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Abstract
Decline of skeletal muscle function in old age is a significant contributor to reduced quality of life, risk of injury, 
comorbidity and disability and even mortality. While this loss of muscle function has traditionally been attributed 
to sarcopenia (loss of muscle mass), it is now generally appreciated that factors other than mass play a significant 
role in age-related muscle weakness. One such factor gaining increased attention is the ectopic accumulation of 
lipids in skeletal muscle, in particular, intramyocellular lipids (IMCLs). It has been appreciated for some time that 
metabolic flexibility of several tissues/organs declines with age and may be related to accumulation of IMCLs in a 
“vicious cycle” whereby blunted metabolic flexibility promotes accumulation of IMCLs, which leases to lipotoxicity, 
which can then further impair metabolic flexibility. The standard interventions for addressing lipid accumulation 
and muscle weakness remain diet (caloric restriction) and exercise. However, long-term compliance with both 
interventions in older adults is low, and in the case of caloric restriction, may be inappropriate for many older 
adults. Accordingly, it is important, from a public health standpoint, to pursue potential pharmacological strategies 
for improving muscle function. Because of the success of incretin-analog drugs in addressing obesity, these 
medications may potentially reduce IMCLs in aging muscles and thus improve metabolic flexibility and improve 
muscle health. A contrasting potential pharmacological strategy for addressing these issues might be to enhance 
energy provision to stimulate metabolism by increasing NAD + availability, which is known to decline with age and 
has been linked to reduced metabolic flexibility. In this narrative review, we present information related to IMCL 
accumulation and metabolic flexibility in old age and how the two major lifestyle interventions, caloric restriction 
and exercise, can affect these factors. Finally, we discuss the potential benefits and risks of select pharmacologic 
interventions in older adults.
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Introduction
Muscle weakness contributes to > 50% of all chronic con-
ditions in people over 50 [1], with one estimate suggest-
ing that it may account for 1.5% (i.e., >$40 billion) of total 
U.S. healthcare expenditures [2]. These costs are largely 
attributed to the losses of independence [3], increased 
risk of frailty and injury from falls [4–7]. At the extreme 
end of negative consequences is an independent asso-
ciation between weakness and increased mortality [8]. 
These costs and consequences are predicted to increase 
in a number of countries, including the U.S., due to the 
increasing age of their populations [9]. The emergence 
of the term sarcopenia to describe the age-related loss of 
muscle mass in the late 1980s [10] brought an increased 
interest in and focus on addressing muscle size deficits in 
older adults [11–17].

However, even at the outset of the increased study of 
sarcopenia, data emerged suggesting that loss of muscle 
size could not explain most, or even a major portion, of 
the impaired muscle performance (force, power, etc.) and 
physical function observed in old age [4, 18–20], findings 
also observed in animal studies [21–25]. Several terms 
have been used to express this age-related impairment in 
muscle performance that exceeds loss of muscle size (i.e., 
force per unit muscle tissue), including, but not limited 
to, specific force/tension, muscle quality, and dynapenia 
[26–30]. Although reductions in habitual physical activ-
ity with aging can no doubt contribute to the observed 
losses in muscle performance, the fact that aging tends 
to be associated with a fast to slow twitch myosin heavy 
chain (MHC) phenotype shift [13, 31, 32], while the 
opposite shift is more typical for disuse [33–36], suggests 
that reduced activity/exercise does not drive all of the 
changes seen in old age. Regardless of the term used, the 
preponderance of evidence from years indicates that loss 
of muscle performance has a greater negative impact on 
older adults than loss of mass [18, 20–25, 37–39]. These 
findings, coupled with observations that the hypertro-
phic response of aging skeletal muscle may be blunted 
[40–43], may explain why human and animals studies of 
interventions targeting muscle mass have often produced 
disappointing results with regard to performance gains 
interventions targeting mass often give limited, disap-
pointing results with regard to strength [44–51]. Given 
these observations, identifying and targeting factors 
contributing to the age-related impairment of muscle 
function is an important clinical priority. Several factors 
including, but not limited to, central neural drive, neuro-
muscular transmission, excitation-contraction coupling 
and myosin heavy chain profile have been explored, for 
reviews, see [30, 52, 53]. For this review, we will focus on 
ectopic lipid deposition (aka intramyocellular lipids) as 
a potential target for improving muscle performance in 
older adults, in part because of the recent increase in the 

use of the use of incretin-agonist drugs and the potential 
for these drugs to target ectopic muscle lipids. In addi-
tion, we discuss some alternative classes of drugs with 
potential to address age-related accumulation of ectopic 
lipids in skeletal muscle.

