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Abstract: Background/Objectives: The rising global prevalence of metabolic diseases (e.g.,
obesity, type 2 diabetes mellitus) underscores the need for effective interventions. Omega-3
polyunsaturated fatty acids (PUFAs) exhibit therapeutic potential, yet their molecular
mechanisms remain unclear. This systematic review synthesizes a decade (2014-2024) of
omics research to elucidate Omega-3 PUFA mechanisms in metabolic diseases and identify
future directions. Methods: A PRISMA-guided search of the Web of Science identified
studies on Omega-3 PUFAs, metabolic diseases, and omics. After excluding reviews,
non-English articles, and irrelevant studies, 72 articles were analyzed (16 multi-omics,
17 lipidomics, 10 transcriptomics/metabolomics/microbiomics each, and 6 proteomics).
Results: Omics studies demonstrated that Omega-3 PUFAs, particularly EPA and DHA,
improve metabolic health through interconnected mechanisms. They regulate epigenetic
processes, including DNA methylation and miRNA expression, influencing genes linked to
inflammation and insulin sensitivity. Omega-3 PUFAs reduce oxidative stress by mitigating
protein carbonylation and enhancing antioxidant defenses. Gut microbiota modulation is
evident through increased beneficial taxa (e.g., Bacteroidetes, Akkermansia) and reduced
pro-inflammatory species, correlating with improved metabolic parameters. Mitochondrial
function is enhanced via upregulated fatty acid oxidation and TCA cycle activity, while anti-
inflammatory effects arise from NF-«kB pathway suppression and macrophage polarization
toward an M2 phenotype. Challenges include interindividual variability in responses and
a limited understanding of dynamic metabolic interactions. Conclusions: Omega-3 PUFAs
target multiple pathways to improve metabolic health. Future research should prioritize
chemoproteomics for direct target identification, multi-omics integration, and personalized
strategies combining Omega-3 with therapies like calorie restriction.

Keywords: omega-3 polyunsaturated fatty acids; metabolic diseases; omics

1. Introduction

The escalating burden of non-communicable diseases (NCDs) worldwide has emerged
as a significant public health challenge. The annual healthcare cost per patient is projected

Nutrients 2025, 17, 1836

https://doi.org/10.3390/nul7111836


https://doi.org/10.3390/nu17111836
https://doi.org/10.3390/nu17111836
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0003-2436-4602
https://orcid.org/0000-0002-0359-2481
https://orcid.org/0000-0001-8453-4939
https://orcid.org/0009-0007-5655-3287
https://doi.org/10.3390/nu17111836
https://www.mdpi.com/article/10.3390/nu17111836?type=check_update&version=2

Nutrients 2025, 17, 1836 2 of 27

to exceed USD 5000 in low- and middle-income countries [1-3]. This substantial burden is
mainly attributable to the increasing prevalence of metabolic diseases. The broad category
of “metabolic diseases” includes hypertension, type 2 diabetes mellitus (T2DM), hyper-
lipidemia, obesity, and non-alcoholic fatty liver disease (NAFLD) [4]. These conditions
frequently coexist, share common etiological factors, and collectively increase the risk of
disability, cancer development, and premature mortality [5,6]. Utilizing the Global Burden
of Disease (GBD) 2021 data [1], we employed the Disability-Adjusted Life Years (DALYs)
metric and mortality data to characterize the health burden of five common metabolic
diseases: T2DM, hypertension, obesity, hypercholesterolemia, and Metabolic Dysfunction-
Associated Steatotic Liver Disease (MASLD) (Figure 1). The results indicate that the burden
of these diseases has increased by 1.6 to 3 times over the past three decades. The geospatial
analysis reveals that the regions with the highest absolute burden remain concentrated in
the world’s most populous countries, particularly India, China, and the USA [1].

T2DM DALYs number (1990-2021) T2DM Death number (1990-2021)

India 3,488,168.03 @ @ 13,013,466.27 India 85,586.24 @ @ 320,277.89
China 3,960,056.97 @ ® 11,465,017.87 China 63 @ @® 17451538

USA 1,696,588.69 @ @ 4,794,607.4 USA @® 70,711.35

Mexico ). @ 3,065909.8 Mexico > @ @ 82,750.38

Indonesia 717,487.52 @ @ 2,607,500.2 Indonesia 17,88991 @ @ 60,336.09

MASLD DALYs number (1990-2021) MASLD Death number (1990-2021)

India 167957 @ @ 439,775.94 India 5,096.43 @ @ 15321.81

China 25339572 @ ® 41447124 China 835131 @ @ 16,748.37
Mexico 8222644 @ @ 270,819.11 Mexico 3,086.72 @ @ 9,302.46

USA 87,668.97 @ @ 207,249.62 USA 3,267.16 @ ® 8319.63

Russia 40,678.27 @ @ 199,874.09 Russia 1,446.66 @ @ 6,264.81

Obesity DALYs number (1990-2021) Obesity Death number (1990-2021)

China 55.76 @ ® 20,753,991.5 China 37,507.78 @ @ 572,579.87
India @ 12,539,771.84 India 58,639.14 @ @ 326,704.93

USA 5.44 @ ® 11,638,578.47 USA 10.09 @ ® 334710.19

Russia @ 5014,723.2 Russia 107,611.18 ® 176,393.78

Brazil 1,782,728.32 @ 4,723933.51 Brazil 47.409.38 @ @ 130,784.59

Hypercholesterolemia DALYs number (1990-2021) Hypercholesterolemia Death number (1990-2021)

China 7,905,011.57 @ ® 18,407,758.53 China 28293507 @ @ 832,884.39

India 6,813,72221 @ ® 16,085,215.76 India 210,151.86 @ @ 555,841.48

Russia 5,365,871.43 @ @ 6,067,425.75 Russia 255,683.92 @ 263,993.57

USA 344963273 @ @ 4,971,098.48 USA 161,836.65 @ @ 239,686.32

Indonesia 1,226,738.5 @ @ 3424,939.45 Indonesia 113,820.04 @ @ 1,226,738.5
Hypertension DALYS number (1990-2021) Hypertension Death number (1990-2021)

China 27,723996.31 @ @ 55,685409.75 China 1,219,088.76 @ @ 2,901,716.69
India 14,198,9022 @ @ 34,535,057.18 India 524,478.62 @ @ 1,439,477.58

Indonesia 51089303 @ ® 13,356,864.6 Indonesia 190,850 46 @ ® 530,699.72

Russia 9,683,684.08 @® 10,741,694.81 Russia 513,141.39 @ 522,477.38

USA 8,313,003.97 @ 8,460,911.6 USA 462,447.15 @ 467,564.7¢€

Figure 1. Trends in the five countries with the highest absolute burden of five metabolic diseases,
1990-2021 (Based on DALYs and mortality data).

Dietary interventions are increasingly gaining attention and have become crucial in
preventing and managing metabolic diseases [7-9]. Omega-3 polyunsaturated fatty acids
(PUFAS) are particularly important due to their numerous health benefits. Substantial
evidence indicates that Omega-3 PUFAs, specifically eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA), exert beneficial effects on multiple metabolic parameters,
including triglyceride reduction, insulin sensitivity improvement, and blood pressure
regulation [10-12]. As essential fatty acids that cannot be endogenously synthesized, the
parent Omega-3 fatty acid, ALA, and the parent Omega-6 fatty acid, LA, must be obtained
through dietary sources. ALA is primarily found in plant sources such as chia seeds,
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flaxseeds, and walnuts, while EPA and DHA are predominantly obtained from marine
sources, including salmon, mackerel, and sardines (Figure 2a). The limited conversion
efficiency of plant-derived ALA to EPA and DHA necessitates direct consumption of
marine sources for optimal health benefits [13] (Figure 2b). The global Omega-3 market
growth, driven by health demands, has accelerated sustainable alternatives such as algal
oil (Schizochytrium sp.) [14] and genetically modified plant oils (e.g., EPA/DHA-enriched
canola oil) [15-18].

