
Circulation Research is available at www.ahajournals.org/journal/res

Circulation Research

Circulation Research. 2025;136:1407–1432. DOI: 10.1161/CIRCRESAHA.124.325614� May 23, 2025    1407

COMPENDIUM ON INTERORGAN CROSSTALK IN HEART FAILURE AND 
CARDIOMETABOLIC DISEASES

Skeletal Muscle as a Mediator of Interorgan 
Crosstalk During Exercise: Implications for Aging 
and Obesity
Julia A. Shero , Maléne E. Lindholm , Marco Sandri, Kristin I. Stanford

ABSTRACT: Physical exercise is critical for preventing and managing chronic conditions, such as cardiovascular disease, type 2 
diabetes, hypertension, and sarcopenia. Regular physical activity significantly reduces cardiovascular and all-cause mortality. 
Exercise also enhances metabolic health by promoting muscle growth, mitochondrial biogenesis, and improved nutrient 
storage while preventing age-related muscle dysfunction. Key metabolic benefits include increased glucose uptake, enhanced 
fat oxidation, and the release of exercise-induced molecules called myokines, which mediate interorgan communication 
and improve overall metabolic function. These myokines and other exercise-induced signaling molecules hold promise as 
therapeutic targets for aging and obesity-related conditions.
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Physical exercise is widely recognized as an effec-
tive tool for preventing, managing, and treating a 
variety of chronic conditions, including cardiovas-

cular disease (CVD), type 2 diabetes, hypertension, 
obesity, and sarcopenia.1,2,3 A systematic review and meta- 
analysis of 33 studies involving over 880 000 partici-
pants revealed that higher levels of physical activity were 
linked to a 30% to 50% reduction in cardiovascular mor-
tality and a 20% to 50% reduction in all-cause mortality.4 
In addition, research from the Nurses’ Health Study (with 
nearly 80 000 participants) and the Health Professionals  
Follow-Up Study (involving 44 000 participants) exam-
ined the impact of 5 lifestyle factors, including at least 30 
minutes of moderate to vigorous physical activity per day, 
on life expectancy in the US population. Over a follow-up 
period of up to 34 years, the most physically active men 
and women enjoyed an increase in life expectancy of 7 
to 8 years.5

Exercise enhances metabolic health by inducing 
adaptations across multiple tissues, including skeletal 
muscle. In skeletal muscle, regular resistance exercise 

increases myocyte size6 and muscle mass7 and improves 
the quality and functionality of the muscle.8 This is due 
to changes in fiber type and increased mitochondrial 
content, conferring resistance to atrophy,9 as well as 
metabolic adaptations. Endurance exercise results in 
extensive mitochondrial biogenesis, enhanced glucose 
and fatty acid transport, and increased capillarization to 
improve the flux of oxygen delivery and nutrient flux to 
the skeletal muscle. Nutrient availability is also improved 
through greater intramuscular lipid and glycogen stor-
age.10,1 Exercise protects the skeletal muscle from age-
associated dysfunction, including decreases in strength 
and mitochondrial capacity, and increased fat infiltra-
tion and insulin resistance.11,12,13 Moreover, maintaining 
or beginning physical activity is a well-established way 
to prevent or improve the effects of aging on skeletal 
muscle.14 Exercise results in multiple signals that change 
skeletal muscle function and metabolism, catecholamine 
and adrenaline signaling, calcium release, mechanical 
force, and changes in redox balance that all work to 
adapt the skeletal muscle to the demands of exercise.15
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With regard to metabolic adaptations to skeletal mus-
cle, exercise improves glucose uptake,16,17,18,19 increases 
translocation and expression of GLUT4 (glucose trans-
porter type 4),20,19 enhances mitochondrial activity,21 
improves the capacity to take up and oxidize fat as fuel,21 
and increases the release of exercise-induced myo-
kines into the bloodstream.22,23,24,25,26,27,3 These exercise- 
induced adaptations improve overall metabolic and  
cardiovascular function.

Exerkines refer to molecules secreted in response 
to exercise and play a significant role in regulating vari-
ous bodily functions. These molecules include proteins, 
metabolites, and noncoding nucleic acids, are secreted 
by muscles (myokines) or other organs, and can act 
on the organ itself (autocrine), nearby cells (paracrine), 
or distant organs (endocrine).28,29,30 When acting in an 
endocrine manner, exerkines facilitate communication 
between different tissues and organs, including the 
heart, skeletal muscle, liver, and adipose tissue. By pro-
moting this crosstalk, exerkines likely work together to 
enhance overall metabolic health.31 Importantly, recent 
data indicate that endurance training induces molecular 
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adaptations across 19 different tissues,32 many associ-
ated with mitochondrial or metabolic function.33 These 
signaling molecules are of great interest as potential 
therapeutic targets due to their role in mediating the 
system-wide benefits of exercise. While initial research 
focused on myokines, exercise-induced secreted mol-
ecules can be produced by various tissues.31

In this review, we will focus on the role of skeletal 
muscle–released myokines in exercise-induced interor-
gan crosstalk with a specific focus on its role in aging 
and obesity.

EXERCISE
Exercise refers to intentional physical activity and 
spans aerobic, resistance, high-intensity interval train-
ing, and exercise snacks.31,34,35,36 Aerobic exercise is 
the continuous use of large muscle groups, resulting 
in increased muscle oxygen demand and, therefore, 
an increase in heart rate,37 and includes activities such 
as walking, running, bicycling, and swimming. Resis-
tance training is when resistance, either provided by 
an external source, such as weights, or by using one’s 
body weight, is used to create progressive overload to 
the muscles.38 High-intensity interval training is when 
repeated bouts of moderate-vigorous work are per-
formed with periods of recovery of easier work or rest 
in between bouts.39 Exercise snacks are isolated (≤1 
minute) bouts of intense exercise performed periodi-
cally throughout one’s day.40

Repeated exercise, that is, exercise training, confers 
numerous beneficial effects on multiple tissues, includ-
ing the skeletal muscle, liver, heart, vasculature, lungs, 
and adipose tissue.32,41 Importantly, exercise improves 
metabolic health independent of weight loss and abro-
gates age-related changes in glucose disposal and 
insulin sensitivity.42,43,44 Exercise is a potent media-
tor of health, and exercise capacity is the strongest 
predictor of mortality in humans.45,46 This is achieved 
through the complex interplay between various signal-
ing mechanisms that are activated in response to the 
exercise-induced disruption of homeostasis, ultimately 
leading to, for example, improved insulin sensitivity,11,47 
anti-inflammatory effects,48 and improved cardiorespi-
ratory fitness.15

EXERCISE AND CARDIOVASCULAR 
HEALTH
CVD remains the leading cause of morbidity and mortal-
ity worldwide,49 encompassing a spectrum of conditions 
such as arrhythmias, cardiomyopathies, heart failure 
(HF), and atherosclerosis.50 These conditions often cul-
minate in severe pathologies such as stroke, myocardial 
infarction, or cardiac arrest. The global rise in obesity has 

significantly contributed to the prevalence of obesity-
related CVD,51 primarily through mechanisms such as 
hypertension and nutrient overload.52,53,54,55,56 Obesity-
induced hypertension promotes pathological cardiac 
hypertrophy, which can progress to HF.57,58 In addition, 
the increased fatty acid uptake and utilization character-
istic of an obesogenic state leads to intramyocardial lipid 
accumulation, lipotoxicity, and subsequent cardiac dys-
function.52,59,60 Atherosclerosis, the most common form of 
CVD, develops gradually due to sedentary lifestyles and 
obesity and remains a major precursor to fatal cardiovas-
cular events.50,61,62

Exercise training offers a powerful means to miti-
gate the risk and progression of CVD through mul-
tiple physiological and metabolic pathways. Regular 
physical activity decreases cardiovascular risk fac-
tors, including obesity, type 2 diabetes, and hyperten-
sion,63,64,65,66 while improving glucose homeostasis, 
high-density lipoprotein levels, and blood pressure reg-
ulation, even without significant weight loss.67,68,69,70,71 
For patients with existing CVD, exercise-based car-
diac rehabilitation enhances cardiovascular function 
and improves exercise tolerance,72,73 which is critical 
in conditions such as HF.74,75,76,77,78,79 Regular exercise 
induces favorable cardiac and vascular adaptations, 
including reduced resting heart rate and blood pres-
sure, increased physiological cardiac hypertrophy, and 
lower circulating lipid levels.80,81,82,83 Mechanistically, 
exercise promotes vasodilation, angiogenesis,84,85,86 
and the release of myokines, which mediate anti-
inflammatory effects, promote exercise-induced 
cardiac adaptations, and facilitate intertissue commu-
nication,87,88,89,90,27 fostering cardiovascular health and 
contributing to enhanced cardiovascular resilience.

