammation. This
inflammation alters neuropeptide secretion, desensitizes energy-balance neurons, and exacerbates dysregulation of appetite and metabolism.

Figure 3 was created with BioGDPcom

cholecystokinin (CCK) [71]. By cleaving an X-Pro or
X-Ala dipeptide, dipeptidyl-peptidase IV (DPP-IV)
renders GLP- 1 inactive [72]. Clinical investigations
confirm these mechanisms, demonstrating that GLP-
1 infusion in non-obese fasting subjects significantly
attenuates hunger perception while enhancing satiety
signaling [73]. A multicenter RCT evaluating daily 3 mg
liraglutide administration in overweight/obese partici-
pants (BMI >27 kg/m? with comorbidities or >30 kg/
m?) reported 8.4 kg mean weight reduction over 56
weeks, with 33.1% achieving >10% body weight loss
[74].

Ovarian hormones critically modulate the endocrine
mechanisms underlying obesity (Fig. 2). Research by
Leeners et al. demonstrates that cyclic variations in
ovarian hormones alter feeding behavior by modify-
ing two neural pathways: cognitive inhibitory con-
trol of appetite mediated by the lateral prefrontal
cortex, and dopamine-dependent reward process-
ing in the striatum governing food palatability. Their
findings further reveal that elevated estrogen levels

during the pre-ovulatory phase suppress caloric intake
through dual mechanisms: enhancing the satiety-
inducing effects of gastrointestinal peptide cholecys-
tokinin (CCK) while simultaneously reducing hedonic
responses to sweet-tasting foods in the follicular phase
[75].

Neural control

A crucial regulatory center for feeding behavior and
whole-body energy homeostasis, the ARC of the hypo-
thalamus (Fig. 3) relays information between the periph-
ery nervous system (PNS) and the CNS [76]. The ARC
contains two functionally antagonistic neuronal groups,
POMC and NPY/AgRP neurons, which collaboratively
regulate systemic energy homeostasis, and integrate cen-
tral and peripheral inputs [77].

POMC-derived melanocortin peptides exert cata-
bolic effects via stimulation of melanocortin 4 receptor
(MC4R)-positive neural circuits, resulting in appetite
suppression and enhanced metabolic rate. Conversely,
by counteracting these effects, NPY/AgRP neurons
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demonstrate anabolic functions through MC4R-depend-
ent antagonism, promoting caloric conservation via
reduced thermogenesis while stimulating feeding moti-
vation [78, 79]. Notably under energy surplus condi-
tions, circulating satiety factors predominantly activate
the POMC neuronal network to inhibit ingestive behav-
ior and increase energy dissipation. Conversely, during
negative energy balance, gastrointestinal-derived orexi-
genic signals preferentially engage NPY/AgRP neurons to
amplify food-seeking drives while suppressing catabolic
processes [80—82].

It is noteworthy that persistent food excess (HFD or
leptin insufficiency) inhibits neurogenesis, which in
turn impairs hypothalamic homeostatic regulation and
dynamical plasticity [83]. Leptin receptor signaling path-
way defects, ER stress, and decreased leptin transport
across the BBB are some possible explanations [84—86].
Accumulating evidence indicates that diet-induced
obesity correlates with chronic neuroinflammatory
responses within the ARC of obese animal models [87].
Notably, hypothalamic inflammation disrupts POMC
neuron functionality through dual mechanisms:

cytokine-mediated alteration of neuropeptide secretion
profiles, and impaired neuronal plasticity that compro-
mises adaptive energy regulation. This pathological cas-
cade establishes a self-perforcing cycle where disrupted
neurotransmission exacerbates inflammatory signaling,
ultimately leading to dysregulated appetite control and
metabolic inflexibility [88, 89].

Inflammation and immune responses

AT is essential to the pathophysiology of obesity and has
a major impact on physiological and pathological pro-
cesses, such as immunological responses and inflamma-
tion [90]. Both pro- and anti-inflammatory cytokines
are secreted by AT’s immune cells. Pro-inflammatory
cytokines promote IR and cause detrimental lipid metab-
olism in peripheral tissues, whereas anti-inflammatory
cytokines attempt to preserve insulin sensitivity [91, 92].
The progression of weight gain and subsequent obesity
induces a phenotypic shift in WAT. This shift results in
the formation of dysfunctional and inflammatory adipo-
cytes, accompanied by the recruitment of immune cells
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into the stromal vascular compartment [93]. Inflamma-
tory and defective adipocytes secrete pro-inflammatory
cytokines both locally and systemically. This secretion
results in systemic low-grade inflammation (Fig. 4).

Among the key pathways implicated in adipose tissue
(AT) inflammation are the toll-like receptor 4 (TLR4)/
phosphatidylinositol- 3’-kinase (PI3 K)/protein kinase B
(Akt) pathway, the ER stress-induced unfolded protein
response (UPR), and the IKKB-NF-«xB inhibitory path-
way are three metabolic pathways that are significant in
the development of AT inflammation [94]. Moreover, an
important modulator of metabolic inflammation is the
nucleotide-binding and oligomerization domain (NOD)
leucine-rich repeat family pyrin domain-containing
3 (NLRP3) inflammasome pathway [94]. Supporting
above-mentioned conclusions, De et al. discovered that
the consumption of a HFD upregulates the expression of
pro-inflammatory cytokines, including IL- 1, IL- 6 and
TNE, in the hypothalamus, thereby triggering inflamma-
tory cascades [95]. Furthermore, inflammation and leptin
resistance related to obesity have been linked to ER stress
[96, 97]. Through a rise in reactive oxygen species (ROS)
mediated by FFAs, an HFD in mice causes ER stress and
persistent inflammation in WAT [98].

It is well recognized that obesity affects immunologi-
cal function, just like other forms of malnutrition (Fig. 4).
Weisberg et al. have indicated that activated adipose tis-
sue macrophages (ATMs) are the primary sources of pro-
inflammatory mediators. These include TNEF-q, inducible
nitric oxide synthase (iNOS), monocyte chemoattract-
ant protein- 1 (MCP- 1), and IL- 6 [99, 100]. There is
additional evidence suggesting that obesity perpetuates
low-grade chronic inflammation in WAT by triggering a
self-perpetuating cycle of monocyte/macrophage infiltra-
tion [101, 102].

Additionally, it seems that additional immune cells
are involved in AT inflammation. According to recent
reports, bidirectional interaction between adipocytes and
neutrophils can trigger WAT inflammation by activating
the endothelial cell adhesion protein ICAM- 1 or cyto-
solic phospholipase-A2a (cPLA2a), which then leads to
the production of IL- 1p [103, 104]. According to certain
research, obese people have lower levels of regulatory T
cells (Tregs), which may lead to long-term WAT inflam-
mation and IR [105-107]. Additionally, obesity has been
linked to increased B cell, mast cell, dendritic cell, and
eosinophil activity, which activates T cells and AMTs to
cause IR [108-111].

Genetics and epigenetics

In addition, it is well recognized that hereditary variables
are widely acknowledged as crucial determinants of an
individual’s susceptibility to obesity (Fig. 5) [112]. Twin
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and familial research indicates that hereditary influences
account for 40 to 70 percent of the variability in human
obesity [113]. Obesity genetic causes can be broadly cat-
egorized as either polygenic or monogenic mutations.
The leptin-melanocortin pathway is the primary cause
of monogenic obesity, and numerous genes, including
AgRP, PYY (orexogenic) or MC4R, interfere with the
appetite and weight regulation system [114]. Numerous
genes work together to create polygenic obesity [115].
Neurodevelopmental abnormalities and other organ/
system anomalies can lead to syndromic obesity, a severe
form of obesity that may be brought by alterations in a
wider chromosomal region that encompasses multiple
genes [116].

Based on Martins’ research, those who have severe
obesity with an onset prior to the age of two are advised
to seek advice from experts in obesity medicine (Fig. 5).
They should also contemplate undergoing screening for
MCA4R deficiency, POMC deficiency, and leptin defi-
ciency [117]. Similarly, obesity additionally arises from
chromosomal abnormalities, such as deletion of 17p11.2
(Smith Magenis syndrome), 11p13 (WAGR syndrome),
9q34 (Kleefstra syndrome), 6q16 (PWS-like syndrome),
2q37 (brachydactyly mental retardation syndrome), and
1p36 (monosomy 1p36 syndrome) [118].

Epigenetic alterations, such as modifications in DNA
methylation, histone tails, and microRNAs (miRNAs),
have emerged as crucial means for comprehensively
analyzing the widespread prevalence of the obesity epi-
demic (Fig. 5). The most significant epigenetic mecha-
nism for controlling gene expression seems to be DNA
methylation. Houde’s study [119] uncovered a correlation
between LDL-C levels and the DNA methylation status
of the AdipoQ gene and leptin-encoding gene. Maternal
metabolic health can also shape the DNA methylation
profile of leptin at birth, thereby influencing the meta-
bolic reprogramming associated with obesity [120]. In a
similar vein, reduced methylation levels in the regions of
insulin-like growth factor 2 (IGF2) have been associated
with paternal obesity [121]. G protein-coupled receptor
75 (GPCR 75), functioning as a ciliary protein expressed
in the brain, is predominantly found in the primary cilia
of hypothalamic neurons and associated with a lower
BML. The ciliary positioning of GPCR 75 is essential for
its functionality and role in controlling the formation of
fat tissue [122, 123].

