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Abstract
Traditional reliance on Body Mass Index (BMI) as a diagnostic tool for obesity is increasingly challenged due to its 
inability to differentiate between fat and lean mass and to capture fat distribution. Emerging evidence—including findings 
from our longitudinal study in Latino patients with obesity and insights from the 2025 Lancet Commission on Obesity—
suggests that a comprehensive evaluation of body composition is essential for accurate risk stratification. This review 
synthesizes historical perspectives and recent developments in obesity phenotyping, detailing how the field has evolved 
from simple BMI-based assessments to multifaceted approaches incorporating bioelectrical impedance analysis (BIA) and 
supplementary anthropometric measures such as waist circumference and waist-to-hip ratio. We also examine the meta-
bolic, genetic, and hormonal mechanisms underlying phenotypic variability, which help explain why individuals with simi-
lar BMIs may exhibit markedly different health risks. By integrating our original data with an extensive review of current 
literature, we demonstrate that refined obesity phenotyping can serve as an early indicator of progression from preclinical 
to clinical obesity. Such nuanced classifications offer the potential for more personalized therapeutic interventions aimed at 
optimizing weight loss outcomes and reducing cardiometabolic risk. Overall, our findings advocate for a multidimensional 
approach to obesity assessment that promises to improve clinical outcomes through tailored, phenotype-based strategies.

Graphical Abstract
 
Panel (A) illustrates the evolution of obesity diagnosis, contrasting traditional anthropometric measurements with modern 
technologies like bioelectrical impedance analysis (BIA) for accurate body composition assessment. Panel (B) represents 
the conventional assumption that weight loss follows a predictable trajectory with proportional reductions in fat and 
muscle mass. Panel (C) showcases our longitudinal study findings in 709 Latino patients with obesity who underwent 
nutritional and exercise interventions, revealing four distinct phenotypic trajectories: Lean Preservers (49%), Mass Reduc-
ers (32%), Mass Retainers (10%), and Adipose Overload (9%), demonstrating the importance of dynamic body composi-
tion assessment beyond static BMI-based classification
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1  Introduction

Obesity is a multifaceted chronic disease characterized 
by abnormal or excessive fat accumulation that poses sig-
nificant health risks [1, 2]. For decades, Body Mass Index 
(BMI) has served as the primary metric for classifying obe-
sity; however, BMI does not distinguish between fat mass 
and lean tissue, nor does it capture regional fat distribu-
tion—critical factors for assessing metabolic and cardio-
vascular risk [2–4]. Throughout the 20th century, various 

measures emerged to categorize populations in response to 
increasing mortality and healthcare costs linked to excess 
weight [5–7]. The 2025 Lancet Commission on Obesity, 
for instance, advocates for a nuanced diagnostic framework 
that differentiates between “preclinical obesity” (excess 
adiposity without evident organ dysfunction) and “clini-
cal obesity” (excess adiposity associated with measurable 
impairments in tissue or organ function) relying on a body 
composition perspective confirmed by multiple measure-
ment modalities [1].

Keywords  Obesity phenotypes · Body composition · Bioelectrical impedance analysis · Metabolic health · Personalized 
intervention · BMI limitations
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Furthermore, criteria established by NHANES—which 
incorporate additional anthropometric measures such as 
waist circumference, waist-to-hip ratio, and waist-to-height 
ratio—underscore the limitations of relying solely on BMI 
[8]. Notably, the study identified sex-specific fat mass index 
(FMI) cut-off points (e.g., ≥ 8 kg/m² for men and ≥ 11 kg/
m² for women), demonstrating significant differences by 
sex but no substantial variation by age or ethnicity [8]. Cur-
rent research has demonstrated that obesity phenotypes, 
characterized by distinct patterns of body composition and 
metabolic profiles, can significantly influence treatment 
outcomes and long-term health risks. In this review, we 
synthesize the evolution of obesity phenotyping, integrate 
our original findings with current literature, and discuss the 
clinical implications of employing advanced body composi-
tion assessments for personalized treatment strategies.