EXERCISE-INDUCED ADAPTATIONS TO 
SKELETAL MUSCLE
Cellular adaptations to skeletal muscle emerge from 
a complex network of signaling mechanisms triggered 
by exercise-induced physiological challenges.1 Various 
stimuli, including mechanical forces such as shear stress, 
metabolic shifts in oxygen availability, energy substrate 
fluctuations, alterations in cellular pH and calcium levels, 
and temperature changes, collectively initiate a cascade 
of molecular responses.85 These intricate cellular pertur-
bations ultimately converge to modulate gene expression 
patterns and protein dynamics, resulting in enhanced 
muscular function.

Skeletal Muscle Structural Remodeling With 
Exercise
Regular exercise induces structural changes in muscles 
to adapt to the repeated metabolic and mechanical 
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M stresses. When muscles contract, calcium waves are 
generated within the myofibers due to nerve stimulation 
and depolarization, resulting in the activation of several 
signaling pathways that regulate myosin content, mito-
chondrial function, and muscle capillary growth. The 
type, intensity, and duration of calcium spikes during 
exercise are critical for activating calcineurin, a calcium- 
dependent phosphatase. Endurance exercise maximally 
activates calcineurin, which dephosphorylates NFAT 
(nuclear factor of activated T cells) transcription factors, 
enabling their movement into the nucleus. There, NFATs 
promote slow myosin expression, triggering muscle fiber-
type switching to fatigue-resistant fibers.91,92

Calcineurin-NFAT signaling does not induce muscle 
hypertrophy, which is primarily regulated by the IGF 
(insulin-like growth factor)-1-AKT (protein kinase B)-
mTOR (mammalian target of rapamycin) pathway. How-
ever, calcineurin activates TFEB (transcription factor 
EB), promoting mitochondrial biogenesis and GLUT4 
expression. This enhances glucose uptake and ATP pro-
duction, and supports myofiber contraction.93,94 TFEB 
activation sustains β-oxidative metabolism and is partially 
dependent on PGC1α (PPARγ [peroxisome proliferator- 
activated receptor gamma] co-activator 1 alpha), a 
transcription factor that promotes mitochondrial oxida-
tive metabolism,95 which is upregulated during physical 
activity. Interestingly, overexpression of TFEB in PGC1α 
knockout mice can still induce mitochondrial biogenesis 
and improve exercise performance.94 PGC1α itself drives 
several endurance-related changes, such as mitochon-
drial biogenesis, fiber-type switching, fatty acid oxidation, 
angiogenesis, and resistance to muscle atrophy.9,96

Calcium waves also activate CaMKII (calcium/
calmodulin-dependent protein kinase), which, along with 
calcineurin, converges on cAMP-dependent proteins 
such as CREB (cAMP response element-binding pro-
tein) and ATF2 (activating transcription factor 2). These 
proteins, when phosphorylated, bind to the promoter 
of the PGC1α gene, inducing its expression. PGC1α 
activation involves both transcriptional upregulation 
and posttranslational modifications that regulate pro-
tein levels and interactions with coregulators.97 PGC1α 
also plays a role in enhancing blood vessel growth by 
coactivating ERRα (estrogen-related receptor alpha), 
which stimulates VEGF (vascular endothelial growth 
factor) expression.98 Endurance exercise also activates 
proteolytic systems such as autophagy and the ubiquitin- 
proteasome pathway to remodel proteins and remove dam-
aged organelles, including mitochondria through mitophagy. 
This process helps prevent oxidative stress and is mediated 
by the energy stress sensor, AMPK (AMP-activated pro-
tein kinase).99,100,101 Autophagy activation is critical for train-
ing adaptations and improved performance.102

In contrast, resistance training induces a specific 
variant of PGC1α, known as PGC1α4, which pro-
motes muscle hypertrophy.103 PGC1α4, expressed 

via an alternative promoter, does not shift muscles to 
oxidative metabolism but, instead, enhances protein 
synthesis and blocks myostatin production. The IGF1-
AKT-mTOR pathway, which controls protein synthesis 
and muscle growth, is crucial for resistance training-
induced hypertrophy and prevents muscle wasting in 
catabolic conditions.104,105,106,107 The increases in hyper-
trophy as a result of myostatin inhibition on hypertro-
phy are partly due to its interaction with the AKT-mTOR 
signaling pathway.

Exercise and Skeletal Muscle Metabolism
Myocytes undergo dynamic changes in metabolism 
to support both the mass and constant use of skel-
etal muscle. During periods of fasting and when at 
rest, the energetic needs are met by the oxidation of 
fatty acids.108 Physical activity requires alterations in 
metabolism to support changes in membrane excit-
ability, calcium handling, myofilament cycling, and other 
ATP-demanding processes. Exercise alters muscle 
metabolism, increasing glycogen storage, mitochon-
drial biogenesis, and β-oxidation.109,110,111,112 Muscle 
contractions elevate cytosolic calcium levels, activat-
ing CaMKII signaling pathways, promoting glucose 
uptake,19,113 and adrenaline-driven glycogenolysis to 
support energy needs.114

At rest, fatty acids in circulation are incorporated into 
the intramyocellular triglyceride stores before mitochon-
drial oxidation .115,116 During exercise, fatty acids from 
both adipose tissue and the intramyocellular triglyc-
eride stores are oxidized by the muscle .117–120  These 
fatty acids are taken up by the skeletal muscle likely via 
fatty acid transporters such as CD36 (cluster of differ-
entiation 36), FABPpm (plasma membrane-associated 
fatty acid binding protein), FATP (fatty acid transport 
protein)-1, and FATP4.121–124 The mechanism behind 
increased fatty acid transporter translocation during 
exercise has not been elucidated but is likely, in part, 
regulated by AMPK 125 although regulation by other 
signaling molecules has also been suggested.126,127 
After entering the muscle, fatty acids are modified by 
ACSL1 (acyl-coenzyme-A synthetase long-chain fam-
ily member 1), the key isoform in the muscle128 to their 
acyl-CoA (coenzyme-A) form. To cross the inner mito-
chondrial membrane, the fatty acyl-CoAs are then fur-
ther modified by CPT (carnitine palmitoyl transferase)-1 
and CPT2 as part of the carnitine shuttle, after which 
they oxidized.127

Exercise modulates muscle metabolism before, dur-
ing, and after physical activity. Resting metabolism is 
altered by exercise training, increasing glycogen muscle 
content, mitochondrial biogenesis, and promoting β- 
oxidation.109,110,111,112 In general, various exercise stimuli 
alter metabolism to support physical activity and promote 
health. Muscle contraction increases cytosolic calcium 
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levels, resulting in CaMKII activation and promoting glu-
cose uptake.19,113 Adrenaline stimulates glycogenolysis, 
promoting glycogen oxidation, and activating pyruvate 
dehydrogenase to promote carbohydrate oxidation.114

Exercise Modalities Induce Specific 
Adaptations to Skeletal Muscle Metabolism
Exercise modality, duration, and intensity contribute to 
the metabolic response in the skeletal muscle. During 
intense exercise, the energetic requirements of skeletal 
muscle increase dramatically, and ATP consumption can 
increase as much as 100-fold. To support augmented 
metabolic demand, muscles initially leverage rapid 
energy sources, including phosphocreatine reserves and 
anaerobic glycogen breakdown. These initial energy-
generating pathways are dynamically regulated by rapid 
fluctuations in key molecules such as AMP (adenosine 
monophosphate), ADP (adenosine diphosphate), inor-
ganic phosphate, NAD+/NADH (nicotinamide adenine 
dinucleotide) ratios, and intracellular calcium concentra-
tions released from the sarcoplasmic reticulum. Within 
a brief timeframe, a transition to aerobic metabolism 
and mobilization of additional molecular energy reserves 
is necessary.129,1 Throwing, jumping, and sprinting are 
examples of short, high-intensity exertions, where ATP 
is generated primarily by anaerobic metabolism, with 
anaerobic glycolysis producing lactate,130,131 which can 
be secreted, oxidized, and used for gluconeogenesis and 
muscle glycogenesis.132,133,134 Skeletal muscle lactate 
production also regulates cardiovascular and pulmonary 
function during exercise. Lactate promotes angiogenesis 
through VEGF,135 provides the metabolic substrate for 
cardiac metabolism,136 and may act as a hypoxia sensor, 
upregulating breathing during exercise.137

