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Abstract 

Over the past few decades, obesity has transitioned from a localized health concern to a pressing global public health 
crisis affecting over 650 million adults globally, as documented by WHO epidemiological surveys. As a chronic meta-
bolic disorder characterized by pathological adipose tissue expansion, chronic inflammation, and neuroendocrine 
dysregulation that disrupts systemic homeostasis and impairs physiological functions, obesity is rarely an isolated 
condition; rather, it is frequently complicated by severe comorbidities that collectively elevate mortality risks. Despite 
advances in nutritional science and public health initiatives, sustained weight management success rates and preven-
tion in obesity remain limited, underscoring its recognition as a multifactorial disease influenced by genetic, environ-
mental, and behavioral determinants. Notably, the escalating prevalence of obesity and its earlier onset in younger 
populations have intensified the urgency to develop novel therapeutic agents that simultaneously ensure efficacy 
and safety. This review aims to elucidate the pathophysiological mechanisms underlying obesity, analyze its major 
complications—including type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), non-alcoholic fatty liver dis-
ease (NAFLD), obesity-related respiratory disorders, obesity-related nephropathy (ORN), musculoskeletal impairments, 
malignancies, and psychological comorbidities—and critically evaluate current anti-obesity strategies. Particular 
emphasis is placed on emerging pharmacological interventions, exemplified by plant-derived natural compounds 
such as berberine (BBR), with a focus on their molecular mechanisms, clinical efficacy, and therapeutic advantages. By 
integrating mechanistic insights with clinical evidence, this review seeks to provide innovative perspectives for devel-
oping safe, accessible, and effective obesity treatments.
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Introduction
As a chronic disease, Obesity characterized by excessive 
or abnormally distributed adipose tissue (AT) accumula-
tion, is clinically defined by body mass index (BMI ≥ 30 
kg/m2) and recognized as a multifactorial disorder driven 
by systemic energy imbalance [1–3]. Beyond caloric sur-
plus, emerging evidence implicates interconnected etio-
logical drivers, including obesogenic environments (e.g., 
hyperpalatable diets, sedentary technologies), gut dys-
biosis, genetic predispositions, and epigenetic modifica-
tions, which collectively disrupt metabolic homeostasis 
[4]. Critically, obesity propagates a self-reinforcing cycle 
of complications—T2DM, CVD, NAFLD, respiratory 
diseases, ORN, malignancies, musculoskeletal disorders, 
and psychological comorbidities-contributing to elevated 
morbidity, mortality, and healthcare expenditures glob-
ally [5, 6].

Alarmingly, global obesity prevalence has surged 
over five decades, with projections indicating 1.9 bil-
lion affected adults by 2035 [7, 8]. In China, a nation-
wide cross-sectional research (n = 15.8 million) revealed 
34.8% overweight (BMI 24–27.9 kg/m2) and 14.1% obese 
(BMI ≥ 28 kg/m2) individuals, with obesity-associated 
comorbidities disproportionately burdening this cohort 
(P < 0.001) [9]. This escalating epidemic underscores an 
urgent need for innovative therapeutic strategies, as cur-
rent interventions, lifestyle modification, pharmacother-
apy and bariatric surgery, face limitations: suboptimal 
efficacy (5–15% weight loss), adverse effects (e.g., gastro-
intestinal intolerance, surgical risks), and poor long-term 
adherence.

Against this backdrop, natural compounds like BBR, 
an isoquinoline alkaloid from Coptis chinensis, emerge 
as promising candidates. With a 70-year safety record in 
treating infectious diarrhea in China and preclinical evi-
dence of multi-target anti-obesity actions (e.g., AMPK 
activation, gut microbiota modulation), BBR represents 
a paradigm shift toward accessible, low-cost therapies 
[10]. However, translational barriers persist, notably poor 
oral bioavailability (< 5%) and insufficient obesity-specific 
clinical validation.

This review synthesizes obesity’s pathophysiologi-
cal axes, expounds the pathogenesis of common obesity 
complications, focuses on summarizing new anti-obesity 
drugs and targets, evaluates therapeutic gaps, and high-
lights BBR’s mechanistic novelty—including adipose 
browning and epigenetic regulation—while propos-
ing formulation innovations (e.g., nanoparticle delivery, 
structural analogs) to bridge preclinical promise to clini-
cal impact. By contextualizing BBR within the obesity 
therapeutic landscape, this work advances a roadmap for 
next-generation anti-obesity agents combining efficacy, 
safety, and scalability.

Pathophysiology of obesity
Considering the substantial differences in how indi-
viduals respond to obesity treatment and the intricate 
etiology of obesity, a profound comprehension of the 
pathophysiological mechanisms underlying obesity is of 
utmost consequence for formulating reasonable, effica-
cious, and cost-efficient intervention strategies. Through 
a comprehensive review of the existing literature on the 
pathophysiology of obesity, the following is a summary of 
its pathophysiological mechanisms.

The imbalance of energy homeostasis and metabolic 
adaptation
The three primary components of energy homeosta-
sis are energy intake, expenditure, and storage. Long-
term energy storage occurs in adipocytes as intracellular 
droplets of triacylglycerol (TG). Adipocytes are mostly 
arranged in distinct AT depots where can be divided into 
five main categories: subcutaneous, visceral or intraperi-
toneal, pelvic and retroperitoneal, intra- or extra-peri-
cardial and intramuscular [11, 12]. An energy imbalance 
is a hallmark of obesity (Fig.  1), where energy intake 
surpasses energy expenditure and the extra energy is 
retained in adipocytes [7].

AT predominantly exists in two primary forms: brown 
AT (BAT) and white AT (WAT), each of which has dis-
tinct physiological roles (Fig. 1). While WAT is dispersed 
throughout the body, BAT is predominantly located in 
the cervical and subscapular regionsis [13]. WAT pri-
marily functions to store energy by converting glucose 
and fatty acids (FA) into triglycerides, which are housed 
in large unilocular lipid droplets. Subsequently, these 
are released as free fatty acids (FFA) within adipocytes 
[14]. In contrast, BAT is mitochondrial and essential for 
promoting energy expenditure and non-shivering ther-
mogenesis [15, 16]. The thermogenic properties of BAT 
are largely due to its high mitochondrial density and the 
presence of uncoupling protein 1 (UCP1), which facili-
tates heat production by disrupting the normal process of 
oxidative phosphorylation [17].

Apart from WAT and BAT, another intermediate 
form between the WAT and BAT is beige adipose tissue 
(BeAT) (Fig.  1), which is frequently found inside WAT. 
Despite BeAT resembles BAT in morphology, it typically 
originate from a Myf5-negative cell lineage, akin to WAT. 
Beige adipocytes are adept at producing heat by separat-
ing lipid oxidation from ATP synthesis [13]. Research 
indicates that beige adipocytes can develop from spe-
cific preadipocyte populations [18] inside subcutane-
ous WAT or trans-differentiate pre-existing WAT [19, 
20]. The process of WAT browning (Fig. 1) describes the 
process by which BeAT is generated within WAT. This 
transformation enhances energy expenditure, reduces the 
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detrimental impacts of excessive WAT storage, and ulti-
mately improves metabolic wellbeing [15, 21, 22].

The coordinated operation of the three types of AT 
guarantees an optimal metabolic state. This process 
involves a precisely coordinated structural and meta-
bolic reorganization in response to physiological cues, 
enabling metabolic adaptability to satisfy the body’s 
requirements [23]. These metabolic and thermogenic 
reactions are mainly propelled by the distinctive fea-
tures of the mitochondrial population. Mitochondrial 
malfunction disrupts the metabolic flexibility of adi-
pocytes, contributing to metabolic disorders such 
as insulin resistance (IR), obesity and T2DM [24]. 
These metabolic changes initiate a vicious cycle that 
exerts a negative influence on the functionality of AT 
and undermines overall metabolic homeostasis [25]. 
According to Huang et  al., the HFD group mice’s and 
obese individuals’ WAT browning processes were 

inhibited, which in turn inhibited local energy expendi-
ture and exacerbation of obesity-related conditions 
[26].

Hormonal regulation
Adipocytes secrete a range of cytokines, including lep-
tin, vastatin, interleukin- 6 (IL—6), adiponectin, tumor 
necrosis factor-alpha (TNF-α), resistin, angiotensinogen, 
aromatase, and adipsin. These bioactive molecules are 
integral to the regulation of appetite, satiety, and body fat 
content. When their normal regulatory mechanisms are 
disrupted, it can lead to IR associated with obesity as well 
as obesity itself, as illustrated in Fig. 2 [27, 28]. Gjermeni 
et  al. claims that the primary factors regulating energy 
balance are insulin and leptin [29].

Leptin, encoded by the obese gene, mediates its bio-
logical functions through binding and activation of 
specific leptin receptor (LepR) following its production 
and release by adipocytes within WAT (Fig. 2) [30]. This 

Fig. 1 Energy Homeostasis and Metabolic Adaptation of Obesity. Obesity arises from disrupted energy homeostasis, characterized by excessive TG 
storage in WAT and impaired thermogenic capacity of BAT/BeAT. Mitochondrial dysfunction and suppressed WAT browning perpetuate metabolic 
inflexibility, driving IR and systemic metabolic disease. Interventions targeting adipose plasticity and mitochondrial health hold therapeutic 
potential. Figure 1 was created with BioGDP.com. AT, adipose tissue; WAT, white adipose tissue; BAT, brown adipose tissue; BeAT, beige adipose 
tissue; UCP1, uncoupling protein 1; FFA, free fatty acids; TG, triglycerides
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adipocyte-derived hormone serves as a signaling mol-
ecule that communicates the body’s nutritional state, 
particularly during conditions of energy deficit. Con-
sequently, physiological states characterized by caloric 
restriction or reduced adiposity demonstrate signifi-
cant decreases in circulating leptin concentrations 
[31]. Leptin can influence appetite and calorie intake 
by binding to receptors that express pro-opiomelano-
cortin (POMC) in the brainstem, hypothalamus and 
arcuate nucleus (ARC) [32]. Mechanistically, leptin 
suppresses the activity of hypothalamic ARC neurons 
responsible for secreting neuropeptide Y (NPY), a 
potent orexigenic mediator that enhances hunger sig-
nals and reduces metabolic energy utilization, thereby 
promoting adipose accumulation [33]. HFD can trigger 

the activation of nuclear factor-κB (NF-κB) and its 
upstream regulatory factor, inhibitor of NF-κB kinase-β 
(IKKβ). This activation occurs by increasing endoplas-
mic reticulum (ER) stress within the hypothalamus. 
Such a series of events potentially results in the devel-
opment of leptin resistance [34]. Leptin resistance man-
ifests as diminished satiety signaling, hyperphagia, and 
progressive body mass accumulation, serving as key 
contributors to metabolic dysregulation in obesity [30]. 
The active free form of circulating leptin in individu-
als with obesity accounts for 85% of total leptin, induc-
ing long-form leptin receptor (LepRb) desensitization 
through chronic overstimulation [35]. Although the 
actual quantity of leptin present in the cerebrospinal 
fluid (CSF) of overweight individuals might be greater 

Fig. 2 Hormonal Regulation Associated with Obesity. Obesity involves dysregulation of key hormones: Leptin resistance drives hyperphagia 
and energy imbalance. Insulin resistance promotes ectopic lipid accumulation and systemic metabolic dysfunction. Ghrelin suppression fails 
to counteract overeating. Adiponectin deficiency impairs lipid oxidation. GLP- 1 analogs offer therapeutic benefits by enhancing satiety. Ovarian 
hormones modulate hedonic and cognitive aspects of eating. Targeting leptin/insulin signaling, enhancing GLP- 1 activity, and restoring 
adiponectin levels may mitigate obesity-related metabolic disorders. Figure 2 was created with BioGDP.com. LepR, leptin receptor; POMC, 
pro-opiomelanocortin; ARC, arcuate nucleus; NPY, neuropeptide Y; NF-κB, nuclear factor-κB; IKKβ, NF-κB kinase-β; INSR, insulin receptor; 
AgRP/NPY, agouti-related peptide and neuropeptide Y; GHSR, growth hormone secretagogue receptor; SIRT1, sirtuin 1; CaMKK2, calcium/
calmodulin-dependent protein kinase kinase 2; AMPK, AMP-activated protein kinase; ACO, acetyl CoA oxidase; UCPs, uncoupling proteins; GLP- 1, 
Glucagon-like peptide- 1; GLP- 1R, GLP- 1 receptor; Gαs, G protein α subunit; cAMP, cyclic AMP; PKA, protein kinase A; MAPK, mitogen-activated 
protein kinase; NTS, nucleus tractus solitarius
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compared to that of slender people, the efficacy of lep-
tin’s transportation across the blood—brain barrier 
(BBB) (quantified by the ratio of CSF to plasma leptin) 
drops by up to 80% among the obese [36, 37]. Similarly, 
HFD rapidly activates astrocytes, causing inflammation 
and hyperleptinemia. In addition, a prolonged HFD 
further rouses astrocytes and promotes inflammation, 
which decreases the amount of leptin that reaches the 
brain [38, 39]. Based on these discoveries, it can be 
concluded that the transportation of leptin across the 
BBB is impaired in obese individuals.