Age-related metabolic changes and muscular ectopic lipid 
deposition
One putative factor in the age-related decline of skeletal 
muscle function that has received increased attention 
over the past decade or more is accumulation of intra-
myocellular lipids (IMCLs), sometimes referred to as 
myosteatosis - though this term may also include sub-
cutaneous and inter-muscular adipose tissue [54]. This 
ectopic deposition of lipids in muscle is a hallmark of 
pathology in several conditions and is associated with 
inflammation, oxidative injury, insulin resistance and dis-
ruption of several cell functions, a condition referred to 
as lipotoxicity [55–57]. Skeletal muscle is no exception, 
and excess IMCLs, largely in the form of lipid droplets 
(LDs), are associated with impaired muscle function in 
conditions such as Type 2 diabetes and obesity, which 
have been described as accelerating aging, leading to 
increased adipose tissue combined with decreased mus-
cle and bone content that can impair quality of life [58, 
59]. However, aging and disuse, even in the absence of 
insulin resistance are associated with increased IMCLs 
[57, 60–63]. These excess ectopic lipids are believed to 
induce lipotoxicity, where dysfunctional lipid metabo-
lism promotes inflammation, oxidative injury and dis-
ruption of several cell functions, including maintenance 
of the neuromuscular junction (NMJ) [55–57, 64], all of 
which could impair neuromuscular function. Accord-
ingly, we suggest a hypothesis whereby aging muscles 
lack the metabolic flexibility to process the IMCLs in 
the way that younger muscles do [62, 65, 66], leading 
to lipotoxicity and its associated impairments. A set of 
interesting experiments in transgenic mice (carnitine 
palmitoyltransferase 1B knockout) have suggested that 
IMCL accumulation may not directly induce insulin-
resistance, but even these animals’ exhibited markers 
of muscle injury, disrupted metabolism and functional 
impairment, which were partially ameliorated by a low-
fat diet [67–69]. Compared to healthy older adults, stud-
ies report greater IMCLs in frail, mobility-impaired and 
high fall-risk older adults with reduced muscle perfor-
mance, who are at increased risk of death and disability 
([63, 70, 71]. Longitudinal studies indicate that increased 
IMCLs are predictive of losses of physical function (e.g., 
gait speed) that are associated with increased rates of 
morbidity and mortality (Beavers, 2013) [54]. Preclinical 
studies even report an association between lifespan and 
increased IMCLs (Schmeisser, 2019). Of note, increased 
IMCLs are observed in concert with reduced muscle 
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function in human and rodent models of disuse regard-
less of age, though the deficit is exacerbated by the com-
bination of old age and disuse [60, 72].

Interestingly, ectopic muscle lipid accumulation is 
not necessarily pathogenic, as illustrated by a phenom-
enon known as the Athlete’s Paradox. First reported, to 
our knowledge, in 2001 [73], this term has been used to 
describe the observation that fit, well-trained aerobic 
athletes exhibit high levels of IMCLs/LDs with no lipo-
toxicity or loss of muscle function [73–75]. While appar-
ently contradictory, this observation likely highlights the 
metabolic differences between exercise adaptation and 
the aging process with regard to metabolic flexibility. 
First described in the context of a shift between aero-
bic and anaerobic metabolism in parasitic worms [76], 
the term was adopted to describe the capacity to adjust 
metabolic rate and substrate utilization to changing 
environmental demands and substrate availability [77, 
78]. Thus, the well described shift from lipid to carbo-
hydrate (CHO) oxidation with increasing exercise inten-
sity [79–81] and back to lipid oxidation during rest and 
recovery is one example of metabolic flexibility related to 
metabolic demand. Indeed, IMCLs are reduced less fol-
lowing exercise in older vs. young adults, though later 
in the recovery period, the IMCL levels are similar [66]. 
This is interesting, because during the fasting and rest-
ing phase, metabolic flexibility drives a shift toward lipid 
vs. CHO metabolism. Older adults exhibit an elevated 
respiratory exchange ratio (reflecting greater CHO vs. 
lipid metabolism) during assessment of resting metabolic 
rate, and respiratory exchange ratio is positively asso-
ciated with weight (fat) gain in older adults (JC Seidell, 
1992). With imposed muscle disuse (e.g., bedrest, immo-
bilization), normal resting lipid oxidation is disrupted 
and these conditions are also associated with increased 
IMCL [62, 72, 82]. Together, these data suggest that loss 
of metabolic flexibility with aging leads to incomplete 
lipid oxidation that could contribute to IMCL accumula-
tion. On the supply-side, changes in metabolic flexibility 
are commonly assessed by manipulating diet. For exam-
ple, muscle β-oxidation increases in response to a high-
fat diet (HFD) [83–86], although excessive lipid content 
or duration of such diets can exceed this capacity, lead-
ing to ectopic lipid accumulation and impaired lipid 
metabolism [87–91]. Impaired metabolic flexibility with 
regard to both supply and demand perturbations has 
been reported in old age [65, 80, 89, 92] and ectopic lipid 
accumulation with aging, diabetes and obesity is associ-
ated with a blunted adaptation to exercise, all conditions 
that are associated with mitochondrial impairments. As 
normal mitochondrial function is essential to metabolic 
flexibility [93], the cause and effect sequence of IMCL 
accumulation and mitochondrial function remains equiv-
ocal and the two factors are likely linked in a “vicious 