Sustained aerobic exercise is fueled by mitochon-
drial oxidative phosphorylation.138,130,139 The substrates 
for oxidative phosphorylation are primarily derived from 
intramuscular glycogen stores, circulating glucose, and 
fatty acids from within the muscle and those released 
into circulation by the adipose tissue.140,141

Exercise intensity dictates primary metabolic path-
ways, with high-intensity activities predominantly relying 
on carbohydrate metabolism, while moderate-intensity 
exercise utilizes a mix of carbohydrates and free fatty 
acids.141 Secreted lactate can be converted to glucose 
or metabolized by the gut microbiota Veillonella, which 
increases in abundance in response to exercise. Higher 
levels of Veillonella in the gut result in improved exer-
cise capacity in mice, demonstrating the intricate, cross- 
tissue regulation of metabolism during exercise.142

Metabolic adaptations to skeletal muscle are driven 
by exercise-induced changes in gene expression, protein 
synthesis, protein activation/inhibition, and release of 
signaling molecules. Exercise and training lead to exten-
sive remodeling of the skeletal muscle epigenome,143,144 

transcriptomes,145,146 proteome147,148,149 and various 
posttranslational modifications including the phospho- 
proteome and acetylome.148,32 Critical mediators of these 
changes include AMPK, which is activated in skeletal 
muscle when ATP levels decrease, resulting in sup-
pression of several anabolic pathways and stimulation 
of catabolic processes, for example, glycogenolysis. 
AMPK-regulated transcription factors include MEF2 
(myocyte enhancer factor 2) and NRF1 (nuclear respira-
tory factor 1) that are important regulators of mitochon-
drial biogenesis. CaMKII promotes the activity of CREB, 
MEF2, and HDACs (histone deacetylases).1 MAPKs 
(mitogen-activated protein kinases), mTOR, and PKA 
(protein kinase A) are other important mediators of the 
metabolic responses to exercise.129 Several of these fac-
tors also increase the nuclear abundance of the cofac-
tor PGC1α.1,21 The molecular drivers of the metabolic 
effects of exercise have been reviewed in detail else-
where.129,1,150,127 Importantly, while these central regula-
tors are critical for exercise adaptation in skeletal muscle, 
the phenotypic and molecular responses demonstrate 
significant variability, and there is a need for further 
investigation into how these intricate signaling mecha-
nisms mediate long-term metabolic health benefits of 
exercise training in various populations.

SKELETAL MUSCLE FACTORS SECRETED 
DURING EXERCISE AND INTERORGAN 
CROSSTALK
Skeletal muscle releases a variety of signaling molecules, 
including myokines and metabolites, in response to exer-
cise (Figure 1; Table). The term myokine was introduced 
in 2003185, shortly after the cytokine, IL (interleukin)-6, 
was identified as a skeletal muscle product released in 
response to exercise.186 Myokines are defined as cyto-
kines and other peptides released by the muscle, which 
exert various effects on the skeletal muscle itself and 
enter the bloodstream to regulate the function and 
metabolism of other organs.187,188, 29,111,30 These secreted 
factors are differentially regulated by level of activity and 
intensity, as well as disease state,189,190,191 with both posi-
tive and negative effects on systemic metabolism and 
cardiovascular health.

Myostatin
The myokine myostatin is released from myocytes after 
acute bouts of exercise192 and acts within the muscle 
tissue. Myostatin impairs satellite cell entry into the 
cell cycle and protein synthesis and alters myoblast 
cell cycle progression, resulting in reduced muscle 
size.193,194 Consistent exercise reduces myostatin lev-
els, and genetic deletion or pharmacological inhibition 
of myostatin enhances skeletal muscle hypertrophy in 
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mice195 and humans,196 demonstrating that myostatin is 
a negative regulator of exercise-induced skeletal muscle 
hypertrophy.

Myostatin is part of the TGFβ (transforming growth fac-
tor beta) superfamily and binds to ActRIIB (activin type IIB 
receptor), ActRIIA (activin type IIA receptor), and TGFβ-
receptor II, activating ALK (activity type I receptor; 4, 7, 5) 
to phosphorylate SMAD2/3. This promotes the formation 
of a complex with SMAD4, leading to nuclear translocation 
and gene expression regulation.194 Inhibition of SMAD2/3 
promotes muscle growth, targeting genes involved in pro-
tein turnover. Myostatin-SMAD2/3 signaling inhibits the 
anabolic insulin-AKT-mTOR pathway and activates FoxO 

(forkhead box O) transcription factors, increasing expres-
sion of muscle-specific E3 ligases MuRF1/Trim63 (mus-
cle ring-finger protein-1) and FBXO32/Atrogin1/MAFBX 
(f-box protein 32) and inhibiting protein synthesis, leading 
to muscle atrophy.197 The BMP (bone morphogenic pro-
tein) signaling pathway also converges on SMAD4 to con-
trol muscle mass, with BMP-growth differentiation factor 
members binding to ActRIIs (activin type II receptors) and 
activating SMAD1/5/8 in conjunction with SMAD4. Over-
expression of the BMP antagonist noggin in myostatin 
knockout mice suggests genetic interaction between 
activin-myostatin and BMP pathways. Follistatin-mediated 
hypertrophy blocks myostatin signaling while stimulating 

Figure 1. Skeletal muscle releases myokines, cytokines, and metabolites in response to exercise.
These molecules act on other organs and organ systems, such as the white adipose, vasculature, heart, brown adipose, liver, brain, and bone, to regulate 
changes in metabolism, signaling, transcription, and structure. Illustration credit: Sceyence Studios. AMPK indicates AMP-activated protein kinase; 
BAIBA, β-aminoisobutyric acid; CDK2, cyclin-dependent kinase 2; CEBPα, CCAAT/enhancer-binding protein-alpha; Col1a, collagen type I alpha 1 
chain; CREB, cAMP response element-binding protein; eNOS, endothelial nitric oxide synthase; FABP4, fatty acid binding protein 4; FAO, fatty acid 
oxidation; GLUT4, glucose transporter type 4; HDAC4, histone deacetylase 4; IGF, insulin-like growth factor; IL, interleukin; mTOR, mammalian target of 
rapamycin; NFκB, nuclear factor kappa-B; OSX, osterix; pERK, phospho extracellular signal-regulated kinase; PKG, protein kinase g; PPARγ, peroxisome 
proliferator-activated receptor gamma; p21, wildtype activating factor-1/cyclin-dependent kinase inhibitory protein-1; ROS, reactive oxygen species; 
SMAD3, Mothers against decapentaplegic homolog 3; UCP1, uncoupling protein 1; and 1PPARa, peroxisome proliferator activated receptor alpha.
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SMAD1/5/8 activation.198,199,200 Therefore, inhibiting myo-
statin/activins reduces phosphorylated SMAD2/3, allow-
ing SMAD4 to interact with SMAD1/5/8 and promote 

muscle growth or counteract atrophy. The BMP pathway 
helps prevent excessive muscle atrophy by repressing the 
E3 ligase FBXO30.200

Table.  Effects of myokines on target tissues.

BAIBA Irisin Metrnl Musclin Myostatin Lactate Apelin IL-6

White 
adipose

Promotes beiging Inhibits beiging Inhibits beiging and 
inhibits/promotes 
adipogenesis

Inhibits 
lipogenesis 
and promotes 
lipolysis

Roberts et 
al, 201426

Bostrom et al, 
2012,22 Dong et 
al, 2016,23 Wu 
et al, 2012,151 
and Zhang et al, 
2014152

Nguyen et 
al, 2011153 
and Rao et al, 
201425

Jin et al, 
2023154

Artaza et al, 2005,155 
Arataza et al, 2005, 
Feldman et al, 
2006,156 Guo et al, 
2008,157 Jackson et 
al, 2012,158 Kim et al, 
2001,159 Kim et al, 
2012,160 McPherron 
and Lee, 2002,161 
Rebbapragada et al, 
2003,162 and Shan et 
al, 2013163

Petersen et 
al, 2005,164 
and Wan et 
al, 2010165

Vasculature Decreases 
apoptosis and 
inflammation, 
and inhibits 
atherosclerotic 
lesions

Decreases 
inflammation

Promotes 
angiogenesis

Promotes 
angiogenesis 
and inhibits 
atherosclerotic 
lesions

Lu et al, 2015,166 
Zhang et al, 
2016,167 and 
Zhang et al, 
2016168

El-Ashmawy 
et al, 2019,169 
Javaid et 
al, 2021,170 
and Liu et al, 
2019171

Hunt et al, 
2008135

Helker et al, 
2020,172 and 
Ishida et al, 
2004173

Heart Inhibits aortic 
plaque formation

Promotes 
glucose 
oxidation

Promotes 
mitochondrial 
biogenesis

Inhibits autophagy, 
protein synthesis, 
and proliferation, and 
inhibits pathological 
cardiac hypertrophy