(a) (b)
Polysaturated
fatty acids
(PUFAs)

\ Omega-3 PUFAs Omega-6 PUFAs
Omega-6 Omega-3
PUFAs PUFAs a-Linolenic acid (ALA), C18:3n-3 Linolenic acid (LA), C18:2n-6
) .
L A6 Desaturation L
Linoleic Arachidonic a-Linolenic Doc i Eicosap i Stearidonic acid (SDA), C18:41-3 v-Linolenic acid(GLA), C18:3n-6
acid (LA) acid (AA) acid (ALA) acid (DHA) acid (EPA) l Elongation
L l l L l Eicosatetraenoic acid (ETA), C20:4n-3 Dihomo-y-linolenoic acid(DGLA), C20:3n-6
Green leafy L A5 Desaturation L
il . . .
Comoil, | oils, || Eggs, meat, }'fﬁi‘:e';lfs’ Oily fish, krill oily fish, krill | Eicosapentaenoic acid (EPA), C20:51-3 Arachidonic acid (AA), C20:41-6
Source | soybean oil, fish. walnuts, chia oil, algae oil. oil, algae oil. X
sunflower oil. sgeds, canola L Elongallon l
oil Docosapentaenoic (DPA), C22:51-3 Docosatetraenoic acid(DTA), C22:4n-6
Elongation
NN A6 Desaturation
a-Linolenic acid (ALA) B-oxidation
Chemical Docosahexaenoic acid (DHA), C22:611-3 Docosapentaenoic (DPA), C22:51-6
Structure ) PP PN

Docosahexaenoic acid (DHA)

Linoleic acid (LA) Arachidonic acid (AA)

Eicosapentaenoic acid (EPA)

Figure 2. Polyunsaturated fatty acids and dietary sources. (a) Chemical structure and dietary sources;
(b) general metabolic pathway for Omega-3 and Omega-6 PUFAs.

The distinct biological roles of DHA and EPA in metabolic regulation have been
extensively investigated. These marine-derived Omega-3 PUFAs exert their therapeutic
effects through multiple mechanisms. Primarily, they are essential in reducing inflam-
mation [19,20], which is critical in obesity, T2DM, and cardiovascular diseases (CVDs).
Furthermore, DHA and EPA improve insulin sensitivity [21] and mitigate oxidative stress,
which is essential for the prevention and management of T2DM and hypertension [22,23].
These fatty acids can also aid in weight management by promoting fat oxidation and
reducing fat storage. Their cardioprotective effects are particularly noteworthy, as they
improve lipid profiles and reduce blood pressure, lowering cardiovascular disease risk [24].
However, clinical trials of these agents have yielded mixed results. Based on the available
evidence, EPA appears to be more effective in reducing cardiovascular risk compared to
the combination of DHA and EPA [25-27]. Beyond metabolic and cardiovascular health,
DHA and EPA have demonstrated potential in supporting cognitive function and mood
regulation, offering additional benefits for individuals with metabolic diseases at risk of
cognitive decline or mood disorders [28]. In summary, incorporating DHA and EPA into
daily diets or supplements can be considered an effective strategy to combat metabolic
diseases, offering a natural and efficient approach to enhance overall health.

ALA is the metabolic precursor for EPA and DHA in the human body. However, this
bioconversion process is notably inefficient, with typically less than 8% of dietary ALA
converted to EPA and less than 4% to DHA [29]. ALA exhibits many biological functions,
including metal ion chelation, reactive oxygen species (ROS) quenching, and regenera-
tion of oxidized glutathione and vitamins C and E [30]. Its enantiomers and reduced
form demonstrate diverse therapeutic properties, such as antioxidant, anti-inflammatory,
neuroprotective, antimicrobial, and cardioprotective effects, alongside benefits in cancer
treatment, fertility enhancement, and metabolic regulation [31]. A systematic review
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and meta-analysis revealed that ALA supplementation at >3 g/d from flaxseed and
flaxseed oil significantly improved CVD risk profiles in obese or overweight individu-
als, particularly with longer intervention (>12 weeks) and poorer baseline cardiovascular
health [32]. Mechanistically, ALA activates the 5 adenosine monophosphate-activated
protein kinase (AMPK) and inhibits nuclear factor kappa B (NF-«kB), reducing cholesterol
biosynthesis, fatty acid 3-oxidation, and vascular stiffness. ALA also promotes insulin
secretion, glucose transport, and insulin sensitivity by activating the phosphatidylinositol
3-kinase (PI3K)/Akt pathway. Moreover, ALA addresses central obesity by increasing
adiponectin levels and mitochondrial biogenesis, and it can reduce food intake primarily
through stimulation of silent information regulator T1 (SIRT1) [33]. These multifaceted
mechanisms underscore ALA’s therapeutic potential in managing metabolic diseases and
associated comorbidities.

Recent advances in nutrigenomics have revolutionized our understanding of nutrient—
gene interactions. The integration of high-throughput omics technologies including tran-
scriptomics, proteomics, metabolomics, and microbiomics with advanced bioinformatics
tools has enabled the identification of molecular markers and mechanistic pathways under-
lying the health benefits of Omega-3 PUFAs [34,35]. This review aims to examine omics
approaches in metabolic research from both animal and human studies to understand the
effects of Omega-3 PUFAs, analyze the mechanistic relationships between Omega-3 PUFAs
and omics, discuss research challenges, and propose future directions.

2. Materials and Methods
2.1. Data Retrieval

In this study, we utilized the globally recognized comprehensive platform Web of
Science (WOS) to compile a dataset of research papers focusing on omics data analysis
and Omega-3 PUFAs related to metabolic diseases. We retrieved articles published before
27 November 2024, following the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines. PRISMA provides an evidence-based minimum
checklist for reporting systematic reviews and meta-analyses.

The search query was performed in the WOS core collection. The following search
strategy was employed: Topic = (Omega-3 fatty acid* OR N-3 Polyunsaturated fatty acid*
OR N-3 PUFA* OR N-3 fatty acid* OR w-3 fatty acid* OR Omega-3 PUFA* OR w-3 Polyun-
saturated fatty acid*) AND (Metabolic Syndrom* OR Metabolic Disorder* OR Metabolic
Condition* OR Metabolic Pathology* OR Metabolic Dysfunct* OR Metabolic Disease* OR
Metabolic Abnormalit*) AND (omic* OR Genom* OR Transcriptom* OR Proteom* OR
Metabolom* OR Epigenom* Microbiom* OR lipidom* OR profile* OR Sequenc®).

2.2. Screening and Exclusion Criteria

Once the publications were retrieved from the WOS database, we compiled a compre-
hensive list of all the search results. Subsequent systematic integration and screening were
conducted according to our previous methods [36-38]. Each item was carefully labeled in
an Excel spreadsheet with the reason for its exclusion (Table 1).

Table 1. Exclusion criteria of selected articles.

No. Exclusion Criteria

1 Excluded article types, e.g., review, proceedings, feature, editorial material
2 Not written in English

3 Publication date outside 2014-2024

4 Not in the field of life sciences
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(a)

Screening and —
Eligibility Identification

Included

Table 1. Cont.

No. Exclusion Criteria
5 Irrelevant objects or topics
6 Without available full-text

2.3. Annotated Bibliography

After the initial screening phase, all eligible papers were retrieved, and their ab-
stracts or full texts were thoroughly reviewed to assess their relevance. Subsequently, each
qualifying research paper was meticulously annotated based on manually extracted data,
including research objectives, research methods, animal or human models used, relevant
biomolecules (targets or genes), and reported mechanisms of action. Key insights from re-
view articles were also systematically extracted. Finally, statistical analyses were conducted
to summarize the current state of research in this field.

3. Search Results and Study Characteristics

As illustrated in Figure 3, the literature survey and screening process ultimately led to
the inclusion of 72 full-text studies for this review (Figure 3a). Initially, a comprehensive
search of the WOS database identified a total of 1311 records. Then, exclusions were carried
out according to predefined criteria [36,37]. Specifically, non-research articles (such as
reviews and editorials; n = 117) were removed, along with articles not published in English
(n = 26) and publications outside the specified time frame from 2014 to 2024 (n = 307).
After that, the abstracts of the remaining articles were evaluated for relevance. As a result,
studies outside the field of life sciences (n = 103) and those with irrelevant subjects or
topics (n = 693) were excluded. Among the included 72 studies, 16 studies employed multi-
omics, 10 used transcriptomics alone, 17 utilized lipidomics, and there were 10 each for
metabolomics and microbiomics studies. Genomics and epigenomics together accounted
for three papers, with one for genomics and two for epigenomics. Additionally, six studies
used proteomics (Figure 3b).

(b)
Records identified from WOS
(n=1311)
-Citation index: SCI-Expended
Omic Type Number of Publications
Records removed before .
screening: Duplicate records Genomics 1
(n=0)
Epigenomics 2
Articles assessed for screening . s
and eligibility Transcriptomics 10
WOS (n=1311) Records excluded with reasons Proteomics 6
WOS (n=1239):
-Not included article types Lipidomics 17
(n=117)
-Not in English (n=19) Metabolomics 10
-Publication Date (1=307)
-Not in the Life Sciences (1=103) . S
-Irrelevant object/topic (1=693) Microbiomics 10
-Full text not available (1=0) Multi-omics 16

Studies included in this review
WOS(n=72)

Figure 3. PRISMA flowchart of study inclusion and exclusion and distribution of publication
numbers by omic types for included studies. (a) Eligibility criteria for the selection of research articles.
(b) Distribution of publication numbers by omic types for the 72 included studies.

