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Abstract

Cardiovascular diseases (CVDs) and Alzheimer’s disease (AD) are among the top 10 causes
of death worldwide. Accumulating evidence suggests connections between CVD risk
factors—including hypertension (HTN), hyperlipidemia (HLP), diabetes mellitus (DM),
obesity, and physical inactivity—and AD. The Mediterranean–DASH Intervention for
Neurodegenerative Delay (MIND) dietary pattern has recently garnered considerable
attention as a key preventive strategy for both CVDs and AD. While previous studies have
examined the connections between CVD risk factors and AD, they have not thoroughly
explored their underlying mechanisms. Therefore, the current literature review aims to
synthesize the literature and highlight underlying mechanisms from preclinical to clinical
studies to elucidate the relationship between CVD risk factors, AD, and the role of the
MIND dietary pattern in these conditions. The MIND dietary pattern emphasizes foods
rich in antioxidants and brain-healthy nutrients such as vitamin E, folate, polyphenols,
flavonoids, carotenoids, fiber, monounsaturated fatty acids, and omega-3 fatty acids. These
components have been associated with reduced amyloid-β accumulation in preclinical
studies and may contribute to the prevention of AD, either directly or indirectly by affecting
CVD risk factors. Despite the extensive evidence from preclinical and observational studies,
few clinical trials have investigated the effects of the MIND dietary pattern on cognitive
health. Therefore, long-term clinical trials are required to better understand and establish
the potential role of the MIND dietary pattern in preventing and managing AD.

Keywords: dietary interventions; hypertension; hyperlipidemia; diabetes mellitus;
obesity; amyloid-β

1. Background
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality

in the United States, with approximately 1 million annual deaths [1,2]. Annual healthcare
costs associated with CVDs represent a large economic burden, which is projected to
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quadruple (from USD 393 billion to 1490 billion) and triple (from USD 400 billion to USD
1344 billion) between 2020 and 2050, respectively [3]. Both modifiable and non-modifiable
risk factors contribute to the etiology of CVDs, with non-modifiable risk factors including
age, biological sex, ethnicity, and family history of CVDs, and common modifiable risk
factors including hypertension (HTN), hyperlipidemia, diabetes, obesity, physical inactivity,
and smoking [4].

The relationship between CVD risk factors and the development of CVDs is com-
plex, attributable to various pathways and mechanisms [5]. For example, a dysfunctional
endothelium, characterized by reduced vasodilation, increased proliferation of vascular
smooth muscle cells, and a proinflammatory/prothrombotic state, greatly contributes to
CVD risk factors, including HTN, hypercholesterolemia, and insulin resistance [6]. Ad-
ditionally, elevated oxidative stress—which can occur as a result of poor dietary intake,
hyperlipidemia, smoking, insulin resistance, obesity, and stress—contributes to endothelial
dysfunction and vascular damage in the pathogenesis of CVD [6,7]. Collectively, these
mechanisms play crucial roles in the pathophysiological processes that lead to the develop-
ment of atherosclerosis [8,9].

Noticeably, previous epidemiological studies have shown that CVDs and Alzheimer’s
disease (AD) share common risk factors [10–12]. AD, the most common type of dementia,
currently affects approximately 6.9 million Americans aged 65 and older, a number pro-
jected to rise to 13.5 million by 2026 [13]. AD is the fifth leading cause of death in adults
over the age of 65 in the U.S. and is another significant contributor to economic burden,
with the cost of health care for older adults with dementia estimated to be USD 360 billion
in 2024 [13].

CVDs and AD are interconnected through multiple biological mechanisms, such as
endothelial dysfunction, oxidative stress, inflammation, and disruption of the blood–brain
barrier (BBB) (Table 1). For example, chronic HTN and hypercholesterolemia can lead to
endothelial dysfunction, which is associated with increased levels of amyloid-β (Aβ) and
tau protein—key biomarkers of AD [14–16]. Furthermore, oxidative stress and inflamma-
tion, which contribute to CVDs through vascular damage, atherosclerosis, and impaired
nitric oxide (NO) signaling, also promote amyloidogenesis and tau hyperphosphoryla-
tion [17–19]. The accumulation of Aβ around neurons and the hyperphosphorylation of tau
protein ultimately result in the formation of amyloid plaques and neurofibrillary tangles
(NFTs), respectively, which are central to the predominantly hypothesized pathogenesis of
AD [20]. Therefore, considering the associations between CVDs and AD, a comprehensive
prevention strategy that could simultaneously reduce the risk of both conditions is of
great interest.