Promotes 
physiological 
cardiac 
hypertrophy

Libby, 2002,174 
and Pober et al, 
2009175

Wang et al, 
2024176

Harris et al 
202395

Cao et al, 2011,177 
Kamanga-Sollo et al, 
2005,178 Kamanga-
Sollo et al, 2003,179 
and Qi et al, 2020180

Kilpiö et al, 
2024181

Brown 
adipose

Inhibits adipogenesis

Shan et al, 2013163

Liver Promotes 
fatty acid 
oxidation

Roberts et 
al, 2014

Brain Promotes 
neurogenesis 
and synaptic 
plasticity

Choi et al, 
2018,182 and 
Lourenco et al, 
2019183

Bone Promotes 
osteogenesis

Colaianni et al, 
2017184

BAIBA indicates β-aminoisobutyric acid; IL, interleukin; and Metrnl, meteorin-like protein.
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artificially elevated levels in vivo and in vitro provide 
insight into the role of myostatin on cardiac function. 
Like the observations in skeletal muscle, myostatin treat-
ment attenuates cardiac pathological hypertrophy in rats 
and isolated cardiomyocytes180 (Figure 1; Table). Myo-
statin alters the levels of proteins involved in autophagy, 
a process important for maintaining appropriate car-
diac function, but, in excess, autophagy is linked to the 
development of cardiac hypertrophy.177 Myostatin down-
regulates AMPK-mTOR signaling and increases PPARγ, 
which leads to the silencing of NFκB (nuclear factor 
kappa-B),180 a key mediator of autophagy.202 Myostatin, 
thus, plays a crucial role in regulating cardiac hypertrophy, 
exerting significant effects in both in vivo and ex vivo mod-
els. Knockout or silencing of myostatin increased cardiac 
hypertrophy in a rat model and rat cardiomyocytes. This 
increase in hypertrophy is associated with an increase 
in key markers, such as BNP (brain natriuretic peptide) 
and β-MHC (beta-myosin heavy chain), and autophagy 
markers, such as LC3-II (microtubule-associated protein 
1 light chain 3-II) and BECN1 (beclin-1). Furthermore, 
myostatin blocks cardiomyocyte proliferation by increas-
ing P21 expression, which inhibits cell cycle progression, 
and reducing CDK2 (cyclin-dependent kinase 2), a criti-
cal regulator of the cell cycle. Inhibition of CDK2 avail-
ability results in cell cycle arrest. Myostatin also inhibits 
the proliferation of porcine embryonic myogenic cells, 
in part through the production of IGFBP (IGF-binding  
protein)-3 and IGFBP-5, which sequester IGFI outside 
the cell and may impede the intracellular and nuclear 
actions required for growth.203,202,178,179,204,180,205

Myostatin also regulates adipose tissue function 
through different mechanisms in vivo and in vitro (Fig-
ure 1; Table). In vitro, myostatin inhibits adipogenesis in 
3T3-L1 and human mesenchymal stem cells and pri-
mary brown adipocytes through the activation of SMAD3 
and β-catenin157,159,160,162 but promotes adipogenic com-
mitment while impairing differentiation in C3H10T1/2 
cells.156 However, when applied after differentiation 
induction, myostatin enhances adipogenesis,155 sug-
gesting stage-specific effects. In vivo, myostatin knock-
out mice show reduced adiposity,158,161 with decreased 
expression of adipogenesis markers, CEBPα (CCAAT/
enhancer-binding protein-alpha), and PPARγ, indicat-
ing impaired adipogenesis. However, this is likely due to 
glucose diversion from adipose tissue rather than direct 
effects on adipocyte turnover.206,207 In high-fat diet-fed 
mice, adipose-specific loss of myostatin signaling does 
not significantly affect lean or fat mass, glucose, insu-
lin, or adipokine levels.206 While myostatin knockout 
enhances the beiging of subcutaneous white adipose 
tissue,163 recombinant myostatin has no direct impact 
on lipid release or adipose tissue mass, highlighting the 
context-dependent nature of myostatin’s role in adipose 
regulation.

Irisin
Irisin is a myokine induced during exercise in mice and 
humans22,208,209,210 that is secreted primarily from the 
skeletal muscle.211 Irisin may regulate beneficial adap-
tations of exercise, such as improved energy expen-
diture,212 glucose homeostasis,22 and bone health.213 
Acute treatment of irisin on myocytes in vitro increased 
glucose uptake and glycolysis, and longer treatment 
induced mitochondrial biogenesis and increased oxygen 
consumption, suggesting that irisin promotes oxidative 
metabolism in myocytes.214 Moreover, irisin-mediated 
changes in skeletal muscle metabolism may aid in main-
taining skeletal muscle integrity in aging.189 Increased 
muscle irisin secretion in mice improved glucose toler-
ance and lowered fasting insulin levels,22 and levels are 
decreased in patients with type 2 diabetes. Circulating 
irisin levels are positively correlated with bone mechani-
cal properties in humans213 and induce the expression 
of genes associated with bone formation, such as Osx, 
Col1a, and Ctnnb1, preventing bone mineral density loss 
from disuse in mice.184

The relationship between irisin and cardiac health 
remains unclear, with conflicting data in the literature. 
Some studies report a positive association between 
serum irisin concentration and CVD, atherosclero-
sis, and stroke,215,216,217 while others indicate negative 
associations and potential cardioprotective effects. For 
example, several studies have found lower irisin levels 
in patients with coronary artery disease (CAD).218,219,220 
In contrast, in mouse models of atherosclerosis, iri-
sin treatment reduces the development of carotid and 
aortic plaques,166,167,168 indicating a protective role (Fig-
ure 1; Table). Irisin also reduced disease severity in 
both genetic and surgical models of atherosclerosis.167 
In models of atherogenesis, oxidized LDL (low-density 
lipoprotein) promotes inflammation in endothelial cells, 
leading to apoptosis and plaque formation.174,175 In vitro, 
irisin treatment attenuated oxidized LDL-induced inflam-
mation and apoptosis in endothelial cells by decreasing 
reactive oxygen species and suppressing inflammation 
and apoptosis via eNOS (endothelial nitric oxide syn-
thase) phosphorylation and decreased NFκB signaling 
(Figure 1; Table).167 These conflicting findings highlight 
the need for further research to clarify the mechanistic 
relationship between irisin and CVD.

Irisin may promote the remodeling of adipose tis-
sue by stimulating the browning of white adipocytes 
and thermogenesis (Figure 1; Table). Acting directly on 
adipocytes, irisin enhances their thermogenic capacity 
by activating p38 MAPK and ERK (extracellular signal-
regulated kinase) signaling pathways.152 This molecular 
signaling cascade facilitates the conversion of white adi-
pocytes into beige, thermogenically active cells.22,23,151,152 
The effects of irisin, stimulating thermogenesis and adi-
pocyte browning, position it as a key factor in modulating 
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adipose tissue function and combating metabolic 
disorders.

Exercise has a profound impact on brain health, improv-
ing cognitive function and plasticity, particularly in older 
adults.221,222 Regular physical activity enhances outcomes 
in neurodegenerative diseases and stroke.223,224,225,226 
Exercise also promotes neurogenesis in the adult brain, 
enhancing synaptic plasticity and spatial learning.227,228 Iri-
sin has been linked to improved cognitive function in vari-
ous populations. Higher irisin levels correlate with better 
cognitive performance in older adults at risk for demen-
tia229 and young athletes.230 However, elevated irisin lev-
els in obese women have been associated with poorer 
executive function,231 suggesting a complex relationship 
between irisin, cognition, and metabolic health.

Irisin has neuroprotective effects in conditions such 
as Alzheimer disease, Parkinson disease, stroke, and dia-
betes. In Alzheimer disease, irisin supports hippocampal 
neurogenesis and gene regulation,182 improving mem-
ory and synaptic plasticity in mouse models (Figure 1; 
Table).183 FNDC5 (fibronectin type III domain-containing 
protein 5), the precursor to irisin, also enhances memory 
and synaptic function in Alzheimer disease. In female 
Alzheimer disease mice, irisin reduced tau protein levels 
and inflammation although it worsened inflammation in 
males.232 In addition, irisin reduces amyloid-beta-induced 
inflammation in astrocytes and promotes hippocampal 
cell proliferation.233

In Parkinson disease, irisin preserves dopaminergic 
neurons, improves motor function, and aids stem cell migra-
tion and differentiation in rat models.234 Following ischemic 
stroke, where irisin levels decline, increasing irisin reduces 
brain infarct size, inflammation, neurological deficits, and 
brain edema in mouse models.235 In vitro irisin reduced oxi-
dative stress and inflammation in neurons under ischemic 
conditions.236 In diabetic mouse models, irisin improved 
cognitive function, preserved synaptic proteins, reduced 
inflammation, and attenuated NFκB activation in the brain, 
suggesting its potential to counteract diabetes-associated 
neurodegeneration.237 Collectively, these studies highlight 
the broad interorgan signaling effects of a myokine and 
demonstrate the therapeutic potential of irisin for various 
neurological and metabolic disorders.