This emerging topic is increasingly garnering widespread attention from the global
scientific community. Figure 4 illustrates the geographical distribution of publications
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Geographical distribution of omics-based research, 2014-2024

focusing on Omega-3 PUFAs in animal or human models based on omic studies, particularly
emphasizing their role in the mechanisms of metabolic diseases. The analysis reveals that
the USA is the leading contributor to research output. It is followed by China, Spain,
Canada, and the Czech Republic, as shown in Figure 4.

Country Number of publications

USA 14
China 13
Spain
Canada
Czech Republic
Brazil
Italy

[ 4 France
Netherlands
Japan
United Kingdom
Denmark
Taiwan
Portugal
Republic of Korea
Israel
Australia
Norway
Sweden
New Zealand
Poland

O

= e e e = = = DN WWWERsE O

Figure 4. Geographical distribution of omics-based research publications on Omega-3 PUFAs in
animal or human models (ranked by publication volume by country).

4. Omics Approaches in Animal Studies
4.1. Animal Transcriptomics: Gene Regulatory Mechanisms Mediated by Omega-3 PUFAs

Transcriptomics studies the complete set of RNA transcripts produced by the genome,
which can deeply reveal the gene expression and its regulatory mechanisms. Over the
past decade, the application of transcriptomics in the study of Omega-3 PUFAs has gained
momentum. Key areas include the transgenerational effects of Omega-3 PUFAs, miRNA-
mediated regulatory mechanisms, and the integration of transcriptomics with other omics
technologies to understand their overall impact on metabolic health holistically [39-48]
(Table S1).

Varshney et al. [39] utilized mouse models to investigate the effects of early exposure to
alow Omega-6/Omega-3 PUFA ratio of postnatal milk consumption from “fat-1” transgenic
dams for 10 days. They identified diverse adipocyte precursor cell (APC) subtypes using
single-cell RNA sequencing. They demonstrated that early exposure would increase
mitochondrial-high APCs content, fatty acid oxidation capacity, and expression of beige
adipocyte markers (Ppargcla, Ucp2, and Runx1) in APCs, which was related to the increase
in NR2F2 levels. These findings suggest that early exposure to a low Omega-6/Omega-
3 PUFA ratio promotes a thermogenic and obesity-resistant phenotype, highlighting its
potential role in shaping long-term metabolic health.

Over the past four decades, the global prevalence of childhood obesity has soared,
causing health and social issues and becoming a pressing public health challenge [49]. In a
porcine model study [40], researchers examined the effects of a high-calorie western-type
diet supplemented with Omega-3 PUFAs over 10 weeks in prepubertal pigs. A transcrip-
tomic analysis revealed that Omega-3 supplementation reduced adipogenesis and inflam-
mation. Conversely, it promoted fatty acid oxidation and cholesterol catabolism. These
results indicate that Omega-3 PUFAs can mitigate obesity-related metabolic dysregulation
induced by energy-dense diets in early life.
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Another study [41] explored the transgenerational effects of Omega-3 PUFA sup-
plementation using a mouse model. Over three generations, offspring were subjected
to a 4-week obesogenic diet. A transcriptomic analysis of adipose tissue showed that
transgenerational Omega-3 intake reduced the expression of inflammatory genes (Foxo3,
Gsk3beta) and mitigated perturbations in metabolic homeostasis, cholesterol metabolism,
and mitochondrial function. These findings suggest that long-term Omega-3 intake across
generations may protect against obesity-related metabolic disorders, particularly in energy-
dense diets.

Omega-3 PUFAs regulate metabolic health through miRNA-mediated mechanisms.
In commercial pig diets, excessive Omega-6 PUFAs elevate inflammatory risks, while
Omega-3 supplementation counteracts these pro-inflammatory effects [43]. A study al-
tering the Omega-6/Omega-3 ratio demonstrated that Omega-3 modulates key miRNAs
(e.g., ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b, and ssc-miR-7142-3p), which are linked
to adipogenesis, lipolysis, and immune pathways [43]. These miRNAs were part of reg-
ulatory networks affecting metabolic pathways such as obesity, myogenesis, and protein
degradation, providing insights into how Omega-3 PUFAs modulate metabolic health
through miRNA regulation. Karla Fabiola Corral-Jara et al. [48] utilized transcriptomics to
study the effects of transgenerational Omega-3 PUFA supplementation, specifically EPA, in
mice subjected to an obesogenic diet. They found that EPA mediated sophisticated adaptive
alterations at the molecular scale, resulting in the downregulation of miR-34a-5p, a negative
regulator of Irs2. Irs2 is a key regulator in hepatic gluconeogenesis, and its proper function
is crucial for preventing insulin resistance [48].

4.2. Animal Proteomics: Protein Modifications and Pathways Induced by Omega-3 PUFAs

Proteomics, through analyzing the changes in protein levels under dietary intervention,
has become an essential tool for understanding how Omega-3 PUFAs affect metabolic
health. Recent studies on cow, mouse, and rat models have shown that Omega-3 PUFAs can
reduce inflammation [50], improve insulin sensitivity, and ameliorate metabolic diseases
by regulating proteins involved in lipid metabolism, carbohydrate metabolism [51], and
antioxidant defense [52,53] (Table S1).

A study used proteomics and phosphoproteomics to investigate the effects of a 60-day
perinatal supplementation of Omega-3 fatty acids (ALA-rich flaxseed vs. saturated fat)
on insulin sensitivity, immune function, and the endocannabinoid system (ECS) in dairy
cows [50]. A proteomic analysis revealed that ALA supplementation reduced plasma
inflammatory markers (IL-6, IL-17x) and inflammatory proteins in adipose tissue (TNFe,
FAAH, MGLL, RELA, and AMPK) while improving systemic insulin sensitivity. Addition-
ally, Omega-3 supplementation decreased ECS ligands and cannabinoid-1-receptor levels
in peripheral blood mononuclear cells. Another study employed proteomics to examine the
effects of high and low Omega-3 PUFA diets over 4 months on the hepatic proteomic profile
of C57BL/6 mice [51]. High Omega-3 PUFA diets upregulated proteins involved in lipid
metabolism (apolipoprotein A-I), carbohydrate metabolism (fructose-1,6-bisphosphatase,
and ketohexokinase), and the citric acid cycle (TCA cycle, malate dehydrogenase, and
GTP-specific succinyl CoA synthase). Meanwhile, it downregulated proteins such as regu-
calcin and adenosine kinase. These results indicate that Omega-3 PUFAs regulate multiple
metabolic pathways, offering potential therapeutic targets for metabolic disorders.

High-caloric diets induce oxidative stress in the liver, which in turn causes protein
carbonylation and protein damage. This series of events is closely associated with the
development of metabolic diseases. A study in Sprague-Dawley (SD) rats fed a high-fat
high-sucrose (HFHS) diet for 24 weeks used proteomics to explore the effects of EPA and
DHA on hepatic protein carbonylation [52]. Omega-3 PUFA supplementation reduced
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protein carbonylation, enhanced antioxidant defenses, and modulated carbonylation levels
of proteins involved in lipid metabolism (albumin), carbohydrate metabolism (pyruvate
carboxylase), and oxidative stress response (catalase). These findings highlight the protec-
tive role of Omega-3 PUFAs in mitigating oxidative stress and metabolic damage induced
by Westernized diets. Further research investigated the combined effects of marine Omega-
3 PUFAs and grape seed polyphenols (GSE) in Wistar Kyoto rats fed an HFHS diet for
24 weeks [53]. A proteomic analysis revealed reduced protein carbonylation in both plasma
and liver, with identified proteins showing modulation in lipid metabolism, detoxification,
carbohydrate metabolism, and oxidative stress response. This study demonstrated a syner-
gistic effect of Omega-3 PUFAs and polyphenols in alleviating oxidative protein damage
caused by an obesogenic diet.

4.3. Animal Lipidomics: Effects of Omega-3 PUFAs on Lipid Profiles and Signaling Pathways

Over the past decade, research applied lipidomics explored tissue-specific effects,
short-term and transgenerational supplementation, as well as the molecular mechanisms
underlying the anti-inflammatory and metabolic benefits of Omega-3 PUFAs [54-63]
(Table S1).