2  Evolution of obesity phenotyping

2.1  Historical perspective

BMI, introduced by Quetelet in 1832, was based on the 
relationship between weight and the square of height [9]. 
Throughout the 20th century, various measures emerged to 
categorize populations in response to increasing mortality 
and healthcare costs linked to excess weight [5–7]. How-
ever, the term BMI, widely used today, was introduced by 
Ancel Keys in 1971, who also emphasized its limitations in 
assessing adiposity [10].

Is BMI still useful? The answer is more complex than 
a simple yes or no. While BMI remains a valuable and 

practical public health tool for large-scale decisions with 
acceptable accuracy [11], the rise of precision medicine and 
advanced, cost-effective tools has shifted the focus to body 
composition [1, 2, 12]. In this context, patients with the 
same BMI can exhibit vastly different health risks, depend-
ing on their fat distribution and muscle mass [13, 14]. The 
evidence behind phenomena such as the “obesity paradox” 
in cardiovascular outcomes further highlights the impor-
tance of assessing body composition [15, 16].

3  Emergence of phenotypic classification

In response to these shortcomings, researchers have devised 
more sophisticated approaches to classify obesity by evalu-
ating both fat and muscle compartments. Early contributions 
from Baumgartner and Hattori laid the groundwork for this 
approach, focusing on the differentiation of patients based 
on fat and muscle mass compartments, moving beyond BMI 
to offer a more detailed perspective of health risks [2, 17, 
18]. This body composition–based framework expands our 
physiological understanding of obesity by delineating the 
differences between Metabolically Healthy Obesity (MHO) 
and Metabolically Unhealthy Obesity (MUO) [19–23]. In 
principle, these phenotypes correspond broadly with the 
latest definitions of “preclinical” and “clinical” obesity, 
respectively, emphasizing that excess adiposity, adipose 
tissue inflammation, and the ensuing metabolic derange-
ments can occur independently of overall body weight [1, 
2, 24–26].

Recent evidence yields three pivotal insights. First, 
where fat is stored matters more than how much is stored: 
visceral, subcutaneous, and ectopic depots confer distinct 
metabolic risks [27–30]. Second, the fat-to-muscle bal-
ance is critical; loss of skeletal muscle magnifies the met-
abolic burden of adiposity and sharpens risk stratification 
[31–34]. Third, any obesity taxonomy must capture the spe-
cific metabolic and inflammatory derangements driven by 
elevated adiposity, not weight alone [1, 14]. Clinically, this 
perspective yields four metabolic phenotypes—Metaboli-
cally Healthy Obesity (MHO) and Metabolically Unhealthy 
Obesity (MUO) in both normal-weight and individuals with 
obesity [14]. Figure 1 overlays metabolic status onto BMI 
categories, demonstrating that patients with identical BMI 
values can display markedly different metabolic profiles 
and reinforcing the need for a multidimensional assessment 
framework in obesity care.

Fig. 1  Classification of individuals based on body mass index (BMI) 
and metabolic health status. MUNO (metabolically unhealthy non-
obesity), MUNW (metabolically unhealthy normal weight), MUO 
(metabolically unhealthy obesity), MHNO (metabolically healthy non-
obesity), and MHO (metabolically healthy obesity) [14]
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characteristics and end follow-up data of the participants, 
delineating the group assignments, with each group letter 
corresponding to a specific phenotype.

Table 1. Summary of demographic and body composi-
tion metrics. Abbreviations: BMI (Body Mass Index), BFM 
(Body Fat Mass), FMI (Fat Mass Index), FFM (Fat-Free 
Mass), SSM (Skeletal Muscle Mass), PhA (Phase Angle). 
Follow-up metrics include number of appointments, follow-
up duration (months), adherence index (A Index), and group 
distributions with respective BMI changes.

5  Body composition assessment

Accurate estimation of body composition is fundamental 
in both clinical and research settings, and a wide array of 
methodologies has been developed to address this need. In 
routine practice, techniques such as Dual-Energy X-Ray 
Absorptiometry (DXA) are among the most commonly 
employed due to their accessibility and robust assessment 
of bone and soft tissue compartments [8, 35, 36]. At the 

4  Findings from our original research

Our longitudinal study involved 709 Latino patients who 
underwent a 12month intervention based solely on nutri-
tional guidance and exercise, with no surgical or pharma-
cological treatments. The study identified four distinct 
phenotypic trajectories in terms of body composition 
changes.