cycle [94]. ” However, in old age, a metabolic shift 
resulting in reduced lipid turnover has been reported 
to precede the onset of sarcopenia [95]. Thus, impaired 
metabolic flexibility with aging leads to accumulation 
and reduced utilization of ectopic lipids that persist in 
skeletal muscle and may lead to increased serum free-
fatty acids from non-muscle sources [74, 96]. In contrast, 
healthy, trained individuals exhibit functional metabolic 
flexibility, and the training-induced increases in the stor-
age and utilization of carbohydrate (glycogen) and lipid 
[97–99] result in consistent, appropriate utilization of 
IMCLs. This prevents the lipotoxic effects on contractile 
and metabolic performance of skeletal muscle seen in 
aging [100], and explains the athlete’s paradox.

Lifestyle interventions for age-associated ectopic lipid 
accumulation
To date, the main interventions available to combat sarco-
penia and age-related muscle weakness are nutrition and 
exercise (Fig. 1). The effectiveness of these approaches is 
in line with the preceding discussion of metabolic flex-
ibility, as they affect the supply and demand aspects of 
metabolism, respectively, and have been shown to influ-
ence IMCL levels in both aging and obesity [59, 97, 99, 
101, 102].

Exercise
Aging is generally associated with a reduction in overall 
physical activity [103]. As noted above, muscle disuse 
leads to increased muscle lipid deposition and loss of 
muscle performance (weakness, fatigue, insulin resis-
tance, etc.). It is no surprise then that both life-long exer-
cise and exercise initiated at older ages can positively 
affect both muscle performance and muscle lipids in both 
human and animal models. Although there are effects of 
exercise on appetite that may increase caloric intake in 
older adults [104], the main effect is a regular increase in 
metabolic demand that can reduce IMCL accumulation. 
Indeed aerobic exercise in healthy, young adults has been 
shown to acutely reduce IMCL (Bucher, 2014), which 
may account for the Athlete’s Paradox described earlier. 
Thus, adoption of a regular exercise program may or may 
not reduce resting IMCLs, but promotion of appropriate 
metabolic utilization and turnover of IMCL to prevent 
the negative impact of lipotoxicity [105] might be more 
important than actual IMCL content. For example, high 
running wheel activity in a rat model of hyperphagic 
obesity exhibited reduced muscle lipid peroxidation vs. 
sedentary controls, despite similarly high levels of total 
muscle lipids [106]. Additionally, aerobic exercise may 
alter the muscle lipid profile and reducing lipotoxic inter-
mediates (Mendham 2021). Exercise has also been found 
to enhance metabolic flexibility of muscle [107], promot-
ing the complete oxidation of palmitate, the incomplete 