Severe obesity is strongly tied to mutations in various
GPCRs that govern neuro-endocrine processes, includ-
ing those in the stimulatory Gas and particular adenylate
cyclases, such as ADCY3, which regulate feeding, satiety,
adipogenesis, and fat accumulation [124—126]. Addition-
ally, environmental factors such as obesogens, alterations
in gut microbiota composition, and dietary imbalances
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can contribute to weight gain and metabolic dysregula-
tion through epigenetic mechanisms [127].

Gut microbiome dysbiosis

There has been discussion over the role that early
microbial dysbiosis plays in the development of meta-
bolic diseases and obesity. Based on this, Ebert exam-
ined cause and effect in mice, and their research clearly
shows that early microbial deprivation did not affect
adiposity but instead caused IR and altered the expres-
sion of liver genes linked to glucose metabolism in mice
[128]. Furthermore, a accumulating body of research
indicates that metabolic disorders like obesity and
T2DM have been associated to prolong intestinal dys-
biosis (Fig. 6) [129]. To elucidate the causal relationship
between human gut microbiota and obesity develop-
ment, researchers conducted fecal microbiota trans-
plantation (FMT) from adult humans to germ-free (GF)
murine models. The experimental outcomes demon-
strated that recipient mice colonized with microbiota
from obese donors exhibited significant increases in

adiposity, body mass, and metabolic dysfunction bio-
markers [130].

Circadian rhythmicity represents a crucial modulator
of gut microbial homeostasis, with its disruption leading
to substantial alterations in intestinal microbial compo-
sition [131, 132]. Numerous studies have demonstrated
that disruptions in the gut microbiota, stemming either
from antibiotic-induced depletion or long-term HFD
intake, are capable of triggering local circadian rhythm
disruptions that contribute to weight gain [132—135].

The Firmicutes/Bacteroidetes ratio (F/B ratio), a
key indicator of microbial community structure, has
been associated with multiple pathological conditions,
including metabolic disorders [136]. Empirical evidence
supports the observation of increased F/B ratios in
individuals with obesity [137, 138]. Furthermore, epide-
miological investigations have identified reduced Bifi-
dobacterium abundance and elevated Staphylococcus
aureus colonization in specific populations, particularly
among obese pregnant women and overweight pedi-
atric cases [139-141]. In line with Gaber’s data, anti-
lipopolysaccharide (anti-LPS), anti-lipoteichoic acid
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composition, circadian disruption, SCFA-mediated lipogenesis, pathogenic strain activity, and compromised intestinal barrier integrity. Therapeutic
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(anti-LTA), and anti-flagellin IgA antibodies are among
the immunogenic markers of metabolic endotoxemia
linked to visceral AT (VAT) in postmenopausal women.
Additionally, there is an increase in pro-inflammatory
components of the gut microbiome, such as Proteobac-
teria (including Escherichia coli, Shigella spp., and Kleb-
siella spp.) and Veillonella atypica [142]. When given to
mice fed a HFD without germs, Enterobacter cloacae
strain B29, which has been isolated from the Entero-
bacteriaceae, has been demonstrated to induce obesity
[143]. Faecalibacterium prausnitzii, a butyrate-produc-
ing bacterium renowned for its anti-inflammatory qual-
ities, has been observed to be reduced in individuals
with diabetes who are morbidly obese [144]. In particu-
lar, compared to people of normal weight, obese indi-
viduals have been observed to have significantly lower
levels of the bacterial species Akkermansia, Oscillibac-
ter, and Alistipes [145].

Furthermore, introducing A. muciniphila into mice
improves intestinal barrier function and decreases
body weight growth, fat mass formation, and low-grade
inflammation [146]. Likewise, through a molecular

pathway, an elevation in the concentration of Short-
Chain Fatty Acids (SCFAs) in the plasma of obese
individuals can activate carbohydrate responsive ele-
ment-binding protein (CHREBP) and sterol regula-
tory element-binding transcription factor- 1 (SREBP1),
which in turn can drive lipogenesis, increase triglyc-
eride storage and then obesity [147, 148]. Nicholson’s
research team has established correlations between
intestinal barrier dysfunction, localized inflammatory
responses, and microbial community imbalance [149].

Comorbidities associated with obesity

Furthermore, concentrating only on obesity is insuffi-
cient. A chronic and recurring condition, obesity either
causes or exacerbates other diseases. Obesity-related
comorbidities are associated with higher morbidity, dis-
ability, and mortality. Therefore, this review will deeply
understand the pathogenesis of related common compli-
cations from the perspective of obesity (Fig. 7), in order
to identify and intervene the complications of obesity
early, so as to effectively prevent the occurrence of more
serious complications and improve the clinical treatment
effect of obesity.
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Type 2 diabetes mellitus (T2DM)
According to a World Health Organization (WHO) pre-
diction in 2009, 439 million people worldwide will have
diabetes by 2030 [150]. Upstream diseases of T2DM
include pre-obesity/obesity, metabolic dysfunction linked
to steatotic liver disease, and dyslipidemia, which typi-
cally manifests prior to T2DM [151]. One of the main
causes of IR is obesity [152]. The abnormal expansion
of AT in non-adipose sites (ectopic expansion) and the
over-accumulation of specific nutrients and metabolites,
once obesogenic factors amplify genetic suscepti-
bilities, disrupt the metabolic equilibrium through IR,
impaired autophagy and the microbiome-gut-brain axis.
Consequently, systemic inflammation is triggered, which
further exacerbates the dysregulation of immunometabo-
lism. which frequently results in early B-cell malfunction,

accelerates the deterioration of B-cell function and grad-
ually raises blood glucose levels, ultimately leading to
T2DM [153].

Similarly, the build-up of senescent cells in the sub-
cutaneous AT and the functional decline of adipocyte
precursor cells (APCs) in obese people both contribute
to the development of T2DM [154—-156]. In accordance
with Desiderio et al,, the- 1317 CpG at the PANDAR
promoter became hypo-methylated in obesity, progres-
sively inducing senescence in APCs in subjects with obe-
sity, which worsens along the progression toward T2DM
[157]. However, in certain people with IR, T2DM can
also develop inversely before obesity, leading to raised
insulin levels and increased hepatic glucose production-
the actual causes of obesity [158].
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Cardiovascular disease (CVD)

Based on the data from the China Health and Retirement
Longitudinal Study (CHARLS) that screened 7703 indi-
viduals, Jiang et al. suggest that sarcopenic obesity, and
potentially other related conditions, are positively cor-
related with the development of CVD [159]. Previous
evidences suggested that obesity is linked to numerous
kinds of CVD, including stroke [160], venous thrombo-
embolic disease [161], pulmonary hypertension [162],
atherosclerotic CAD [163], heart failure (HF) [164],
arrhythmias especially sudden cardiac death (SCD) [165]
and atrial fibrillation (AF) [166]. The risk of ischemic and
hemorrhagic strokes increases by 4% and 6% for every
unit increase in BMI, respectively [167].

Early atherosclerotic alterations are accelerated by obe-
sity via several mechanisms, such as inflammation and
IR [168]. Obesity-induced inflammation raises the risk
of LDL oxidation, which in turn promotes atherogenesis
[169]. The development of atherosclerosis is also funda-
mentally influenced by endothelial dysfunction in obe-
sity, which is principally brought on by diminished NO
bioavailability in the context of inflammation and oxida-
tive stress [170]. BMI in the overweight and obese ranges
was linked to an elevated risk of CAD, according to a
meta-analysis of nearly 300,000 people with 18,000 CAD
occurrences [171]. For every 10-kg increment in body
weight, there is a 12% elevation in the risk of CAD, along
with a 3-mmHg increase in systolic blood pressure and a
2.3-mmHg increase in diastolic blood pressure [172].

In addition, as demonstrated by growing research,
non-obstructive coronary artery disease (NOCAD) is
also quite common in ischemia or chest pain (CP) and
has a significant financial impact [173-175]. In 814
patients with angiographically confirmed NOCAD,
the results showed that obesity was independently
linked to the occurrence of NOCAD-related CP and
that those who were obese had a higher prevalence
of NOCAD-related CP (77.6% vs 67%, P< 0.001) and
more frequent NOCAD-related CP (angina frequency
composite score, 74.9 vs 78.3, P= 0.02) than those who
were not obese [176]. However, when comparing obese
patients undergoing bariatric surgery to those who
did not get surgical intervention, Karason et al. found
that the former had improved CP [177]. Adipocytes in
obese persons specifically prevent endothelial-medi-
ated vasodilatation of the coronary microvasculature,
which results in coronary heart disease (CMD) and
an oxygen-supply demand mismatch, according to the
mechanism of the association between obesity and
NOCAD-related CP [178, 179].

Simultaneously, obesity heightens the risk of myocar-
dial dysfunction and HF through multiple mechanisms.
These include hemodynamic changes, neurohormonal
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activation, the endocrine and paracrine effects of AT,
lipotoxicity, and ectopic fat deposition [164]. However,
Zhou et al. indicated that the protective effects of obe-
sity persists in people with chronic HF (CHF) irrespec-
tive of metabolic status [180], the phenomenon called
obesity paradox. The risk of AF was directly related to
BMLI, increasing by 4.7% (95% CI: 3.4 to 6.1, P< 0.0001)
for each kilogram per square meter [181]. Atrial fibril-
lation is caused by a combination of left atrial dilatation
and dysfunction, elevated epicardial fat, adipocyte infil-
tration of the myocardium, and fibrosis [182-184].