Meteorin-Like 1
The myokine Metrnl (meteorin-like protein) was identified 
in primary myotubes overexpressing the PGC1α splice 
isoform, PGC1α4, which regulates muscle growth and 
energy expenditure.103 Metrnl is induced in the skeletal 
muscle after exercise or cold exposure,25 suppressing 
inflammation by inhibiting inflammasome activation.170 
Exogenous Metrnl administration in mice fed a high-fat 
diet protects from lipid-induced insulin resistance in skel-
etal muscle and C2C12 cells.238 Moreover, higher levels 
of Metrnl in circulation increase energy expenditure and 

improve glucose homeostasis in mouse models of obe-
sity and diabetes.

Exercise is associated with decreased mortality, 
increased quality of life, and higher rehabilitation suc-
cess in patients with CVD.239,240,241 In a mouse model of 
HF, Metrnl administration improved cardiac structure and 
function, whereas Metrnl knockdown eliminated these 
benefits.176 Metrnl activates AMPK, which suppresses 
histone deacetylases such as HDAC4,242,243 leading to 
increased GLUT4 expression.244,245,246 Impaired energy 
metabolism is a hallmark of HF, and Metrnl-induced 
GLUT4 expression promotes glucose metabolism, 
improving mitochondrial function in the hearts of a 
mouse model of HF (Figure 1; Table).176 These findings 
suggest that exercise improves cardiovascular health in 
HF by altering cellular metabolism via Metrnl.

Exercise also reduces reactive oxygen species and 
inflammation though the mechanisms remain unclear.247 
Elevated Metrnl levels are associated with a lower risk of 
CAD and are negatively correlated with LDL and inflamma-
tory cytokines, key mediators of CAD.169,248 In both a patient 
study and a mouse model of CAD, exercise increased 
Metrnl levels, which were associated with reduced LDL and 
inflammatory cytokines.170 In addition, exercise-induced 
Metrnl elevation suppressed oxidative stress and inhib-
ited the NLRP3 (nucleotide-binding domain, leucine-rich 
repeat, and pyrin domain-containing protein 3) inflamma-
some in obese mice. These findings suggest that exercise-
induced Metrnl may improve CAD risk by regulating lipid 
metabolism and reducing inflammation (Figure 1; Table).

Metrnl plays a critical role in regulating adipose tissue 
function and systemic energy balance. Increased circu-
lating Metrnl enhanced whole-body energy expenditure, 
promoted the browning of white adipose tissue, and 
improved glucose tolerance in obese and diabetic mice.25 
Metrnl does not act directly on adipocytes; instead, it exerts 
its prothermogenic effects through immune cell modula-
tion. Metrnl recruits eosinophils to adipose, which release 
IL-4 and IL-13, driving the alternative activation of adi-
pose tissue macrophages. These alternatively activated 
macrophages are key mediators of cold-induced thermo-
genesis (Figure 1; Table)153 and exert anti-inflammatory  
effects, reducing adipose inflammation and contributing 
to metabolic health. Through immune regulation, Metrnl 
establishes a unique mechanism of thermogenic activa-
tion and inflammation modulation in adipose tissue.

Mitochondrial Open Reading Frame of the 12S 
rRNA Type-c
MOTS-c (mitochondrial open reading frame of the 12S 
rRNA type-c) is a mitochondria-derived peptide that is 
increased with exercise in humans, expressed in the 
skeletal muscle,249 and regulates metabolism.250,251 
MOTS-c targets the folate cycle and increases levels of 
5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside,
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M leading to the activation of AMPK.251 Expression of 
MOTS-c is age-dependent, circulating levels are nega-
tively correlated with HbA1c levels in patients with type 
2 diabetes,252 and expression of MOTS-c is lower in both 
skeletal muscle and serum of patients with chronic kid-
ney disease.248 Genetic variation in MOTS-c has been 
associated with human longevity,253 and when given to 
mice, it reverses age-dependent insulin resistance, sug-
gesting that it may have therapeutic potential in meta-
bolic and aging-associated diseases.251

β-Aminosobutyric Acid
β-Aminoisobutyric acid (BAIBA) is a small molecule of 
myokine that has been shown to promote adipose tis-
sue beiging and fatty acid metabolism in the liver through 
regulation of PPARα (peroxisome proliferator-activated 
receptor alpha) (Figure 1; Table).26 BAIBA has also 
been implicated in bone health through the prevention 
of osteocyte apoptosis.254 BAIBA was identified as a 
potential myokine through liquid chromatography-mass 
spectrometry metabolic profiling of human myocytes 
overexpressing PGC1α. When BAIBA was added to 
the drinking water of mice, it significantly boosted the 
expression of beiging-related genes, such as Ucp1 and 
Cidea, in subcutaneous white adipose tissue.3 Similarly, 
when primary stromal-vascular fraction cells isolated 
from white adipose tissue were incubated with BAIBA, 
Ucp1 and Cidea expression was increased. Human plu-
ripotent stem cells exposed to BAIBA during differentia-
tion into mature white adipocytes also showed elevated 
expression of beiging markers. Exercise significantly 
elevated BAIBA levels in both mice and humans. In mice, 
3 weeks of voluntary wheel-cage running led to a nota-
ble increase in circulating BAIBA, while, in humans, 20 
weeks of supervised submaximal aerobic exercise train-
ing255 in 80 subjects resulted in a significant rise in cir-
culating BAIBA.256 These findings suggest that exercise 
significantly boosts circulating BAIBA in both mice and 
humans, and in rodents and isolated human cells, BAIBA 
may play a role in promoting the beiging of subcutaneous 
white adipose tissue. However, the direct involvement of 
BAIBA in exercise-induced beiging in human subcutane-
ous white adipose tissue remains to be fully established.

Musclin
Musclin, encoded by the Ostn gene, is secreted by skel-
etal muscle in response to exercise. During exercise, its 
production is stimulated by calcium-induced activation of 
AKT1, which removes transcriptional inhibition of the Ostn 
by FOXO1.257 Musclin has been shown to inhibit prolifera-
tion of fibro-adipogenic progenitor cells in skeletal muscle 
through upregulation of filamin A interacting protein 1 like, 
which promotes fibro-adipogenic progenitor apoptosis, 
thereby reducing fibrosis and abnormal fatty infiltration.258 

In mice, when Ostn is disrupted and musclin secretion is 
eliminated, exercise tolerance is diminished; administra-
tion of recombinant musclin rescues this phenotype. The 
reduction in exercise capacity is associated with lower 
plasma levels of atrial natriuretic peptide and diminished 
levels of cyclic guanosine monophosphate and PGC1α 
in skeletal muscles of knockout animals following exer-
cise.257 Secreted musclin similarly promotes mitochondrial 
biogenesis in cardiac muscle (Figure 1; Table).95 However, 
running capacity remains the same in mice with muscle-
specific knockdown of musclin.154 Paradoxically, obesity is 
associated with higher circulating levels of musclin. Over-
expression of musclin reduces thermogenesis in beige fat 
(Figure 1; Table), while inactivation has the opposite effect 
and improves glucose tolerance and insulin sensitivity.154 
Importantly, transient activation of musclin shows many 
cross-tissue metabolic benefits, while continuous activa-
tion appears detrimental to metabolic health.