These are defined as follows:

	● Mass Reducers (Group A): Patients who lost both fat 
and muscle mass, serving as the reference group.

	● Lean Preservers (Group B): Patients who achieved fat 
loss while gaining or maintaining muscle mass.

	● Adipose Overload (Group C): Patients who gained fat 
while losing muscle mass.

	● Mass Retainers (Group D): Patients who experienced 
increases in both fat and muscle mass.

These dynamic phenotypic categories are crucial for 
refined risk stratification. Table  1 presents the baseline 

Baseline characteristics At end of follow-up
Median, n IQR, % Median, n IQR, % P Value

Age 44 (y/o) 35–55
Men 197 27.78%
Women 512 72.21%
Weight (Kg) 81.1 71.6–95 76.4 67.7–87.1 < 0.05
BMI (Kg/m2) 30.1 27.7–41.8 28.4 26–31.8 < 0.05
BFM (Kg) 33.8 27.7–41.8 29.2 23.9–36.5 < 0.05
FMI (Kg/m2) 12.8 10.2–16.2 11 8.9–14 < 0.05
FFM (Kg) 42 37.9–49.3 44.1 39.8–52.5 < 0.05
SSM (Kg) 22.9 20.4–27.3 24.1 21.5–29.2 < 0.05
PhA (o) 5.4 5–5.9 5.5 5–5.9 0.45
Follow-Up:
Appointments 6 4–10
Months 20 16–25
A_Index 0.24 0.19–0.46
Group A - 227 32.02%
Group B - 344 48.52%
Group C - 64 9.03%
Group D - 74 10.44%
BMI (A) 30.3 Kg/m2 27.5–34.9 28.2 Kg/m2 25.9–31.4 < 0.05
BMI (B) 30.3 Kg/m2 27.3–34.8 28.15 Kg/m2 25.1–31 < 0.05
BMI (C) 28.75 Kg/m2 26.8–31.8 29.85 Kg/m2 27.7–33 < 0.05
BMI (D) 28.75 Kg/m2 26.5–31.7 29.5 Kg/m2 26.9–33.1 < 0.05
FMI (A) 13.1 Kg/m2 10.5–16.5 10.9 Kg/m2 8.7–13.6 < 0.05
FMI (B) 13.2 Kg/m2 10.3–16.6 10.3 Kg/m2 8.5–13.4 < 0.05
FMI (C) 11.7 Kg/m2 10.4–14.6 12.9 Kg/m2 10.9–15.3 < 0.05
FMI (D) 11.20 Kg/m2 9.8–14 12.1 Kg/m2 10.4–15.7 < 0.05
SMM (A) 27.7 Kg 23.8–34.2 21.6 Kg 20–23.5 < 0.05
SMM (B) 21 Kg 18.8–23 26.9 Kg 23.6–33.4 < 0.05
SMM (C) 27.2 Kg 24.1–32.4 21.6 Kg 20.3–23.2 < 0.05
SMM (D) 21.3 Kg 19.6–23.9 26.5 Kg 23.7–31.3 < 0.05

Table 1  Baseline and Follow-Up 
characteristics

Summary of demographic and 
body composition metrics. 
Abbreviations: BMI (Body Mass 
Index), BFM (Body Fat Mass), 
FMI (Fat Mass Index), FFM 
(Fat-Free Mass), SSM (Skel-
etal Muscle Mass), PhA (Phase 
Angle). Follow-up metrics 
include number of appointments, 
follow-up duration (months), 
adherence index (A Index), and 
group distributions with respec-
tive BMI changes
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values, BIA provides an indirect yet reliable estimate of 
tissue composition and cellular integrity, a method that has 
been validated against other established tools such as DXA 
and MRI [40, 42]. In our study, we employed the SECA 
mBCA 514 device under standardized fasting conditions to 
ensure both reproducibility and reliability of the data [12, 
44, 45].