It has been well documented that healthy dietary patterns play a significant role in
preventing and managing CVD risk factors [21–23]. This is particularly true for dietary
patterns rich in fruits, vegetables, whole grains, nuts, seeds, and legumes [23]. The Mediter-
ranean dietary pattern is known for its emphasis on olive oil, vegetables, fruits, cereals,
nuts, fish, and pulses/legumes, along with a moderate intake of red meats, dairy products,
and red wine. The Dietary Approaches to Stop Hypertension (DASH) diet is another well-
established plant-based dietary pattern that focuses on a high intake of fruits, vegetables,
nuts, seeds, legumes, lean meats, fish, poultry, and low- or non-fat dairy, while restricting
sweets, saturated fats, and especially sodium [24]. A substantial body of evidence sup-
ports the cardioprotective effects of the Mediterranean and DASH dietary patterns [25,26].
Additionally, current studies are investigating the potential of these dietary patterns as a
preventive measure for cognitive disorders, including AD [27].
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Table 1. Overview of Cardiovascular Disease Risk Factors and Their Proposed Mechanisms in Alzheimer’s Disease Pathogenesis.

CVD Risk Factor CVD-Related Mechanisms AD-Related Mechanisms Evidence Type Strength of Evidence Reversibility

HTN Endothelial dysfunction, cerebral
hypoperfusion, BBB disruption

Elevated Aβ and tau pathology;
damage to myelin and synapses Human, Animal Strong Partially reversible with

blood pressure control

Dyslipidemia Lipid accumulation, oxidative stress,
mitochondrial dysfunction

Alters Aβ production; associated
with cholesterol metabolism genes
(e.g., APOE, SORL1)

Human, Animal,
Genetic Moderate to Strong Partially reversible with

statins/diet

DM Insulin resistance, cardiac
remodeling, increased inflammation

Enhances Aβ accumulation (via
reduced insulin-degrading enzyme
activity); promotes tau
hyperphosphorylation

Human, Animal Strong Partially reversible with
glycemic control

Obesity Adipokine dysregulation, oxidative
stress, RAAS activation

Increased APP and Aβ in adipose
tissue; elevated plasma Aβ; BBB
disruption; mitochondrial
dysfunction

Human, Animal Moderate Partially reversible with
weight loss

Smoking Endothelial damage, inflammation,
oxidative stress

Increases Aβ aggregation and tau
pathology via oxidative stress Human, Animal Strong Largely irreversible, but

further damage preventable

Physical Inactivity Impaired glucose/lipid metabolism,
endothelial dysfunction

Increase neuroinflammation,
accelerating the accumulation of Aβ

and tau protein; reduces BBB
integrity

Human, Animal Moderate Reversible with regular
physical activity

Abbreviations: Aβ, amyloid-β; APP, amyloid precursor protein; APOE, apolipoprotein E; BBB, blood–brain barrier; DM, diabetes mellitus; HTN, hypertension; RAAS, renin–angiotensin–
aldosterone system; SORL1, sortilin-related receptor 1.
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In 2015, Morris and colleagues proposed the Mediterranean–DASH Intervention for
Neurodegenerative Delay (MIND) dietary pattern, a hybrid of the Mediterranean and
DASH dietary patterns specifically designed to protect cognitive health by emphasizing
consumption of the foods and nutrients that protect against cognitive decline and inci-
dent dementia [27]. The MIND dietary pattern emphasizes ten brain-protective foods,
including green leafy vegetables, other vegetables, berries, nuts, beans, whole grains,
fish, poultry, olive oil, and wine, while restricting the intake of cheese, red meat and its
products, fast foods or fried foods, pastries, sweets, butter, and margarine [27]. Although
the MIND dietary pattern shares key components with the Mediterranean and DASH
dietary patterns, it uniquely highlights berries and leafy greens, with serving sizes based
on diet–dementia study findings [28]. Accumulating evidence suggests a positive associ-
ation between adherence to the MIND dietary pattern and improved cognitive function
through different mechanisms, including inflammatory pathways [29,30]. This protective
effect may be attributed to components of the MIND dietary pattern, which include an-
tioxidants and brain-healthy nutrients such as vitamin E, folate, polyphenols, flavonoids,
carotenoids, fiber, monounsaturated fatty acids (MUFAs), and omega-3 fatty acids, which
may inhibit Aβ deposition and contribute to the prevention of AD, either directly or
indirectly by affecting CVD risk factors [31–38]. Additionally, adherence to the MIND
dietary pattern has also been associated with reduced CVD risk factors, supporting its
role in promoting both cardiovascular and cognitive health [39]. Therefore, the MIND
dietary pattern might be a key lifestyle strategy for reducing the risk of both CVDs and AD
simultaneously (Figure 1).