The body can effectively handle the burden of dietary 
fat (such as triglycerides), protein, and carbohydrates 
thanks to the post-meal elevation in plasma insulin levels. 
Three signaling pathways, namely the mitogen-activated 
protein (MAP) kinase (extracellular signal-regulated 
kinase, ERK) pathway, the metabolic (phosphatidylinosi-
tol 3-kinase-protein kinase B, PI3K-AKT) pathway, and 
the oxidative transport chain pathway, are used by Wil-
liams et  al. to summarize the underlying mechanisms 
[40]. As illustrated in Fig.  2, insulin-mediated satia-
tion occurs via receptor activation within ARC nucleus 
POMC and agouti-related peptide and NPY (AgRP/NPY) 
neural circuits that govern energy homeostasis, nutrient 
partitioning, and glucose regulation [41]. Additionally, 
numerous researches indicated that prolonged overeat-
ing, temporary inactivity, sedentary behavior, and sleep 
deprivation all raised whole-body IR [42–44]. Because of 
enhanced lipolysis, hyperinsulinemia results in decreased 
development of AT while promoting lipolytic release of 
FFAs from triglyceride depots. However, a major cause of 
IR, ectopic lipid deposition and lipotoxicity are brought 
on by the excessive accumulation of FFAs in insulin-sen-
sitive non-AT in obese individuals [45]. The pathophysi-
ological progression of insulin resistance demonstrates 
bidirectional interactions with obesity (Fig. 2), constitut-
ing a fundamental mechanism underlying obesity-associ-
ated metabolic comorbidities [46].

Initially characterized as a growth hormone (GH)-
releasing peptide, ghrelin (Fig. 2) has emerged as a plei-
otropic regulator of energy balance, exhibiting inverse 
correlations with BMI and direct involvement in appetite 
modulation [47, 48]. In situations of positive energy bal-
ance, such as obesity, the expression of ghrelin is down-
regulated. Conversely, in states of under-nutrition, like 
anorexia nervosa, its expression is up-regulated [49, 
50]. In the ventromedial nucleus of the hypothalamus 
(VMH), ghrelin activates the cellular energy sensor 
AMP-activated protein kinase (AMPK) [51] via binding 
to growth hormone secretagogue receptor (GHSR) and 
stimulating the calcium/calmodulin-dependent protein 
kinase kinase 2 (CaMKK2)-AMPK axis [52] and hypotha-
lamic sirtuin 1 (SIRT1)-p53 axis [53]. In both mice and 

humans, ghrelin-dependent hyperphagia and obesity are 
promoted by chronic AMPK activation [54]. Addition-
ally, obese mice have lower levels of GHSR expression 
and ghrelin transport across the BBB, which results in 
decreased ghrelin sensitivity and may encourage hypo-
thalamic ghrelin resistance [55, 56].

Through its autocrine activity, adiponectin (AdipoQ) 
(Fig.  2), an adipocyte-derived cytokine encoded by the 
chromosome’s AdipoQ gene, aids in the development 
of adipocyte cells [57]. By significantly boosting PPAR-α 
expression and activity, which leads to the up-regulation 
of acetyl CoA oxidase (ACO) and uncoupling proteins 
(UCPs), AdipoQ stimulates FA oxidation and energy 
expenditure (Fig. 2) [58]. AdipoQ demonstrates propor-
tional relationships with insulin sensitivity that become 
attenuated in obese states, as evidenced by clinical bio-
marker studies [59, 60]. According to Singh’s research, AT 
in obese individuals exhibits decreased AdipoQ secretion 
due to compromised leptin signaling and elevated caveo-
lin- 1 expression [61].

The gut, brainstem, and endocrine pancreas all 
express Glucagon-like peptide- 1 (GLP- 1), which binds 
to GLP- 1 receptor (GLP- 1R) to regulate energy bal-
ance (Fig. 2) [62]. Through G protein α subunit (Gαs), 
GLP- 1R stimulates adenylate cyclase and raises cyclic 
AMP (cAMP) levels in the pancreas. This, in turn, ini-
tiates protein kinase A (PKA)-dependent intracellular 
signaling pathways, which ultimately trigger the release 
of insulin and induce genetic modifications [63–66]. 
Through Gαs and PKA, GLP- 1R stimulates mitogen-
activated protein kinase (MAPK) and AMPK and 
improves calcium influx through VGCCs in the brain 
[67]. When nutrients pass through the gut, they cause 
the release of GLP- 1and then interact with GLP- 1Rs 
on the vagus nerve to activate the vagal afferent neu-
rons. These neurons release glutamate, which excites 
postsynaptic nucleus tractus solitarius (NTS) neurons 
with specific phenotypes. The axons of NTS neurons 
project monosynaptically to anatomically distributed 
targets in the central nervous system (CNS), influenc-
ing the excitability of neurons in identified nuclei. This 
process leads to the release of GLP- 1 in the brain and 
contributes to the inhibitory regulation of food intake 
[68, 69]. Experimental models utilizing transgenic 
reporter mice revealed that liraglutide potentiates 
GABAergic neurotransmission, directly stimulating 
POMC neurons while indirectly suppressing AgRP/
NPY activity through GABA receptor-mediated inhibi-
tion [70]. Furthermore, GLP- 1 lowers the rate of gas-
tric emptying (GE) by activating myenteric neurons and 
vagal afferent nerves, it promotes satiety, reduces calo-
rie intake, and has anorexigenic effects. GLP- 1 is linked 
to the mechanism that promotes meal termination for 
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cholecystokinin (CCK) [71]. By cleaving an X-Pro or 
X-Ala dipeptide, dipeptidyl-peptidase IV (DPP-IV) 
renders GLP- 1 inactive [72]. Clinical investigations 
confirm these mechanisms, demonstrating that GLP- 
1 infusion in non-obese fasting subjects significantly 
attenuates hunger perception while enhancing satiety 
signaling [73]. A multicenter RCT evaluating daily 3 mg 
liraglutide administration in overweight/obese partici-
pants (BMI > 27 kg/m2 with comorbidities or > 30 kg/
m2) reported 8.4 kg mean weight reduction over 56 
weeks, with 33.1% achieving > 10% body weight loss 
[74].

Ovarian hormones critically modulate the endocrine 
mechanisms underlying obesity (Fig.  2). Research by 
Leeners et  al. demonstrates that cyclic variations in 
ovarian hormones alter feeding behavior by modify-
ing two neural pathways: cognitive inhibitory con-
trol of appetite mediated by the lateral prefrontal 
cortex, and dopamine-dependent reward process-
ing in the striatum governing food palatability. Their 
findings further reveal that elevated estrogen levels 

during the pre-ovulatory phase suppress caloric intake 
through dual mechanisms: enhancing the satiety-
inducing effects of gastrointestinal peptide cholecys-
tokinin (CCK) while simultaneously reducing hedonic 
responses to sweet-tasting foods in the follicular phase 
[75].

Neural control
A crucial regulatory center for feeding behavior and 
whole-body energy homeostasis, the ARC of the hypo-
thalamus (Fig. 3) relays information between the periph-
ery nervous system (PNS) and the CNS [76]. The ARC 
contains two functionally antagonistic neuronal groups, 
POMC and NPY/AgRP neurons, which collaboratively 
regulate systemic energy homeostasis, and integrate cen-
tral and peripheral inputs [77].

POMC-derived melanocortin peptides exert cata-
bolic effects via stimulation of melanocortin 4 receptor 
(MC4R)-positive neural circuits, resulting in appetite 
suppression and enhanced metabolic rate. Conversely, 
by counteracting these effects, NPY/AgRP neurons 

Fig. 3 The Neural Control of Obesity. The hypothalamic arcuate nucleus (ARC) regulates feeding behavior and energy homeostasis through two 
opposing neuronal populations: anorexigenic POMC neurons (reducing food intake via MC4R activation and increasing energy expenditure) 
and orexigenic NPY/AgRP neurons (promoting hunger and suppressing energy use). Chronic overnutrition (e.g., HFD, leptin deficiency) disrupts 
ARC plasticity, impairing homeostatic regulation through mechanisms like leptin signaling defects, ER stress, and metabolic inflammation. This 
inflammation alters neuropeptide secretion, desensitizes energy-balance neurons, and exacerbates dysregulation of appetite and metabolism. 
Figure 3 was created with BioGDP.com
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demonstrate anabolic functions through MC4R-depend-
ent antagonism, promoting caloric conservation via 
reduced thermogenesis while stimulating feeding moti-
vation [78, 79]. Notably under energy surplus condi-
tions, circulating satiety factors predominantly activate 
the POMC neuronal network to inhibit ingestive behav-
ior and increase energy dissipation. Conversely, during 
negative energy balance, gastrointestinal-derived orexi-
genic signals preferentially engage NPY/AgRP neurons to 
amplify food-seeking drives while suppressing catabolic 
processes [80–82].

It is noteworthy that persistent food excess (HFD or 
leptin insufficiency) inhibits neurogenesis, which in 
turn impairs hypothalamic homeostatic regulation and 
dynamical plasticity [83]. Leptin receptor signaling path-
way defects, ER stress, and decreased leptin transport 
across the BBB are some possible explanations [84–86]. 
Accumulating evidence indicates that diet-induced 
obesity correlates with chronic neuroinflammatory 
responses within the ARC of obese animal models [87]. 
Notably, hypothalamic inflammation disrupts POMC 
neuron functionality through dual mechanisms: 

cytokine-mediated alteration of neuropeptide secretion 
profiles, and impaired neuronal plasticity that compro-
mises adaptive energy regulation. This pathological cas-
cade establishes a self-perforcing cycle where disrupted 
neurotransmission exacerbates inflammatory signaling, 
ultimately leading to dysregulated appetite control and 
metabolic inflexibility [88, 89].

Inflammation and immune responses
AT is essential to the pathophysiology of obesity and has 
a major impact on physiological and pathological pro-
cesses, such as immunological responses and inflamma-
tion [90]. Both pro- and anti-inflammatory cytokines 
are secreted by AT’s immune cells. Pro-inflammatory 
cytokines promote IR and cause detrimental lipid metab-
olism in peripheral tissues, whereas anti-inflammatory 
cytokines attempt to preserve insulin sensitivity [91, 92]. 
The progression of weight gain and subsequent obesity 
induces a phenotypic shift in WAT. This shift results in 
the formation of dysfunctional and inflammatory adipo-
cytes, accompanied by the recruitment of immune cells 

Fig. 4 The Inflammation and Immune Responses of Obesity. Obesity induces AT inflammation via pro-inflammatory cytokines from dysfunctional 
adipocytes and immune cells, causing IR and systemic low-grade inflammation. Metabolic pathways like TLR4/PI3 K/Akt, ER stress, and NLRP3 
inflammasome are involved. Immune dysregulation further exacerbates IR and chronic inflammation. Figure 4 was created with BioGDP.com. TLR4/
PI3 K/Akt pathway, toll-like receptor 4/phosphatidylinositol- 3’- kinase/Protein kinase B pathway; NLRP3, nucleotide-binding and oligomerization 
domain (NOD) leucine-rich repeat family pyrin domain-containing 3; ATMs, adipose tissue macrophages; iNOS, inducible NO synthase; MCP- 1, 
monocyte chemoattractant protein- 1; cPLA2α, cytosolic phospholipase-A2α; ICAM- 1, endothelial cell adhesion molecule 1
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into the stromal vascular compartment [93]. Inflamma-
tory and defective adipocytes secrete pro-inflammatory 
cytokines both locally and systemically. This secretion 
results in systemic low-grade inflammation (Fig. 4).