Page 4 of 12Russ et al. Lipids in Health and Disease          (2025) 24:197 

oxidation of which is associated with lipotoxic intermedi-
ates in muscle cells [108, 109]. Whether these effects of 
exercise are the same in aged individuals, as opposed to 
adults with obesity remains equivocal [110–112] and is 
likely influenced by long-term diet and physical activity 
patterns. A further concern for older adults is that aging 
increases risks for the frequency and duration of episodes 
of injury and illness resulting in muscle disuse relative to 
younger adults [113]. Evidence suggests that muscle dis-
use leads to a shift away from lipid toward carbohydrate 
oxidation has been shown with muscle disuse [62, 72, 82] 
similar to that seen with old age, potentially compound-
ing deficits in metabolic flexibility and leading to further 
IMCL accumulation. Furthermore, evidence suggests 
that the return to normal metabolism following disuse 
may also be blunted in old age (impaired “metabolic elas-
ticity” [81]), leading to a progressive increase in IMCL 
and decline in muscle performance with every episode of 
disuse.

Caloric restriction
Given the association between excess caloric intake, obe-
sity and IMCL, it is reasonable that a calorie restricted 
diet (CR) might reduce ectopic lipid accumulation in 
aging muscle. Indeed, a long-term calorie-restricted diet 
has been recognized for many years as a way to extend 
lifespan and reduce age-related physiological impair-
ments in a variety of organisms [114–116]. Classic CR 
can involve a reduction of 20% to as much as 50% of aver-
age caloric intake and tend to induce greater weight loss 
than exercise interventions alone [115, 117, 118]. Because 
of the long lifespan of humans, trials investigating truly 
long-term CR in humans are problematic, but lifespan, 

health span and muscular benefits of shorter-term CR 
have been reported in both human and animal models 
[119–121]. With regard to overall body weight and fat 
loss, evidence suggests that CR is more effective than 
exercise alone at reducing body weight and fat mass [115, 
122]. With regard to IMCLs greater loss of overall fat 
mass has been associated with greater loss of IMCL [114, 
123, 124], but the effects of CR have been shown to be 
mixed, with studies reporting increases, decreases and no 
change [124–127]. In addition, concerns with initiating 
CR in aged individuals have been raised for many years 
[128–130]. The main thrust of these reservations is cen-
tered around the fact that even overweight older adults 
can exhibit reduced muscle mass (sarcopenic obesity) 
and loss of muscle mass during CR could put older adults 
at high risk for clinically meaningful (i.e., disabling) 
weakness. Several reports have raised valid method-
ological issues with common measures and terminology 
related to fat-free mass, lean mass and muscle mass such 
that the oft-touted “25% rule” (~ 25% of weight lost with a 
typical lifestyle intervention regimen is muscle/lean mass 
[115]) is likely much more variable with regard to its 
impact on muscle [131, 132]. Nevertheless, any substan-
tial impact on muscle performance with CR could pose 
problems for older adults by the accelerated development 
or progression of sarcopenia, which could further impair 
muscle performance and functional mobility. A potential 
further complication of the use of CR in an older popula-
tion is common observation, in humans and animals, that 
weight regain following CR interventions appears to pref-
erentially favor increased fat mass vs. lean/muscle mass 
[123, 133], potentially due to altered lipid oxidation [134]. 
Indeed, the greater loss of weight and lean mass in CR vs. 

Fig. 1 Lifestyle and pharmacologic interventions for reducing IMCLs. Young, physically active adults generally maintain normal IMCLs with a varied, 
isocaloric diet. Older adults can reduce IMCLs with regular exercise. Individuals with obesity can reduce IMCLs with caloric restriction or anti-obesity 
medications. The use of such medications is being considered for older adults. Alternative pharmacologic approaches might also improve muscle lipid 
status, but current data are largely from preclinical studies. Created with https://BioRender.com
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exercise may put individuals at greater risk of weight and 
fat mass regain following CR [133, 135]. In older adults, 
who may exhibit reduced metabolic flexibility, this could 
promote further impair proper metabolic oxidation of 
lipids and increase ectopic lipid composition in addition 
to a relative loss of muscle: body mass.

Pharmacologic interventions to address ectopic muscle 
lipids
While the lifestyle interventions of exercise and nutrition 
described in previous sections are mainstays of preserv-
ing aging muscle performance and combatting sarcope-
nia, they have their limitations. Unfortunately, exercise 
participation among older adults is low and in a number 
of older adults may be precluded or limited due to age-
related co-morbidities, as well as social and environmen-
tal barriers [136–140]. Adherence to prolonged dietary 
restriction in humans is also poor [141] and so, while 
exercise and dietary strategies for older adults should be 
promoted and supported, pharmacological interventions 
should also be pursued.