Figure 1. The MIND Dietary Pattern as a Central Preventative Strategy for Cardiovascular Diseases
and Alzheimer’s Disease.

Although previous evidence suggests the MIND dietary pattern as a potential preven-
tion and management strategy for both conditions, research remains limited in examining
the overlapping mechanisms between CVD risk factors and AD, as well as in evaluating
clinical evidence specifically related to AD. Therefore, the current literature/narrative re-
view aims to synthesize the published literature and highlight the underlying mechanisms
from preclinical to clinical studies to elucidate the relationship between CVD risk factors,
AD, and the role of the MIND dietary pattern in these conditions. To identify relevant stud-
ies a broad literature search in databases including PubMed, Scopus, and Web of Science
from inception until April 2025 was used. Keywords included combinations of ‘MIND diet’,
‘cardiovascular disease’, ‘Alzheimer’s disease’, ‘oxidative stress’, and ‘cognition’. Due to
the narrative nature of the review, no formal inclusion/exclusion criteria were defined, and
selection was based on relevance and quality of evidence.
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2. CVD Risk Factors and AD
2.1. Hypertension

Among the CVD risk factors, HTN has the most robust causal evidence [40]. Chronic
uncontrolled HTN can lead to hypertensive heart disease, which refers to a range of
abnormalities in the left ventricle (LV), left atrium, and coronary arteries [41]. Common
complications of hypertensive heart disease include diastolic heart failure, systolic heart
failure, or a combination of both [41].

Longitudinal studies found that blood pressure levels are elevated long before (even
decades before) the onset of AD [42,43]. Additionally, these studies suggest that midlife
and late-life HTN are associated with increases in pathological changes associated with
AD [44]. For example, a study by Lennon et al. revealed that midlife HTN, stage 1
(systolic blood pressure > 140 mmHg) and stage 2 (systolic blood pressure > 160 mmHg),
are associated with an 18% and 25% increase in the risk of AD, respectively [44]. The
exact mechanisms for this co-occurrence are still unclear and are being investigated. It
has been suggested, however, that HTN may result in altered cerebral autoregulatory
mechanisms by damaging the cerebral vasculature endothelium. This can ultimately lead
to cerebral hypoperfusion and, subsequently, cognitive deficits [45]. Furthermore, studies
have reported an association between high blood pressure and a disrupted BBB, which is
an early sign of AD. HTN-induced oxidative stress in cerebral vessels leads to increased
activity of matrix metalloproteinases, which degrade tight junction proteins of the BBB [46].
When glial cells release these enzymes, they have the potential to harm both myelin and
synapses [47]. Myelin impairment has been identified as early indicator of AD pathology,
occurring before the onset of typical pathological changes such as formation of NFTs [48].
However, it remains unclear whether myelin damage directly triggers amyloidogenesis [48].

2.2. Dyslipidemia

Studies have suggested that serum lipids could accumulate in the heart, triggering
oxidative stress and inflammatory cardiac fibrosis, reducing autophagy and microvascular
density, and altering the mitochondrial function of cardiomyocytes [49]. These changes
make the myocardium more susceptible to damage, potentially resulting in cardiac dys-
function and electrophysiological alterations. Therefore, reducing serum lipid levels may
help to reverse early ventricular dysfunction and offer cardioprotective effects [49].