Research shows that tissues exhibit distinct responses to fatty acid supplementation.
A lipidomic study on mice supplemented with Omega-3 PUFAs analyzed plasma and nine
tissues (liver, kidney, brain, white adipose, heart, lung, small intestine, skeletal muscle, and
spleen), identifying 1026 lipid molecules [54]. Omega-3 PUFA intake significantly altered
the lipid profiles in metabolic organs like the liver and kidney, but had minimal effects on
the brain. Another study in C57BL/6 mice explored lipidomic changes in the liver, muscle,
adipose tissue, and brain following supplementation with Omega-3 and conjugated linoleic
acid (CLA)-enriched cheese [55]. This intervention reduced saturated fats, increased CLA
and ALA levels (except in the brain), and modulated tissue-specific lipid and mitochondrial
metabolism genes while lowering inflammatory gene expression. These findings highlight
the tissue-specific effects of Omega-3 PUFAs and their potential to mitigate inflammation
and prevent chronic diseases.

Different supplementation modes of Omega-3 PUFAs, such as short-term and trans-
generational approaches, exert distinct effects on lipid metabolism. In a C57BL/6] mouse
model, short-term (3 days) flaxseed oil (FS) supplementation increased Omega-3 PUFAs
incorporation (e.g., C18:3c, EPA, and DHA) but failed to fully mitigate inflammation in-
duced by a high-fat diet, highlighting its limited efficacy in suppressing inflammatory
responses [56]. In contrast, a lipidomic analysis showed that transgenerational EPA sup-
plementation significantly altered the skeletal muscle lipid composition. It increased the
levels of phospholipids like PC 40:8 and PI 38:6 and decreased the levels of TG contain-
ing saturated fatty acids (such as palmitic acid and oleic acid) [57]. EPA also reduced
the content of ceramides, alleviated lipotoxicity, and insulin resistance. These changes
were closely associated with anti-inflammation, metabolic health, and the improvement of
insulin sensitivity.

Lipidomics has been instrumental in uncovering the molecular mechanisms behind the
anti-inflammatory effects of Omega-3 PUFA supplementation. In C57BL/6] mice fed high-
fat diets, ALA-enriched butter (n3Bu) promoted the biosynthesis of long-chain Omega-3
PUFAs and their oxylipin metabolites, reducing hepatic triglyceride accumulation, adipose
tissue inflammation, and improving insulin sensitivity [63]. These effects were linked to
suppressed NF-«B activation and M1 macrophage polarization, emphasizing the impor-
tance of the Omega-6/Omega-3 PUFA ratio in modulating inflammation. Another study
employed lipidomics to reveal that EPA is metabolized into 17,18-epoxyeicosatetraenoic
acid (17,18-EpETE) and its derivative 12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-
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OH-17,18-EpETE), which potently inhibit neutrophil infiltration and chemotaxis, demon-
strating anti-inflammatory effects in a peritonitis model [64]. These studies illustrate how
Omega-3 PUFAs exert anti-inflammatory effects through lipid remodeling and bioactive
metabolite production.

4.4. Animal Metabolomics: Effects of Omega-3 PUFAs on Metabolic Pathways and Biomarkers

Compared with genomics, transcriptomics, and proteomics, metabolomics has the
advantage of being closer to the phenotype, which can directly reflect the functional state
of organisms. Metabolomics has been widely used to explore the effects of Omega-3 PUFAs
on metabolic diseases [65-70] (Table S1).

In a mouse model of early-stage NAFLD, a 4-day Omega-3 PUFA-enriched high-fat
diet reversed hepatic lipid accumulation and increased the plasma levels of hydroxyeicos-
apentaenoic acids (HEPEs) and epoxyeicosatetraenoic acids (EEQs). These metabolites
attenuated adipose tissue inflammation and suppressed pro-inflammatory cytokines and
JNK pathway activation in macrophages, suggesting a potential preventative approach for
NAFLD by targeting adipose tissue inflammation [71]. In another study, C57BL/6 mice
with hyperhomocysteinemia (HHcy)-induced hepatic steatosis were supplemented with
Omega-3 PUFAs for 6 weeks. Metabolomics revealed reduced hepatic ceramide levels and
downregulated ceramide synthesis genes (Sptlc3, Degs?2), indicating that Omega-3 PUFAs
mitigate hepatic steatosis by modulating ceramide metabolism [65].

In SD rats, untargeted metabolomics showed that DHA-enriched phospholipids from
large yellow croaker roe (LYCRPL) altered fecal metabolites, with 18 potential biomarkers
including L-cysteine linked to lipid metabolism pathways such as the TCA cycle, glycolysis,
and bile secretion. This suggests that LYCRPLs regulate lipid metabolism disorders by
modulating these pathways [67]. Another study in mice fed high-fat diets with varying
Omega-6/Omega-3 PUFA ratios for 12 weeks found that a high Omega-6/Omega-3 ratio
improved body weight, insulin signaling, and mitochondrial function while reducing hep-
atic lipid accumulation. A metabolomic analysis revealed that a high Omega-3 PUFA intake
upregulated the liver’s mitochondrial electron transport chain and TCA cycle pathways,
enhancing mitochondrial complex activities, reducing fumaric acid levels, and alleviating
oxidative stress [68].

The long-term effects of Omega-3 PUFAs on diabetic risk in the offspring of rats with
gestational diabetes mellitus (GDM) were evaluated [69]. The GDM offspring fed Omega-3
PUFA-rich fish oil showed reduced oxidative stress, inflammation, and improved metabolic
profiles compared to the Omega-3-deficient groups. Metabolomics revealed modulation
of diabetes-related metabolites (e.g., ceramide, oxaloacetic acid, and ALA) and pathways,
indicating that Omega-3 PUFAs mitigate diabetes risk in the GDM offspring by regulating
metabolic and inflammatory processes.

In summary, metabolomics research has shown that Omega-3 PUFAs alleviate liver
lipid accumulation, adipose tissue inflammation, and oxidative stress by regulating lipid
metabolism (e.g., reducing ceramides and increasing HEPEs and EEQs) and improving
mitochondrial function (e.g., enhancing the activity of the TCA cycle and the electron
transport chain), thereby playing a metabolic protective role in NAFLD, hepatic steatosis,
and the offspring of gestational diabetes.

4.5. Animal Microbiomics: Modulation of Gut Microbiota Composition and Function by
Omega-3 PUFAs

Recent studies have shown that Omega-3 PUFAs significantly modulate gut microbiota
and metabolic pathways [72-81]. Through multiple animal experiments, researchers have
found that Omega-3 PUFAs can alleviate gut dysbiosis caused by high-fat, high-sugar
western diets [72,73], maternal nutrition [74], polycystic ovary syndrome (PCOS) [75], and



Nutrients 2025, 17, 1836

10 of 27

T2DM [77], reducing inflammation and oxidative stress, thereby improving metabolic
health (Table S1).

Researchers used microbiome analysis to study the effects of Omega-3 PUFAs from
fish o0il on the gut microbiome and metabolic pathways in C57BL/6 mice fed a beef-rich
diet [72]. Omega-3 supplementation reduced serum triglyceride levels and altered gut
microbial composition by decreasing potentially pathogenic bacteria (Escherichia—Shigella,
Mucispirillum, Helicobacter, Desulfovibrio) while enhancing energy and glucose metabolism,
as shown by the 165 rRNA analysis. In another study, an in vitro fecal fermentation model
was used with cecal samples from rats fed a control diet (CD) or a high-fat high-sugar
Western diet (WD) [73]. Treatment with a pomegranate oil mixture increased «-diversity
and the relative abundances of Firmicutes, Bacteroidetes, Akkermansia, and Blautia, along
with elevated levels of butyrate, acetate, tyrosine, and GABA. These changes indicate
a positive modulation of the gut-brain axis and potential restoration of WD-induced
microbiota imbalances.

Researchers also investigated the impact of maternal Omega-3 PUFA intake on the
gut microbiota of female offspring in a BALB/c mouse model [74]. Using 16S rRNA gene
sequencing, they found that maternal flaxseed oil consumption increased the proportions
of Rikenellaceae, Clostridium, and Oscillospira in the offspring, with these changes persisting
into adulthood. These alterations in gut microbiota were associated with enriched levels of
metabolites such as 4-hydroxycinnamate sulfate, catechol sulfate, hippurate, and indolelac-
tate in the visceral adipose tissue of adult female offspring, suggesting long-term metabolic
programming effects of maternal Omega-3 intake.