Among the key pathways implicated in adipose tissue 
(AT) inflammation are the toll-like receptor 4 (TLR4)/
phosphatidylinositol- 3’-kinase (PI3 K)/protein kinase B 
(Akt) pathway, the ER stress-induced unfolded protein 
response (UPR), and the IKKβ-NF-κB inhibitory path-
way are three metabolic pathways that are significant in 
the development of AT inflammation [94]. Moreover, an 
important modulator of metabolic inflammation is the 
nucleotide-binding and oligomerization domain (NOD) 
leucine-rich repeat family pyrin domain-containing 
3 (NLRP3) inflammasome pathway [94]. Supporting 
above-mentioned conclusions, De et  al. discovered that 
the consumption of a HFD upregulates the expression of 
pro-inflammatory cytokines, including IL- 1, IL- 6 and 
TNF, in the hypothalamus, thereby triggering inflamma-
tory cascades [95]. Furthermore, inflammation and leptin 
resistance related to obesity have been linked to ER stress 
[96, 97]. Through a rise in reactive oxygen species (ROS) 
mediated by FFAs, an HFD in mice causes ER stress and 
persistent inflammation in WAT [98].

It is well recognized that obesity affects immunologi-
cal function, just like other forms of malnutrition (Fig. 4). 
Weisberg et al. have indicated that activated adipose tis-
sue macrophages (ATMs) are the primary sources of pro-
inflammatory mediators. These include TNF-α, inducible 
nitric oxide synthase (iNOS), monocyte chemoattract-
ant protein- 1 (MCP- 1), and IL- 6 [99, 100]. There is 
additional evidence suggesting that obesity perpetuates 
low-grade chronic inflammation in WAT by triggering a 
self-perpetuating cycle of monocyte/macrophage infiltra-
tion [101, 102].

Additionally, it seems that additional immune cells 
are involved in AT inflammation. According to recent 
reports, bidirectional interaction between adipocytes and 
neutrophils can trigger WAT inflammation by activating 
the endothelial cell adhesion protein ICAM- 1 or cyto-
solic phospholipase-A2α (cPLA2a), which then leads to 
the production of IL- 1β [103, 104]. According to certain 
research, obese people have lower levels of regulatory T 
cells (Tregs), which may lead to long-term WAT inflam-
mation and IR [105–107]. Additionally, obesity has been 
linked to increased B cell, mast cell, dendritic cell, and 
eosinophil activity, which activates T cells and AMTs to 
cause IR [108–111].

Genetics and epigenetics
In addition, it is well recognized that hereditary variables 
are widely acknowledged as crucial determinants of an 
individual’s susceptibility to obesity (Fig.  5) [112]. Twin 

and familial research indicates that hereditary influences 
account for 40 to 70 percent of the variability in human 
obesity [113]. Obesity genetic causes can be broadly cat-
egorized as either polygenic or monogenic mutations. 
The leptin-melanocortin pathway is the primary cause 
of monogenic obesity, and numerous genes, including 
AgRP, PYY (orexogenic) or MC4R, interfere with the 
appetite and weight regulation system [114]. Numerous 
genes work together to create polygenic obesity [115]. 
Neurodevelopmental abnormalities and other organ/
system anomalies can lead to syndromic obesity, a severe 
form of obesity that may be brought by alterations in a 
wider chromosomal region that encompasses multiple 
genes [116].

Based on Martins’ research, those who have severe 
obesity with an onset prior to the age of two are advised 
to seek advice from experts in obesity medicine (Fig. 5). 
They should also contemplate undergoing screening for 
MC4R deficiency, POMC deficiency, and leptin defi-
ciency [117]. Similarly, obesity additionally arises from 
chromosomal abnormalities, such as deletion of 17p11.2 
(Smith Magenis syndrome), 11p13 (WAGR syndrome), 
9q34 (Kleefstra syndrome), 6q16 (PWS-like syndrome), 
2q37 (brachydactyly mental retardation syndrome), and 
1p36 (monosomy 1p36 syndrome) [118].

Epigenetic alterations, such as modifications in DNA 
methylation, histone tails, and microRNAs (miRNAs), 
have emerged as crucial means for comprehensively 
analyzing the widespread prevalence of the obesity epi-
demic (Fig.  5). The most significant epigenetic mecha-
nism for controlling gene expression seems to be DNA 
methylation. Houde’s study [119] uncovered a correlation 
between LDL-C levels and the DNA methylation status 
of the AdipoQ gene and leptin-encoding gene. Maternal 
metabolic health can also shape the DNA methylation 
profile of leptin at birth, thereby influencing the meta-
bolic reprogramming associated with obesity [120]. In a 
similar vein, reduced methylation levels in the regions of 
insulin-like growth factor 2 (IGF2) have been associated 
with paternal obesity [121]. G protein-coupled receptor 
75 (GPCR 75), functioning as a ciliary protein expressed 
in the brain, is predominantly found in the primary cilia 
of hypothalamic neurons and associated with a lower 
BMI. The ciliary positioning of GPCR 75 is essential for 
its functionality and role in controlling the formation of 
fat tissue [122, 123].

Severe obesity is strongly tied to mutations in various 
GPCRs that govern neuro-endocrine processes, includ-
ing those in the stimulatory Gαs and particular adenylate 
cyclases, such as ADCY3, which regulate feeding, satiety, 
adipogenesis, and fat accumulation [124–126]. Addition-
ally, environmental factors such as obesogens, alterations 
in gut microbiota composition, and dietary imbalances 
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can contribute to weight gain and metabolic dysregula-
tion through epigenetic mechanisms [127].

Gut microbiome dysbiosis
There has been discussion over the role that early 
microbial dysbiosis plays in the development of meta-
bolic diseases and obesity. Based on this, Ebert exam-
ined cause and effect in mice, and their research clearly 
shows that early microbial deprivation did not affect 
adiposity but instead caused IR and altered the expres-
sion of liver genes linked to glucose metabolism in mice 
[128]. Furthermore, a accumulating body of research 
indicates that metabolic disorders like obesity and 
T2DM have been associated to prolong intestinal dys-
biosis (Fig. 6) [129]. To elucidate the causal relationship 
between human gut microbiota and obesity develop-
ment, researchers conducted fecal microbiota trans-
plantation (FMT) from adult humans to germ-free (GF) 
murine models. The experimental outcomes demon-
strated that recipient mice colonized with microbiota 
from obese donors exhibited significant increases in 

adiposity, body mass, and metabolic dysfunction bio-
markers [130].

Circadian rhythmicity represents a crucial modulator 
of gut microbial homeostasis, with its disruption leading 
to substantial alterations in intestinal microbial compo-
sition [131, 132]. Numerous studies have demonstrated 
that disruptions in the gut microbiota, stemming either 
from antibiotic-induced depletion or long-term HFD 
intake, are capable of triggering local circadian rhythm 
disruptions that contribute to weight gain [132–135].

The Firmicutes/Bacteroidetes ratio (F/B ratio), a 
key indicator of microbial community structure, has 
been associated with multiple pathological conditions, 
including metabolic disorders [136]. Empirical evidence 
supports the observation of increased F/B ratios in 
individuals with obesity [137, 138]. Furthermore, epide-
miological investigations have identified reduced Bifi-
dobacterium abundance and elevated Staphylococcus 
aureus colonization in specific populations, particularly 
among obese pregnant women and overweight pedi-
atric cases [139–141]. In line with Gaber’s data, anti-
lipopolysaccharide (anti-LPS), anti-lipoteichoic acid 

Fig. 5 Genetic and Epigenetic Mechanisms of Obesity. Genetic and epigenetic mechanisms critically shape obesity susceptibility. Maternal obesity, 
particularly in obesogenic or hyper-nutritional environments during pregnancy, induces metabolic dysregulation characterized by placental 
exposure to inflammation, oxidative stress, lipid accumulation, insulin resistance, and gut microbiota alterations. These pathological conditions 
drive epigenetic modifications and genetic mutations, thereby predisposing offspring to childhood obesity. This mechanistic cascade underscores 
the necessity of early clinical screening to identify at-risk populations and implement targeted preventive or therapeutic interventions. Figure 5 
was created with BioGDP.com. MC4R, melanocortin 4 receptor; IR, insulin resistance
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(anti-LTA), and anti-flagellin IgA antibodies are among 
the immunogenic markers of metabolic endotoxemia 
linked to visceral AT (VAT) in postmenopausal women. 
Additionally, there is an increase in pro-inflammatory 
components of the gut microbiome, such as Proteobac-
teria (including Escherichia coli, Shigella spp., and Kleb-
siella spp.) and Veillonella atypica [142]. When given to 
mice fed a HFD without germs, Enterobacter cloacae 
strain B29, which has been isolated from the Entero-
bacteriaceae, has been demonstrated to induce obesity 
[143]. Faecalibacterium prausnitzii, a butyrate-produc-
ing bacterium renowned for its anti-inflammatory qual-
ities, has been observed to be reduced in individuals 
with diabetes who are morbidly obese [144]. In particu-
lar, compared to people of normal weight, obese indi-
viduals have been observed to have significantly lower 
levels of the bacterial species Akkermansia, Oscillibac-
ter, and Alistipes [145].

Furthermore, introducing A. muciniphila into mice 
improves intestinal barrier function and decreases 
body weight growth, fat mass formation, and low-grade 
inflammation [146]. Likewise, through a molecular 

pathway, an elevation in the concentration of Short-
Chain Fatty Acids (SCFAs) in the plasma of obese 
individuals can activate carbohydrate responsive ele-
ment-binding protein (CHREBP) and sterol regula-
tory element-binding transcription factor- 1 (SREBP1), 
which in turn can drive lipogenesis, increase triglyc-
eride storage and then obesity [147, 148]. Nicholson’s 
research team has established correlations between 
intestinal barrier dysfunction, localized inflammatory 
responses, and microbial community imbalance [149].

Comorbidities associated with obesity
Furthermore, concentrating only on obesity is insuffi-
cient. A chronic and recurring condition, obesity either 
causes or exacerbates other diseases. Obesity-related 
comorbidities are associated with higher morbidity, dis-
ability, and mortality. Therefore, this review will deeply 
understand the pathogenesis of related common compli-
cations from the perspective of obesity (Fig. 7), in order 
to identify and intervene the complications of obesity 
early, so as to effectively prevent the occurrence of more 
serious complications and improve the clinical treatment 
effect of obesity.

Fig. 6 The Gut Microbiota Dysbiosis of Obesity. Gut microbiota dysbiosis contributes to obesity via multiple mechanisms: altered microbial 
composition, circadian disruption, SCFA-mediated lipogenesis, pathogenic strain activity, and compromised intestinal barrier integrity. Therapeutic 
strategies targeting microbial balance, barrier restoration, or specific taxa may mitigate obesity-related metabolic disorders. Figure 6 was created 
with BioGDP.com. HFD, high fat diet; LPS, lipopolysaccaride; SCFAs, Short-Chain Fatty Acids; CHREBP, carbohydrate responsive element-binding 
protein; SREBP1, sterol regulatory element-binding transcription factor- 1
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Type 2 diabetes mellitus (T2DM)
According to a World Health Organization (WHO) pre-
diction in 2009, 439 million people worldwide will have 
diabetes by 2030 [150]. Upstream diseases of T2DM 
include pre-obesity/obesity, metabolic dysfunction linked 
to steatotic liver disease, and dyslipidemia, which typi-
cally manifests prior to T2DM [151]. One of the main 
causes of IR is obesity [152]. The abnormal expansion 
of AT in non-adipose sites (ectopic expansion) and the 
over-accumulation of specific nutrients and metabolites,

once obesogenic factors amplify genetic suscepti-
bilities, disrupt the metabolic equilibrium through IR, 
impaired autophagy and the microbiome-gut-brain axis. 
Consequently, systemic inflammation is triggered, which 
further exacerbates the dysregulation of immunometabo-
lism. which frequently results in early β-cell malfunction, 

accelerates the deterioration of β-cell function and grad-
ually raises blood glucose levels, ultimately leading to 
T2DM [153].

Similarly, the build-up of senescent cells in the sub-
cutaneous AT and the functional decline of adipocyte 
precursor cells (APCs) in obese people both contribute 
to the development of T2DM [154–156]. In accordance 
with Desiderio et  al., the- 1317 CpG at the PANDAR 
promoter became hypo-methylated in obesity, progres-
sively inducing senescence in APCs in subjects with obe-
sity, which worsens along the progression toward T2DM 
[157]. However, in certain people with IR, T2DM can 
also develop inversely before obesity, leading to raised 
insulin levels and increased hepatic glucose production-
the actual causes of obesity [158].