Moreover, several studies, from laboratory to clinical investigations, have explored
the relationship between lipids and/or lipid-lowering treatments and AD, and they have
indicated a positive association between dyslipidemia and the risk of AD [50–53]. These
results are supported by genetic linkages and observational studies, which have identified
multiple distinct genes involved in cholesterol metabolism or transport as susceptibility
genes for AD. These include apolipoprotein E (APOE), apolipoprotein J (APOJ, also known
as CLU), ATP-binding cassette subfamily A member 7 (ABCA7), and the sortilin-related
receptor (SORL1) [50,54–58]. Cell biology studies provide additional evidence for the
key role of lipid raft cholesterol in regulating the processing of Aβ precursor protein by
β-secretase and γ-secretase, which results in altered Aβ production [50,59,60]. Moreover, a
substantial body of population-based observational studies has shown that 3-hydroxy-3-
methylglutaryl coenzyme A reductase inhibitors, known as statins, may protect against
the risk of AD and dementia [61–64]. However, the majority of randomized controlled
trials (RCTs) have found no beneficial effects of statins on cognitive decline or dementia
risk [65–69]. These null results can be explained by the relatively short period of these trials
and the inclusion of patients with advanced AD [50].
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2.3. Diabetes Mellitus

CVDs are the leading cause of morbidity and mortality among individuals with
DM, the majority of whom (approximately 90–95%) have type 2 diabetes (T2DM) [70,71].
T2DM can be involved in the development of CVD directly or indirectly by its role in the
development of other CVD risk factors such as obesity, dyslipidemia, or HTN [72]. T2DM
may play a direct role in the development of cardiomyopathy, beyond its known association
with coronary atherosclerosis and HTN [72]. This form of diabetic cardiomyopathy has
been observed in numerous noninvasive studies, highlighting structural and functional
changes in the LV of adults with diabetes [72]. Notably, people with diabetes tend to exhibit
greater cardiac mass, particularly LV mass, compared to people without diabetes [73,74].
This increased cardiac mass, or hypertrophy, may be associated with the elevated release of
adipocyte-derived cytokines, such as leptin and resistin, which exert hypertrophic effects on
cardiomyocytes [75,76]. Moreover, T2DM has also been linked to a higher risk of myocardial
infarction, which might be attributed to increased coagulability in T2DM [72,77].

An extensive body of epidemiological studies suggests that people with T2DM are at
a higher risk of developing AD [78,79]. Several mechanisms have been proposed for this
relationship, including the role of insulin resistance in exacerbating Aβ and tau pathologies.
Insulin resistance, a key characteristic of T2DM, can enhance the production and release
of Aβ by reducing its breakdown via the insulin-degrading enzyme [80–83]. In addition,
insulin resistance disrupts the PI3K/AKT/GSK-3β signaling pathway, resulting in the
formation of hyperphosphorylated tau [83,84]. This condition also causes synapse loss,
impairs autophagy, and increases neuronal apoptosis [83]. These changes may initiate a
chain reaction that leads to the abnormal buildup of Aβ and tau, ultimately contributing
to the development of AD pathology. Overall, these findings suggest that DM increases
susceptibility to AD [85].

2.4. Obesity

Obesity may affect CVD through its association with other known risk factors such
as insulin resistance, HTN, metabolic syndrome, T2DM, and atherosclerosis [86]. These
conditions are promoted by visceral white adipocyte tissue dysfunction through chron-
ically elevated pro-inflammatory adipokines (compared to people without obesity), ox-
idative stress, renin–angiotensin–aldosterone system activation, and an adverse gut mi-
crobiome. Inflammation and oxidative stress in adipose tissue lead to a decrease in the
production of adiponectin, and elevated secretion of resistin, leptin, and pro-inflammatory
adipokines and cytokines. These changes contribute to increased arterial stiffness and
reduced vascular relaxation and ultimately lead to cardiac diastolic dysfunction [17]. Fur-
ther, activation of the renin–angiotensin–aldosterone system in obesity, which plays an
important role in the hemostasis of the cardiovascular system, stimulates inflammation
and structural remodeling under pathophysiological conditions, thus inducing cardiac and
vascular injury [17,86,87].