6.1  Comprehensive anthropometric and body 
composition assessment

Contemporary guidelines recommend supplementing BMI 
with additional anthropometric measures, such as waist 
circumference, waist-to-hip ratio, and waist-to-height ratio 
[1]. These measurements enhance the detection of visceral 
and ectopic fat—factors more closely linked to metabolic 
complications [27, 29, 30, 46]. The combined use of these 
complementary anthropometric measures with advanced 
techniques like BIA offers a comprehensive evaluation of 
body composition, which is essential for precise obesity 
phenotyping [45]. As depicted in Fig. 2, this dual approach 
integrates a bicompartmental assessment (quantifying fat 
and muscle mass) with an evaluation of fat distribution, 
thereby providing critical insights into metabolic risk and 
enabling more tailored therapeutic strategies.

forefront of advanced methodologies, imaging modalities 
such as Computed Tomography (CT) and Magnetic Reso-
nance Imaging (MRI) offer enhanced precision in quantify-
ing adipose and lean tissues, while tracer techniques such 
as deuterium dilution provide an accurate measurement of 
total body water, which can be used to estimate lean mass 
[37–40]. Collectively, these diverse methods underscore 
the inherent heterogeneity in body composition among 
individuals and reflect a concerted effort to derive accurate 
estimates of fat and muscle distribution. In our study, we 
integrate these advanced approaches—particularly Bioelec-
trical Impedance Analysis (BIA)—to further refine obesity 
phenotyping and to provide a comprehensive understanding 
of metabolic risk.

6  Bioelectrical impedance analysis (BIA)

Advances in technology have enabled more precise assess-
ments of body composition. BIA permits the quantification 
of critical parameters such as fat mass, fat-free mass (FFM), 
and phase angle (PhA) [40–42]. This technique relies on 
measuring differences in electrical resistance and reactance, 
which reflect the varying conductive properties of fat, mus-
cle, and other tissues [43]. By analyzing these impedance 

Fig. 2  Body Composition 
Assessment in Obesity Diag-
nosis: A Dual Approach. Left 
(Bicompartmental Approach): 
Focuses on quantifying body 
composition by assessing the 
proportions of fat mass and mus-
cle mass. This approach provides 
insight into the overall balance 
of tissue types within the body, 
helping to better understand 
the patient’s metabolic health. 
Right (Fat Distribution): Evalu-
ates where the fat is distributed 
within the body, emphasizing 
the importance of differentiating 
between visceral, subcutaneous, 
and ectopic fat. This is critical 
for understanding the metabolic 
risks associated with obesity, as 
fat distribution plays a key role 
in determining health outcomes
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cardiometabolic profiles, and reduce the incidence of obe-
sity-related comorbidities [47–52]. In addition, factors 
such as genetic predispositions (e.g., MC4R gene variants), 
hormonal regulation (including insulin, leptin, and peptide 
YY), and the composition of the gut microbiome contrib-
ute to the variability in treatment responses [48, 53–55]. 
Such personalized therapeutic strategies promise more 
effective management of obesity compared to conventional 
approaches that rely solely on BMI.

Our proposed phenotypes—Lean Preservers, Mass 
Retainers, Mass Reducers, and Adipose Overload—offer 
detailed insights into dynamic changes in body composition. 
These insights complement the new classification frame-
work on Obesity, which distinguishes between “preclinical 
obesity” (excess adiposity without evident organ dysfunc-
tion) and “clinical obesity” [1]. Our findings suggest that 
the dynamic trajectories observed in our study could serve 
as early indicators of progression from preclinical to clinical 
obesity. For instance, patients classified as “Adipose Over-
load,” who experience fat gain coupled with muscle loss, 
may be at a higher risk of developing metabolic dysfunction 
and organ impairment, thereby aligning more closely with 
the concept of clinical obesity [1, 27, 56]. Conversely, the 
“Lean Preservers” phenotype, characterized by effective fat 
loss with muscle preservation or gain, may indicate a main-
tained or even improved metabolic state despite an elevated 
BMI—corresponding to a preclinical condition [2, 31, 32, 
57]. Integrating these nuanced distinctions into the existing 
framework could improve the sensitivity and specificity of 
obesity classification, facilitating earlier and more targeted 
interventions. Figure 3 visually depicts these dynamic tra-
jectories. This visual summary reinforces the heterogeneity 
of obesity and suggests potential pathways for personalized 
treatment strategies by linking phenotypic changes with 
clinical outcomes.