Non-alcoholic fatty liver disease (NAFLD)

NAFLD is defined as steatosis is not caused by alco-
hol, drugs, or viral-induced steatosis and with >5% fat
infiltration in imaging or histology [185]. In line with
the growing prevalence of obesity, the prevalence of
NAFLD is also rapidly rising [186]. Obesity can have
an impact on whole-body glucose and lipid metabo-
lism, which exacerbates the overproduction or exces-
sive uptake in the liver and lipid droplet buildup in
the hepatic parenchyma [187, 188]. It is the excessive
deposit of fat within the liver cells that result in inflam-
mation, fibrosis and cirrhosis, Momo’s studies estab-
lished that obese subjects significantly tend to have
higher liver enzymes like ALT and AST than non-obese
adults(serum ALT: 37.14 +15.18U/L vs 21.92 +5.10
U/L, serum AST: 41.15 +15.24U/L vs 25.01 +6.65U/L)
[189].

Histologically, metabolic dysfunction-associated stea-
tohepatitis (MASH) is characterized by the co-existence
of steatosis, inflammation, and hepatocyte injury (bal-
looning) [185]. According to Schmidt-Christensen et al.,
mice fed obesogenic diets develop MASH, steatosis, and
hepatocyte ballooning more quickly [190]. While the
majority of NAFLD patients simply show steatosis and
no further development, some will experience nega-
tive effects from their liver disease, including cirrhosis,
MASH, and hepatocellular carcinoma (HCC) [191].

Obesity-related respiratory disorders

It is well—established that obesity is associated with the
secretion of adipokines and pro-inflammatory factors.
These substances have the potential to intensify inflam-
matory states [192]. Obesity is closely linked to a variety
of respiratory diseases and has an impact on the progno-
ses of acute respiratory distress syndrome (ARDS) and
chronic obstructive pulmonary disease (COPD) [193].
Obesity has significant effects on respiratory function
by reducing compliance of the lungs and chest wal and
resting lung volumes, producing airway narrowing, clo-
sure and airway dysanapsis, increasing respiratory system
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resistance, which cause asthma and dyspnea, wheeze and
airway hyper-responsiveness [194].

Sleep-disordered breathing, a highly prevalent condi-
tion in obese patients, is characterized by the collapse
of the upper airway during sleep. The main pathophysi-
ological mechanisms of obstructive sleep apnea (OSA)
include chronic intermittent hypoxia, sleep fragmenta-
tion and inflammatory activation [195]. The results of
Sands’s study, obesity is the largest risk factor for OSA
at the population level (11-21 times higher than non-
obesity) [196]. Obesity is linked to both increased col-
lapsibility and increased loop gain presumably through
increased tongue fat and decreased lung volume, which
raises the chance of the OSA [197, 198].

Everyone is aware that asthma is a long-term inflam-
matory condition. According to a cross-sectional study
involved 11,137 participants from NHANES 2011-
2018, higher VAT is linked to a higher risk of develop-
ing asthma, especially in older people and women [199].
Research findings demonstrated that the VAT mass in
asthma patients was 529 g, which was notably higher
than the 455 g in the non-asthma group. In three distinct
models (the unadjusted model, the model adjusted for
demographic factors, and the fully adjusted model), for
every 200-g increase in VAT, the risk of asthma increased
by 10.4%, 20.8%, and 20.3% respectively.

A life-course Mendelian randomization study was car-
ried out with the aim of exploring the causal impacts
of early life adiposity on the COVID- 19 susceptibility
and severity. They found that childhood BMI and obe-
sity were positively correlated with COVID- 19 risk and
severity in adulthood, and revealed strong evidence of
a genetically predicted effect of childhood obesity on
COVID- 19 hospitalization [200].

Obesity-related nephropathy (ORN)

Epidemiological investigations by Wang and colleagues
demonstrate that obesity-associated renal pathologies
account for approximately one-quarter to one-third
(24-33%) of chronic kidney disease cases documented
in American clinical populations [201]. Substantiating
this global health concern, a comprehensive retrospec-
tive cohort analysis conducted by Hu’s research team at
Zhengzhou University examined 34,630 primary renal
biopsy specimens, revealing a significant temporal pro-
gression in obesity-related glomerulopathy prevalence
from 0.86% (2009) to 1.65% (2018) [202]. Aforementioned
statistical trends indicate a progressive annual elevation
in ORN diagnosis rates across diverse demographics.
This correlation receives further validation from popu-
lation-scale research involving 320,000 subjects, which
established a positive association between incremental
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BMI elevations and corresponding escalations in end-
stage renal disease (ESRD) risk profiles [203].

The pathophysiological mechanisms underlying ORN
involve dual injury modalities affecting renal microarchi-
tecture. Mechanical stressors manifest through altered
glomerular hemodynamics, visceral adipose-induced
renal compression, and podocyte deformation from
sustained mechanical tension. Concurrently, metabolic
disturbances include RAAS overactivation, bile acid
homeostasis disruption, insulin resistance, lipid-induced
cellular toxicity, and chronic inflammatory cascades
[204]. To be specific, by means of the vascular endothe-
lial growth factor-B (VEGE-B) signaling pathway, mito-
chondrial damage and the ensuing increase in IR, ROS
production, and ER stress, a HFD has been shown to
encourage lipid accumulation in mice, ultimately lead-
ing to renal impairment [205, 206]. Additionally, a two-
sample Mendelian randomization research conducted
in European populations confirmed that renal function
impairment, which is fueled by adverse obesity, is linked
to genetically high BMI [207].

Proteinuria, glomerulomegaly, increasing glomeru-
losclerosis, and decreased kidney function are clinical
characteristics of ORN [208]. However, due to the lack
of specificity in clinical parameters and histopathologi-
cal features, ORN is easily confused with other causes of
chronic kidney disease. Emerging diagnostic approaches
emphasize the detection of tubular injury biomarkers,
with urinary kidney injury molecule- 1 (KIM- 1), cysta-
tin C, N-acetyl-beta-D-glucosaminidase (NAG) enzyme
activity, and neutrophil gelatinase-associated lipoca-
lin (NGAL) protein concentrations showing particular
promise for early ORN identification in clinical urinalysis
[209, 210]. Meanwhile, multiple studies have established
that obesity and hyperuricemic nephropathy (HN) have
connections [211, 212].

Musculoskeletal impairments

The preservation of bone tissue and the homeostasis of
the minerals calcium and phosphorus depend on vita-
min D (VD). A cross-sectional study aimed to evaluate
the VD levels among 1,210 obese individuals in South-
ern Morocco, their results (adequate: 5.3%, insufficiency:
18%, moderate-deficiency: 52.5%, severe-deficiency:
24.2%) support the hypothesis that obesity is associated
with low VD levels [213]. Moreover, volumetric dilution
effect of VD is the most probable mechanism for the
reduction of serum VD concentration in obese patients
[214]. In particular, 25-(OH)D is mostly found in the
liver, muscle, fat, and serum, all of which are elevated in
obesity [215]. Wortsman et al. suggest that VD insuffi-
ciency associated with obesity may result from reduced
bioavailability of VD, as it tends to accumulate in AT,
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thereby limiting its availability from both cutaneous syn-
thesis and dietary intake [216].

Consequently, obese individuals may need higher ini-
tial doses of VD supplementation to achieve serum
25-(OH)D levels comparable to those of individuals with
normal body weight. Devlin’s findings further support
this by demonstrating that obesity negatively impacts
bone health, contributing to conditions such as osteope-
nia and osteoporosis [217]. Numerous variables, includ-
ing hyperinflammation, genetics, microbial dysbiosis,
hypermetabolism, and local alterations in the bone mar-
row environment, are involved in the mechanisms of
obesity-related bone dysregulation [218]. Additionally, a
longitudinal study conducted over four years in a mid-
dle-aged and elderly Chinese population revealed that
the co-occurrence of dynapenia and abdominal obesity
significantly elevated the risk of developing arthritis in
women (RR: 1.39, 95% CI: 1.01-1.93) [219].

Malignancies

All obesity-related malignancies are estimated to have
a general population-attributable percentage of 11.9%
in men and 13.1% in women [220]. Obesity has been
identified as a significant risk factor for malignancies in
at least 13 anatomical regions, including the endome-
trium, esophagus, kidneys, pancreas, liver, gastric cardia,
meninges, multiple myeloma, colorectum, breast, ova-
ries, gallbladder, and thyroid [221].

Both clinically severe estrogen-independent type II and
estrogen-dependent type I endometrial carcinoma (EC)
are independently associated with obesity [222]. Risks
for EC are increased in obese women and high visceral
abdominal fat volume (VAV)% independently predicts
reduced EC survival [223]. Notably, Schlottmann et al.
highlight a concurrent rise in the prevalence of over-
weight and obesity with the incidence rates of esophageal
adenocarcinoma (EAC) [224]. Furthermore, a compre-
hensive meta-analysis encompassing 24 studies and over
8 million participants revealed that BMI is positively
correlated with an elevated risk of renal cell carcinoma
(RCC) in both males (RR 1.05 for every 1 kg/m? increase)
and women (RR 1.06 for every 1 kg/m? increase) [225].