Anti-obesity drugs: In recent years, the use of pharma-
cological analogs for the incretins Glucagon-Like Pep-
tide-1 (GLP-1) and glucose-dependent insulinotropic 
polypeptide (aka gastric inhibitory peptide; GiP) [142, 
143] has greatly increased. Initially developed as anti-
diabetic medications targeting reduced blood glucose 
and glycosylated hemoglobin, the findings that use of 
these drugs could lead to weight loss has led to their use 
in treating obesity. Indeed, they have been found to sig-
nificantly improve the efficacy and effectiveness of phar-
macological approaches to weight loss. A number of 
physiological aspects of aging are also found in obesity 
and diabetes (Fig.  2) including accumulation of ectopic 
lipids and lipotoxicity in metabolic organs such as liver, 
skeletal muscle and heart, as well as decreased mito-
chondrial number and activity [144–147]. These changes 
are associated with increased long and medium chain 

acylcarnitines and incomplete β-oxidation, which is fur-
ther exacerbated in Type 2 diabetes [148–151] in skeletal 
muscle. Because of the shared metabolic impairments in 
aging, obesity and diabetes, the idea of potentially using 
these new drugs to address sarcopenia and IMCL accu-
mulation in aging muscle is now being considered. While 
some newer, FDA-approved anti-diabetic drug classes 
are currently being studied for their possible effects on 
obesity (e.g., dipeptidyl peptidase-4 (DPP-4) inhibitors; 
sodium-glucose cotransporter-2 (SGLT2) inhibitors), 
fewer data on weight loss and body composition are 
available compared to the incretin analog medications 
[143].

Although a number of direct metabolic effects of these 
anti-obesity drugs have been evaluated in different tis-
sues, the majority of their effects are attributed to appe-
tite control and satiety [142]. Thus, they function largely 
through CR with minimal effects on energy expendi-
ture, consistent with reports that muscles do not express 
GLP-1 or GIP receptors [152]. Along with the positive 
effects on blood glucose, the popularity of these drugs 
centers around their greater effectiveness with regard to 
weight loss (and thus associated fat loss) when compared 
with CR through lifestyle intervention alone [115, 122]. 
Since fat mass and IMCL tend to be positively associated, 
these drugs may have potential to reduce IMCL in aging 
muscle. There are few studies of anti-obesity drug treat-
ment that directly evaluate IMCLs in either humans or 
animals [153–156], which report either decreases or no 
change in IMCL. However, none of these studies were 
conducted in aged humans or animals, and all involved 
models of obesity and/or Type 2 diabetes. Thus, the 
potential to improve muscle function in sarcopenia via 
IMCL metabolism remains unexplored. Moreover, this 
possible application comes with concerns similar to those 
for CR regarding effects on lean/muscle mass balanced 
against the potential ability to control lipid accumulation 

Fig. 2 Common mechanisms of reduced muscle mass and increased lipid accumulation in aging and obesity as compared to healthy, young adults. 
Created with https://BioRender.com
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in older adults, as these drugs also can reduce lean mass 
[142, 143, 157].

In addition, since the bulk of the weight- and fat-loss 
effects of these drugs is due to CR, driven by reduced 
appetite, weight regain tends to recur at a fairly rapid rate 
unless the drug regimen is retained. Long term compli-
ance with medications can be quite variable, and truly 
long-term GLP there is a similar concern that, during 
weight regain following treatment, accrual of fat mass 
and IMCLs could outstrip return of lean/muscle mass 
(Fig.  3). Indeed, human and animal studies report a 
greater proportion of fat as a fraction regained weight fol-
lowing GLP-1 receptor agonist treatment has been shown 
to exceed that seen when it is combined with exercise or 
as compared to exercise alone [123, 135]. Interestingly, a 
recent study using a rodent model of obesity found that 
GLP-1 receptor agonist (exenatide) treatment at a dose 
that improved serum glucose and insulin sensitivity, but 
not body or fat mass, reduced IMCL [154]. Though these 
animals were not aged, this finding does support further 
investigation of the potential for GLP-1 agonist drugs as 
a method for improving aged muscle quality, particularly 
in the absence of obesity. Finally, it should be noted that 
the bulk of the studies of these anti-obesity drugs have 
been understandably conducted in models of obesity and 

or diabetes, these conditions are not necessarily affect-
ing older adults, though incidence of both increases with 
age. Further, despite increased interest in sarcopenic obe-
sity, few studies (human or animal) have evaluated these 
drugs in older individuals. For example, a recent review 
paper [142] found only 4 of 24 studies involved partici-
pants with a mean age of ≥ 60 years and the study with 
the oldest sample (68 years) consisted of only 9 partici-
pants. Given the plethora of metabolic and neuromuscu-
lar changes occurring in old age, application of the new 
and future generations of anti-obesity drugs to older 
adults should probably best proceed on the assumption 
that results will differ from those seen on younger adults.