Fig. 7 The Complications of Obesity. The complications of obesity mainly include T2DM, CVD, NAFLD, respiratory disorders, ORN, musculoskeletal 
disorders, cancers, psychological comorbidities and others. Figure 7 was created with BioGDP.com. T2DM, type 2 diabetes mellitus; CVD, 
cardiovascular diseases; NAFLD, non-alcoholic fatty liver disease; ORN, obesity-related nephropathy; APCs, adipocyte precursor cells; LDL, 
Low Density Lipoprotein; CAD, coronary artery disease; SCD, sudden cardiac death; MASH, metabolic dysfunction-associated steatohepatitis; 
HCC, hepatocellular carcinoma; OSA, obstructive sleep apnea; VEGF-B, vascular endothelial growth factor-B; ROS, reactive oxygen species; ER, 
endoplasmic reticulum; VD, Vitamin D; MM, multiple myeloma; Ca, cancer; POCS, polycystic ovary syndrome; TMJ OA, Temporomandibular joint 
osteoarthritis; AP, acute pancreatitis



Page 12 of 41Kong et al. Molecular Biomedicine            (2025) 6:25 

Cardiovascular disease (CVD)
Based on the data from the China Health and Retirement 
Longitudinal Study (CHARLS) that screened 7703 indi-
viduals, Jiang et  al. suggest that sarcopenic obesity, and 
potentially other related conditions, are positively cor-
related with the development of CVD [159]. Previous 
evidences suggested that obesity is linked to numerous 
kinds of CVD, including stroke [160], venous thrombo-
embolic disease [161], pulmonary hypertension [162], 
atherosclerotic CAD [163], heart failure (HF) [164], 
arrhythmias especially sudden cardiac death (SCD) [165] 
and atrial fibrillation (AF) [166]. The risk of ischemic and 
hemorrhagic strokes increases by 4% and 6% for every 
unit increase in BMI, respectively [167].

Early atherosclerotic alterations are accelerated by obe-
sity via several mechanisms, such as inflammation and 
IR [168]. Obesity-induced inflammation raises the risk 
of LDL oxidation, which in turn promotes atherogenesis 
[169]. The development of atherosclerosis is also funda-
mentally influenced by endothelial dysfunction in obe-
sity, which is principally brought on by diminished NO 
bioavailability in the context of inflammation and oxida-
tive stress [170]. BMI in the overweight and obese ranges 
was linked to an elevated risk of CAD, according to a 
meta-analysis of nearly 300,000 people with 18,000 CAD 
occurrences [171]. For every 10-kg increment in body 
weight, there is a 12% elevation in the risk of CAD, along 
with a 3-mmHg increase in systolic blood pressure and a 
2.3-mmHg increase in diastolic blood pressure [172].

In addition, as demonstrated by growing research, 
non-obstructive coronary artery disease (NOCAD) is 
also quite common in ischemia or chest pain (CP) and 
has a significant financial impact [173–175]. In 814 
patients with angiographically confirmed NOCAD, 
the results showed that obesity was independently 
linked to the occurrence of NOCAD-related CP and 
that those who were obese had a higher prevalence 
of NOCAD-related CP (77.6% vs 67%, P < 0.001) and 
more frequent NOCAD-related CP (angina frequency 
composite score, 74.9 vs 78.3, P = 0.02) than those who 
were not obese [176]. However, when comparing obese 
patients undergoing bariatric surgery to those who 
did not get surgical intervention, Karason et  al. found 
that the former had improved CP [177]. Adipocytes in 
obese persons specifically prevent endothelial-medi-
ated vasodilatation of the coronary microvasculature, 
which results in coronary heart disease (CMD) and 
an oxygen-supply demand mismatch, according to the 
mechanism of the association between obesity and 
NOCAD-related CP [178, 179].

Simultaneously, obesity heightens the risk of myocar-
dial dysfunction and HF through multiple mechanisms. 
These include hemodynamic changes, neurohormonal 

activation, the endocrine and paracrine effects of AT, 
lipotoxicity, and ectopic fat deposition [164]. However, 
Zhou et al. indicated that the protective effects of obe-
sity persists in people with chronic HF (CHF) irrespec-
tive of metabolic status [180], the phenomenon called 
obesity paradox. The risk of AF was directly related to 
BMI, increasing by 4.7% (95% CI: 3.4 to 6.1, P < 0.0001) 
for each kilogram per square meter [181]. Atrial fibril-
lation is caused by a combination of left atrial dilatation 
and dysfunction, elevated epicardial fat, adipocyte infil-
tration of the myocardium, and fibrosis [182–184].

Non‑alcoholic fatty liver disease (NAFLD)
NAFLD is defined as steatosis is not caused by alco-
hol, drugs, or viral-induced steatosis and with ≥ 5% fat 
infiltration in imaging or histology [185]. In line with 
the growing prevalence of obesity, the prevalence of 
NAFLD is also rapidly rising [186]. Obesity can have 
an impact on whole-body glucose and lipid metabo-
lism, which exacerbates the overproduction or exces-
sive uptake in the liver and lipid droplet buildup in 
the hepatic parenchyma [187, 188]. It is the excessive 
deposit of fat within the liver cells that result in inflam-
mation, fibrosis and cirrhosis, Momo’s studies estab-
lished that obese subjects significantly tend to have 
higher liver enzymes like ALT and AST than non-obese 
adults(serum ALT: 37.14 ± 15.18U/L vs 21.92 ± 5.10 
U/L, serum AST: 41.15 ± 15.24U/L vs 25.01 ± 6.65U/L) 
[189].

Histologically, metabolic dysfunction-associated stea-
tohepatitis (MASH) is characterized by the co-existence 
of steatosis, inflammation, and hepatocyte injury (bal-
looning) [185]. According to Schmidt-Christensen et al., 
mice fed obesogenic diets develop MASH, steatosis, and 
hepatocyte ballooning more quickly [190]. While the 
majority of NAFLD patients simply show steatosis and 
no further development, some will experience nega-
tive effects from their liver disease, including cirrhosis, 
MASH, and hepatocellular carcinoma (HCC) [191].

Obesity‑related respiratory disorders
It is well—established that obesity is associated with the 
secretion of adipokines and pro-inflammatory factors. 
These substances have the potential to intensify inflam-
matory states [192]. Obesity is closely linked to a variety 
of respiratory diseases and has an impact on the progno-
ses of acute respiratory distress syndrome (ARDS) and 
chronic obstructive pulmonary disease (COPD) [193]. 
Obesity has significant effects on respiratory function 
by reducing compliance of the lungs and chest wal and 
resting lung volumes, producing airway narrowing, clo-
sure and airway dysanapsis, increasing respiratory system 
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resistance, which cause asthma and dyspnea, wheeze and 
airway hyper-responsiveness [194].

Sleep-disordered breathing, a highly prevalent condi-
tion in obese patients, is characterized by the collapse 
of the upper airway during sleep. The main pathophysi-
ological mechanisms of obstructive sleep apnea (OSA) 
include chronic intermittent hypoxia, sleep fragmenta-
tion and inflammatory activation [195]. The results of 
Sands’s study, obesity is the largest risk factor for OSA 
at the population level (11–21 times higher than non-
obesity) [196]. Obesity is linked to both increased col-
lapsibility and increased loop gain presumably through 
increased tongue fat and decreased lung volume, which 
raises the chance of the OSA [197, 198].

Everyone is aware that asthma is a long-term inflam-
matory condition. According to a cross-sectional study 
involved 11,137 participants from NHANES 2011–
2018, higher VAT is linked to a higher risk of develop-
ing asthma, especially in older people and women [199]. 
Research findings demonstrated that the VAT mass in 
asthma patients was 529 g, which was notably higher 
than the 455 g in the non-asthma group. In three distinct 
models (the unadjusted model, the model adjusted for 
demographic factors, and the fully adjusted model), for 
every 200-g increase in VAT, the risk of asthma increased 
by 10.4%, 20.8%, and 20.3% respectively.

A life-course Mendelian randomization study was car-
ried out with the aim of exploring the causal impacts 
of early life adiposity on the COVID- 19 susceptibility 
and severity. They found that childhood BMI and obe-
sity were positively correlated with COVID- 19 risk and 
severity in adulthood, and revealed strong evidence of 
a genetically predicted effect of childhood obesity on 
COVID- 19 hospitalization [200].

Obesity‑related nephropathy (ORN)
Epidemiological investigations by Wang and colleagues 
demonstrate that obesity-associated renal pathologies 
account for approximately one-quarter to one-third 
(24–33%) of chronic kidney disease cases documented 
in American clinical populations [201]. Substantiating 
this global health concern, a comprehensive retrospec-
tive cohort analysis conducted by Hu’s research team at 
Zhengzhou University examined 34,630 primary renal 
biopsy specimens, revealing a significant temporal pro-
gression in obesity-related glomerulopathy prevalence 
from 0.86% (2009) to 1.65% (2018) [202]. Aforementioned 
statistical trends indicate a progressive annual elevation 
in ORN diagnosis rates across diverse demographics. 
This correlation receives further validation from popu-
lation-scale research involving 320,000 subjects, which 
established a positive association between incremental 

BMI elevations and corresponding escalations in end-
stage renal disease (ESRD) risk profiles [203].

The pathophysiological mechanisms underlying ORN 
involve dual injury modalities affecting renal microarchi-
tecture. Mechanical stressors manifest through altered 
glomerular hemodynamics, visceral adipose-induced 
renal compression, and podocyte deformation from 
sustained mechanical tension. Concurrently, metabolic 
disturbances include RAAS overactivation, bile acid 
homeostasis disruption, insulin resistance, lipid-induced 
cellular toxicity, and chronic inflammatory cascades 
[204]. To be specific, by means of the vascular endothe-
lial growth factor-B (VEGF-B) signaling pathway, mito-
chondrial damage and the ensuing increase in IR, ROS 
production, and ER stress, a HFD has been shown to 
encourage lipid accumulation in mice, ultimately lead-
ing to renal impairment [205, 206]. Additionally, a two-
sample Mendelian randomization research conducted 
in European populations confirmed that renal function 
impairment, which is fueled by adverse obesity, is linked 
to genetically high BMI [207].

Proteinuria, glomerulomegaly, increasing glomeru-
losclerosis, and decreased kidney function are clinical 
characteristics of ORN [208]. However, due to the lack 
of specificity in clinical parameters and histopathologi-
cal features, ORN is easily confused with other causes of 
chronic kidney disease. Emerging diagnostic approaches 
emphasize the detection of tubular injury biomarkers, 
with urinary kidney injury molecule- 1 (KIM- 1), cysta-
tin C, N-acetyl-beta-D-glucosaminidase (NAG) enzyme 
activity, and neutrophil gelatinase-associated lipoca-
lin (NGAL) protein concentrations showing particular 
promise for early ORN identification in clinical urinalysis 
[209, 210]. Meanwhile, multiple studies have established 
that obesity and hyperuricemic nephropathy (HN) have 
connections [211, 212].

Musculoskeletal impairments
The preservation of bone tissue and the homeostasis of 
the minerals calcium and phosphorus depend on vita-
min D (VD). A cross-sectional study aimed to evaluate 
the VD levels among 1,210 obese individuals in South-
ern Morocco, their results (adequate: 5.3%, insufficiency: 
18%, moderate-deficiency: 52.5%, severe-deficiency: 
24.2%) support the hypothesis that obesity is associated 
with low VD levels [213]. Moreover, volumetric dilution 
effect of VD is the most probable mechanism for the 
reduction of serum VD concentration in obese patients 
[214]. In particular, 25-(OH)D is mostly found in the 
liver, muscle, fat, and serum, all of which are elevated in 
obesity [215]. Wortsman et  al. suggest that VD insuffi-
ciency associated with obesity may result from reduced 
bioavailability of VD, as it tends to accumulate in AT, 
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thereby limiting its availability from both cutaneous syn-
thesis and dietary intake [216].

Consequently, obese individuals may need higher ini-
tial doses of VD supplementation to achieve serum 
25-(OH)D levels comparable to those of individuals with 
normal body weight. Devlin’s findings further support 
this by demonstrating that obesity negatively impacts 
bone health, contributing to conditions such as osteope-
nia and osteoporosis [217]. Numerous variables, includ-
ing hyperinflammation, genetics, microbial dysbiosis, 
hypermetabolism, and local alterations in the bone mar-
row environment, are involved in the mechanisms of 
obesity-related bone dysregulation [218]. Additionally, a 
longitudinal study conducted over four years in a mid-
dle-aged and elderly Chinese population revealed that 
the co-occurrence of dynapenia and abdominal obesity 
significantly elevated the risk of developing arthritis in 
women (RR: 1.39, 95% CI: 1.01–1.93) [219].