Epidemiological studies have reported a higher risk of AD in people who are over-
weight or obese [88,89]. There are several potential explanatory mechanisms for this
relationship, with an emphasis on the positive correlation between high-fat-diet-induced
obesity and Aβ accumulation [90,91]. Studies have reported increased amyloid precursor
proteins (APPs), known as the precursor molecule that generates Aβ through its proteolysis
in adipose tissue and Aβ in the plasma of people with obesity compared to those without
obesity [92,93]. The increase in Aβ plasma levels in middle-aged people with obesity may
be due to enhanced adipocyte APP gene expression [93]. Chronically elevated Aβ plasma
levels may lead to elevated transportation of Aβ into the human brain through Receptors
for Advanced Glycation End (RAGE) products and ultimately contribute to the develop-
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ment of AD [90]. Further possible mechanisms for the relationship between obesity and
AD include the production of proinflammatory cytokines and adipokines, excess oxidative
stress generation and mitochondrial dysfunction, insulin resistance, loss of BBB integrity,
and ceramide production [90].

2.5. Smoking

Smoking is perhaps the best known risk factor for CVDs, with substantive evidence
showing that it contributes to cardiovascular morbidity and mortality [94,95]. The primary
processes involved in smoking-induced CVDs—particularly atherogenesis—include en-
dothelial dysfunction and damage, increases in and oxidation of proatherogenic lipids,
reductions in high-density lipoprotein (HDL), heightened inflammatory status, and a shift
in the circulatory system toward a procoagulant state [96]. In brief, through a reduction
in NO bioavailability, smoking can induce vascular dysfunction, which leads to increased
expression of adhesion molecules and ultimately endothelial dysfunction [96,97]. The
smoking-induced heightened adhesion of platelets and macrophages creates a procoag-
ulant and inflammatory environment [96,98]. Following transendothelial migration and
activation, macrophages absorb oxidized lipoproteins produced through oxidative modi-
fications, transforming into foam cells, which play a crucial role in lipid deposition and
plaque formation within the arterial walls [96].

Smoking is also a well-established risk factor for AD, and previous studies have
revealed that smokers have a higher risk of cognitive impairment and AD compared to
non-smokers [99]. Based on in vitro, animal, and human studies, chronic exposure to
cigarette smoke and nicotine is associated with oxidative stress [100,101]. Smoking is
closely associated with cerebral oxidative stress, which promotes β-secretase cleavage of
APPs and contributes to abnormal tau phosphorylation [101–104]. Therefore, smoking-
induced oxidative stress may directly upregulate the amyloidogenic pathway, leading to Aβ

oligomer production and extracellular fibrillar Aβ aggregation [101]. Oxidative stress also
causes abnormal tau phosphorylation, a fundamental process underlying neurofibrillary
tangle pathology [101].

2.6. Physical Inactivity

Globally, 7.6% of CVD deaths are attributable to physical inactivity, defined as not
obtaining at least 150 min of moderate-intensity or 75 min of vigorous-intensity physical
activity per week, or an equivalent mix of both [105]. Physical inactivity may lead to the
impairment of glucose homeostasis and lipid metabolism through a reduction in muscle
glucose transporter type 4 content and insulin-stimulated glucose uptake [106]. Physical
inactivity may also decrease the activity of lipoprotein lipase, which leads to impairment
in triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C) metabolism and
ultimately results in the development of CVDs [106,107].

Estimates suggest that approximately 13% of all AD cases worldwide may be at-
tributable to physical inactivity [108]. Moreover, studies have revealed that people with
high levels of sedentary behavior, commonly defined as activities involving an energy
expenditure of ≤1.5 metabolic equivalents (METs) while sitting, reclining, or lying down,
are at a higher risk of AD development compared to those with lower levels of sedentary
time [109–111]. This association may be explained by sedentary behavior’s impact on neu-
roinflammation, potentially accelerating the accumulation of Aβ and tau protein [112,113].
The accumulation of Aβ plaques in AD causes the activation of microglia, a category
of mononuclear phagocytes/macrophages of hematopoietic origin, found in the central
nervous system, resulting in synaptic phagocytosis and therefore, neurodegeneration. An-
imal and human studies have shown that regular physical activity has the potential to
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inhibit microglial activation and improve AD pathogenesis by reducing the expression
of inflammatory cytokines (e.g., Interleukin-1β and tumor necrosis factor-α) [114–116].
Regular physical activity and exercise may also improve endothelial function by increas-
ing the frictional forces, such as shear stress, exerted on the endothelium of the vascular
walls by blood flow [114]. Endothelial shear stress triggers the production of vasodilatory
substances, including NO, and enhances the expression and activation of endothelial NO
synthase, thereby facilitating revascularization [114,117]. These mechanisms ultimately
protect the integrity of the BBB [118].