PCSK9 Inhibition
The proprotein convertase subtilisin/kexin type 9 
(PCSK9) is a protease that degrades low-density lipopro-
tein receptors [158]. The pharmacological mechanism 
of PCSK9 inhibitors is it allows the availability of LDL 
receptor, which thereby results in increased binding of 
LDL to its receptor and therefore removal of LDL from 
blood stream, overall this process is beneficial in disease 
conditions such as hypercholesterolemia, obesity and 
Type 2 diabetes [159, 160]. Inhibiting PCSK9 receptor 
binding and signaling significantly lowers the low-density 

Fig. 3 Potential divergent effects of “stimulatory” (green arrows) vs. “inhibitory” interventions (red arrows) on muscle size and IMCLs. While both inter-
ventions can reduce IMCLs, the stimulatory approaches may carry greater benefits related to promotion of muscle mass, as well as maintenance during 
periods where the intervention is removed (red circles: ). Created with https://BioRender.com
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lipoprotein levels in the blood similar to HMG-CoA 
reductase inhibitors (statins) and are aimed at treating 
obesity and diabetes associated cardiovascular diseases 
by lowering blood lipids. Lowering blood lipids is associ-
ated with reduced risk of such diseases, and might also 
mitigate the accumulation of IMCLs [161]. However, 
there are some concerns that PCSK9 inhibition might 
promote intrahepatic lipid accumulation [162]. New 
interventions such as MEDI4166, a PCSK9 antibody and 
glucagon-like peptide-1 (GLP-1) fusion molecule require 
further testing in models of aging and Type 2 diabetic 
patients [163].

NAD+-directed Medications
In contrast to the mechanistic strategy of the incretin-
analogue drugs, i.e., reducing the stimulus for exces-
sive energy (food) intake, an alternative pharmacologic 
approach could be to address the metabolic demand 
side of metabolic flexibility to target age-related accu-
mulation of ectopic lipids. As noted above, a key mani-
festation of metabolic flexibility is appropriate shifting 
between lipid and CHO metabolism and data indicate 
that sarcopenic older adults manifest reduced lipid oxi-
dation (though not lipolysis) during post-prandial rest-
ing metabolism and aerobic exercise [80] and has been 
found to precede onset of sarcopenia [95]. If an appro-
priate target for restoring metabolic flexibility in aged 
muscle could be identified and targeted, aging muscle 
might be (at least partially) maintained or restored. We 
propose that NAD+ (nicotinamide adenine dinucleo-
tide), an essential cofactor in the TCA cycle where lipid 
and CHO metabolism intersect is a potential target. It 
is a key factor in metabolism of all major biomolecules 
(lipids, carbohydrates, amino acids) as well as ATP syn-
thesis by the electron transport chain [164, 165], and 
reduced NAD + accompanies a loss of metabolic flexibil-
ity [166]. Reduced muscle NAD + is observed with aging, 
attributed to both increased consumption for specific 
biochemical processes and reduced synthesis. Increased 
consumption has been linked to excessive activation 
of poly-ADP ribose polymerase to address DNA dam-
age, which is known to increase with aging [167, 168]. 
Reduced synthesis is associated with reduced abundance 
and/or activity of nicotinamide phosphoribosyltransfer-
ase (NAMPT), the rate-limiting enzyme of intramuscular 
NAD + synthesis [169–171]. Some of the benefits of exer-
cise in aged muscle may be a result of the fact that aerobic 
exercise training can increase muscle NAMPT activity 
and NAD+ [170, 172, 173]. Thus, a drug that could pro-
duce a similar effect could have significant benefits for 
addressing sarcopenia and age-related muscle weakness. 
Pharmacological increases in NAD + has been shown to 
restore mitochondrial function in various preclinical 
models of aging [174]. We have found that administration 