Recently, Omega-3 PUFAs have been proven to benefit metabolic disorders in PCOS
patients. In a dehydroepiandrosterone (DHEA)-PCOS mouse model, Omega-3 PUFAs
increased the abundance of beneficial bacteria such as Akkermansia and Alistipes, alleviating
gut dysbiosis and improving ovarian function and insulin resistance [75]. These microbial
changes were associated with the reduction of ovarian inflammation and oxidative stress
and the improvement of adipose tissue morphology and function, including the decrease of
multilocular cells and thermogenic marker expressions like Ucp1, Pgcla, Cited, and Coc8b.

Finally, in T2DM rat models, Omega-3 PUFAs from flaxseed oil reduced fasting blood
glucose, inflammatory markers, and oxidative stress while modulating gut microbiota.
Specifically, Omega-3 supplementation decreased Firmicutes and increased Bacteroidetes
and Alistipes [77]. The relative abundance of Firmicutes was positively correlated with
IL-13, TNF-«, IL-6, IL-17a, and LPS, respectively. Bacteroidetes and Alistipes were negatively
correlated with LPS. These findings suggest that Omega-3 PUFAs can alleviate T2DM by
regulating gut microbiota and reducing inflammation.

5. Omics Approaches in Human Studies

5.1. Human Genomics and Epigenomics: Effects of Omega-3 PUFAs on Gene Expression
and Epigenetics

Recent studies demonstrate that Omega-3 PUFAs can induce significant genomic
and epigenomic changes, influencing metabolic pathways, inflammatory responses, and
even transgenerational health outcomes [82-84] (Table S2). These findings highlight the
potential of Omega-3 PUFAs as a dietary intervention for preventing and managing
metabolic diseases.

The Greenlandic Inuit have thrived for generations in harsh Arctic environments for
centuries. They are confronted with frigid annual temperatures and rely on a specialized
diet abundant in protein and fatty acids, especially Omega-3 PUFAs [82]. Researchers
in a genomic study of the Greenlandic Inuit population identified significant adaptive
signatures at the fatty acid desaturase (FADS) loci [82]. These genetic variations influence
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the levels of PUFAs and are associated with metabolic and anthropometric traits such as
body weight and height. A membrane lipid analysis suggested that these alleles modulate
fatty acid composition and may affect the regulation of growth hormone. This study
highlights the genetic and physiological adaptations to Omega-3 PUFA-rich diets.

In an epigenomic study, overweight and obese subjects underwent Omega-3 PUFA
supplementation for 6 weeks, leading to changes in DNA methylation at 308 CpG sites
across 231 genes [83]. These methylation changes affected pathways related to inflamma-
tory response, lipid metabolism, and cardiovascular signaling. Key genes such as AKT3,
ATF1, HDAC4, and IGFBP5 showed methylation shifts correlated with improved plasma
triglycerides, glucose, and cholesterol levels, suggesting that Omega-3 PUFAs modulate
metabolic pathways critical for cardiovascular health.

Another epigenomic study examined DNA methylation in cord blood mononuclear
cells from 118 mother-newborn pairs to explore the effects of maternal Omega-3 PUFA
intake during pregnancy [84]. Differential methylation was observed at 8503 to 18,148 sites,
depending on Omega-3 intake levels. Key pathways affected included signal transduc-
tion, metabolism, and immune response. Genes such as MSTN, IFNA13, ATP8B3, and
GABBR2 showed methylation changes, potentially influencing insulin resistance, adiposity,
and innate immune response in offspring. This study underscores the transgenerational
epigenetic effects of Omega-3 PUFAs.

5.2. Human Transcriptomics: Effects of Omega-3 PUFAs on Gene Expression in Metabolic Health

This paper reviews several recent studies that have explored the transcriptomic
changes in human subjects after exposure to Omega-3 PUFAs. These studies indicate
that Omega-3 PUFAs trigger substantial transcriptomic changes in vascular endothelial
cells, blood, and visceral adipocytes and regulate inflammatory, metabolic, and immune
pathways [85-88] (Table S2).

Researchers employed a DNA microarray analysis to study the impacts of Omega-
3 PUFA, specifically DHA, on human umbilical vein endothelial cells (HUVECs) under
pro-inflammatory conditions [85]. HUVECs were first treated with DHA and subsequently
stimulated with interleukin IL-13. DHA treatment regulated genes involved in immunolog-
ical, inflammatory, and metabolic pathways, such as CYP4F2, TGF-f32, CD47, CARD11, and
PDES5«. These findings reveal DHA's role in modulating cardiovascular function, cellular
growth, and inflammatory responses, highlighting its potential in managing metabolic and
inflammatory diseases.

In a study involving obese women, a microarray transcriptome analysis of blood sam-
ples was conducted to assess the effects of 3-month Omega-3 PUFA supplementation [87].
Omega-3 PUFAs influenced PPAR-x, NRF2, and NF-«B target genes, significantly reducing
inflammatory markers such as SELE, MCP-1, sVCAM-1, sSPECAM-1, and hsCRP. These
results suggest that Omega-3 PUFAs can mitigate inflammation and improve metabolic
health in obese individuals.

Another study employed high-throughput sequencing to analyze the transcriptional
responses of visceral adipocytes from healthy lean, obese, and colorectal cancer (CRC)-
affected individuals exposed to Omega-3 and Omega-6 PUFAs [88]. Omega-3 PUFAs,
particularly DHA, modulated specific long non-coding RNAs (IncRNAs) such as LIPE-AS1
and LUCAT1, which are implicated in obesity and metabolic diseases. These IncRNAs
influenced pathways related to lipid metabolism, adipocyte function, and immune regu-
lation, with impaired responses observed in obese and CRC groups compared to healthy
individuals. The study highlights the potential of Omega-3 PUFAs to regulate metabolic
health through IncRNA-mediated mechanisms.
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5.3. Human Proteomics: Protein Biomarkers and Metabolic Effects of Omega-3 PUFAs

Omega-3 PUFAs have been extensively studied in various metabolic diseases, includ-
ing metabolic syndrome, NAFLD, NASH (non-alcoholic steatohepatitis), and CVD using
proteomic technologies, revealing their potential mechanisms of action [89-95] (Table S2).
In metabolic syndrome, a proteomic analysis was used to investigate the effects of Omega-3
PUFAs on subcutaneous white adipose tissue (WAT) in 75 MetS patients [89]. The LFHCC
Omega-3 diet (a low-fat, high-complex carbohydrate diet supplemented with Omega-3
PUFAs) downregulated proteins associated with glucose metabolism, including annexin
A2, gelsolin, and glycerol-3-phosphate dehydrogenase-1 (GPD1), suggesting improved
insulin signaling and glucose metabolism. Another study employed proteomics to analyze
the effects of different dietary lipid compositions on the proteome of peripheral blood
mononuclear cells (PBMCs) in 24 MetS patients [90]. A two-dimensional proteomic analy-
sis revealed that the LFHCC Omega-3 diet regulated proteins involved in immunological
diseases and inflammatory responses, including nuclear FGB, FGG, VCL, and cytoplasmic
ACTB, MACF1, and CAPZAL. These findings suggest that Omega-3 PUFAs may mitigate
inflammation and oxidative stress, reducing cardiovascular disease risk in MetS patients.

Both NAFLD and NASH are frequently regarded as the hepatic presentations of
metabolic syndrome. In NAFLD and NASH, proteomic studies have provided insights
into the systemic effects of Omega-3 PUFAs. A study investigated the plasma proteome
of 103 NAFLD patients treated with 3.36 g daily of DHA + EPA or placebo (olive oil) for
15-18 months [91]. A proteomic analysis indicated that DHA + EPA treatment affected
pathways related to blood coagulation, immune/inflammatory responses, and cholesterol
metabolism (p < 0.05), with reduced levels of prothrombin and apolipoprotein B-100, key
proteins associated with cardiovascular risk. Another study used proteomics and lipidomics
to explore the effects of Omega-3 PUFAs in 27 NASH patients over a 6-month treatment
period [93]. Hepatic proteomic analyses revealed modifications in markers related to
cell-matrix (FIBB, K1C9, PDIA6, TBA3E, and K2C75), lipid metabolism (PGRMC2 and
FABPL), ER stress (HSPD1, EEF1A2, HNRPU, EEF2, RS27A, RL40, and UBB), and cellular
respiratory pathways (PPIA, TPI1, ALDOB, GAPDH, PGM1, and ENO3). These findings
highlight the potential of Omega-3 PUFAs in improving NASH through modulation of key
metabolic pathways.