In cardiac muscle, musclin plays a critical role in pro-
moting mitochondrial biogenesis in response to exercise 
(Figure 1; Table). Disrupting musclin signaling in mice 
eliminates exercise’s ability to protect against cardiac 
ischemic injury. The proposed mechanism involves a 
musclin-induced increase in cyclic guanosine mono-
phosphate signaling, leading to increased protein kinase 
G and CREB activity that together stimulate the expres-
sion of PGC1α. Musclin also elevates cardiac C-type 
natriuretic peptide levels, which improves cardiomyo-
cyte contractile function.259 Targeted infusion of musclin 
reproduced the cardioprotective benefits of exercise 
in both sedentary wild-type and Ostn-knockout mice.95 
Similarly, skeletal muscle–specific knockout mice were 
more sensitive to pressure overload, and Ostn expression 
is lower in the skeletal muscle of patients with HF.259

Apelin
Apelin is an exercise-induced myokine260 that is also 
released from adipose tissue in response to insulin 
signaling.261 Apelin affects several organs, including 
the heart, brown adipose tissue, brainstem, and kid-
neys.261,262,263,264,265 It functions by binding to its G-protein 
coupled receptor, which triggers intracellular signaling 
that activates AMPK, promoting mitochondrial biogen-
esis and improving glucose uptake in skeletal muscle.266

In obese, insulin-resistant mice, apelin treatment 
improves insulin sensitivity.261 In addition, apelin stimulates 
angiogenesis by activating endothelial cells and promot-
ing glycolytic activity, such as through the activation of 
c-MYC,172 and it helps lower arterial blood pressure, poten-
tially via phosphorylation of eNOS (Figure 1; Table).173 In 
apelin knockout mice, high-intensity interval training failed 
to induce insulin-like growth factor 1 and resulted in smaller 
type I muscle fibers compared with wild-type mice.181

In the heart, apelin induces physiological cardiac 
hypertrophy, enhances mitochondrial gene expression, 



Shero et al

Circulation Research. 2025;136:1407–1432. DOI: 10.1161/CIRCRESAHA.124.325614� May 23, 2025    1417

Muscle and Exercise in Interorgan Crosstalk
INTERORGAN CROSSTALK IN HEART 
FAILURE AND CARDIOM

ETABOLISM

and increases ATP production (Figure 1; Table).181 It also 
has cardioprotective effects, especially in mice prone to 
atrial fibrillation.263 For instance, apelin knockout mice 
developed eccentric rather than concentric left ven-
tricular hypertrophy in response to high-intensity inter-
val training,181 highlighting the role of exercise-induced 
apelin expression in promoting normal cardiac remodel-
ing. Apelin has also been linked to the transgenerational 
effects of exercise on metabolic health.265

Brain Natriuretic Peptide
BNP is primarily secreted by the heart in response to 
increased cardiac wall stress but is also produced by 
skeletal muscles. Supraphysiological BNP levels in mice 
protect against high-fat diet-induced obesity and insu-
lin resistance and stimulate mitochondrial biogenesis 
in skeletal muscle through upregulation of PGC1α and 
PPARδ.267 BNP also has immunomodulatory functions 
though the exercise-induced benefits from this modula-
tion are unknown.268

IL-6
IL-6, an inflammatory cytokine, is released from myo-
cytes during exercise,24 increasing in concentration with 
the length of the physical activity.269 IL-6 is produced 
during the contraction of skeletal muscle in a TNFα 
(tumor necrosis factor alpha)–independent manner, 
uncoupling IL-6 production from the traditional inflam-
matory cascade.270 IL-6 secretion has been reported ex 
vivo in cultured human myotubes271 and activates AMPK, 
enhancing energy consumption.24 IL-6 regulates skeletal 
muscle fatty acid metabolism and glucose uptake272,273 
and promotes whole-body fatty acid oxidation.274 IL-6 
release is enhanced when glycogen levels are low, sug-
gesting that IL-6 acts as an energy sensor in skeletal 
muscle rather than a mediator of inflammation.275,190,276,277

IL-6 signaling is associated with adipocyte inflam-
mation in obesity,278,274 but its effects on adipose tissue 
can vary in different contexts. In obesity, IL-6 plays a 
role in metabolic programming, particularly in skeletal 
muscle, and may have similar effects in white adipose 
tissue. Global IL-6 knockout mice show higher body 
weight due to increased subcutaneous white adipose 
mass,279,280 suggesting IL-6 regulates adipose tissue 
maintenance and metabolism. IL-6 enhances lipoly-
sis in 3T3-L1 cells164 and activates AMPK (Figure 1; 
Table).281 In IL-6 knockout mice, exercise increases 
PPARγ expression in subcutaneous white adipose,279 
indicating that IL-6 may influence transcription factors 
involved in adipogenesis and adipocyte maintenance. 
However, IL-6 knockout does not alter AMPK activity in 
subcutaneous white adipose tissue279 though it impairs 
exercise-induced AMPK activation in adipocytes,281 
suggesting that IL-6 is required for this process. IL-6 

also promotes Ucp1 expression and thermogenesis in 
subcutaneous white adipose tissue, contributing to the 
beiging effect of exercise.279 In addition, IL-6 damp-
ens the exercise-induced induction of gluconeogenic 
enzymes such as pyruvate dehydrogenase kinase 4 in 
white adipose,165 indicating that IL-6 impairs lipogen-
esis during exercise.

The role of IL-6 in glucose metabolism is less clear. 
Some studies show that IL-6 treatment enhances glu-
cose uptake in adipocytes,272,282 while others find no 
effect.283,284 In humans, IL-6 infusion increases glucose 
uptake in subcutaneous white adipose tissue285 but does 
not promote lipolysis or activate IL-6 signaling in adipose 
tissue from healthy individuals.273 These findings under-
score the complex, context-dependent role of IL-6 in 
regulating adipose tissue, balancing lipid metabolism, glu-
cose handling, and adipogenesis in response to exercise.

IL-8
Expression of the chemokine IL-8 is increased in skeletal 
muscle in response to endurance and resistance exer-
cise in humans286,287 and is predominantly detected after 
extended physical exertion such as marathon running.288 
Transcription is associated with a reduction in glycogen 
levels289 and results in antiapoptotic and proangiogenic 
signaling through CXCR2 receptor interactions. In endo-
thelial cells, for example, IL-8 increases protein levels of the 
antiapoptotic factor B-cell lymphoma 2 and matrix metal-
loproteinases 2 and 9.290 While IL-8 is induced to a simi-
lar extent in young and old individuals, training attenuates 
the acute IL-8 response in older individuals,287 potentially 
reducing the acute, proinflammatory effects of exercise.

Lactate
Lactate is a product of glycolysis under aerobic condi-
tions.136 Muscle glucose uptake is increased with exer-
cise,291 increasing lactate production and secretion.136 
Elevated generation of lactate in muscles during exertion 
regenerates NAD levels, increasing the glycolytic capac-
ity of the cell. Lactate can also modulate skeletal muscle 
mitochondrial expansion and metabolism. Lactate stimu-
lates mitochondrial biogenesis upstream of PGC1α.292 
Moreover, glycolysis and the production of lactate modu-
late muscle fatty acid oxidation and uptake. Glycolysis 
increases the production of the metabolite malonyl-
CoA, which inhibits CPT1, and lactate downregulates 
the expression of CPT2,136 both of which are important 
enzymes in fatty acid oxidation.

Outside of the skeletal muscle itself, skeletal muscle 
lactate production also regulates cardiovascular and 
pulmonary function during exercise (Figure 1; Table). 
Lactate promotes angiogenesis through stimulation of 
VEGF,135 provides metabolic substrate for cardiac func-
tion,136 and upregulates breathing.137 Secreted lactate 
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M can also be converted into N-lactoyl-phenylalanine by 
various immune and endothelial cells, and it increases 
substantially in blood in response to one bout of exercise. 
Treatment with N-lactoyl-phenylalanine has been dem-
onstrated to improve glucose metabolism and decrease 
adiposity in mice.293

Skeletal muscle–derived lactate plays a multifac-
eted role in regulating adipose tissue (Figure 1; Table). 
High-intensity physical activity results in lactatemia 
and a corresponding drastic decrease in plasma-free 
fatty acid concentrations. This is due to the activation 
of the HCAR1 (hydroxycarboxylic acid receptor 1) on 
adipocytes by lactate, inhibiting lipolysis in both rodents 
and humans.136 Beyond its antilipolytic effects, lactate 
promotes thermogenic adaptations in adipose tissue. 
Lactate induces the browning of white adipose, con-
tributing to increased thermogenic capacity. This effect 
is mediated by proton-linked MCTs (monocarboxylate 
transporters) present in adipocytes, which facilitate 
lactate transport into cells.294 Lactate increases the 
expression of thermogenic genes, including Ucp1, 
through pathways dependent on PPARγ signaling and 
intracellular redox modifications.295 In brown adipose 
tissue, Mct1 expression is significantly elevated after 
exercise, aligning with physiological stimuli of brown-
ing and enhancing lactate import for metabolic adap-
tation.296 Together, these processes highlight lactate’s 

dual role as both a regulator of lipid mobilization and 
a potent inducer of thermogenic programming in adi-
pose tissue.