Malignancies
All obesity-related malignancies are estimated to have 
a general population-attributable percentage of 11.9% 
in men and 13.1% in women [220]. Obesity has been 
identified as a significant risk factor for malignancies in 
at least 13 anatomical regions, including the endome-
trium, esophagus, kidneys, pancreas, liver, gastric cardia, 
meninges, multiple myeloma, colorectum, breast, ova-
ries, gallbladder, and thyroid [221].

Both clinically severe estrogen-independent type II and 
estrogen-dependent type I endometrial carcinoma (EC) 
are independently associated with obesity [222]. Risks 
for EC are increased in obese women and high visceral 
abdominal fat volume (VAV)% independently predicts 
reduced EC survival [223]. Notably, Schlottmann et  al. 
highlight a concurrent rise in the prevalence of over-
weight and obesity with the incidence rates of esophageal 
adenocarcinoma (EAC) [224]. Furthermore, a compre-
hensive meta-analysis encompassing 24 studies and over 
8 million participants revealed that BMI is positively 
correlated with an elevated risk of renal cell carcinoma 
(RCC) in both males (RR 1.05 for every 1 kg/m2 increase) 
and women (RR 1.06 for every 1 kg/m2 increase) [225].

Obesity also significantly increases the risk of pancre-
atic cancer, obesity-induced pancreatic inflammation 
and desmoplasia, which contributed to pancreatic ductal 
adenocarcinoma (PDAC) progression and chemotherapy 
resistance [226]. HCC has been increasingly associated 
with metabolic diseases such as the metabolic syndrome, 
which often co-occur with NAFLD or NASH [227]. Epi-
demiological studies consistently indicate that elevated 
BMI and obesity are significant risk factors for the 
development of cardia cancer [228]. A US population-
based study, combined with a multi-institutional cohort 

analysis, revealed that obese males are more prone to 
meningiomas at the skull base compared to other loca-
tions. Additionally, patients undergoing meningioma 
resection are more likely to be obese than those with 
other intracranial tumors [229].

Obesity has been positively linked to both the mor-
tality and incidence of multiple myeloma (MM) in both 
prospective cohort and case–control studies [230–232]. 
According to the findings of a Mendelian randomization 
research, men are more likely to develop colorectal can-
cer (CRC) if their BMI is more extensive, whereas women 
are more likely to develop CRC if their waist-to-hip ratio 
(WHR) is higher [233]. In addition, patients who are 
overweight or obese have a 1.2–1.4 times higher risk of 
developing postmenopausal breast cancer [234]. Multiple 
research studies confirm that obesity is closely associated 
with the risk of developing papillary thyroid carcinoma 
(PTC) [235, 236]. Li et al. propose that obesity may facili-
tate the progression of PTC by suppressing adiponectin 
expression [237]. Meanwhile, obesity also can increase 
the risk of invasion (OR = 1.395) and lymph node metas-
tasis (OR = 1.387) [238]. Similarly, obesity increases the 
risk of benign tumors. A case–control study investigating 
the relationship between visceral fat and uterine fibroids 
found that higher levels of body fat, particularly abdomi-
nal visceral fat, significantly raise the risk of developing 
uterine fibroids [239].

Psychological comorbidities
Obesity and depression frequently co-occur and exacer-
bate each other [240, 241]. A bidirectional relationship 
has been established between obesity and depression, 
wherein obesity or being overweight increases the like-
lihood of depressive symptoms, and conversely, depres-
sion elevates the risk of obesity or overweight [242–244]. 
The physical condition and weight issues associated with 
obesity ultimately increase the likelihood of developing 
depression by decreasing self-esteem, social isolation and 
dissatisfaction with body image. Meanwhile, the depres-
sion often include emotional instability, poor in appetite 
and reduced energy expenditure, which can lead to dis-
rupted eating behaviors, decreased physical activity and 
ultimately result in weight gain and obesity. But the rela-
tionship between obesity and depression exist individual 
differences, not all individuals with obesity will experi-
ence symptoms of depression, and not all individuals 
with depression will develop obesity [245].

Individuals with obesity often experience disordered 
eating patterns, with binge-eating disorder being the 
most common among this population [246]. Compared 
with regular-weight patients and those without an Eat-
ing Disorders (EDs), obese patients seem to express 
peculiarities regarding the expression of some emotional 



Page 15 of 41Kong et al. Molecular Biomedicine            (2025) 6:25  

processes, including impulsivity, aggression and anger 
[247]. Metabolic and vascular dysfunction of obesity, 
including inflammation, IR and leptin resistance, have 
been considered as the key risks to depression and anxi-
ety development [248]. According to Kalarchian et  al., 
social anxiety disorder is the most prevalent anxiety dis-
order among candidates for bariatric surgery, affecting 
9% of patients [249].

Other comorbidities
A population-based cohort study aimed to quantify the 
contribution of overweight and obesity to various adverse 
pregnancy outcomes in Swedish females. As estimated 
by Population attributable fractions, a significant per-
centage of unfavorable pregnancy outcomes were caused 
by overweight and obesity: gestational diabetes (52.1%), 
large-for-gestational age (36.9%), pre-eclampsia (26.5%), 
low Apgar score (14.7%), infant mortality (12.7%), severe 
maternal near-miss event (8.5%) and preterm birth (5.0%) 
in the total study population [250]. Furthermore, numer-
ous researches have consistently demonstrated that 
obesity is associated with higher rates of miscarriage, 
unfavorable perinatal outcomes in assisted reproductive 
technology (ART), and reduced rates of implantation, 
pregnancy, and live delivery [251, 252].

In women of reproductive age, obesity also raises 
the risk of diseases including polycystic ovary syn-
drome (PCOS), irregular menstruation, decreased ovar-
ian reserve, ovulatory dysfunction, subfecundity, and 
increased incidence of preeclampsia, stillbirth, and mis-
carriage [253, 254]. A UK population-based cohort sup-
ports that women who gain/change weight between 
pregnancies may increase the incidence of overweight/
obesity (≥ 85 th centile) and obesity (≥ 95 th centile) in 
second children [255].

Li et al. unveiled that obesity and the related metabolic 
changes were important influencing factors for Temporo-
mandibular joint osteoarthritis (TMJ OA) [256]. Simulta-
neously, multiple studies have confirmed the association 
between obesity and acute pancreatitis (AP). There is a 
significant association between severe AP and VAT in 
a single-centre prospective study (VAT area: severe AP: 
141.01 ± 33.75  cm2 vs moderate AP: 115.11 ± 29.85  cm2), 
incorporating VAT into one of the prognostic indices for 
AP needs to be further explored [257].

Interventions of obesity
Current evidence-based guidelines recommend life-
style interventions, pharmacotherapy, and bariatric 
surgery (e.g., sleeve gastrectomy, gastric bypass) as pri-
mary obesity treatments. However, these approaches 
face significant limitations, including weight regain and 

safety concerns even with gold-standard therapies [6]. 
Persistent adverse effects—such as cardiovascular risks, 
gastrointestinal complications, and metabolic distur-
bances—associated with existing anti-obesity drugs have 
heightened the demand for safer, sustainable alternatives. 
Consequently, natural products and plant-derived bio-
active compounds are increasingly investigated for their 
therapeutic potential. The mechanisms and efficacy of 
major obesity interventions are systematically catego-
rized in Fig. 8 and Table 1.

Lifestyle modifications
As the initial treatment for weight management and car-
diovascular risk mitigation in obesity, comprehensive 
lifestyle modification (encompassing dietary regulation, 
physical activity optimization, and behavioral adaptation) 
forms the cornerstone of anti-obesity therapeutic inter-
vention [258].

Contemporary research emphasizes the critical impor-
tance of nutritional modifications in modulating lipid 
parameters and pro-inflammatory mediators, given the 
pathophysiological relation between adiposity-related 
chronic low-grade inflammation and elevated cardiovas-
cular risk [259]. According to Ullah’s research, sex hor-
mone and growth hormone (GH) levels were lowered 
by alternate-day fasting (ADF), which resulted in slower 
growth and postponed puberty. Although precocious 
puberty and obesity brought on by an HFD were avoided 
by ADF, more clinical research is required to verify its 
safety [260]. AS one of the intermittent fasting practices, 
Ramadan fasting (fasted for an average of 14–15 h daily 
from dawn to sunset during the 29-day Ramadan month) 
induced weight loss (average weight loss of 2.3 ± 0.99 kg), 
modified gut microbiota (F/B ratio, Firmicutes phylum 
et  al. significant decreases, Bacteroidetes and Proteo-
bacteria phyla et al. significant increases), and improved 
blood lipid profile [261]. Recent investigations demon-
strate that adopting anti-inflammatory dietary regimens, 
particularly those integrating Mediterranean nutritional 
principles with national dietary guidelines (TÜBER- 
2016), effectively reduces both BMI and systemic inflam-
mation through iso-caloric meal plans achieving negative 
dietary inflammatory indices (− 3.38 in females vs. − 3.53 
in males) [262].

Certainly, most obese patients are difficult to con-
trol their weight through dietary intervention alone and 
usually need to be supplemented with exercise therapy. 
Adolescents’unhealthy food behaviors and overweight/
obesity were strongly correlated with snacking while 
watching TV, according to a longitudinal study [263]. A 
longitudinal investigation spanning three years revealed 
that extended screen exposure duration exhibited strong 
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positive correlation with adiposity indices (p < 0.01). 
Notably, strategic reallocation of screen time to pur-
poseful physical/social activities (including structured 
exercise, interpersonal interactions, cognitive tasks, and 
restorative sleep) significantly attenuates obesity progres-
sion [264]. Porri’s assessment indicates that poor sleep 
hygiene can considerably contribute to weight growth 
and the worsening of metabolic diseases connected to 
pediatric obesity, but more thorough research is required 
[265]. Mechanistic studies by exercise physiologists fur-
ther elucidate that structured exercise regimens, whether 
aerobic exercise (AE) or high-intensity interval training 
(HIIT), enhance circulating pentraxin- 3 (PTX3) con-
centrations (a cardioprotective inflammatory modulator) 
while favorably modifying lipoprotein profiles. Clini-
cal trials document 5.81% and 5.06% BMI reductions 

respectively in overweight females following supervised 
training protocols [266].

While many individuals consider dieting to be the 
effective norm for weight loss, the reality is far more 
complex. Frequent intermittent dieting appears to be 
effective initially, but it can cause weight regain in peo-
ple whether they are overweight/obese or not [267, 268]. 
Therefore, in addition to dietary intervention and exer-
cise intervention, behavioral therapy for obese patients 
should also incorporate an essential component of cogni-
tive therapy (Fig. 8). Significantly, it is necessary to alter 
the incorrect perception of diet control. Dietary inter-
vention for obese patients does not merely mean diet-
ing and abstaining from carbohydrate intake; instead, it 
involves adopting a healthy and nutritious balanced diet 
achieved through a reasonable nutritional ratio. Inno-
vative digital health solutions hold particular promise 

Fig. 8 The Interventions of Obesity. The primarily treatment interventions for obesity are summarized, which principally include lifestyle 
intervention, pharmacotherapy, bariatric surgery, and emerging therapies. Figure 8 was created with BioGDP.com. ER, extended release; SR, 
sustained release; SG, Sleeve gastrectomy; RYGB, Roux-en-Y gastric bypass; AGB, adjustable gastric banding; BPD-DS, biliopancreatic diversion 
with duodenal switch; OAGB, One anastomosis gastric bypass; SADI-S, single-anastomosis duodenal ileostomy with sleeve gastrectomy; BBR, 
Berberine; 11β-HSD1, 11β-hydroxysteroid dehydrogenase type 1; FO, fish oil; PCP, Penthorum chinense Pursh; MD- 2, Myeloid differentiation factor 2; 
DSG, Diosgenin; PL, pancreatic lipases
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in resource-limited settings. The EMPOWER initiative 
exemplifies this through its tripartite intervention model 
combining virtual nutritional education, personalized 
lifestyle coaching, and cloud-based progress tracking. 
Preliminary results show that, in the rural participant 
cohorts, there is a body weight reduction of 6.2% ± 6.0% 
(5.7 ± 5.3 kg) at the one-year follow-up [269].