7.2  Mechanisms underlying phenotypic variability

Understanding why obesity manifests so differently among 
individuals is a multifaceted challenge. A complex interplay 
of genetic, environmental, and behavioral factors contrib-
utes to the marked heterogeneity observed in obesity phe-
notypes [1, 46, 53, 54]. Genetic predisposition can influence 
metabolic pathways, adipocyte function, and even fat distri-
bution patterns, thereby setting the stage for individual vari-
ability [24, 54, 58]. Environmental exposures—including 
diet, physical activity, and socioeconomic factors—further 
interact with these genetic factors to shape how and where 
fat is stored, whether as visceral, subcutaneous, or ectopic 
deposits [53, 59]. Additionally, differences in inflammatory 
responses, hormonal regulation, and insulin sensitivity add 
layers of complexity, leading to distinct metabolic profiles 

7  Obesity phenotyping

7.1  Clinical implications of obesity phenotyping

In our study, we implemented a multinomial logistic regres-
sion analysis using the Mass Reducers group as the refer-
ence. Our analysis revealed that higher baseline fat-free 
mass (FFM) is linked to a lower likelihood of being classi-
fied as Lean Preservers (Group B), while robust adherence 
to treatment—as measured by our A-Index—significantly 
reduces the risk of transitioning to the Adipose Overload 
phenotype (Group C). These findings underscore the pivotal 
roles of both initial body composition and patient engage-
ment in determining therapeutic outcomes. Detailed out-
comes from these measurements are presented in Table 2.

Table  2. Multinomial regression coefficients (Coef), 
p-values, odds ratios (OR), and confidence intervals (CI) for 
predictors of phenotype classification in Groups B, C, and 
D. Abbreviations: BFM (Body Fat Mass), FFM (Fat-Free 
Mass), PhA (Phase Angle), A Index (Adherence Index). Sig-
nificant predictors include baseline body composition, age, 
sex, and adherence index, varying across groups.

Tailored interventions based on phenotypic classification 
have been demonstrated to enhance weight loss, improve 

Table 2  Multinomial regression analysis
Multinominal Regression

Coef P-Value OR IC
Group B
BFM -0.0208 0.052 0.979 0.959–1.000
FFM -0.169 0.000 0.845 0.812–0.878
PhA -0.4305 0.054 0.650 0.419–1.001
Age 0.0208 0.041 1. 021 1.001–1.041
Sex -0.0782 0.790 0.925 0.520–1.642
A_Index 0.8807 0.122 2.413 0.789–7.373
Group C
BFM -0.0381 0.022 0.963 0.931–0.995
FFM -0.0314 0.107 0.969 0.932–1.007
PhA 0.2403 0.417 1.272 0.712–2.271
Age -0.007 0.600 0.993 0.968–1.019
Sex -1.0046 0.021 0.367 0.155–0.862
A_Index -4.4483 0.000 0.012 0.001–0.099
Group D
BFM -0.0659 0.000 0.936 0.904–0.969
FFM -0.1492 0.000 0.861 0.820–0.904
PhA -0.7278 0.028 0.483 0.253–0.922
Age 0.0099 0.481 1.009 0.983–1.038
Sex -0.3575 0.366 0.699 0.321–1.519
A_Index -4.0162 0.000 0.018 0.002–0.153
Multinomial regression coefficients (Coef), p-values, odds ratios 
(OR), and confidence intervals (CI) for predictors of phenotype clas-
sification in Groups B, C, and D. Abbreviations: BFM (Body Fat 
Mass), FFM (Fat-Free Mass), PhA (Phase Angle), A Index (Adher-
ence Index). Significant predictors include baseline body composi-
tion, age, sex, and adherence index, varying across groups
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work within a dual set-point framework to fine-tune energy 
homeostasis [74–77]. This multifaceted response, which 
can vary considerably among individuals, partly explains 
why some people experience significant reductions in BMR 
and muscle loss while others preserve or even gain muscle 
mass. Such variability in metabolic adaptation underscores 
the insidious nature of obesity, revealing it as a disorder 
characterized by persistent and complex disturbances in the 
body’s regulatory mechanisms, thereby presenting consider-
able challenges for long-term therapeutic intervention [78].