Obesity also significantly increases the risk of pancre-
atic cancer, obesity-induced pancreatic inflammation
and desmoplasia, which contributed to pancreatic ductal
adenocarcinoma (PDAC) progression and chemotherapy
resistance [226]. HCC has been increasingly associated
with metabolic diseases such as the metabolic syndrome,
which often co-occur with NAFLD or NASH [227]. Epi-
demiological studies consistently indicate that elevated
BMI and obesity are significant risk factors for the
development of cardia cancer [228]. A US population-
based study, combined with a multi-institutional cohort
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analysis, revealed that obese males are more prone to
meningiomas at the skull base compared to other loca-
tions. Additionally, patients undergoing meningioma
resection are more likely to be obese than those with
other intracranial tumors [229].

Obesity has been positively linked to both the mor-
tality and incidence of multiple myeloma (MM) in both
prospective cohort and case—control studies [230-232].
According to the findings of a Mendelian randomization
research, men are more likely to develop colorectal can-
cer (CRCQ) if their BMI is more extensive, whereas women
are more likely to develop CRC if their waist-to-hip ratio
(WHR) is higher [233]. In addition, patients who are
overweight or obese have a 1.2—1.4 times higher risk of
developing postmenopausal breast cancer [234]. Multiple
research studies confirm that obesity is closely associated
with the risk of developing papillary thyroid carcinoma
(PTC) [235, 236]. Li et al. propose that obesity may facili-
tate the progression of PTC by suppressing adiponectin
expression [237]. Meanwhile, obesity also can increase
the risk of invasion (OR =1.395) and lymph node metas-
tasis (OR =1.387) [238]. Similarly, obesity increases the
risk of benign tumors. A case—control study investigating
the relationship between visceral fat and uterine fibroids
found that higher levels of body fat, particularly abdomi-
nal visceral fat, significantly raise the risk of developing
uterine fibroids [239].

Psychological comorbidities

Obesity and depression frequently co-occur and exacer-
bate each other [240, 241]. A bidirectional relationship
has been established between obesity and depression,
wherein obesity or being overweight increases the like-
lihood of depressive symptoms, and conversely, depres-
sion elevates the risk of obesity or overweight [242-244].
The physical condition and weight issues associated with
obesity ultimately increase the likelihood of developing
depression by decreasing self-esteem, social isolation and
dissatisfaction with body image. Meanwhile, the depres-
sion often include emotional instability, poor in appetite
and reduced energy expenditure, which can lead to dis-
rupted eating behaviors, decreased physical activity and
ultimately result in weight gain and obesity. But the rela-
tionship between obesity and depression exist individual
differences, not all individuals with obesity will experi-
ence symptoms of depression, and not all individuals
with depression will develop obesity [245].

Individuals with obesity often experience disordered
eating patterns, with binge-eating disorder being the
most common among this population [246]. Compared
with regular-weight patients and those without an Eat-
ing Disorders (EDs), obese patients seem to express
peculiarities regarding the expression of some emotional
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processes, including impulsivity, aggression and anger
[247]. Metabolic and vascular dysfunction of obesity,
including inflammation, IR and leptin resistance, have
been considered as the key risks to depression and anxi-
ety development [248]. According to Kalarchian et al.,
social anxiety disorder is the most prevalent anxiety dis-
order among candidates for bariatric surgery, affecting
9% of patients [249].

Other comorbidities

A population-based cohort study aimed to quantify the
contribution of overweight and obesity to various adverse
pregnancy outcomes in Swedish females. As estimated
by Population attributable fractions, a significant per-
centage of unfavorable pregnancy outcomes were caused
by overweight and obesity: gestational diabetes (52.1%),
large-for-gestational age (36.9%), pre-eclampsia (26.5%),
low Apgar score (14.7%), infant mortality (12.7%), severe
maternal near-miss event (8.5%) and preterm birth (5.0%)
in the total study population [250]. Furthermore, numer-
ous researches have consistently demonstrated that
obesity is associated with higher rates of miscarriage,
unfavorable perinatal outcomes in assisted reproductive
technology (ART), and reduced rates of implantation,
pregnancy, and live delivery [251, 252].

In women of reproductive age, obesity also raises
the risk of diseases including polycystic ovary syn-
drome (PCOS), irregular menstruation, decreased ovar-
ian reserve, ovulatory dysfunction, subfecundity, and
increased incidence of preeclampsia, stillbirth, and mis-
carriage [253, 254]. A UK population-based cohort sup-
ports that women who gain/change weight between
pregnancies may increase the incidence of overweight/
obesity (> 85 th centile) and obesity (> 95 th centile) in
second children [255].

Li et al. unveiled that obesity and the related metabolic
changes were important influencing factors for Temporo-
mandibular joint osteoarthritis (TM] OA) [256]. Simulta-
neously, multiple studies have confirmed the association
between obesity and acute pancreatitis (AP). There is a
significant association between severe AP and VAT in
a single-centre prospective study (VAT area: severe AP:
141.01 +33.75 cm? vs moderate AP: 115.11 +29.85 cm?),
incorporating VAT into one of the prognostic indices for
AP needs to be further explored [257].

Interventions of obesity

Current evidence-based guidelines recommend life-
style interventions, pharmacotherapy, and bariatric
surgery (e.g., sleeve gastrectomy, gastric bypass) as pri-
mary obesity treatments. However, these approaches
face significant limitations, including weight regain and
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safety concerns even with gold-standard therapies [6].
Persistent adverse effects—such as cardiovascular risks,
gastrointestinal complications, and metabolic distur-
bances—associated with existing anti-obesity drugs have
heightened the demand for safer, sustainable alternatives.
Consequently, natural products and plant-derived bio-
active compounds are increasingly investigated for their
therapeutic potential. The mechanisms and efficacy of
major obesity interventions are systematically catego-
rized in Fig. 8 and Table 1.

Lifestyle modifications

As the initial treatment for weight management and car-
diovascular risk mitigation in obesity, comprehensive
lifestyle modification (encompassing dietary regulation,
physical activity optimization, and behavioral adaptation)
forms the cornerstone of anti-obesity therapeutic inter-
vention [258].

Contemporary research emphasizes the critical impor-
tance of nutritional modifications in modulating lipid
parameters and pro-inflammatory mediators, given the
pathophysiological relation between adiposity-related
chronic low-grade inflammation and elevated cardiovas-
cular risk [259]. According to Ullah’s research, sex hor-
mone and growth hormone (GH) levels were lowered
by alternate-day fasting (ADF), which resulted in slower
growth and postponed puberty. Although precocious
puberty and obesity brought on by an HED were avoided
by ADE, more clinical research is required to verify its
safety [260]. AS one of the intermittent fasting practices,
Ramadan fasting (fasted for an average of 14-15 h daily
from dawn to sunset during the 29-day Ramadan month)
induced weight loss (average weight loss of 2.3 +0.99 kg),
modified gut microbiota (F/B ratio, Firmicutes phylum
et al. significant decreases, Bacteroidetes and Proteo-
bacteria phyla et al. significant increases), and improved
blood lipid profile [261]. Recent investigations demon-
strate that adopting anti-inflammatory dietary regimens,
particularly those integrating Mediterranean nutritional
principles with national dietary guidelines (TUBER-
2016), effectively reduces both BMI and systemic inflam-
mation through iso-caloric meal plans achieving negative
dietary inflammatory indices (— 3.38 in females vs. — 3.53
in males) [262].

Certainly, most obese patients are difficult to con-
trol their weight through dietary intervention alone and
usually need to be supplemented with exercise therapy.
Adolescents’'unhealthy food behaviors and overweight/
obesity were strongly correlated with snacking while
watching TV, according to a longitudinal study [263]. A
longitudinal investigation spanning three years revealed
that extended screen exposure duration exhibited strong
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Fig. 8 The Interventions of Obesity. The primarily treatment interventions for obesity are summarized, which principally include lifestyle
intervention, pharmacotherapy, bariatric surgery, and emerging therapies. Figure 8 was created with BioGDPcom. ER, extended release; SR,
sustained release; SG, Sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; AGB, adjustable gastric banding; BPD-DS, biliopancreatic diversion

with duodenal switch; OAGB, One anastomosis gastric bypass; SADI-S, single-anastomosis duodenal ileostomy with sleeve gastrectomy; BBR,
Berberine; 113-HSD1, 11B-hydroxysteroid dehydrogenase type 1; FO, fish oil; PCP, Penthorum chinense Pursh; MD- 2, Myeloid differentiation factor 2;

DSG, Diosgenin; PL, pancreatic lipases

positive correlation with adiposity indices (p <0.01).
Notably, strategic reallocation of screen time to pur-
poseful physical/social activities (including structured
exercise, interpersonal interactions, cognitive tasks, and
restorative sleep) significantly attenuates obesity progres-
sion [264]. Porri’s assessment indicates that poor sleep
hygiene can considerably contribute to weight growth
and the worsening of metabolic diseases connected to
pediatric obesity, but more thorough research is required
[265]. Mechanistic studies by exercise physiologists fur-
ther elucidate that structured exercise regimens, whether
aerobic exercise (AE) or high-intensity interval training
(HIIT), enhance circulating pentraxin- 3 (PTX3) con-
centrations (a cardioprotective inflammatory modulator)
while favorably modifying lipoprotein profiles. Clini-
cal trials document 5.81% and 5.06% BMI reductions

respectively in overweight females following supervised
training protocols [266].