In summary, lifestyle modifications may be a practi-
cal strategy to prevent obesity. However, lifestyle inter-
ventions are limited by poor compliance and efficacy. 
Nevertheless, clinical observations reveal notable inter-
individual variability, with 35–50% of patients failing to 
achieve clinically meaningful weight loss (≥ 5% baseline 
reduction) despite intensive behavioral protocols span-
ning 4–6 months [270, 271]. The fact that most people 
who do lose weight eventually gain it back is even more 
concerning [272]. In a similar vein, clinical and epide-
miological investigations have revealed that minority of 
obese individuals are unwilling or unable to maintain 
long-term lifestyle changes [273].

All in all, lifestyle intervention requires early and com-
prehensive strategies, for example, the ‘magic polypill’ 
covering ‘Environment-Sleep-Emotion-Exercise-Diet [E(e)
SEEDi]’, and long-term persistence to achieve ideal efficacy 
[274–276].

Pharmacological treatments
Current anti‑obesity medications
Current clinical guidelines specify pharmacological 
eligibility criteria for anti-obesity therapeutics, target-
ing individuals presenting with BMI values ≥ 27 kg/
m2 with concurrent metabolic comorbidities (including 
T2DM, cardiovascular disorders, dyslipidemia, or SA) 
or those with BMI ≥ 30 kg/m2 irrespective of comor-
bidities. A growing number of medications have been 
authorized in recent years to treat obesity. The Food and 
Drug Administration (FDA)-endorsed pharmacopeia 
for chronic weight management currently comprises six 
principal agents: phentermine, orlistat, phentermine/
topiramate extended release (ER) (combined GABAergic/
glutamatergic agent), lorcaserin, naltrexone SR/bupro-
pion sustained release (SR) (opioid-dopaminergic combi-
nation), and liraglutide [277].

Phentermine worked by either preventing norepineph-
rine from being reabsorbed or by promoting its release. 
The sole FDA-licensed anti-obesity drug that does not 
exert action in the brain is orlistat, a gastric lipase inhibi-
tor that was approved in 1999 [278]. Topiramate is a 
gamma-aminobutyric acid agonist. Lorcaserin is a selec-
tive agonist of serotonin 2 C (5-HT2 C) receptor. Nltrex-
one is a non-selective antagonist of opioid receptor. 
Bupropion inhibits the transporters of norepinephrine 

and dopamine. Significant weight loss and cardiometa-
bolic advantages are provided by new weight loss treat-
ments, such as GLP- 1R agonists (GLP- 1 RAs), dual 
glucose-dependent insulinotropic polypeptide (GIP), and 
triple GIP, GLP- 1, and glucagon receptor agonists [279].

Mechanistically, GLP- 1 RAs exert pleiotropic effects 
through pancreatic β-cell preservation (enhancing prolif-
eration while suppressing apoptosis), glucose-dependent 
insulinotropic/glucagonostatic regulation, and gastroin-
testinal motility modulation-collectively contributing to 
improved glycemic control and attenuated postprandial 
lipidemia [280–282]. Through GLP- 1Rs in the hypothal-
amus, GLP- 1 also decreases appetite, food intake, and 
promotes satiety [283]. Additionally, GLP- 1R signaling 
inhibits hepatocyte de novo lipogenesis and β-oxidation, 
reverses cholesterol transport, lowers the liver’s hepatic 
TG content (HTGC) and VLDL-TG production rate, 
and modifies important liver enzymes involved in lipid 
metabolism [284]. GLP- 1 RAs may preserve free leptin 
levels by targeting areas in the hindbrain, simultaneously 
delay in gastric emptying and induce satiety [285].

GLP- 1 RAs include liraglutide (brand name,Victoza, 
Novo Nordisk, Copenhagen, Denmark), semaglutide 
(brand name, Wegovy, Novo Nordisk, Copenhagen, Den-
mark) and tirzepatide (brand name, Zepbound, Eli Lilly, 
Indianapolis, IN, USA), which are approved and mar-
keted as weight-loss drugs. Semaglutide and liraglutide 
have now been approved in the US and Europe to treat 
obesity in children as young as 12 years of age [286]. 
The first GLP- 1 RAs to receive a license for long-term 
weight control was ligarglutide. In 2021, semaglutide—
the next generation of GLP- 1 RAs—was authorized at 
weekly doses of up to 2.4 mg for the treatment of chronic 
obesity-related weight loss [278]. Systematic analysis by 
Jensterle et  al. demonstrated mean differential weight 
reduction of 4.0–6.2% (vs placebo) when adjunctive to 
lifestyle interventions in diabetic patients, contrast-
ing with 6.1–17.4% efficacy in non-diabetic populations 
through GLP- 1 RAs [287]. According to Ansari et  al., 
GLP- 1 RAs have been further shown to help lower car-
diovascular disease risk factors like blood pressure and 
lipid profile in addition to aiding in weight loss [288]. 
GLP- 1 RAs shown long-term beneficial effects on car-
diovascular health, renal outcomes and adverse events 
in obese people in Huang’s extensive observational trial, 
which is consistent with the above conclusions [289].

GLP- 1 RAs can be used as a single treatment, in con-
junction with other hormone-based drugs, or engineered 
as a dual or triple receptor agonist. Finding GLP- 1 RAs 
that additionally target either the glucagon receptor, the 
GIP receptor, or both has advanced the field [290]. In 
large quantities recent therapeutic advancements reveal 
superior efficacy profiles for novel agents: Tirzepatide 
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(dual GIP/GLP- 1 receptor co-agonist) achieved 20.9% 
weight reduction at 15 mg dosing over 72 weeks [291], 
while retatrutide (triple GIP/GLP- 1/glucagon receptor 
agonist) demonstrated unprecedented 24.2% weight loss 
at 12 mg over 48 weeks in phase III trials [292].

Sodium-glucose cotransporter- 2 inhibitor (SGLT2i) 
and dipeptidyl peptidase- 4 inhibitors (DPP- 4is) have 
been demonstrated to improve blood pressure, lipid 
profiles, body weight, and endothelial function [293, 
294]. Emerging evidence elucidates adiposity regulation 
through DPP- 4is, modulating WAT mass and thermo-
genic pathways via PPAR-α upregulation/UCP3 induc-
tion in skeletal muscle, coupled with BAT activation 
through GLP- 1/MC- 4 signaling cross-talk [295]. DPP- 
4i further enhances β3-adrenergic signaling via ERK 
pathway suppression, potentiating UCP1-mediated ther-
mogenesis in BAT and inguinal WAT (iWAT) depots to 
avoid obesity [296].

Concurrently, SGLT2i exhibit pleiotropic anti-inflam-
matory properties, suppressing NLRP3 inflammasome 
activity and pro-inflammatory cytokines (TNF-α, IL- 
1β, IL- 6, IL- 18) in preclinical models [297, 298]. Clini-
cally, SGLT2i demonstrates nephroprotective effects in 
obese T2DM patients, decelerating chronic kidney dis-
ease (CKD) progression irrespective of glycemic param-
eters [299, 300]. The KDIGO 2022 guidelines prioritize 
SGLT2i as first-line therapy for T2DM with comorbid 
CKD/obesity-related nephropathy, emphasizing reno-
protection over conventional glycemic metrics [301]. The 
combination use of empagliflozin (EMPA) and topira-
mate resulted in a significant reduction in body weight 
and was generally well-tolerated in overweight/obese 
non-diabetic adults on a calorie-restricted diet [302]. In 
light of the points put out, more research is necessary to 
assess the possible benefits of using this combination for 
long-term maintained weight management.

However, most currently approved anti-obesity drugs 
are associated with significant adverse effects. Phenter-
mine and amphetamines, for instance, increase cardio-
vascular risks, including hypertension and arrhythmias 
[303]. Orlistat, a lipase inhibitor, commonly induces gas-
trointestinal complications such as steatorrhea and con-
stipation due to impaired fat absorption, with rare cases 
linked to fatal outcomes [303]. Chronic use of topiramate 
or phentermine correlates with nephrotoxicity [304, 305], 
while bupropion and naltrexone have been implicated in 
renal dysfunction and acute kidney injury, respectively 
[306, 307]. Orlistat may also provoke tubulointerstitial 
nephritis [308].

Despite their efficacy, glucagon-like peptide- 1 receptor 
agonists (GLP- 1 RAs) face limitations due to transient 
therapeutic effects, high discontinuation rates (driven 
by nausea and diarrhea), and safety concerns, including 

pancreatitis, thyroid cancer, gallbladder disorders, and 
injection-site reactions [309–313]. Furthermore, sub-
cutaneous administration of GLP- 1 RAs necessitates 
blood–brain barrier (BBB) penetration, which com-
promises their utility in addressing cognitive aspects of 
addiction and obesity. Although intranasal delivery has 
been proposed to enhance brain targeting [314], practical 
challenges-such as nasal physiological barriers and drug 
solubility-hinder its clinical translation.

These limitations, coupled with the prohibitive cost 
and short-term prescribing patterns of newer therapeu-
tics, have intensified interest in alternative strategies, 
particularly plant-derived compounds and dietary sup-
plements, as adjunctive or primary interventions for obe-
sity management.

Nature compounds with potential anti‑obesity activity
Curcumin Curcumin, a bioactive polyphenol isolated 
from the rhizome of Curcuma longa L., demonstrates 
multifaceted therapeutic properties encompassing anti-
inflammatory, anti-proliferative, and redox-modulating 
activities [152, 315, 316]. Curcumin treatment (1500 
mg/day) significantly improved overall β-cell function 
and reduced both IR and body weight when compared 
to a placebo (HOMA-β: 136.20 vs 105.19, HOMA-IR: 
4.86 vs 6.04, adiponectin: 14.51 vs 10.36, leptin: 9.42 vs 
20.66, BMI: 25.94 vs 29.34), with minimal adverse effects, 
according to a 12-month randomized controlled trial in 
obese patients with T2DM [317]. For obese patients with 
T2DM, curcumin therapy may be helpful.

Genistein Legumes like soybeans and soy-rich prod-
ucts contain significant levels of genistein, an isofla-
vonoid functioning as a selective estrogen receptor 
modulator (SERM) with pleiotropic metabolic effects 
[318–320]. Intriguingly, preclinical investigations uti-
lizing gonadectomized murine models subjected to 
high-fat high-sucrose (HFHS) dietary challenge demon-
strated that genistein supplementation effectively ame-
liorates obesity-associated metabolic perturbations, 
particularly hepatic steatosis progression and glucose 
homeostasis dysregulation [321]. While clinical valida-
tion in hormone-deficient obese populations remains 
pending, this phytoestrogen exhibits significant poten-
tial as a nutraceutical candidate for mitigating meta-
bolic syndrome components and adiposity-related 
comorbidities.

Berberine (BBR) Coptidis Rhizoma, the rhizome 
of  Coptis chinensis, is referred to as Huang Lian in 
traditional Chinese medicine. It is abundant in bio-
active alkaloids, with BBR as its main component. 
BBR exhibits broad pharmacological effects, includ-
ing anti-hypertensive, anti-diabetic, anti-adipogenic, 
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anti-inflammatory, antioxidant, and lipid-lowering 
properties [322, 323]. BBR also exists in other medici-
nal plants, such as Berberis aristata, and B. vulgaris 
[324], and it is metabolized into berberrubine (M1), 
thalifendine (M2), demethyleneberberine (M3), and 
jatrorrhizine (M4) [325].

Recent researches and preclinical investigations have 
increasingly emphasized the potential anti-obesity 
properties of BBR. The mainly potential mechanisms of 
BBR against obesity are summarized as follows (Fig. 9):

(1) Suppression of Adipocyte Differentiation:

a Inhibits adipogenesis: In 3 T3-L1 adipocytes, 
BBR down-regulates CCAAT/enhancer-binding 
protein-α (C/EBP-α) and peroxisome prolifera-
tor-activated receptor γ (PPAR-γ), while up-reg-
ulating PPAR-δ [320, 325–327].

b Attenuates cAMP/PKA-mediated signaling: BBR 
reduces cAMP-response element-binding protein 

(CREB) and Galectin- 3 signaling, which is a key 
pathway for its anti-obesity effects [328–334].

(2) Adipose Tissue Browning and Metabolic Regula-
tion:

a Activates BAT thermogenesis: BAT upregulates 
PGC- 1α, UCP1, PPAR-α, and mitochondrial bio-
genesis markers (ATPsyn, COXIV, Cyto C) [335–
337].

b Enhances brown adipogenesis: BBR increases 
PRDM16-driven brown adipogenesis through 
AMPK-α-ketoglutarate-dependent epigenetic 
modulation [338].