In CVD research, Omega-3 PUFAs have also demonstrated significant benefits. A study
employing proteomics and systems biology investigated the effects of Omega-3-enriched
milk in overweight healthy volunteers with a BMI of 25-35 kg/m? [94]. Omega-3 PUFAs
increased apolipoprotein E (Apo-E) in low-density lipoprotein (LDL). They enhanced
several high-density lipoprotein (HDL)-associated proteins, including Apo A-I, LCAT,
PON-1, Apo D, and Apo L1, improving lipid metabolic pathways. Another study used
proteomics and lipidomics to analyze the effects of Omega-3 PUFAs on extracellular vesicles
(EVs) in 40 patients with moderate CVD risks [95]. Omega-3 PUFAs reduced the number
of circulating EVs by 27%, increased their Omega-3 PUFA content, and decreased their
capacity to support thrombin generation by over 20%. Proteomic profiling of platelet-
derived EVs indicated that Omega-3 PUFAs downregulated proteins involved in CVD
pathogenesis, including proinflammatory and proatherosclerotic proteins such as RBP4,
PF4V1, ESAM, and FBLN1, suggesting potential benefits in reducing thrombotic risk and
improving CVD outcomes.

5.4. Human Metabolomics: Metabolic Impact and Therapeutic Potential of Omega-3 PUFAs in
Various Health Conditions

Recent metabolomic studies have shown that Omega-3 PUFAs modulate lipid
metabolism, reduce CVD, alleviate hepatic steatosis in NAFLD, and improve metabolic
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pathways in chronic inflammation and metabolic syndrome [96-98]. They also promote
healthy aging by altering phospholipids and cholesterol esters and alleviate diabetic neu-
ropathy pain by improving lipid metabolism [99,100] (Table S2).

In 20 overweight and obese patients, researchers employed GC-MS and LC-MS to
analyze plasma metabolites and investigate the effects of Omega-3 PUFAs (fish oil) and
fenofibrate on lipid metabolism [96]. Both treatments reduced saturated TG, which is
associated with a lower CVD risk. In addition, fish oil increases the levels of unsaturated
TG, lysophosphatidylcholine (LPC), phosphatidylcholine, and cholesterol esters, which are
further linked to a decreased CVD risk.

In NAFLD, a study utilized untargeted ultra-performance liquid chromatography-
quadrupole/time-of-flight mass spectrometry (UPLC-Q-TOF-MSE) to investigate the serum
metabolomic profiles of 96 patients following a 12-week intervention with a combination of
phytosterol ester (PSE) and Omega-3 PUFAs [97]. Phytosterols are plant-derived sterols that
can decrease LDL and improve metabolic disorders [101]. The combined supplementation
significantly increased serum levels of phosphatidylcholine (PC) containing Omega-3
PUFAs, lysophosphatidylcholine (LysoPC), perillyl alcohol, and retinyl ester, which were
negatively correlated with hepatic steatosis severity. This indicates that compared with
either supplement alone, the combined use of PSE and Omega-3 PUFA supplements can
more effectively improve metabolic disorders and alleviate hepatic steatosis.

The distinct effects of EPA and DHA were explored in a randomized, controlled,
double-blind, crossover study involving 21 subjects with chronic inflammation and
MetS [98]. A metabolomic analysis revealed that both EPA and DHA significantly af-
fected the TCA cycle, glucuronate interconversion, and amino acid metabolism pathways.
EPA specifically reduced the levels of fumarate and a-ketoglutarate, which are intermedi-
ates in the TCA cycle, while increasing the levels of glucuronate and non-esterified DHA.
In contrast, DHA had a more pronounced impact on the TCA cycle, reducing the levels of
multiple intermediates and increasing the levels of succinate and glucuronate.

There are also studies on the dynamic changes in the metabolomic profile of healthy
old people after supplementing with Omega-3 PUFAs. A study utilized metabolomics and
1H-NMR spectroscopy to investigate the effects of Omega-3 PUFA on plasma metabolome
in 12 young and 12 older healthy adults [100]. The results of plasma metabolomics suggest
that there are subtle differences between healthy young and older adults. After the older
adults were supplemented with Omega-3 PUFA, more significant changes occurred in
phospholipids, cholesterol esters, diglycerides, and triglycerides.

Approximately 30-50% of diabetic patients will experience varying degrees of neuro-
pathic pain [102]. In diabetic peripheral neuropathy, a study employed metabolomics to
explore the effects of Omega-3 PUFA supplementation (1000 mg DHA and 200 mg EPA
daily) over three months in 40 Mexican-American individuals with T2DM [99]. The inter-
vention significantly improved neuropathic pain symptoms, as measured by the McGill
Pain Questionnaire, with reduced plasma sphingosine levels and increased DHA correlating
with improved pain scores. These findings suggest that Omega-3 PUFA supplementation
may alleviate diabetic neuropathy pain in diabetes management.

5.5. Human Lipidomics: Modulation of Lipid Metabolism by Omega-3 PUFAs in Health
and Disease

Omega-3 PUFAs have been extensively studied across various metabolic diseases
using lipidomics, revealing their potential to modulate lipid profiles and improve human
metabolic health [103-109] (Table S2). In a longitudinal crossover clinical study involving
20 overweight participants, researchers investigated the effects of Omega-3 PUFAs on the
HDL lipidome [103]. Participants consumed milk supplemented with Omega-3 PUFAs
for 28 days. A lipidomic analysis showed that Omega-3 supplementation significantly
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increased DHA and EPA levels within HDL lipid species, particularly cholesteryl esters
(CE), TG, and phosphatidylcholines, suggesting that dietary Omega-3 PUFAs can enrich
HDL with beneficial fatty acids, potentially enhancing cardiovascular health.

In patients with MetS and NAFLD, a double-blind, placebo-controlled trial involving
60 participants examined the effects of 3.6 g/day Omega-3 PUFAs over one year [104]. A
lipidomic analysis revealed that Omega-3 PUFA treatment significantly increased levels
of Omega-3-enriched TGs and PLs, reduced serum GGT (Gamma-Glutamyl Transferase)
activity, and decreased liver fat content, particularly in patients who also lost weight. These
findings imply that long-term Omega-3 PUFA supplementation improves liver function
and lipid metabolism in MetS and NAFLD.

A study on healthy individuals employed targeted lipidomics to analyze the effects of
Omega-3 PUFAs on glycerophospholipids (GPs) and sphingolipids (SPs) over 21 days [105].
The results showed significant changes in lipid species, with lysophospholipids increasing
after 3 days and phosphatidylserines exhibiting changes at later stages. Phosphatidyl-
cholines and alkylphosphatidylcholines decreased on the 21st day. The study found that
Omega-3 PUFAs can regulate the enzymes involved in the metabolism of lysophospho-
lipids and phosphatidylserine, thereby influencing biomarkers such as creatine kinase MB
isoenzyme (CK-MB), urea, and triglycerides.

In obese men with MetS, a study combined calorie restriction (CR) with Omega-3
PUFA-rich fish oil supplementation for 12 weeks [106]. Patients in the CR + fish oil group
showed significant reductions in body weight, waist circumference, and TG levels, particu-
larly. Elevated levels of specific lipid species, such as TG (60:9) containing docosapentaenoic
acid, negatively correlated with MetS features like BMI and blood pressure, suggesting that
Omega-3 PUFAs and CR can improve lipid metabolism and mitigate MetS.

A study investigated the effects of combined intervention with pioglitazone and
EPA /DHA on lipid metabolism in overweight/obese type 2 diabetic patients already on
metformin therapy [109]. Compared to single interventions, the combination improved
serum EPA/DHA levels, insulin sensitivity, metabolic flexibility, and lipid metabolism
during a meal test. While Omega-3 PUFAs alone modestly increased fasting glycemia and
HbAlc, the combination prevented this effect and enhanced lipid metabolism, suggesting a
synergistic strategy for managing metabolic dysfunction in T2DM.

5.6. Human Microbiomics: Modulation of the Gut Microbiome and Metabolic Outcomes by
Omega-3 PUFAs

The following two studies delve into the specific changes in the gut microbiota in
response to Omega-3 PUFA’s intake, providing valuable insights into their health bene-
fits [110,111].

In a double-blind randomized controlled trial, researchers used metabolomics and a
microbiome analysis to study the effects of plant-derived Omega-3 PUFAs on blood lipids
and gut microbiota in 75 patients with marginal hyperlipidemia [110]. Over 3 months,
Omega-3 PUFA supplementation significantly reduced total cholesterol (TC) levels and
altered gut microbiota, increasing Bacteroidetes abundance and decreasing the Firmicutes-to-
Bacteroidetes ratio.