While many individuals consider dieting to be the
effective norm for weight loss, the reality is far more
complex. Frequent intermittent dieting appears to be
effective initially, but it can cause weight regain in peo-
ple whether they are overweight/obese or not [267, 268].
Therefore, in addition to dietary intervention and exer-
cise intervention, behavioral therapy for obese patients
should also incorporate an essential component of cogni-
tive therapy (Fig. 8). Significantly, it is necessary to alter
the incorrect perception of diet control. Dietary inter-
vention for obese patients does not merely mean diet-
ing and abstaining from carbohydrate intake; instead, it
involves adopting a healthy and nutritious balanced diet
achieved through a reasonable nutritional ratio. Inno-
vative digital health solutions hold particular promise
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in resource-limited settings. The EMPOWER initiative
exemplifies this through its tripartite intervention model
combining virtual nutritional education, personalized
lifestyle coaching, and cloud-based progress tracking.
Preliminary results show that, in the rural participant
cohorts, there is a body weight reduction of 6.2% +6.0%
(5.7 £5.3 kg) at the one-year follow-up [269].

In summary, lifestyle modifications may be a practi-
cal strategy to prevent obesity. However, lifestyle inter-
ventions are limited by poor compliance and efficacy.
Nevertheless, clinical observations reveal notable inter-
individual variability, with 35-50% of patients failing to
achieve clinically meaningful weight loss (> 5% baseline
reduction) despite intensive behavioral protocols span-
ning 4-6 months [270, 271]. The fact that most people
who do lose weight eventually gain it back is even more
concerning [272]. In a similar vein, clinical and epide-
miological investigations have revealed that minority of
obese individuals are unwilling or unable to maintain
long-term lifestyle changes [273].

All in all, lifestyle intervention requires early and com-
prehensive strategies, for example, the ‘magic polypill’
covering ‘Environment-Sleep-Emotion-Exercise-Diet [E(e)
SEEDi]; and long-term persistence to achieve ideal efficacy
[274-276].

Pharmacological treatments

Current anti-obesity medications

Current clinical guidelines specify pharmacological
eligibility criteria for anti-obesity therapeutics, target-
ing individuals presenting with BMI values >27 kg/
m? with concurrent metabolic comorbidities (including
T2DM, cardiovascular disorders, dyslipidemia, or SA)
or those with BMI >30 kg/m? irrespective of comor-
bidities. A growing number of medications have been
authorized in recent years to treat obesity. The Food and
Drug Administration (FDA)-endorsed pharmacopeia
for chronic weight management currently comprises six
principal agents: phentermine, orlistat, phentermine/
topiramate extended release (ER) (combined GABAergic/
glutamatergic agent), lorcaserin, naltrexone SR/bupro-
pion sustained release (SR) (opioid-dopaminergic combi-
nation), and liraglutide [277].

Phentermine worked by either preventing norepineph-
rine from being reabsorbed or by promoting its release.
The sole FDA-licensed anti-obesity drug that does not
exert action in the brain is orlistat, a gastric lipase inhibi-
tor that was approved in 1999 [278]. Topiramate is a
gamma-aminobutyric acid agonist. Lorcaserin is a selec-
tive agonist of serotonin 2C (5-HT2 C) receptor. Nltrex-
one is a non-selective antagonist of opioid receptor.
Bupropion inhibits the transporters of norepinephrine
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and dopamine. Significant weight loss and cardiometa-
bolic advantages are provided by new weight loss treat-
ments, such as GLP- 1R agonists (GLP- 1 RAs), dual
glucose-dependent insulinotropic polypeptide (GIP), and
triple GIP, GLP- 1, and glucagon receptor agonists [279].

Mechanistically, GLP- 1 RAs exert pleiotropic effects
through pancreatic -cell preservation (enhancing prolif-
eration while suppressing apoptosis), glucose-dependent
insulinotropic/glucagonostatic regulation, and gastroin-
testinal motility modulation-collectively contributing to
improved glycemic control and attenuated postprandial
lipidemia [280-282]. Through GLP- 1Rs in the hypothal-
amus, GLP- 1 also decreases appetite, food intake, and
promotes satiety [283]. Additionally, GLP- 1R signaling
inhibits hepatocyte de novo lipogenesis and B-oxidation,
reverses cholesterol transport, lowers the liver’s hepatic
TG content (HTGC) and VLDL-TG production rate,
and modifies important liver enzymes involved in lipid
metabolism [284]. GLP- 1 RAs may preserve free leptin
levels by targeting areas in the hindbrain, simultaneously
delay in gastric emptying and induce satiety [285].

GLP- 1 RAs include liraglutide (brand name,Victoza,
Novo Nordisk, Copenhagen, Denmark), semaglutide
(brand name, Wegovy, Novo Nordisk, Copenhagen, Den-
mark) and tirzepatide (brand name, Zepbound, Eli Lilly,
Indianapolis, IN, USA), which are approved and mar-
keted as weight-loss drugs. Semaglutide and liraglutide
have now been approved in the US and Europe to treat
obesity in children as young as 12 years of age [286].
The first GLP- 1 RAs to receive a license for long-term
weight control was ligarglutide. In 2021, semaglutide—
the next generation of GLP- 1 RAs—was authorized at
weekly doses of up to 2.4 mg for the treatment of chronic
obesity-related weight loss [278]. Systematic analysis by
Jensterle et al. demonstrated mean differential weight
reduction of 4.0-6.2% (vs placebo) when adjunctive to
lifestyle interventions in diabetic patients, contrast-
ing with 6.1-17.4% efficacy in non-diabetic populations
through GLP- 1 RAs [287]. According to Ansari et al,,
GLP- 1 RAs have been further shown to help lower car-
diovascular disease risk factors like blood pressure and
lipid profile in addition to aiding in weight loss [288].
GLP- 1 RAs shown long-term beneficial effects on car-
diovascular health, renal outcomes and adverse events
in obese people in Huang’s extensive observational trial,
which is consistent with the above conclusions [289].

GLP- 1 RAs can be used as a single treatment, in con-
junction with other hormone-based drugs, or engineered
as a dual or triple receptor agonist. Finding GLP- 1 RAs
that additionally target either the glucagon receptor, the
GIP receptor, or both has advanced the field [290]. In
large quantities recent therapeutic advancements reveal
superior efficacy profiles for novel agents: Tirzepatide
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(dual GIP/GLP- 1 receptor co-agonist) achieved 20.9%
weight reduction at 15 mg dosing over 72 weeks [291],
while retatrutide (triple GIP/GLP- 1/glucagon receptor
agonist) demonstrated unprecedented 24.2% weight loss
at 12 mg over 48 weeks in phase III trials [292].

Sodium-glucose cotransporter- 2 inhibitor (SGLT2i)
and dipeptidyl peptidase- 4 inhibitors (DPP- 4is) have
been demonstrated to improve blood pressure, lipid
profiles, body weight, and endothelial function [293,
294]. Emerging evidence elucidates adiposity regulation
through DPP- 4is, modulating WAT mass and thermo-
genic pathways via PPAR-a upregulation/UCP3 induc-
tion in skeletal muscle, coupled with BAT activation
through GLP- 1/MC- 4 signaling cross-talk [295]. DPP-
4i further enhances P3-adrenergic signaling via ERK
pathway suppression, potentiating UCP1-mediated ther-
mogenesis in BAT and inguinal WAT (iWAT) depots to
avoid obesity [296].

Concurrently, SGLT2i exhibit pleiotropic anti-inflam-
matory properties, suppressing NLRP3 inflammasome
activity and pro-inflammatory cytokines (TNF-a, IL-
1B, IL- 6, IL- 18) in preclinical models [297, 298]. Clini-
cally, SGLT2i demonstrates nephroprotective effects in
obese T2DM patients, decelerating chronic kidney dis-
ease (CKD) progression irrespective of glycemic param-
eters [299, 300]. The KDIGO 2022 guidelines prioritize
SGLT2i as first-line therapy for T2DM with comorbid
CKD/obesity-related nephropathy, emphasizing reno-
protection over conventional glycemic metrics [301]. The
combination use of empagliflozin (EMPA) and topira-
mate resulted in a significant reduction in body weight
and was generally well-tolerated in overweight/obese
non-diabetic adults on a calorie-restricted diet [302]. In
light of the points put out, more research is necessary to
assess the possible benefits of using this combination for
long-term maintained weight management.

However, most currently approved anti-obesity drugs
are associated with significant adverse effects. Phenter-
mine and amphetamines, for instance, increase cardio-
vascular risks, including hypertension and arrhythmias
[303]. Orlistat, a lipase inhibitor, commonly induces gas-
trointestinal complications such as steatorrhea and con-
stipation due to impaired fat absorption, with rare cases
linked to fatal outcomes [303]. Chronic use of topiramate
or phentermine correlates with nephrotoxicity [304, 305],
while bupropion and naltrexone have been implicated in
renal dysfunction and acute kidney injury, respectively
[306, 307]. Orlistat may also provoke tubulointerstitial
nephritis [308].

Despite their efficacy, glucagon-like peptide- 1 receptor
agonists (GLP- 1 RAs) face limitations due to transient
therapeutic effects, high discontinuation rates (driven
by nausea and diarrhea), and safety concerns, including
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pancreatitis, thyroid cancer, gallbladder disorders, and
injection-site reactions [309-313]. Furthermore, sub-
cutaneous administration of GLP- 1 RAs necessitates
blood-brain barrier (BBB) penetration, which com-
promises their utility in addressing cognitive aspects of
addiction and obesity. Although intranasal delivery has
been proposed to enhance brain targeting [314], practical
challenges-such as nasal physiological barriers and drug
solubility-hinder its clinical translation.