(3) Regulation of lipid metabolism:

a Regulation of lipid metabolism: BBR regulates 
the expression of adipokines [339, 340]. It up-
regulates LDLR expression by activating AMPK-
dependent Raf- 1 and ERK signaling pathway 

Fig. 9 The Mainly Anti-Obesity Mechanisms of BBR. BBR exerts anti-obesity effects through multiple mechanisms: 1) Suppressing adipocyte 
differentiation by downregulating C/EBP-α, PPAR-γ, and CREB; 2) Promoting browning of WAT via activation of BAT marker genes (e.g., PGC- 1α, 
UCP1) and mitochondrial biogenesis; 3) Regulating lipid metabolism by upregulating LDLR and Ampk-SIRT1-PPAR-γ pathway; 4) Modulating 
gut microbiota by increasing Bacteroidetes/Firmicutes ratio and SCFA-producing bacteria; 5) Polarizing adipose tissue macrophages from M1 
to M2 phenotype to reduce inflammation; 6) Inhibiting inflammatory pathways (e.g., NF-κB, PI3 K/AKT/mTOR) and cytokines (e.g., TNF-α, IL- 6). 
Figure 9 was created with BioGDP.com. C/EBP-α, CCAAT/enhancer-binding protein-α; PPAR-γ, peroxisome proliferator-activated receptor γ; CREB, 
cAMP-response element-binding protein; Gal- 3, Galectin- 3; α-KG, α-ketoglutarate; LDLR, low density lipoprotein receptor; RhoA, Ras homolog gene 
family member A; NRF2, nuclear factor erythroid 2; SLC7 A11, recombinant solute carrier family 7 member 11; GPX4, glutathione peroxidase 4; GM, 
gastrointestinal microbiota; ATMs, adipose tissue macrophages. Remarks: All above figures were created with BioGDP.com
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[341–343], up-regulates SREBP2 and CYP7 A1 
expression [344–346], and promotes lacteal junc-
tion zippering by suppressing the Ras homolog 
gene family member A (RhoA)/Rho-associated 
kinase 1 (ROCK1) signaling pathway [347–349].

b Regulation of plaque metabolism: BBR impedes 
foam cell formation by activating the AMPK-
SIRT1-PPAR-γ pathway which inhibiting the 
expression of lectin-like oxidized LDL recep-
tor 1 (LOX- 1) [350]. It also stabilizes the plaque 
by acting as an ACSL4 inhibitor through activ-
itng nuclear factor erythroid 2-related factor 
2(NRF2)/recombinant solute carrier family 7 
member 11 (SLC7 A11)/glutathione peroxidase 4 
(GPX4) pathway [351, 352].

(4) Gut Microbiota (GM) Regulation:

a Alteration of microbial composition: BBR 
restores the Bacteroidetes/Firmicutes balance, 
enriches SCFA-producing bacteria, and sup-
presses bacterial proliferation [351, 353–360].

b Enhancement of intestinal barrier integrity: 
BBR modulates the abundance of Akkermansia 
muciniphila and the IL- 25/mucin- 2 dynamics 
[361, 362].

(5) Anti-Inflammatory Effects in AT:

a Polarizes AT macrophages (ATMs): BBR polar-
izes ATMs from the M1 to the M2 phenotype, 
reducing NF-κB/NLRP3 inflammasome activity 
[363–370].

b Suppresses inflammatory pathways: BBR sup-
presses (NF-κB, PI3 K/AKT/mTOR) and 
cytokines (TLR4, TNF-α, IL- 6) [371–376]. Simi-
larly, Poulios et al. comprehensively reviewed the 
mechanisms underlying the anti-obesity effects of 
key phytochemicals, with BBR being a prominent 
example [377].

BBR exhibits a favorable safety profile. Although it 
may cause transient gastrointestinal side effects such as 
nausea and diarrhea, these often subside with contin-
ued use [378]. When co-administered with quercetin, it 
can alleviate constipation [379]. However, due to its low 
oral bioavailability [380–382], some innovative strate-
gies are explored:

a Synergistic herbal formulations, such as combined 
alkaloid extracts, increase bioavailability [383–387].

b Co-crystallization methods, for example, forming 
BBR-ibuprofen salts, offer a potential solution [360, 
388–391].

c Targeted delivery systems such as nanoparticles and 
liposomes can enhance cellular uptake and bioavail-
ability [153, 278, 392–397].

BBR represents a multifaceted anti-obesity agent with 
pleiotropic mechanisms, though clinical validation 
through rigorous RCTs is imperative. Optimizing its 
pharmacokinetic limitations via advanced formulation 
technologies could unlock its full therapeutic potential.

Bariatric surgery
Patients with severe obesity (BMI ≥ 37.5 kg/m2) or those 
who have not responded to medication and lifestyle 
changes are usually the ones who undergo bariatric sur-
gery [398]. Bariatric surgery, which modifies gut anatomy, 
significantly impacts food intake and nutrient absorp-
tion. This intervention not only facilitates sustained 
weight reduction but also improves metabolic disorders, 
obesity-related comorbidities (particularly T2DM), and 
metabolic syndrome. Additionally, it enhances quality of 
life and extends survival duration [399–402]. Sleeve gas-
trectomy (SG), Roux-en-Y gastric bypass (RYGB), adjust-
able gastric banding (AGB), and biliopancreatic diversion 
with duodenal switch (BPD-DS) are the four most com-
mon bariatric surgeries carried out globally [400, 403]. 
One anastomosis gastric bypass (OAGB) and single-
anastomosis duodenal ileostomy with sleeve gastrectomy 
(SADI-S) also are two more commonly recommended 
miainstream techniques [404]. Song et  al. demonstrates 
that SG may ameliorate renal injury and enhance uric 
acid excretion in HN mice by modulating the AMPK/
nuclear factor erythroid 2-related factor 2 (Nrf2) pathway 
and up-regulating urate transporter ABCG2 transcrip-
tion [405].

A retrospective analysis involving 498 severely obese 
patients who underwent SG, RYGB, or OAGB revealed 
that SG and OAGB were both safe and effective primary 
surgical options. However, OAGB and RYGB demon-
strated superior weight loss outcomes compared to SG 
[406]. Another study comparing AGB, RYGB, and SG 
reported total weight loss (TWL) percentages of 36.29%, 
31.59%, and 21.07%, respectively, within the first postop-
erative year [407]. Furthermore, a separate retrospective 
analysis of over 500 extremely obese patients indicated 
that BPD/DS yielded the highest TWL (38.4%), followed 
by RYGB (26.3%) and SG (23.6%). Notably, the 30-day 
complication rate was significantly higher in the BPD/DS 
group (12.9%) compared to RYGB (4.7%) and SG (8.7%) 
[408]. Lucoc’s study included a prospective follow-up of 
319 patients who had both LSG and LRYGB (2008–2022) 
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at a tertiary referral center, is consistent with the above 
conclusions that LRYGB is associated with greater rates 
of persistent excess weight loss over long-term follow-up 
[409]. Meanwhile, in a retrospective analysis of patients 
with a minimum two-year follow-up, Samuel et al. con-
cluded that super-obese patients undergoing LRYGB, as 
opposed to LAGB and LSG, achieve the best mid-term 
outcomes in terms of weight loss and resolution of obe-
sity-related comorbidities [410].

However, there are dangers and difficulties associated 
with bariatric surgery according to growing evidence.
Individual-level hurdles to bariatric surgery were found 
to include fear of surgery, fear of changing own lifestyle, 
the belief that weight had not reached its ‘tipping point’, 
worries about dietary modifications, a lack of social 
support, and fear of influence referral [411]. Despite its 
potential benefits, the adoption of bariatric surgery has 
been constrained by several factors, including its inva-
sive nature, substantial financial burden, and the risk of 
postoperative complications. These limitations have con-
tributed to its relatively restricted application in clinical 
practice. LSG has a high rate of long-term failure because 
that one out of three patients will have another bariatric 
procedure within a decade’s time, and half of the patients 
will gain weight, while up to 90% of patients will occur 
nutritional deficiencies and a decrease in bone mass over 
the course of a long-term follow-up [412–415]. Bariatric 
surgery combined with VD insufficiency is frequent and 
is anticipated to have a negative effect on the bones [416]. 
Bariatric surgery also may result in dumping syndrome 
[417]. Extremely obese people are more likely to experi-
ence comorbidities, mortality, surgical problems, and 
decreased weight loss after bariatric surgery.

For bariatric surgery patients to have successful and 
long-lasting results, postoperative care techniques are 
required. The first 24 h of inpatient postoperative treat-
ment are devoted to pulmonary hygiene, early ambu-
lation, intravenous fluid therapy, pain management, 
supplemental oxygen, and symptomatic management 
of nausea or vomiting [418]. In the postoperative phase, 
positive airway pressure treatment can lower the risk of 
apnea and prevent hypoxic episodes [419–421]. High-
quality evidence suggests that the risk of pulmonary 
embolism and deep vein thrombosis (DVT) can be sig-
nificantly lowered through a combination of pharma-
cological interventions and mechanical prophylaxis. 
Specifically, the administration of unfractionated heparin 
or low-molecular-weight heparin (LMWH) within 24 h 
post-surgery, when used alongside intermittent pneu-
matic compression devices or graduated compression 
stockings, has been shown to effectively reduce the inci-
dence of these conditions [408, 422–424].

Additionally, bariatric surgery patients should get 
postoperative nutritional therapy as soon as possi-
ble, including enough protein consumption, vitamin 
and mineral supplements [425–428]. More research is 
required to determine if moderate doses of VD supple-
mentation (600–3500 IU/day) and high doses (> 3500 IU/
day) enhance VD status while having little to no effect 
on parathyroid hormone levels, according to Chakh-
toura et al. [429]. Several studies have shown that Proton 
pump inhibitors (PPI) significantly lower the incidence 
of ulcers and gastroesophageal reflux disease [430–432]. 
Moreover, T2DM patients may additionally require mod-
ifications to their anti-diabetic medications due to the 
possibility of hypoglycemia during surgery period [433, 
434]. Endoscopic care of fistulas, leaks, and ulcers has 
emerged as the first-line treatment when complications 
arise, and the arsenal of tools and methods is expand-
ing [435, 436]. In addition, White et  al. reported that 
the combination of endoscopic therapy and pharmaco-
logic therapy can address weight recidivism, insufficient 
weight reduction, or further ameliorate related medical 
comorbidities [437].

Emerging therapies
Novel medications and targets
Interleukin- 2 (IL- 2) Emerging evidence from murine 
models of diet-induced adiposity demonstrates the meta-
bolic regulatory potential of low-dose IL- 2 administra-
tion. Moon et al. elucidated a dual mechanistic pathway: 
a. Direct immunomodulatory effects on  CD4+ T lympho-
cytes, enhancing regulatory T cell (Treg:  CD4+,  CD25+, 
 FoxP3+) differentiation while suppressing Th1-mediated 
gonadal WAT (gWAT) inflammation; b. Neuroimmune 
crosstalk activation through hypothalamic microglial 
engagement, stimulating sympathetic outflow that upreg-
ulates TGF-β expression concomitant with reductions in 
pro-inflammatory mediators (IFN-γ, IL- 1β, IL- 6, IL- 8) 
[438].

Glucocorticoid (GC) GCs are steroid hormones. 
Both endogenous and exogenous GC excess are detri-
mental to health as it can result in maladaptive diseases 
that mimic the metabolic abnormalities brought on by 
a HFD, such as Cushing’s syndrome [439], hypertension 
[440], central obesity [441], IR [442], and osteoporosis 
[32]. In accordance with Zhong’s research, osteoblastic 
11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is 
directly linked to obesity, glucose management dysfunc-
tion, and bone loss brought on by a HFD. The enzymatic 
upregulation of 11β-HSD1 demonstrates dual regulatory 
effects-suppressing osteoblastic glucose utilization and 
differentiation while amplifying glucocorticoid-medi-
ated repression of Early Growth Response 2 (Egr2) tran-
scription. Pharmacological intervention using DSS, a 
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bone-specific 11β-HSD1 inhibitor, presents novel thera-
peutic potential for counteracting HFD-associated meta-
bolic dysregulation and osteopenia [443]. Nevertheless, 
the clinical development of 11β-HSD1 inhibitors is still 
complicated and unsatisfactory [444, 445]. Finding the 
precise tissues or cells to target could be an innovative 
strategy to the development of 11β-HSD1 inhibitors.