The study used 165 rRNA gene pyrosequencing to investigate the effects of different
oil blends rich in MUFA and PUFA fatty acids on the gut microbiota of 25 volunteers
at MetS risk [111]. While the oil treatments did not alter bacterial phyla composition,
they influenced the gut microbiota at the genus level, particularly in obese participants.
MUPFA-rich diets increased the abundance of Parabacteroides, Prevotella, Turicibacter, and
Enterobacteriaceae, while PUFA-rich diets favored Isobaculum. These changes suggest that
MUFA and PUFA intake can modulate gut microbiota, potentially impacting metabolic
health, especially in obese individuals
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6. Mechanistic Insights into Omega-3 PUFAs and Omics

Omega-3 PUFAs are pivotal in modulating metabolic diseases through five key mech-
anisms: epigenetic regulation, oxidative stress reduction, gut microbiome modulation,
mitochondprial function improvement, and inflammation control (Figure 5). Below is a
detailed and logically structured summary of these mechanisms, supported by recent
research findings.
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Figure 5. Mechanistic insights into Omega-3 PUFAs in metabolic diseases through omics analysis in
animal and human models.

6.1. Epigenetic Regulation

Epigenetics involves heritable changes in gene expression without altering the DNA se-
quence. Omega-3 PUFAs influence epigenetic mechanisms, such as DNA methylation and
miRNA expression, to regulate metabolism-related genes. In terms of DNA methylation,
Omega-3 PUFASs can alter specific genes’ methylation status, reducing pro-inflammatory
gene methylation levels and increasing anti-inflammatory gene expression [83,84]. This not
only alleviates inflammation, but also improves insulin sensitivity and lipid metabolism.
For example, maternal Omega-3 PUFA intake during pregnancy affects offspring DNA
methylation, influencing genes like MSTN, IFNA13, ATP8B3, and GABBR2, which are
linked to insulin resistance, adiposity, and immune responses [84]. Regarding miRNA
regulation, Omega-3 PUFAs regulate miRNA expression, which then targets and suppress
the expression of metabolism-related genes post-transcriptionally. For instance, EPA in-
hibits miR-34a-5p, a negative regulator of Irs2, enhancing insulin sensitivity and reducing
hepatic gluconeogenesis [48]. Additionally, different Omega-6/Omega-3 PUFA ratios re-
sult in the differential expression of miRNAs (e.g., ssc-miR-15b, ssc-miR-7142-3p), which
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target and regulate genes related to adipose and immunity (e.g., ELOVL6, RBP4, ARRDCS,
and METTL21C), affecting pathways like lipolysis, obesity, and protein degradation [43].
Furthermore, miRNAs themselves are subject to epigenetic regulation, such as DNA methy-
lation, RNA modifications, and histone modifications [112]. However, this review did not
identify any studies investigating whether Omega-3 PUFAs modulate metabolic diseases
via the mechanism of epigenetic modification of miRNAs. This could potentially represent
a worthwhile avenue for future research.

6.2. Oxidative Stress Reduction

Oxidative stress, resulting from an imbalance between oxidation and antioxidant de-
fenses, contributes to metabolic diseases. Omega-3 PUFAs mitigate oxidative stress through
several mechanisms. Firstly, they inhibit telomere shortening by enhancing the activity
of antioxidant enzymes like SOD and CAT, reducing oxidative damage and improving
telomere length in metabolic disease models [69]. Secondly, Omega-3 PUFAs reduce protein
carbonylation, a marker of oxidative damage [52,53]. For example, fish oil reduces the
carbonylation of catalase, albumin, and Akrld1, protecting against oxidative stress and
improving cardiovascular health [52]. Finally, Omega-3 PUFAs modulate metabolites asso-
ciated with oxidative stress, such as ceramide and hexadecenoic acid, further alleviating
oxidative damage [65,69]. Omega-3 PUFAs alleviate oxidative stress by enhancing antioxi-
dant enzyme activity (e.g., SOD and CAT) and reducing protein carbonylation, processes
closely linked to lipid peroxidation and DNA damage (e.g., oxidative base modifications
and strand breaks). Lipid peroxidation—a hallmark of ferroptosis, an iron-dependent cell
death driven by lipid hydroperoxide accumulation—may be attenuated by Omega-3 PUFAs
through the reduced susceptibility of polyunsaturated fatty acids to peroxidation, thereby
mitigating ferroptotic cell death in metabolic tissues [113]. While existing studies highlight
the role of Omega-3 PUFAs in ameliorating oxidative stress and chronic inflammation, their
direct effects on DNA repair mechanisms and ferroptosis regulation remain underexplored.
Future investigations into these pathways could uncover novel strategies to counteract
both ferroptosis and genomic instability in metabolic diseases.

6.3. Modulation of Gut Microbiota and Metabolites

Omega-3 PUFAs significantly influence the gut microbiome and its metabolites, which
contributes to metabolic health. They impact the microbial composition by promoting
beneficial bacteria (e.g., Bacteroidetes, Akkermansia, and Alistipes) while inhibiting pathogens
(e.g., Escherichia—Shigella, Helicobacter), improving gut barrier function and reducing inflam-
mation [72,73,75]. Omega-3 PUFAs also enhance short-chain fatty acid (SCFA) production
(e.g., butyrate, propionate), which has anti-inflammatory and metabolic benefits [77,114].
Additionally, they lower pro-inflammatory metabolites like LPS, further reducing systemic
inflammation [77]. Moreover, Omega-3 PUFAs can modulate the gut-brain axis by influenc-
ing neurotransmitter production (e.g., GABA) and gut-brain communication, potentially
improving mood and cognitive function [73].

6.4. Mitochondrial Function Improvement

Mitochondrial dysfunction is central to metabolic diseases, and Omega-3 PUFAs play
a key role in restoring mitochondrial health. In terms of energy metabolism, Omega-3
PUFAs enhance mitochondrial respiratory chain activity, which leads to an increase in ATP
production and an improvement in cellular energy supply [68]. Regarding mitochondrial
biogenesis, Omega-3 PUFAs promote this biogenesis, increasing mitochondrial number
and function. For example, a low Omega-6/Omega-3 ratio enhances fatty acid oxidation
and beige adipogenesis via NR2F2 regulation [39]. Omega-3 PUFAs also mitigate oxidative
stress by reducing ER stress and oxidative damage, which helps protect mitochondrial
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integrity [93]. Moreover, long-term Omega-3 PUFA supplementation exerts transgenera-
tional effects by alleviating mitochondrial dysfunction across generations, as evidenced by
reduced mitochondrial-related gene disturbances in offspring [41].

6.5. Inflammation Control

Chronic inflammation is a hallmark of metabolic diseases, and Omega-3 PUFAs exert
potent anti-inflammatory effects. They can reduce pro-inflammatory cytokines (e.g., TNF-¢,
IL-6, and IL-1$) by inhibiting NF-kB and MAPK signaling pathways [58,71]. In addition,
Omega-3 PUFAs modulate immune cells by promoting the polarization of macrophages
toward the anti-inflammatory M2 phenotype, which helps reduce adipose tissue inflamma-
tion and insulin resistance [63]. Omega-3 PUFAs metabolites like 17,18-EEQ, 5-HEPE, and
9-HEPE also have anti-inflammatory effects as they suppress macrophage inflammation
via JNK signaling, thereby ameliorating conditions like NAFLD [71]. Moreover, ALA
supplementation has been shown to improve systemic insulin sensitivity in dairy cows
compared to the controls, which demonstrates the beneficial effects of Omega-3 PUFAs on
insulin function [50].

7. Challenges and Future Directions

In the omics research on the supplementation of Omega-3 PUFAs in the context of
metabolic diseases, there are a series of research challenges, which are analyzed from the
aspects of samples, technologies, data analysis, and the characteristics of diseases.

7.1. Interindividual and Disease-Stage Variability

The efficacy of Omega-3 PUFAs in metabolic diseases is influenced by interindividual
variability and disease progression [115,116]. Genetic polymorphisms (e.g., FADS loci)
and lifestyle factors (e.g., diet, smoking) significantly modulate Omega-3 absorption and
metabolic responses, contributing to heterogeneous therapeutic outcomes [115-119]. Ad-
ditionally, metabolic diseases exhibit dynamic pathophysiological changes across stages
(e.g., NAFLD progression from steatosis to cirrhosis) and systemic interactions (e.g., di-
abetes affecting cardiovascular and neural systems), further complicating intervention
studies [54,120-122]. Current omics technologies struggle to address these challenges
due to limited capacity to capture real-time, system-wide interactions and representative
sampling across diverse populations.