These limitations, coupled with the prohibitive cost
and short-term prescribing patterns of newer therapeu-
tics, have intensified interest in alternative strategies,
particularly plant-derived compounds and dietary sup-
plements, as adjunctive or primary interventions for obe-
sity management.

Nature compounds with potential anti-obesity activity
Curcumin Curcumin, a bioactive polyphenol isolated
from the rhizome of Curcuma longa L., demonstrates
multifaceted therapeutic properties encompassing anti-
inflammatory, anti-proliferative, and redox-modulating
activities [152, 315, 316]. Curcumin treatment (1500
mg/day) significantly improved overall B-cell function
and reduced both IR and body weight when compared
to a placebo (HOMA-B: 136.20 vs 105.19, HOMA-IR:
4.86 vs 6.04, adiponectin: 14.51 vs 10.36, leptin: 9.42 vs
20.66, BMI: 25.94 vs 29.34), with minimal adverse effects,
according to a 12-month randomized controlled trial in
obese patients with T2DM [317]. For obese patients with
T2DM, curcumin therapy may be helpful.

Genistein Legumes like soybeans and soy-rich prod-
ucts contain significant levels of genistein, an isofla-
vonoid functioning as a selective estrogen receptor
modulator (SERM) with pleiotropic metabolic effects
[318-320]. Intriguingly, preclinical investigations uti-
lizing gonadectomized murine models subjected to
high-fat high-sucrose (HFHS) dietary challenge demon-
strated that genistein supplementation effectively ame-
liorates obesity-associated metabolic perturbations,
particularly hepatic steatosis progression and glucose
homeostasis dysregulation [321]. While clinical valida-
tion in hormone-deficient obese populations remains
pending, this phytoestrogen exhibits significant poten-
tial as a nutraceutical candidate for mitigating meta-
bolic syndrome components and adiposity-related
comorbidities.

Berberine (BBR) Coptidis Rhizoma, the rhizome
of Coptis chinensis, is referred to as Huang Lian in
traditional Chinese medicine. It is abundant in bio-
active alkaloids, with BBR as its main component.
BBR exhibits broad pharmacological effects, includ-
ing anti-hypertensive, anti-diabetic, anti-adipogenic,
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Fig. 9 The Mainly Anti-Obesity Mechanisms of BBR. BBR exerts anti-obesity effects through multiple mechanisms: 1) Suppressing adipocyte
differentiation by downregulating C/EBP-a, PPAR-y, and CREB; 2) Promoting browning of WAT via activation of BAT marker genes (e.g., PGC- 1q,
UCP1) and mitochondrial biogenesis; 3) Regulating lipid metabolism by upregulating LDLR and Ampk-SIRT1-PPAR-y pathway; 4) Modulating

gut microbiota by increasing Bacteroidetes/Firmicutes ratio and SCFA-producing bacteria; 5) Polarizing adipose tissue macrophages from M1

to M2 phenotype to reduce inflammation; 6) Inhibiting inflammatory pathways (e.g., NF-kB, PI3 K/AKT/mTOR) and cytokines (e.g., TNF-q, IL- 6).
Figure 9 was created with BioGDP.com. C/EBP-a, CCAAT/enhancer-binding protein-a; PPAR-y, peroxisome proliferator-activated receptor y; CREB,
cAMP-response element-binding protein; Gal- 3, Galectin- 3; a-KG, a-ketoglutarate; LDLR, low density lipoprotein receptor; RhoA, Ras homolog gene
family member A; NRF2, nuclear factor erythroid 2; SLC7 A11, recombinant solute carrier family 7 member 11; GPX4, glutathione peroxidase 4; GM,
gastrointestinal microbiota; ATMs, adipose tissue macrophages. Remarks: All above figures were created with BioGDP.com

anti-inflammatory, antioxidant, and lipid-lowering
properties [322, 323]. BBR also exists in other medici-
nal plants, such as Berberis aristata, and B. vulgaris
[324], and it is metabolized into berberrubine (M1),
thalifendine (M2), demethyleneberberine (M3), and
jatrorrhizine (M4) [325].

Recent researches and preclinical investigations have
increasingly emphasized the potential anti-obesity
properties of BBR. The mainly potential mechanisms of
BBR against obesity are summarized as follows (Fig. 9):

(1) Suppression of Adipocyte Differentiation:

a Inhibits adipogenesis: In 3T3-L1 adipocytes,
BBR down-regulates CCAAT/enhancer-binding
protein-a (C/EBP-a) and peroxisome prolifera-
tor-activated receptor y (PPAR-y), while up-reg-
ulating PPAR-6 [320, 325-327].

b Attenuates cAMP/PKA-mediated signaling: BBR
reduces cAMP-response element-binding protein

(CREB) and Galectin- 3 signaling, which is a key
pathway for its anti-obesity effects [328—334].

(2) Adipose Tissue Browning and Metabolic Regula-
tion:

a Activates BAT thermogenesis: BAT upregulates
PGC- 1a, UCP1, PPAR-a, and mitochondrial bio-
genesis markers (ATPsyn, COXIV, Cyto C) [335-
337].

b Enhances brown adipogenesis: BBR increases
PRDM16-driven brown adipogenesis through
AMPK-a-ketoglutarate-dependent epigenetic
modulation [338].

(3) Regulation of lipid metabolism:

a Regulation of lipid metabolism: BBR regulates
the expression of adipokines [339, 340]. It up-
regulates LDLR expression by activating AMPK-
dependent Raf- 1 and ERK signaling pathway
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[341-343], up-regulates SREBP2 and CYP7 Al
expression [344—346], and promotes lacteal junc-
tion zippering by suppressing the Ras homolog
gene family member A (RhoA)/Rho-associated
kinase 1 (ROCK]1) signaling pathway [347-349].

b Regulation of plaque metabolism: BBR impedes
foam cell formation by activating the AMPK-
SIRT1-PPAR-y pathway which inhibiting the
expression of lectin-like oxidized LDL recep-
tor 1 (LOX- 1) [350]. It also stabilizes the plaque
by acting as an ACSL4 inhibitor through activ-
itng nuclear factor erythroid 2-related factor
2(NRF2)/recombinant solute carrier family 7
member 11 (SLC7 A11)/glutathione peroxidase 4
(GPX4) pathway [351, 352].

(4) Gut Microbiota (GM) Regulation:

a Alteration of microbial composition: BBR
restores the Bacteroidetes/Firmicutes balance,
enriches SCFA-producing bacteria, and sup-
presses bacterial proliferation [351, 353—360].

b Enhancement of intestinal barrier integrity:
BBR modulates the abundance of Akkermansia
muciniphila and the IL- 25/mucin- 2 dynamics
[361, 362].

(5) Anti-Inflammatory Effects in AT:
a Polarizes AT macrophages (ATMs): BBR polar-

izes ATMs from the M1 to the M2 phenotype,
reducing NF-kB/NLRP3 inflammasome activity

[363-370].
b Suppresses inflammatory pathways: BBR sup-
presses (NF-xB, PI3 K/AKT/mTOR) and

cytokines (TLR4, TNF-a, IL- 6) [371-376]. Simi-
larly, Poulios et al. comprehensively reviewed the
mechanisms underlying the anti-obesity effects of
key phytochemicals, with BBR being a prominent
example [377].

BBR exhibits a favorable safety profile. Although it
may cause transient gastrointestinal side effects such as
nausea and diarrhea, these often subside with contin-
ued use [378]. When co-administered with quercetin, it
can alleviate constipation [379]. However, due to its low
oral bioavailability [380-382], some innovative strate-
gies are explored:

a Synergistic herbal formulations, such as combined
alkaloid extracts, increase bioavailability [383—387].
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b Co-crystallization methods, for example, forming
BBR-ibuprofen salts, offer a potential solution [360,
388-391].

¢ Targeted delivery systems such as nanoparticles and
liposomes can enhance cellular uptake and bioavail-
ability [153, 278, 392-397).

BBR represents a multifaceted anti-obesity agent with
pleiotropic mechanisms, though clinical validation
through rigorous RCTs is imperative. Optimizing its
pharmacokinetic limitations via advanced formulation
technologies could unlock its full therapeutic potential.

Bariatric surgery

Patients with severe obesity (BMI >37.5 kg/m?) or those
who have not responded to medication and lifestyle
changes are usually the ones who undergo bariatric sur-
gery [398]. Bariatric surgery, which modifies gut anatomy,
significantly impacts food intake and nutrient absorp-
tion. This intervention not only facilitates sustained
weight reduction but also improves metabolic disorders,
obesity-related comorbidities (particularly T2DM), and
metabolic syndrome. Additionally, it enhances quality of
life and extends survival duration [399-402]. Sleeve gas-
trectomy (SG), Roux-en-Y gastric bypass (RYGB), adjust-
able gastric banding (AGB), and biliopancreatic diversion
with duodenal switch (BPD-DS) are the four most com-
mon bariatric surgeries carried out globally [400, 403].
One anastomosis gastric bypass (OAGB) and single-
anastomosis duodenal ileostomy with sleeve gastrectomy
(SADI-S) also are two more commonly recommended
miainstream techniques [404]. Song et al. demonstrates
that SG may ameliorate renal injury and enhance uric
acid excretion in HN mice by modulating the AMPK/
nuclear factor erythroid 2-related factor 2 (Nrf2) pathway
and up-regulating urate transporter ABCG2 transcrip-
tion [405].