3. MIND Dietary Pattern and CVD Risk Factors
3.1. MIND Dietary Pattern and Hypertension

Although previously reported results from studies of the relationship between adher-
ence to the MIND dietary pattern and HTN risk have not been conclusive, some obser-
vational studies have suggested a significantly lower prevalence of HTN in participants
with higher adherence to the MIND dietary pattern compared to those with lower adher-
ence [119–121]. The beneficial effect of the MIND dietary pattern on blood pressure was
confirmed in one RCT by Yau et al. (Table 2) [122].

Table 2. Summary of Clinical Trials on the MIND Diet and Cognitive/Cardiometabolic Outcomes.

Study Country
Sample
Size Population Duration

Outcomes
Measured Key Findings

Yau et al.
(2022) [122] China 78 Older Chinese

adults 4 weeks BP, glucose, HDL-C,
mental health

↓ BP, ↓ glucose, ↑
HDL-C,
improved mental
well-being

Gholami et al.
(2024) [123] Iran 84

Adults with
metabolic
syndrome

12 weeks
Weight, BMI, WC,
SBP, DBP, FBS,
HDL-C, TG

↓ BMI, WC, BP,
FBS, TG; ↑
HDL-C.

Arjmand et al.
(2022) [124] Iran 40

Middle-aged
over-
weight/obese
women

12 weeks

Cognitive
performance, brain
MRI (IFG surface
area), BMI, WHR,
body weight

↑ working
memory,
attention, verbal
memory; ↑ IFG
surface area; ↓
BMI, WHR,
weight

Elsayed et al.
(2022) [125] Egypt 68

Postmenopausal
women with
hormone
deficiency

12 weeks
Cognitive &
functional level, sex
hormone markers

↑ cognition and
functionality
with MIND +
aerobic exercise
vs MIND alone

Barnes et al.
(2023) [126]

United
States 604 Older overweight

adults 3 years

Global cognition,
MRI brain markers
(WMH,
hippocampal
volume)

No significant
difference in
cognition or MRI
outcomes vs
control; both
groups improved
slightly

Abbreviations: BMI, body mass index; BP, blood pressure; DBP, diastolic blood pressure; FBS, fasting blood
sugar; HDL-C, high-density lipoprotein cholesterol; IFG, inferior frontal gyrus; MIND, Mediterranean–DASH
Intervention for Neurodegenerative Delay; MRI, magnetic resonance imaging; SBP, systolic blood pressure; TG,
triglycerides; WC, waist circumference; WMH, white matter hyperintensities; WHR, waist-to-hip ratio.
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The MIND dietary pattern recommends high consumption of fruits and vegetables,
which are associated with a high intake of potassium, magnesium, and fiber. These com-
ponents are associated with lower blood pressure in observational and interventional
studies [127,128]. Additionally, this dietary pattern limits the intake of highly processed
foods that contain high amounts of sodium. Although the effects of sodium on blood
pressure vary among individuals, salt-sensitive individuals may experience HTN due
to excessive dietary salt intake (Table 3) [129]. As compared to people with usual salt-
sensitivity, individuals who have salt-sensitivity that results in elevations in blood pressure
have a dysfunctional renin-angiotensin system, meaning there is reduced renin stimulation
during salt depletion, and the system fails to adequately suppress renin in response to
high salt intake, thereby worsening the adverse effects of salt on blood pressure [130,131].
Moreover, evidence suggests that adequate potassium intake—which is promoted by the
MIND dietary pattern due to its emphasis on fruits and vegetables—is desirable to achieve
lower blood pressure [132]. Several explanations have been proposed for this effect of
potassium, including its role in reducing vascular smooth muscle contraction by altering
membrane potential or restoring endothelium-dependent vasorelaxation [133,134]. How-
ever, due to the U-shaped associations between high serum potassium levels and the risks
of adverse outcomes in observational studies, excessive potassium supplementation should
be avoided [132]. Moreover, the preponderance of evidence supports a protective effect
of magnesium against HTN [37,135,136]. Magnesium—which is promoted by the MIND
dietary pattern due to its emphasis on green leafy vegetables, whole grains, legumes, and
seeds—acts as a calcium channel blocker [37,135,136]. It prevents sodium from attaching to
vascular smooth muscle cells, increases the production of the vasodilating prostaglandin E,
and binds potassium cooperatively. Additionally, magnesium boosts NO levels, improves
endothelial function, promotes vasodilation, and lowers blood pressure [37].