Genetic and epigenetic influences  Our genetic makeup 
plays a pivotal role in determining susceptibility to obesity. 
Recent research has reinforced that specific genetic vari-
ant—most notably within the FTO gene, as well as others 
such as MC4R—significantly affect fat storage, energy 
balance, and metabolic efficiency [53, 54]. In tandem, epi-
genetic modifications, including DNA methylation, histone 
modifications, and non-coding RNA activity, mediate the 
impact of environmental factors on gene expression. These 
dynamic epigenetic processes not only influence the risk 
of obesity development but also contribute to the varied 
responses observed in weight loss interventions [53, 55]. 
Collectively, these findings highlight a complex interplay 
between inherited genetic factors and environmentally 
driven epigenetic changes, underscoring the need for per-
sonalized therapeutic strategies in obesity management.

Muscle-fat interactions  A direct relationship exists between 
muscle and fat, governed by a complex network of regu-
latory signals including adipokines and myokines [31, 32, 
34, 79]. According to Forbes’ theory, the interplay between 
these compartments is not linear but follows a sigmoid 

that may explain why some individuals develop metabolic 
complications while others do not [22, 23, 26, 60, 61]. 
Below is a breakdown of these mechanisms in a clear, step-
by-step manner.

7.3  Hormonal regulation

Recent endocrinology research has clarified the hormonal 
network that controls fat accumulation and overall energy 
balance [58, 62–64]. Insulin promotes glucose uptake and 
lipogenesis, but when tissues become resistant it instead 
channels surplus energy into adipose stores [65, 66]. Ghre-
lin heightens appetite, whereas adiponectin—released by fat 
cells—improves insulin sensitivity and reduces inflamma-
tion; its levels drop as body fat rises [67, 68]. The incretins 
GLP-1 and GIP boost glucose-dependent insulin secretion 
and enhance satiety, and newly developed dual incretin ago-
nists show the advantages of targeting several metabolic 
pathways simultaneously [67]. Together, these hormones 
and related peptides coordinate energy intake, storage, and 
expenditure, shaping each individual’s risk of excess adi-
posity and its metabolic complications.

Metabolic adaptation  Refers to the regulation of the energy 
balance equilibrium through a complex interplay of hor-
monal, neural, and metabolic mechanisms [58, 69, 70]. 
Recent evidence indicates that during caloric restriction, the 
body initiates intricate regulatory responses that not only 
lower basal metabolic rate (BMR) but also adjust energy 
consumption and expenditure [71–73]. These adjustments 
are influenced by central nervous system inputs that modu-
late appetite and energy output, as well as by hormonal sig-
nals—such as insulin, leptin, ghrelin, GLP-1, and GIP—that 

Fig. 3  Body Composition Phenotypes. (a) Body-composition pheno-
type classification criteria by groups of SMI (Skeletal Muscle Index) 
and FMI (Fat Mass Index) [17, 18]. The quadrants represent four 
possible phenotypes: Low Adiposity - High Muscle Mass (LA-HM), 
High Adiposity - High Muscle Mass (HA-HM), Low Adiposity - Low 

Muscle Mass (LA-LM), and High Adiposity - Low Muscle Mass (HA-
LM). (b) Proposed dynamic phenotypic trajectories during weight loss 
observed longitudinally: Lean Preservers (lose fat, gain muscle), Mass 
Retainers (gain both fat and muscle), Mass Reducers (lose both fat and 
muscle), and Adipose Overload (gain fat, lose muscle)
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7.5  Clinical implications

Embedding longitudinal body-composition phenotyping 
into routine obesity care shifts clinical focus from static 
BMI checkpoints to trajectory-based decision-making. 
By classifying patients as Lean Preservers, Mass Reduc-
ers, Mass Retainers, or Adipose Overload, clinicians can 
quickly discern whether weight change reflects true fat 
loss, adverse muscle loss, or hidden fat gain. Early detec-
tion of the Adipose Overload trajectory should trigger an 
immediate escalation or repositioning of nutritional, exer-
cise, and pharmacologic interventions to avert cardiometa-
bolic decline, whereas identifying Lean Preservers justifies 
intensifying obesity therapy while simultaneously safe-
guarding—or even augmenting—skeletal muscle. Incor-
porating these phenotypes into clinical guidelines could 
sharpen risk stratification, optimize resource allocation, 
and support more precise, patient-centred care, while also 
laying the groundwork for studies on the biological origins 
of divergent trajectories and for trials of phenotype-guided 
therapies.