A retrospective analysis involving 498 severely obese
patients who underwent SG, RYGB, or OAGB revealed
that SG and OAGB were both safe and effective primary
surgical options. However, OAGB and RYGB demon-
strated superior weight loss outcomes compared to SG
[406]. Another study comparing AGB, RYGB, and SG
reported total weight loss (TWL) percentages of 36.29%,
31.59%, and 21.07%, respectively, within the first postop-
erative year [407]. Furthermore, a separate retrospective
analysis of over 500 extremely obese patients indicated
that BPD/DS vyielded the highest TWL (38.4%), followed
by RYGB (26.3%) and SG (23.6%). Notably, the 30-day
complication rate was significantly higher in the BPD/DS
group (12.9%) compared to RYGB (4.7%) and SG (8.7%)
[408]. Lucoc’s study included a prospective follow-up of
319 patients who had both LSG and LRYGB (2008-2022)
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at a tertiary referral center, is consistent with the above
conclusions that LRYGB is associated with greater rates
of persistent excess weight loss over long-term follow-up
[409]. Meanwhile, in a retrospective analysis of patients
with a minimum two-year follow-up, Samuel et al. con-
cluded that super-obese patients undergoing LRYGB, as
opposed to LAGB and LSG, achieve the best mid-term
outcomes in terms of weight loss and resolution of obe-
sity-related comorbidities [410].

However, there are dangers and difficulties associated
with bariatric surgery according to growing evidence.
Individual-level hurdles to bariatric surgery were found
to include fear of surgery, fear of changing own lifestyle,
the belief that weight had not reached its ‘tipping point,
worries about dietary modifications, a lack of social
support, and fear of influence referral [411]. Despite its
potential benefits, the adoption of bariatric surgery has
been constrained by several factors, including its inva-
sive nature, substantial financial burden, and the risk of
postoperative complications. These limitations have con-
tributed to its relatively restricted application in clinical
practice. LSG has a high rate of long-term failure because
that one out of three patients will have another bariatric
procedure within a decade’s time, and half of the patients
will gain weight, while up to 90% of patients will occur
nutritional deficiencies and a decrease in bone mass over
the course of a long-term follow-up [412-415]. Bariatric
surgery combined with VD insufficiency is frequent and
is anticipated to have a negative effect on the bones [416].
Bariatric surgery also may result in dumping syndrome
[417]. Extremely obese people are more likely to experi-
ence comorbidities, mortality, surgical problems, and
decreased weight loss after bariatric surgery.

For bariatric surgery patients to have successful and
long-lasting results, postoperative care techniques are
required. The first 24 h of inpatient postoperative treat-
ment are devoted to pulmonary hygiene, early ambu-
lation, intravenous fluid therapy, pain management,
supplemental oxygen, and symptomatic management
of nausea or vomiting [418]. In the postoperative phase,
positive airway pressure treatment can lower the risk of
apnea and prevent hypoxic episodes [419-421]. High-
quality evidence suggests that the risk of pulmonary
embolism and deep vein thrombosis (DVT) can be sig-
nificantly lowered through a combination of pharma-
cological interventions and mechanical prophylaxis.
Specifically, the administration of unfractionated heparin
or low-molecular-weight heparin (LMWH) within 24 h
post-surgery, when used alongside intermittent pneu-
matic compression devices or graduated compression
stockings, has been shown to effectively reduce the inci-
dence of these conditions [408, 422—424].
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Additionally, bariatric surgery patients should get
postoperative nutritional therapy as soon as possi-
ble, including enough protein consumption, vitamin
and mineral supplements [425-428]. More research is
required to determine if moderate doses of VD supple-
mentation (600-3500 IU/day) and high doses (> 3500 IU/
day) enhance VD status while having little to no effect
on parathyroid hormone levels, according to Chakh-
toura et al. [429]. Several studies have shown that Proton
pump inhibitors (PPI) significantly lower the incidence
of ulcers and gastroesophageal reflux disease [430-432].
Moreover, T2DM patients may additionally require mod-
ifications to their anti-diabetic medications due to the
possibility of hypoglycemia during surgery period [433,
434]. Endoscopic care of fistulas, leaks, and ulcers has
emerged as the first-line treatment when complications
arise, and the arsenal of tools and methods is expand-
ing [435, 436]. In addition, White et al. reported that
the combination of endoscopic therapy and pharmaco-
logic therapy can address weight recidivism, insufficient
weight reduction, or further ameliorate related medical
comorbidities [437].

Emerging therapies

Novel medications and targets

Interleukin- 2 (IL- 2) Emerging evidence from murine
models of diet-induced adiposity demonstrates the meta-
bolic regulatory potential of low-dose IL- 2 administra-
tion. Moon et al. elucidated a dual mechanistic pathway:
a. Direct immunomodulatory effects on CD4" T lympho-
cytes, enhancing regulatory T cell (Treg: CD4", CD257,
FoxP3™) differentiation while suppressing Th1-mediated
gonadal WAT (gWAT) inflammation; b. Neuroimmune
crosstalk activation through hypothalamic microglial
engagement, stimulating sympathetic outflow that upreg-
ulates TGF-f} expression concomitant with reductions in
pro-inflammatory mediators (IFN-y, IL- 1B, IL- 6, IL- 8)
[438].

Glucocorticoid (GC) GCs are steroid hormones.
Both endogenous and exogenous GC excess are detri-
mental to health as it can result in maladaptive diseases
that mimic the metabolic abnormalities brought on by
a HFD, such as Cushing’s syndrome [439], hypertension
[440], central obesity [441], IR [442], and osteoporosis
[32]. In accordance with Zhong’s research, osteoblastic
11B-hydroxysteroid dehydrogenase type 1 (113-HSD1) is
directly linked to obesity, glucose management dysfunc-
tion, and bone loss brought on by a HFD. The enzymatic
upregulation of 11B-HSD1 demonstrates dual regulatory
effects-suppressing osteoblastic glucose utilization and
differentiation while amplifying glucocorticoid-medi-
ated repression of Early Growth Response 2 (Egr2) tran-
scription. Pharmacological intervention using DSS, a
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bone-specific 11p-HSD1 inhibitor, presents novel thera-
peutic potential for counteracting HFD-associated meta-
bolic dysregulation and osteopenia [443]. Nevertheless,
the clinical development of 11B-HSD1 inhibitors is still
complicated and unsatisfactory [444, 445]. Finding the
precise tissues or cells to target could be an innovative
strategy to the development of 113-HSD1 inhibitors.

Marine fish oil (FO) Marine food that is abundant in
long-chain omega- 3 polyunsaturated fatty acids (LC n-
3 PUFA) and long-chain omega- 6 polyunsaturated fatty
acids (LC n- 6 PUFA) has been suggested in a number
of studies to be a fruitful alternative for lowering obesity
and metabolic problems associated with obesity [446,
447]. Furthermore, marine FO offers micronutrients
like potassium, iodine, and selenium as well as vitamins
A and D [448]. Pradhan et al. have isolated and stud-
ied the Tapra FO which was enriched with essential FA,
treatment of Tapra FO in the mice displayed anti-obesity
impact in terms of decreasing body weight, BMI, serum
lipid profiles, leptin and TNF-a in mice model [449].
Marine-derived nutritional interventions, particularly
those rich in long-chain omega- 3/omega- 6 LC-PUFAs,
exhibit anti-adipogenic properties through leptin sign-
aling interference. Preclinical studies document that
Phasa FO supplementation (12.5 mg/kg/day) containing
conjugated LC-PUFAs significantly downregulates lep-
tin expression at transcriptional and translational lev-
els, effectively inhibiting adipocyte hyperplasia and lipid
accumulation [450]. These findings corroborate marine
bioactive compounds as promising candidates for obesity
mitigation strategies [451]. Notably, marine natural prod-
ucts (MNPs) demonstrate broad-spectrum biomedical
applications, showing therapeutic efficacy against viral
pathogens (HIV, SARS-CoV- 2 variants), chronic infec-
tions (tuberculosis, H. pylori), and metabolic comorbidi-
ties (diabetes, infection-related cardiovascular disorders)
[452].

Penthorum chinense Pursh (PCP) PCP, a tradi-
tional Chinese medicine, has been used for centuries to
relieve the symptoms of excessive alcohol consumption,
and treated traumatic damage, edema, and liver disor-
ders such as hepatic viral infections (ALD), NAFLD,
and liver fibrosis additionally [453-455]. Hu et al.
found that PCP supplementation resulted in reduced
body weight and hyperglycemia by decreasing the
abundance of Firmicutes and increasing the proportion
of Bacteroidetes at the phylum level [456]. Additionally,
Hu et al. investigate how PCP treatment improved dys-
lipidemia and decreased food consumption and obesity.
This may be because PCP activates the liver’s GLUT2/
glucokinase (GCK) expression and lowers hepatic oxi-
dative stress in db/db mice [457]. Besides, there are no
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specific human experiments to elucidate the anti-obe-
sity mechanism of PCP.

Myeloid differentiation factor 2 (MD- 2) inhibitors
Novel MD- 2 inhibitors (MAC28 and 2i- 10) exhibit
neuroprotective effects by attenuating MD- 2-toll-like
receptor 4 (TLR4)-mediated neuroinflammation. These
compounds preserve hippocampal neurogenesis while
mitigating obesity-associated cognitive deficits through
modulation of microglial activation and oxidative
stress markers [458]. Similarly, further clinical studies
are supposed to MD- 2 inhibitors as an adjunct to the
treatment of obesity.