AGING AND LONGEVITY
Increased life expectancy has resulted in older adults 
becoming the fastest-growing subpopulation in the 
United States. Aging is the leading driver of disease and 
mortality,297 and caring for the aging population presents 
a significant burden on the health care system.298 Thus, 
therapeutic strategies prioritizing the prevention of age-
associated decreases in mobility and metabolic decline 
are of utmost importance. Aging is associated with 
changes to many metabolic tissues, including the atrophy 
of skeletal muscle,299 increase in visceral white adipose 
tissue depots,300,301,302 and a decrease in the function of 
brown adipose tissue (Figure 2; Table).303 Changes in 
these depots are both consequences of and drivers for 
age-associated metabolic dysfunction, emphasizing the 
importance of how aging disrupts appropriate function in 
multiple tissues.

Aging is a process of decline in biological function 
that is mostly irreversible. The causes of decline are mul-
tifactorial and driven by the accumulation of stress and 
damage over an organism’s lifetime. Aging increases the 
risk of many diseases,304 driven by decreased physical 

Figure 2. Aging and obesity both 
induce changes in white adipose 
accumulation, brown adipose 
function, and inflammation that can 
impair metabolism and promote 
disease pathogenesis.
Obesity promotes changes in muscle lipid 
metabolism, inflammation, and myokine 
secretion, and both states increase skeletal 
muscle adipose content, impair muscle 
regeneration, and decrease mitochondrial 
function. Despite the similarities, less is 
known about how aging alters myokine 
release and whether the effects differ 
between sexes. Illustration credit: Sceyence 
Studios.
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activity,111 increased inflammation,305,111 muscle atro-
phy, and increased central adiposity. Increased adipos-
ity caused by energy imbalances, driving metabolic 
inflexibility and implicating mitochondrial dysfunction in 
age-associated disease progression.306,307 Significantly, 
caloric restriction is one of the only interventions to 
extend lifespan, implicating systemic energy balance and 
metabolism in longevity.308,309

EXERCISE AND AGING
There is an age-dependent decline in maximal heart 
rate, reducing the ability to increase cardiac output in 
response to exercise. The increase in stroke volume is 
also shifted from enhanced contractility to increased 
end-diastolic volumes in older individuals. This is due to 
diminished sensitivity to β-adrenergic signaling, impaired 
calcium handling and mitochondrial dysfunction, all of 
which can be improved with exercise training.310 Exer-
cise, thus, demonstrates promise for prevention and 
treatment of age-associated decline in cardiac function 
although further research is needed to establish optimal 
dose and intensity.

Advanced age is associated with structural altera-
tions that impair muscle function (Figure 2; Table). 
These include increases in muscle adipose content and 
decreases in neuromuscular function and vasculariza-
tion.311,12,312,313 Aging skeletal muscle also demonstrates 
a decline in satellite cell number and function314,315,316 
that contributes to delayed317 or impaired skeletal muscle 
regeneration after an injury.318

The dysfunction of proteostasis and organelle qual-
ity control systems plays a major role in bioenergetic 
defects, fatigue, and reduced force transmission in 
skeletal muscle as with age. A sedentary lifestyle and 
reduced physical activity contribute to and accelerate 
the onset and progression of sarcopenia. This leads to 
a decrease in mechanotransduction signaling, which 
affects protein turnover, calcium homeostasis, and mito-
chondrial function. The impact of reduced physical activ-
ity on sarcopenia becomes especially prominent during 
periods of immobilization, hospitalization, or bed rest in 
older individuals.319

Interestingly, inactivity suppresses mitochondrial 
fusion protein expression before any changes in mito-
chondrial mass.320 However, higher expression of these 
proteins correlates with muscle force and bioenergetics 
in the elderly.321,322 Inhibition of the mitochondrial fusion 
protein OPA1 (optic atrophy 1) in adult mice leads to 
premature aging features, including increased oxidative 
stress, systemic inflammation, sarcopenia, and senes-
cence markers, ultimately causing death.323,322 Similarly, 
deletion of the fusion protein MFN (mitofusin)-2 in mus-
cle causes sarcopenia,324 and double deletion of MFN1 
and MFN2 results in severe muscle loss and mitochon-
drial DNA depletion.325 On the other hand, deleting the 

fission protein, dynamin-related protein 1, causes myop-
athy, with myofiber degeneration due to imbalanced 
calcium homeostasis and mitochondrial-endoplasmic 
reticulum tethering.326

Gain-of-function experiments further demonstrate 
the effects of mitochondrial shaping proteins on muscle 
mass. Overexpression of OPA1 counters muscle loss,327 
while upregulation of fission machinery promotes muscle 
wasting.328,329 Mitochondrial dynamics, when altered, pro-
foundly affect mitochondrial function and the onset of 
sarcopenia, with physical activity playing a key role. Mito-
chondrial dynamics are interconnected with mitophagy, 
mitochondrial proteostasis, and the broader mitochon-
drial quality control system, which adapts mitochondrial 
bioenergetics to muscle needs.

Inhibition of autophagy, through ATG7 (autophagy-
related 7) deletion or TSC2 (tuberous sclerosis complex 
2) overexpression in muscle, mimics the pathological
features of age-related sarcopenia, such as increased
oxidative stress, dysfunctional mitochondria accumula-
tion, myofiber denervation, atrophy, weakness, and pre-
mature death.330,331 Reactivating autophagy in aged mice,
either by expressing ATG7 in skeletal muscle or treating
with urolithin A (a compound that promotes mitophagy),
helps restore muscle mass.330,332 Overexpression of ses-
trins, stress-responsive proteins that decline with age,
also promotes autophagy and reduces muscle wasting
and weakness in older mice.333 Importantly, failure of
autophagy is linked to mitochondrial dysfunction, oxida-
tion of contractile proteins, and impaired force genera-
tion.330 Similarly, urolithin A has been shown to improve
muscle strength and performance in middle-aged indi-
viduals by restoring genes and proteins involved in mito-
chondrial metabolism, mass, and PTEN (phosphatase
and TENsin homolog)-induced putative kinase 1/Parkin- 
mediated mitophagy.334 Importantly, urolithin A dem-
onstrates similar effects in cardiac muscle, and
supplementation in humans reduces ceramide levels in
plasma, which is predictive of CVD risk.335

Mitochondrial dysfunction and impaired mitophagy 
contribute to sarcopenia through several mechanisms 
(Figure 2; Table), including reduced mitochondrial ADP 
sensitivity,336 increased mitochondrial reactive oxygen 
species production and DNA damage,337 activation of 
an inflammatory response,323,322 decreased cytosolic 
calcium due to sequestration,326 and metabolic crisis.338 
While autophagy is clearly important in sarcopenia, the 
role of the ubiquitin-proteasome system in this process 
remains less well understood.

Epigenetic clocks have emerged as a tool to inves-
tigate tissue aging and the impact of different antiag-
ing therapies.339 Endurance exercise training alters the 
human skeletal muscle genome,143 and a skeletal mus-
cle–specific epigenetic clock340 has been used to demon-
strate that exercise training can counteract age-related 
epigenetic changes in skeletal muscle. A comprehensive 
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ples demonstrated that higher aerobic fitness correlated 
with younger epigenetic and transcriptomic profiles, 
and exercise training can shift these patterns toward a 
younger state. Conversely, muscle disuse accelerated 
molecular aging.144

AGING AND SARCOPENIA
Muscle function and metabolism are closely linked to 
health span and longevity.12,35 Muscle mass typically 
begins to decline in the third or fourth decade of life, 
with the rate accelerating over time, leading to significant 
loss in later years.341,342 This decline is driven by changes 
in muscle structure, function, and regeneration, with 
strength loss often outpacing size reduction, indicating 
a decline in muscle quality (Figure 2; Table).343,342,312,344 
When muscle aging results in excessive force loss, 
fatigue, and exercise intolerance, it is considered sarco-
penia, a disease that predicts frailty, poor quality of life, 
and increased morbidity and mortality.345,346

Sarcopenia affects 15% of individuals at the age of 
65 years and up to 50% by the age of 80 years.347,319 
While the mechanisms behind sarcopenia are not fully 
understood, genetic factors and lifestyle-related epigen-
etic changes play a significant role. Parabiosis experi-
ments in mice suggest that serum factors from young 
blood can influence muscle cell senescence, indicating 
that hormonal, metabolic, and gene expression changes 
affect key determinants of muscle function, including 
calcium ions, ATP production, and contractile protein 
quality and assembly.348