of 3,6-dibromo-α-[(phenylamino)methyl]-9  H-carba-
zol-9-ethanol (P7C3), a NAMPT activator, increases 
NAD+, enhances voluntary strength and muscle con-
tractility [145] (in response to direct stimulation), and 
realigns pro-and anti-inflammatory lipids in a murine 
model of type 2 diabetes to better approximate those of 
healthy control mice, suggesting that metabolic func-
tion in muscle was reset to more complete lipid oxida-
tion. A similar association between increased NAD + and 
reduced hepatic ectopic lipids has been reported in a 
mouse model of diet-induced obesity [175]. As diabetes 
is associated with impaired metabolic flexibility [176], we 
suggest that P7C3 might have similar benefits for aging 
muscle. We hypothesize that increasing NAD + avail-
ability by NAMPT activation will normalize aging meta-
bolic flexibility and restore muscle β-oxidation, which 
will reduce the IMCL accumulation and lipotoxicity that 
inhibit recovery in aged muscle. Improved cellular energy 
stores might also result from NAMPT activation, which 
could enhance protein synthesis needed to rebuild mus-
cle, remodel the NMJ [177], and promote repair following 
the mechanical injury [178], all of which might improve 
muscle performance. To date, data from NAMPT activat-
ing drugs has been limited to preclinical studies. A few 
human studies have attempted to address NAD + defi-
ciency in aging and obesity though the use of exogenous 
NAD + precursors (e.g., nicotinamide riboside). However, 
these approaches have not shown improved muscle func-
tion [179], nor have they shown increased muscle NAD+ 
[180, 181]. However, other studies suggest that aging 
muscle is already not using endogenous precursors, as 
indicated by increased urinary 1-methylnicotinamide 
[182] (a marker of breakdown of unused NAD + precur-
sors [183]). We suggest substrate provision is insufficient 
if NAMPT activity remains low, making development 
of pharmacological interventions to increase NAD + via 
NAMPT activation to be a more promising strategy.

Summary
Maintaining sufficient muscle function to limit the risk 
of disability in older adults is a critical goal for geriatric 
care. Accumulating findings indicate that accumulation 
of ectopic lipids in muscle may be an important con-
tributor to age-related muscle weakness, due to a loss of 
metabolic flexiblity. Although the long-established inter-
ventions of exercise and diet can improve muscle func-
tion and lipid status, they require long-term behavior 
changes that older adult may not be able, or willing, to 
adopt, for a variety of reasons. One potential alternative 
strategy for addressing the contribution of ectopic lipids 
to age-related muscle impairments is the application of 
the incretin-analog drugs that are increasingly used to 
treat obesity. Notably, the application of these drugs in 
human and animal models of aging is limited, with a lack 
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of human clinical trials, raising potential concerns for 
their use in treating muscle weakness. The incretin ana-
log medications do reduce fat mass in obesity and DM, 
but there are concerns that they may reduce lean/muscle 
mass as well. In older adults, where loss of muscle mass 
is already an established problem, such an effet might 
have negative consequences that offset, or exceed the 
benefits accrued from a reduction in fat mass. Further 
study in aging models is needed to address these con-
cerns. One aspect of such medication regimens that has 
been explored even less is related to the discontinuation 
of treatment. During periods when older adults might 
suspend medication use, that fat mass will be regained 
to a greater extent than lean mass and potentially exac-
erbate the problem. A potential alternative pharmaco-
logical avenue for targeting ectopic lipids in aging muscle 
is increasing the supply of NAD + to promote metabolic 
flexibility. As metabolic flexibility is directly tied to mito-
chondrial function, the cause and effect relationship 
between IMCLs and mitochondrial dysfunction remains 
equivocal, but a “vicious cycle,” where each factor rein-
forces the other is likely present in aging. Though stud-
ies to date have been mostly limited to preclinical work, 
data suggest that increasing NAD + can stimulate meta-
bolic flexibility, reduce ectopic lipids and improve mus-
cle function in animal models of diabetes. Given that 
aging and diabetes share several metabolic and muscu-
lar impairments, it is not unreasonable to think NAD+ 
- promoting medications could have similar benefits for 
aging muscle, with less risk for loss of muscle mass than 
incretin- analog medications might pose. We suggest that 
further investigation of this possibility is warranted.
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