Diosgenin (DSG) DSG, a naturally occurring ste-
roidal saponin found in a variety of plants, including
Solanum and Dioscorea, has a variety of actions in
inflammatory illnesses. DSG is also recognized to be
beneficial against metabolic problems linked to obesity
and IR [459]. Experimental models reveal DSG-medi-
ated suppression of lipogenic regulators (sterol regula-
tory element-binding protein 1c (SREBP- 1c) and fatty
acid synthase (FAS)) with concurrent upregulation of
lipolytic enzymes (phospho-AMPK (p-AMPK), phos-
pho-acetyl-coA carboxylase (p-ACC), and carnitine
acyl transferase 1A (CPT- 1A)), effectively reducing
ectopic lipid deposition [460]. In vivo study, the admin-
istration of a DSG regimen improved various weight-
related outcomes and obesity-related IR by enhancing
IRS1/2-PI3 K-Akt signaling pathway activation [461].

Positive regulatory domain PRDM16 A [33 adren-
ergic receptor agonist called mirabegron might boost
whole-body energy expenditure and activate human
BAT [462, 463]. Nonetheless, Higher dosages may not
be clinically used due to possible cardiovascular side
effects [464]. PRDM16 is not a direct pharmacological
target like GLP- 1 receptor agonist and B3 adrenergic
receptor agonist. The mechanism of PRDM16 in AT is
as follows: PRDM16 directly activates the thermogenic
function of BAT and induces the browning of WAT by
binding to the promoter of UCP1 and PPAR-y coacti-
vator la (PGCla), indirectly regulates AT function
by promoting SLIT2 protein secretion and inducing
B-hydroxybutyrate (BHB) secretion [465]. According
to numerous studies, a number of medications, such
as resveratrol [466], rutaecarpine [467], acadesine
(AICAR), metformin [468], rosiglitazone [469], and
liraglupeptide [470], can reduce obesity and diabetes
by altering the expression and function of PRDMI6.
Nevertheless, PRDM16 is also expressed in cardiac and
skeletal muscle. Therefore, there is still more work to
be done to target the PRDM16 protein in thermogenic
AT in order to battle obesity and the metabolic diseases
that are associated with obesity.
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Vanadium compounds As long-acting insulin sensi-
tizers, organically derivatized polyoxovanadates (POVs)
modified with long-chain aliphatic acids significantly
reduce body weight in HFD-fed mice after 8-week
administration, notably attenuating adipose tissue accu-
mulation and inflammation. These findings suggest that
vanadium-based compounds targeting obesity-associated
proteins represent a promising pharmacological strategy
for obesity management [471].

Pancreatic lipase (PL) inhibitors Frans et al. demon-
strated that tetrahydrocannabinol (THC) and cannabi-
nol (CBN), bioactive extracts from Cannabis sativa (C.
sativa), competitively inhibit PL activity. This highlights
the potential of C. sativa-derived compounds as novel
candidates for developing anti-obesity therapeutics and
weight-regulatory agents [472].

Collectively, these advances underscore innovative
therapeutic avenues for obesity. However, rigorous pre-
clinical validation and clinical trials remain imperative to
evaluate the efficacy, safety, and translational applicability
of these approaches in diverse populations.

Device-based therapies

The significance of device-based therapies is further
highlighted by the complexity and prevalence of obe-
sity and the metabolic problems that accompany obesity
[473]. Mobile smart device-based health interventions
(mHealth) may offer an appealing and economical strat-
egy for encouraging long-term adaptations of healthier
lifestyles, according to a two-arm parallel cluster-RCT
[474].

Meanwhile, a medical device based on polyglucosa-
mine polymers (PG) shown a substantial effect on low-
ering body weight, IR, and cholesterol levels by binding
lipids in the upper gastrointestinal tract and decreasing
their availability, according to Rondanelli et al’s inno-
vative and safe treatments for obesity [475]. Addition-
ally, Simvastatin (Sim) encapsulated within PLGA NPs
(Sim-NP) was created by Mohaghegh et al. for localized
delivery of Sim to ATs for immuno-modulation, which
significantly reduced the progression of inflammation
linked to obesity, controlled the synthesis of white fat,
and improved AT modulation [476].

Genetic therapies

Tang et al. demonstrated that adeno-associated virus
(AAV)-mediated fat- 1 gene therapy—targeting a fatty
acid desaturase that converts omega- 6 to omega- 3
FFAs—ameliorates obesity-induced metabolic dysfunc-
tion, cellular senescence, and osteoarthritis by modulat-
ing FFA composition [477]. MiRNAs, critical epigenetic
regulators, exhibit dynamic expression patterns dur-
ing adipogenesis: persistently upregulated miRNAs in
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obesity are suppressed during adipocyte differentiation,
whereas downregulated miRNAs in obese individuals
are elevated in mature adipocytes, thus highlighting their
potential as novel therapeutic targets for obesity [478].

Furthermore, Attia et al. showed that dulaglutide treat-
ment mitigates oxidative DNA damage and hypermeth-
ylation in obese animals by restoring the expression
of DNA repair genes (e.g.,, DNMT1, OGGI, and p53),
thereby preserving genomic integrityc [479]. Genetic
screening for rare obesity-related disorders, informed by
clinical insights from pediatric weight management spe-
cialists, is essential for optimizing adolescent obesity care
[480]. Implementing next-generation sequencing (NGS)
to identify variants in Lep, LepR, MC4R, and POMC
genes enables timely, genetically guided interventions
for non-syndromic early-onset obesity in children and
adolescents [481]. Clinical advancements include set-
melanotide (IMCIVREETM, Rhythm Pharmaceuticals),
an MC4R agonist approved for monogenic obesity disor-
ders (POMC, LepR deficiencies). Ongoing trials explore
its efficacy in syndromic obesities (Bardet-Biedl, Alstrom
syndromes) and epigenetic dysregulations of the melano-
cortin pathway [482].

Likewise, preclinical research suggests that adipose-
derived mesenchymal stem cell (ADMSC)-based cell
and gene therapy may be a promising treatment option
for obesity and its metabolic consequences [483]. The
process of transferring a donor’s feces to a recipient
using a nasogastric tube, colonoscope, enema, capsule,
or a combination of these is known as a fecal microbiota
transplants (FMTs) [484]. FMTs demonstrates transient
metabolic benefits in obesity management, with lean
donor FMT inducing short-term (6-week) improvements
in microbial butyrogenesis and insulin sensitivity. How-
ever, longitudinal analysis (18-week follow-up) reveals
microbial community reversion to baseline configura-
tions, underscoring the necessity for sustained interven-
tion protocols [485, 486]. Despite the strength of these
findings, additional research with bigger sample sizes and
longer duration is needed to ascertain the long-term sta-
bility of donor engraftment and related phenotypes.

Conclusion and prospects

According to the World Obesity Atlas 2024, obesity
prevalence among Chinese adults and children contin-
ues to rise, positioning obesity as a critical global health
challenge across all age groups. The multifactorial patho-
genesis of obesity and its complications, coupled with
incomplete elucidation of pathophysiological mecha-
nisms by current medical approaches, contributes to sub-
optimal treatment efficacy and unfavorable prognoses.
This review systematically examines obesity pathophysi-
ology through six dimensions: energy balance/metabolic
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adaptation, hormonal regulation, neural control, inflam-
mation/immune responses, genetic/epigenetic factors,
and gut microbiota dynamics. We further analyze mecha-
nisms underlying obesity-related comorbidities and eval-
uate therapeutic interventions, with particular emphasis
on BBR—a natural alkaloid-detailing its pharmacological
properties, anti-obesity mechanisms, clinical limitations
(notably poor bioavailability and absorption), and recent
formulation advancements (e.g., derivatives, eutectic
compounds, adipose-targeted delivery systems). This
research focuses on the multidimensional pathophysi-
ology exploration (neuroendocrine-immune-metabolic
crosstalk), optimization of pharmacological agents (GLP-
1 RAs, dual/triple agonists) and natural compounds (BBR
formulation enhancement), and echanistic studies on
adipose tissue browning, gut microbiota modulation, and
epigenetic regulation.

While preclinical studies demonstrate BBR’s potential
in modulating adipose activation and metabolic syn-
drome, current clinical trials lack obesity-specific end-
points and standardized protocols. In addition, BBR’s low
bioavailability and poor oral absorption limit its clinical
application. Emerging anti-obesity agents (e.g., GLP- 1
receptor agonists, triple incretin agonists) show superior
efficacy, necessitating formulation optimization for BBR
to achieve clinical competitiveness. Furthermore, most
novel therapeutics remain in preclinical stages, requiring
rigorous safety/efficacy validation.

Future obesity-related research should focus more on
the following priorities: 1. Translational Development:
Clinical validation of preclinical anti-obesity candidates
(e.g., IL- 2 analogs, marine-derived compounds) and bio-
availability enhancement strategies for phytochemicals
(nanodelivery, structural analogs). 2. Precision Medicine:
Biomarker discovery for personalized obesity subtyping
and treatment, and long-term safety/efficacy studies of
novel agents. 3. Preventive Paradigms: Early-life interven-
tions targeting developmental origins of obesity and pub-
lic health policies addressing obesogenic environments.
4. Therapeutic Innovation: Non-surgical alternatives for
high-risk populations (device-based/gene therapies), and
combinatorial approaches integrating pharmacotherapy,
microbiota modulation, and behavioral interventions.
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