In addition to reduced strength and mobility, sarcope-
nia also disrupts whole-body metabolism, contributing 
to impaired glycemic regulation and insulin resistance, 
which are common with age.349,350,351

AGING ALTERS MYOKINES
Exercise continues to be an effective intervention for 
counteracting the effects of aging, delaying the develop-
ment of disability and dependence in older adults.352,2,353 
The beneficial effects of exercise are, in part, medi-
ated by secreted factors, including myokines. There 
are well-established, sex-based differences in many 
parameters in response to exercise354,355,356,357,358,359,360 
including in myokine release.361,362,363,364,365 However, 
how aging alters myokine release, and the significance 
of age-associated disease, remains unclear (Figure 2; 
Table).366,367 In young subjects, increased myostatin lev-
els are associated with decreased muscle mass. How-
ever, in elderly men, low serum levels of myostatin are 
associated with lowered skeletal muscle mass but not 
in older women.367 In response to endurance training, 
older individuals demonstrate a greater skeletal muscle 

induction of interferon-induced inflammatory genes,145 
while single-cell transcriptional profiling showed exercise 
reversed aging-induced inflammatory changes in many 
skeletal muscle cell types.368 In addition, little work has 
been done, which examines changes in the myokine pro-
file in postmenopausal women. On average, women live 
longer than men but experience higher rates of disability 
and have an increased risk of age-related comorbidities 
that cannot be attributed solely to life span.369,370

OBESITY
Obesity is a disease characterized by increased patho-
logical adiposity and ectopic lipid accumulation and is 
considered an accelerated state of aging.371,372 There is 
increasing evidence suggesting that the increase in and 
the redistribution of adiposity is the driver of insulin resis-
tance with age, rather than age itself.11,373,374 Accumula-
tion of visceral white adipose tissue is associated with 
the development of insulin resistance and cardiometa-
bolic disease,375 while subcutaneous adiposity is thought 
to be more metabolically protective.376 Increased visceral 
white adipose tissue promotes dyslipidemia and inflam-
mation in the liver, skeletal, and cardiac muscle.377,378 
Moreover, white adipose tissue accumulation leads to a 
decrease in brown adipose tissue, which also occurs with 
increasing age (Figure 2; Table).379,380

Visceral adiposity also has detrimental effects on the 
heart, primarily through higher circulating blood volume 
and increased levels of proinflammatory factors, resulting 
in elevated stroke volume, cardiac wall stress and injury, 
and left ventricular hypertrophy.381 Obesity is, therefore, 
a major risk factor for developing HF, with each 1-unit 
increase in body mass index raising the risk of HF by 
5% in men and 7% in women,382 and obesity accounts 
for ≈20% of atrial fibrillation cases. Accumulation of epi-
cardial fact is of particular importance in the pathogenic-
ity of arrhythmias. Similar body mass indexes may have 
different CVD risk profiles depending on fat distribution 
and fitness levels, demonstrating the complex relation-
ship across cardiac, skeletal, and adipose tissues.

OBESITY AND SKELETAL MUSCLE 
FUNCTION
Unsurprisingly, energy imbalance worsens skeletal mus-
cle dysfunction in aging. Increased adiposity in older sub-
jects worsened skeletal muscle function independent of 
age-related decreases in muscle mass, referred to as 
sarcopenic obesity.341 Aging and obesity are character-
ized by chronic inflammation383,384,385; therefore elderly 
individuals with obesity have worsened age-related 
decreases in muscle strength and mass.350 These find-
ings are replicated in mouse models, in which both ob/
ob and db/db mice have significantly less muscle mass 
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relative to body mass compared with controls.386,387,388 
Both in vitro and in vivo lipolysis rates are higher in the 
visceral white adipose leading to increased circulat-
ing lipid levels,389 and these differences are more pro-
nounced in centralized obesity.390 Increased circulating 
free fatty acids and adipose-mediated inflammation 
suppress skeletal muscle fatty acid oxidation and hin-
der insulin signaling, further impairing systemic glucose 
homeostasis (Figure 2; Table).391,392,393

OBESITY ALTERS RELEASE OF 
MYOKINES
Obesity significantly disrupts the production and regu-
lation of myokines, which contributes to metabolic 
dysfunction. Physical inactivity, a major contributor to 
obesity, leads to the dysregulation of myokine produc-
tion, impacting various tissues and metabolic pathways 
(Figure 2; Table). The changes in myokine levels associ-
ated with obesity are complex and often contradictory. 
For instance, circulating irisin levels are typically lower 
in individuals with obesity and those with type 2 diabe-
tes,394,395 but, paradoxically, some studies report elevated 
irisin under these conditions.396,215 Exogenous irisin treat-
ment in obese mice has improved glucose tolerance and 
mitochondrial gene expression,22 suggesting that ele-
vated irisin levels may, in some cases, reflect compensa-
tory mechanisms or irisin resistance.

Similarly, myostatin, a negative regulator of muscle 
growth, is elevated in skeletal muscle and serum in obe-
sity, contributing to metabolic dysfunction.397,398 On the 
other hand, decreased levels of Metrnl, a myokine linked 
to cardiac health, are associated with impaired cardiac 
GLUT4 expression and maladaptive cardiac function in 
hypertrophic and failing hearts246,399,400

In addition, BAIBA, a myokine involved in metabolism, 
enhances fatty acid oxidation and reduces fat synthe-
sis, showing potential for improving obesity outcomes in 
mouse models.401 These findings highlight the complex 
and context-dependent roles of myokines in regulat-
ing metabolism, illustrating their significant impact on 
the pathophysiology of obesity and related metabolic 
disorders.

BARRIERS TO EXERCISE ADHERENCE
Exercise is a cornerstone of health promotion and dis-
ease prevention, but, despite its well-documented ben-
efits, adherence to regular physical activity remains a 
persistent challenge. Barriers to exercise are multifac-
eted, ranging from personal and psychological to social 
and systemic influences, highlighting the intricate rela-
tionship between these obstacles and overall health.

Exercise is a widely recommended therapeutic inter-
vention to improve health at all stages of life.402 Despite 

extensive efforts to promote this message,403,404 sed-
entary lifestyles remain a concern405,406,407 and contrib-
ute to poor health outcomes.14,408 Poor adherence to 
an exercise regimen is often due to a variety of barri-
ers, encompassing personal, social, and systemic fac-
tors. Common obstacles include lack of perceived time, 
especially among patients with aging-related condi-
tions,409,410,411 and limited social support, such as disin-
terest from friends and family.409,412 Motivation, energy, 
and access to resources are often hindered by finan-
cial or logistical challenges.406 Feelings of discomfort, 
embarrassment, or intimidation in gym settings, par-
ticularly among individuals with obesity, further impede 
participation.410,413,414 Health issues including chronic 
diseases, pain, and fatigue, as well as treatments for 
cancer or autoimmune disease, also reduce adher-
ence.415,416,417,418 Mental health challenges, including 
depression, are linked to higher dropout rates, espe-
cially in older adults.419,420,421,422 Socioeconomic con-
straints, such as inflexible work schedules and cultural 
norms, also impact exercise adherence.420,421 423, 424 
Collectively, these barriers underscore the complex 
interplay of factors influencing exercise behaviors. 
Therefore, addressing factors that contribute to poor 
exercise adherence is also an essential part of promot-
ing overall global health.

Emerging therapeutic aids may provide additional 
support for individuals facing exercise adherence chal-
lenges. GLP1 (glucagon-like peptide-1) is an exerkine 
secreted from the gut.425 In humans, higher cardiore-
spiratory fitness is associated with lower fasting levels 
of GLP1 but a higher induction in response to glucose 
intake.426 Prescription of GLP1RA (GLP1 receptor ago-
nist) has increased dramatically in recent years due to 
their effective induction of weight loss. One of the side 
effects of GLP1RAs is loss of skeletal muscle mass,427 
and exercise could, therefore, be an effective co-adjuvant 
therapy for obesity by counteracting muscle loss and fur-
ther stimulating metabolic health.

SUMMARY AND FUTURE PERSPECTIVES
The significant evidence for the health benefits of 
exercise highlights its critical role in preventing and 
managing chronic conditions, enhancing cardiovascu-
lar and metabolic health, and improving overall quality 
of life, particularly as populations age. With a deeper 
understanding of the intricate mechanisms governing 
skeletal muscle adaptations and the role of exercise-
induced signaling molecules, we have an opportunity 
to develop targeted therapeutic strategies that harness 
these insights to combat CVD and obesity and pro-
mote healthy aging. Future research will be essential in 
translating these findings into precision exercise inter-
ventions that further improve health outcomes across 
diverse populations.
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