7.2. Challenges in Multi-Omics Technologies

Current omics technologies still face problems with detection sensitivity and accu-
racy [123,124]. In metabolomics, low-abundance metabolites important for the relationship
between Omega-3 PUFAs and metabolic diseases may not be accurately detected [125],
and proteomics has difficulties detecting and quantifying modified proteins [126]. Most
existing omics technologies can only perform a static sample analysis, struggling to capture
the dynamic mechanism of Omega-3 PUFAs in metabolic diseases [127]. A lack of unified
technical standards and quality control systems across different research teams leads to
poor data comparability and reproducibility for multi-omics joint analysis [128,129]. Multi-
omics research generates high-dimensional data [130,131], and screening key information
related to Omega-3 PUFAs and metabolic diseases while eliminating noise is a significant
data analysis challenge.

7.3. Future Research Avenues: Direct Target Investigation

Most current omics research focuses on pathway analysis and the influence on promi-
nent molecules’” expression levels or activities, while in-depth direct target studies are
very limited. Discovering direct targets of Omega-3 PUFA supplementation in metabolic
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diseases is crucial for unveiling their beneficial mechanisms and developing precise ther-
apies. Recent chemoproteomic technologies offer powerful tools for target identification,
including Thermal Proteome Profiling (TPP) [132], Limited Proteolysis-Mass Spectrometry
(LiP-MS) [133], and Activity-Based Protein Profiling (ABPP) [134,135]. These methods help
uncover protein-ligand interactions and hold the potential for identifying Omega-3 PUFAs
targets. Current research has identified several proteins as direct targets of fatty acids,
including G Protein-Coupled Receptor 120 (GPR120) [136], Liver X Receptor (LXR) [137],
and Peroxisome Proliferator-Activated Receptors (PPARs) o« and y [138]. Continuous explo-
ration with advanced chemoproteomic techniques like TPP, LiP-MS, and ABPP is essential.

7.4. Future Research Avenues: Computational Biology Methods and Omega-3
Multi-Omics Integration

Constructing an Omega-3 PUFAs multi-omics database is very important. This
database would centralize genomic, transcriptomic, proteomic, and metabolomic data,
providing researchers with a one-stop data query and analysis platform. Additionally,
developing computational models based on these omics data is highly significant. These
models can not only accurately predict the therapeutic effects of Omega-3 PUFAs in various
metabolic diseases such as obesity and hyperlipidemia, but also profoundly explore po-
tential therapeutic targets, providing new directions for drug development. By simulating
disease progression, these models can reveal key intervention points of Omega-3 PUFAs,
aiding in early diagnosis and prevention. Furthermore, by evaluating the combined ther-
apeutic effects of Omega-3 PUFAs with other treatments, treatment combinations can be
optimized, improving efficacy and safety and bringing new opportunities for the research
and treatment of metabolic diseases.

8. Conclusions

The global burden of metabolic diseases, including obesity, T2DM, and NAFLD,
continues to rise, driven by lifestyle and dietary factors. Omega-3 PUFAs, particularly EPA
and DHA, have emerged as key dietary components with significant potential to ameliorate
these metabolic diseases. Advances in omics technologies, including transcriptomics,
proteomics, lipidomics, and microbiomics, have provided deep insights into the molecular
mechanisms by which Omega-3 PUFAs modulate epigenetics, inflammation, oxidative
stress, mitochondrial function, and gut microbiota. Despite progress, challenges remain in
understanding individual variability, dynamic metabolic processes, and the full spectrum
of direct molecular targets.

Future research should prioritize advanced chemoproteomics (e.g., TPP, LiP-MS) and
multi-omics integration to uncover novel targets and optimize personalized interventions.
Individual variability in Omega-3 responses driven by genetic factors (e.g., FADS poly-
morphisms), gut microbiota dynamics, and epigenetic modifications necessitate tailored
strategies. Integrating multi-omics data (genomics, lipidomics, and microbiomics) with
clinical biomarkers could guide EPA/DHA dosing, microbiome-directed co-interventions
(e.g., prebiotics), and combinatorial therapies (e.g., Omega-3 with calorie restriction). Com-
putational modeling of metabolic networks and precision phenotyping will enable stratified
interventions, advancing precision nutrition paradigms for metabolic disease management.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/nul7111836/s1, Table S1. Omics research findings in
animal models; Table S2. Omics research on human subjects.


https://www.mdpi.com/article/10.3390/nu17111836/s1

Nutrients 2025, 17, 1836

19 of 27

Author Contributions: Conceptualization, J.L. and H.-D.H.; methodology, ].L. and H.-L.Z.; data,
T.Z. and J.L.; writing—original draft preparation, J.L., T.Z., ].-W.B. and Y.-C.-D.L.; writing—review
and editing, H.-L.Z., J.-W.B. and H.-Y.H.; supervision, Y.-C.-D.L. and H.-D.H.; project administration,
Y.-C.-D.L. and H.-D.H.; funding acquisition, H.-Y.H., Y.-C.-D.L. and H.-D.H. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was financially supported by the Shenzhen Science and Technology Program
(JCYJ20220530143615035); the Warshel Institute for Computational Biology funding from Shenzhen
City and Longgang District (LGKCSDPT2024001); the Shenzhen-Hong Kong Cooperation Zone
for Technology and Innovation (HZQB-KCZYB-2020056, P2-2022-HDH-001-A); Guangdong Young
Scholar Development Fund of Shenzhen Ganghong Group Co., Ltd. (2022E0035); Phase III Gov-
ernment Matching Fund of Shenzhen Ganghong Group Co., Ltd. (2023E0012); Guangdong S&T
programme (2024A0505050001, 2024 A0505050002); 2023 The Second Affiliated Hospital of the Chi-
nese University of Hong Kong, Shenzhen Joint Fund Project (HUUF-MS-202306, HUUF-MS-202308,
HUUF-MS-202309); and the CUHK(SZ) HOMEY HEALTH Micro-biome and EndoMetabolic Digital
Health Research Center (2024E0049).

Data Availability Statement: All data are included in the manuscript and its Supplementary Materials.

Conflicts of Interest: Author T. Z. was employed by the company Better Way (Shanghai) Cosmetics
Co., Ltd. The remaining authors declare that the research was conducted in the absence of any
commercial or financial relationships that could be construed as a potential conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ABPP Activity-based protein profiling

ALA Alpha-linolenic acid

AMPK Adenosine monophosphate-activated protein kinase
APC Adipocyte precursor cell

CLA Conjugated linoleic acid

CR Calorie restriction

CVDs Cardiovascular diseases

DALYs Disability-adjusted life years

DHA Docosahexaenoic acid

DHEA Dehydroepiandrosterone

ECS Endocannabinoid system

EEQs Epoxyeicosatetraenoic acids

EPA Eicosapentaenoic acid

Evs Extracellular vesicles

FADS Fatty acid desaturase

GBD Global Burden of Disease

GDM Gestational diabetes mellitus

GGT Gamma-glutamyl transferase

GPD1 Glycerol-3-phosphate dehydrogenase-1
GPR120 G protein-coupled receptor 120

GPs Glycerophospholipids

GSE Grape seed polyphenols

HDL High-density lipoprotein

HEPEs Hydroxyeicosapentaenoic acids

HFD High fat diet

HFHS High-fat high-sucrose

Hhcy Hyperhomocysteinemia

HUVECs Human umbilical vein endothelial cells
LiP-MS Limited proteolysis-mass spectrometry

IncRNAs Long non-coding rnas
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LPC Lysophosphatidylcholine

LXR Liver X receptor

LYCRPLs Phospholipids from large yellow croaker roe
MASLD Metabolic dysfunction-associated steatotic liver disease
MUFA Monounsaturated fatty acids

NAFLD Non-alcoholic fatty liver disease

NCDs Non-communicable diseases

NF-«B Nuclear factor kappa B

PBMCs Peripheral blood mononuclear cells

PCOS Polycystic ovary syndrome

PI3K Phosphatidylinositol 3-kinase

PPARs Peroxisome proliferator-activated receptors
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PUFAs Polyunsaturated fatty acids

RNA-seq RNA sequencing

SCFA Short-chain fatty acids

scRNA-seq Single-cell RNA sequencing

SIRT1 Silent information regulator T1

SPs Sphingolipids

T2DM Type 2 diabetes mellitus

TC Total cholesterol

TCA cycle Citric acid cycle

TPP Thermal proteome profiling

UPLC-Q-TOF-MSE  Ultra-performance liquid chromatography-quadrupole/time-of-flight
mass spectrometry

VAT Visceral adipose tissue

WAT White adipose tissue

WD Western diet

WOS Web of Science

12-OH-17,18-EpETE  12-hydroxy-17,18-epoxyeicosatetraenoic acid
17,18-EpETE 17,18-epoxyeicosatetraenoic acid
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