Marine fish oil (FO) Marine food that is abundant in 
long-chain omega- 3 polyunsaturated fatty acids (LC n- 
3 PUFA) and long-chain omega- 6 polyunsaturated fatty 
acids (LC n- 6 PUFA) has been suggested in a number 
of studies to be a fruitful alternative for lowering obesity 
and metabolic problems associated with obesity [446, 
447]. Furthermore, marine FO offers micronutrients 
like potassium, iodine, and selenium as well as vitamins 
A and D [448]. Pradhan et  al. have isolated and stud-
ied the Tapra FO which was enriched with essential FA, 
treatment of Tapra FO in the mice displayed anti-obesity 
impact in terms of decreasing body weight, BMI, serum 
lipid profiles, leptin and TNF-α in mice model [449]. 
Marine-derived nutritional interventions, particularly 
those rich in long-chain omega- 3/omega- 6 LC-PUFAs, 
exhibit anti-adipogenic properties through leptin sign-
aling interference. Preclinical studies document that 
Phasa FO supplementation (12.5 mg/kg/day) containing 
conjugated LC-PUFAs significantly downregulates lep-
tin expression at transcriptional and translational lev-
els, effectively inhibiting adipocyte hyperplasia and lipid 
accumulation [450]. These findings corroborate marine 
bioactive compounds as promising candidates for obesity 
mitigation strategies [451]. Notably, marine natural prod-
ucts (MNPs) demonstrate broad-spectrum biomedical 
applications, showing therapeutic efficacy against viral 
pathogens (HIV, SARS-CoV- 2 variants), chronic infec-
tions (tuberculosis, H. pylori), and metabolic comorbidi-
ties (diabetes, infection-related cardiovascular disorders) 
[452].

Penthorum chinense Pursh (PCP) PCP, a tradi-
tional Chinese medicine, has been used for centuries to 
relieve the symptoms of excessive alcohol consumption, 
and treated traumatic damage, edema, and liver disor-
ders such as hepatic viral infections (ALD), NAFLD, 
and liver fibrosis additionally [453–455]. Hu et  al. 
found that PCP supplementation resulted in reduced 
body weight and hyperglycemia by decreasing the 
abundance of Firmicutes and increasing the proportion 
of Bacteroidetes at the phylum level [456]. Additionally, 
Hu et al. investigate how PCP treatment improved dys-
lipidemia and decreased food consumption and obesity. 
This may be because PCP activates the liver’s GLUT2/
glucokinase (GCK) expression and lowers hepatic oxi-
dative stress in db/db mice [457]. Besides, there are no 

specific human experiments to elucidate the anti-obe-
sity mechanism of PCP.

Myeloid differentiation factor 2 (MD- 2) inhibitors 
Novel MD- 2 inhibitors (MAC28 and 2i- 10) exhibit 
neuroprotective effects by attenuating MD- 2-toll-like 
receptor 4 (TLR4)-mediated neuroinflammation. These 
compounds preserve hippocampal neurogenesis while 
mitigating obesity-associated cognitive deficits through 
modulation of microglial activation and oxidative 
stress markers [458]. Similarly, further clinical studies 
are supposed to MD- 2 inhibitors as an adjunct to the 
treatment of obesity.

Diosgenin (DSG) DSG, a naturally occurring ste-
roidal saponin found in a variety of plants, including 
Solanum and Dioscorea, has a variety of actions in 
inflammatory illnesses. DSG is also recognized to be 
beneficial against metabolic problems linked to obesity 
and IR [459]. Experimental models reveal DSG-medi-
ated suppression of lipogenic regulators (sterol regula-
tory element-binding protein 1c (SREBP- 1c) and fatty 
acid synthase (FAS)) with concurrent upregulation of 
lipolytic enzymes (phospho-AMPK (p-AMPK), phos-
pho-acetyl-coA carboxylase (p-ACC), and carnitine 
acyl transferase 1 A (CPT- 1 A)), effectively reducing 
ectopic lipid deposition [460]. In vivo study, the admin-
istration of a DSG regimen improved various weight-
related outcomes and obesity-related IR by enhancing 
IRS1/2-PI3 K-Akt signaling pathway activation [461].

Positive regulatory domain PRDM16 A β3 adren-
ergic receptor agonist called mirabegron might boost 
whole-body energy expenditure and activate human 
BAT [462, 463]. Nonetheless, Higher dosages may not 
be clinically used due to possible cardiovascular side 
effects [464]. PRDM16 is not a direct pharmacological 
target like GLP- 1 receptor agonist and β3 adrenergic 
receptor agonist. The mechanism of PRDM16 in AT is 
as follows: PRDM16 directly activates the thermogenic 
function of BAT and induces the browning of WAT by 
binding to the promoter of UCP1 and PPAR-γ coacti-
vator 1α (PGC1α), indirectly regulates AT function 
by promoting SLIT2 protein secretion and inducing 
β-hydroxybutyrate (BHB) secretion [465]. According 
to numerous studies, a number of medications, such 
as resveratrol [466], rutaecarpine [467], acadesine 
(AICAR), metformin [468], rosiglitazone [469], and 
liraglupeptide [470], can reduce obesity and diabetes 
by altering the expression and function of PRDM16. 
Nevertheless, PRDM16 is also expressed in cardiac and 
skeletal muscle. Therefore, there is still more work to 
be done to target the PRDM16 protein in thermogenic 
AT in order to battle obesity and the metabolic diseases 
that are associated with obesity.
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Vanadium compounds As long-acting insulin sensi-
tizers, organically derivatized polyoxovanadates (POVs) 
modified with long-chain aliphatic acids significantly 
reduce body weight in HFD-fed mice after 8-week 
administration, notably attenuating adipose tissue accu-
mulation and inflammation. These findings suggest that 
vanadium-based compounds targeting obesity-associated 
proteins represent a promising pharmacological strategy 
for obesity management [471].

Pancreatic lipase (PL) inhibitors Frans et al. demon-
strated that tetrahydrocannabinol (THC) and cannabi-
nol (CBN), bioactive extracts from  Cannabis sativa (C. 
sativa), competitively inhibit PL activity. This highlights 
the potential of C. sativa-derived compounds as novel 
candidates for developing anti-obesity therapeutics and 
weight-regulatory agents [472].

Collectively, these advances underscore innovative 
therapeutic avenues for obesity. However, rigorous pre-
clinical validation and clinical trials remain imperative to 
evaluate the efficacy, safety, and translational applicability 
of these approaches in diverse populations.

Device‑based therapies
The significance of device-based therapies is further 
highlighted by the complexity and prevalence of obe-
sity and the metabolic problems that accompany obesity 
[473]. Mobile smart device-based health interventions 
(mHealth) may offer an appealing and economical strat-
egy for encouraging long-term adaptations of healthier 
lifestyles, according to a two-arm parallel cluster-RCT 
[474].

Meanwhile, a medical device based on polyglucosa-
mine polymers (PG) shown a substantial effect on low-
ering body weight, IR, and cholesterol levels by binding 
lipids in the upper gastrointestinal tract and decreasing 
their availability, according to Rondanelli et  al.’s inno-
vative and safe treatments for obesity [475]. Addition-
ally, Simvastatin (Sim) encapsulated within PLGA NPs 
(Sim-NP) was created by Mohaghegh et al. for localized 
delivery of Sim to ATs for immuno-modulation, which 
significantly reduced the progression of inflammation 
linked to obesity, controlled the synthesis of white fat, 
and improved AT modulation [476].

Genetic therapies
Tang et  al. demonstrated that adeno-associated virus 
(AAV)-mediated fat- 1  gene therapy—targeting a fatty 
acid desaturase that converts omega- 6 to omega- 3 
FFAs—ameliorates obesity-induced metabolic dysfunc-
tion, cellular senescence, and osteoarthritis by modulat-
ing FFA composition [477]. MiRNAs, critical epigenetic 
regulators, exhibit dynamic expression patterns dur-
ing adipogenesis: persistently upregulated miRNAs in 

obesity are suppressed during adipocyte differentiation, 
whereas downregulated miRNAs in obese individuals 
are elevated in mature adipocytes, thus highlighting their 
potential as novel therapeutic targets for obesity [478].

Furthermore, Attia et al. showed that dulaglutide treat-
ment mitigates oxidative DNA damage and hypermeth-
ylation in obese animals by restoring the expression 
of DNA repair genes (e.g., DNMT1, OGG1, and p53), 
thereby preserving genomic integrityc [479]. Genetic 
screening for rare obesity-related disorders, informed by 
clinical insights from pediatric weight management spe-
cialists, is essential for optimizing adolescent obesity care 
[480]. Implementing next-generation sequencing (NGS) 
to identify variants in Lep, LepR, MC4R, and POMC 
genes enables timely, genetically guided interventions 
for non-syndromic early-onset obesity in children and 
adolescents [481]. Clinical advancements include set-
melanotide (IMCIVREETM, Rhythm Pharmaceuticals), 
an MC4R agonist approved for monogenic obesity disor-
ders (POMC, LepR deficiencies). Ongoing trials explore 
its efficacy in syndromic obesities (Bardet-Biedl, Alström 
syndromes) and epigenetic dysregulations of the melano-
cortin pathway [482].

Likewise, preclinical research suggests that adipose-
derived mesenchymal stem cell (ADMSC)-based cell 
and gene therapy may be a promising treatment option 
for obesity and its metabolic consequences [483]. The 
process of transferring a donor’s feces to a recipient 
using a nasogastric tube, colonoscope, enema, capsule, 
or a combination of these is known as a fecal microbiota 
transplants (FMTs) [484]. FMTs demonstrates transient 
metabolic benefits in obesity management, with lean 
donor FMT inducing short-term (6-week) improvements 
in microbial butyrogenesis and insulin sensitivity. How-
ever, longitudinal analysis (18-week follow-up) reveals 
microbial community reversion to baseline configura-
tions, underscoring the necessity for sustained interven-
tion protocols [485, 486]. Despite the strength of these 
findings, additional research with bigger sample sizes and 
longer duration is needed to ascertain the long-term sta-
bility of donor engraftment and related phenotypes.

Conclusion and prospects
According to the World Obesity Atlas 2024, obesity 
prevalence among Chinese adults and children contin-
ues to rise, positioning obesity as a critical global health 
challenge across all age groups. The multifactorial patho-
genesis of obesity and its complications, coupled with 
incomplete elucidation of pathophysiological mecha-
nisms by current medical approaches, contributes to sub-
optimal treatment efficacy and unfavorable prognoses. 
This review systematically examines obesity pathophysi-
ology through six dimensions: energy balance/metabolic 
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adaptation, hormonal regulation, neural control, inflam-
mation/immune responses, genetic/epigenetic factors, 
and gut microbiota dynamics. We further analyze mecha-
nisms underlying obesity-related comorbidities and eval-
uate therapeutic interventions, with particular emphasis 
on BBR—a natural alkaloid-detailing its pharmacological 
properties, anti-obesity mechanisms, clinical limitations 
(notably poor bioavailability and absorption), and recent 
formulation advancements (e.g., derivatives, eutectic 
compounds, adipose-targeted delivery systems). This 
research focuses on the multidimensional pathophysi-
ology exploration (neuroendocrine-immune-metabolic 
crosstalk), optimization of pharmacological agents (GLP- 
1 RAs, dual/triple agonists) and natural compounds (BBR 
formulation enhancement), and echanistic studies on 
adipose tissue browning, gut microbiota modulation, and 
epigenetic regulation.

While preclinical studies demonstrate BBR’s potential 
in modulating adipose activation and metabolic syn-
drome, current clinical trials lack obesity-specific end-
points and standardized protocols. In addition, BBR’s low 
bioavailability and poor oral absorption limit its clinical 
application. Emerging anti-obesity agents (e.g., GLP- 1 
receptor agonists, triple incretin agonists) show superior 
efficacy, necessitating formulation optimization for BBR 
to achieve clinical competitiveness. Furthermore, most 
novel therapeutics remain in preclinical stages, requiring 
rigorous safety/efficacy validation.

Future obesity-related research should focus more on 
the following priorities: 1. Translational Development: 
Clinical validation of preclinical anti-obesity candidates 
(e.g., IL- 2 analogs, marine-derived compounds) and bio-
availability enhancement strategies for phytochemicals 
(nanodelivery, structural analogs). 2. Precision Medicine: 
Biomarker discovery for personalized obesity subtyping 
and treatment, and long-term safety/efficacy studies of 
novel agents. 3. Preventive Paradigms: Early-life interven-
tions targeting developmental origins of obesity and pub-
lic health policies addressing obesogenic environments. 
4. Therapeutic Innovation: Non-surgical alternatives for 
high-risk populations (device-based/gene therapies), and 
combinatorial approaches integrating pharmacotherapy, 
microbiota modulation, and behavioral interventions.
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