8  Conclusions

Relying solely on BMI obscures the biological and clinical 
heterogeneity of obesity. A multidimensional assessment—
combining advanced body-composition analysis with com-
plementary anthropometric and metabolic markers—offers 
a far more accurate framework for risk stratification and per-
sonalized care. Our longitudinal findings, together with the 
broader evidence base, endorse this paradigm shift and show 
that early, phenotype-driven insights can flag progression 
from pre-clinical to clinical obesity. Embedding trajectory-
based phenotypes (Lean Preservers, Mass Reducers, Mass 
Retainers, Adipose Overload) into future guidelines will 
translate these insights into practice, enabling clinicians to 
intervene on meaningful body-composition changes rather 
than weight alone and ultimately improve cardiometabolic 
outcomes. Future research should unravel the biological, 
behavioural, and environmental determinants that govern 
selective gains and losses in fat and muscle compartments, 
paving the way for truly phenotype-guided prevention and 
treatment strategies.

Author contributions  R.R.R. and M.T. conceptualized and designed 
the study. R.R.R. contributed to data acquisition, data analysis, inter-
pretation of results, and drafted the manuscript. M.T. performed the 
statistical analysis, contributed to data analysis and interpretation, and 
drafted the manuscript. R.C., D.C., K.P., B.B., and M.G. provided crit-
ical revisions to the manuscript, and contributed to data analysis and 
interpretation. All authors reviewed and approved the final version of 
the manuscript.

curve [80]. Moreover, the endocrine functions of adipose 
and muscle tissues, through the release of specific adipo-
kines and myokines, intricately modulate anabolic and 
catabolic processes [81–84]. These regulatory mechanisms 
contribute significantly to the unique phenotypic patterns 
observed in obesity, emphasizing the importance of consid-
ering the dynamic balance between muscle and fat in thera-
peutic strategies.

Environmental and behavioral factors  Lifestyle choices, 
including dietary habits and physical activity, are pivotal 
in shaping obesity phenotypes [47, 59, 64, 85]. Adherence 
to a balanced diet and regular exercise not only supports 
the maintenance of muscle mass but also facilitates fat 
loss. Detailed dietary records and validated physical activ-
ity assessments offer valuable insights into these behaviors, 
which significantly influence an individual’s metabolic pro-
file [52]. By integrating these environmental and behavioral 
dimensions with biological mechanisms, clinicians can gain 
a more comprehensive understanding of the multifactorial 
nature of obesity and develop tailored treatment strategies 
that address the unique needs of each patient.

7.4  Limitations and future directions

Despite the promising insights provided by our multidimen-
sional approach to obesity phenotyping, several limitations 
must be acknowledged. Our study was conducted exclu-
sively within a Latino cohort, which may limit the general-
izability of our findings to other populations. Additionally, 
the retrospective design and the reliance on follow-up 
attendance—as measured by our A-Index—may not fully 
capture the complete spectrum of patient adherence and 
behavior during the intervention. Another significant limita-
tion is the absence of comprehensive metabolic data. With-
out detailed markers such as blood glucose, lipid profiles, 
and blood pressure measurements, it is challenging to fully 
correlate the identified phenotypes with metabolic risk. This 
gap underscores the need for future studies to incorporate a 
broader range of biochemical and clinical parameters.

Looking forward, there is a clear need for prospective, 
multicenter studies that integrate detailed metabolic, bio-
chemical, and genetic data to validate and refine obesity 
phenotyping systems. Enhanced measures of adherence—
such as 24–72  h dietary recalls and validated physical 
activity questionnaires—should be incorporated to provide 
a more comprehensive understanding of patient behavior. 
Furthermore, future research should adopt a multidisci-
plinary approach, integrating genetics, epigenetics, and 
behavioral sciences, to further elucidate the determinants of 
obesity phenotypes and to develop more precise, personal-
ized intervention strategies.
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