3.2. MIND Dietary Pattern and Dyslipidemia

Overall, previous investigations have shown beneficial effects of the MIND dietary
pattern on lipid biomarkers [39]. Observational studies have reported a positive associ-
ation between the MIND dietary pattern and HDL-C, and a negative association with
total cholesterol (TC)/HDL-C ratio [121,137,138]. However, some differences have been
observed across studies concerning the association between the MIND dietary pattern and
TG, which have been attributed to overall high meat and margarine consumption within
the populations studied, items that are limited in the MIND dietary pattern [39,121,138].
Furthermore, two clinical trials explored the potential effects of the MIND dietary pattern
and confirmed its beneficial role in dyslipidemia [122,123]. The RCTs reported reductions
in TG, TC, and low-density lipoprotein cholesterol (LDL-C) in participants who adhered to
the MIND dietary pattern compared to the control group (Table 2) [122,123]. Additionally,
one of the RCTs reported a significant increase in HDL-C in the MIND diet group compared
to the control group [123], whereas the other found no significant effect, potentially due
to the relatively shorter duration of the study (4 weeks) compared to the other (12 weeks)
(Table 2) [122].

The beneficial effects of the MIND dietary pattern on lipid biomarkers can be ex-
plained by the dietary components it promotes and limits. The MIND dietary pattern
is characterized by high amounts of vegetables, berries, nuts, beans, and whole grains,
resulting in a high fiber intake. Accumulating evidence supports the lipid-lowering effects
of fiber (Table 3) [31–33].
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Table 3. Nutritional Components of the MIND Dietary Pattern and Their Proposed Effects on CVDs and AD.

Dietary Component Key Nutrients Proposed Effects on CVD Proposed Effects on AD

Green leafy vegetables Folate, potassium, magnesium, fiber Lower BP via vasodilation and
endothelial support

Reduces oxidative stress, lowers
homocysteine levels, supports cognitive
resilience

Berries Polyphenols, flavonoids Anti-inflammatory, improves lipid profile Protects against Aβ accumulation and
oxidative damage

Nuts MUFAs, vitamin E, polyphenols Improves HDL-C, lowers LDL-C, reduces
inflammation

Enhances synaptic function, reduces tau
pathology

Whole grains Fiber, B vitamins, antioxidants Lowers cholesterol, improves glycemic
control

Produces SCFAs, reduces inflammation,
improves gut-brain axis

Fish Omega-3 PUFAs Reduces TGs and inflammation Downregulates NF-κB, lowers BACE1
activity, reduces Aβ and tau production

Olive oil MUFAs, polyphenols, vitamin E Improves lipid profile, lowers BP, reduces
oxidative stress

Has antioxidant and anti-amyloidogenic
effects

Beans and legumes Folate, fiber, magnesium Supports lipid and glucose metabolism Reduces oxidative stress and
inflammation

Restricted items (e.g., red/processed
meats, sweets, butter) Saturated fats, sodium, refined sugars Reduces risk of obesity, dyslipidemia,

HTN
Promotes Aβ accumulation and cognitive
decline

Abbreviations: Aβ, amyloid-β; AD, Alzheimer’s disease; BACE1, β-site amyloid precursor protein-cleaving enzyme 1; BP, blood pressure; CVD, cardiovascular disease; HDL-C, high-
density lipoprotein cholesterol; HTN, hypertension; LDL-C, low-density lipoprotein cholesterol; MUFAs, monounsaturated fatty acids; NF-κB, nuclear factor kappa-light-chain-enhancer
of activated B cells; PUFAs, polyunsaturated fatty acids; SCFAs, short-chain fatty acids; TGs, triglycerides.
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Several mechanisms have been proposed to explain how dietary fiber reduces serum
lipids: for example, fiber binds to bile acids, increases viscosity, and creates bulk in the
small intestine, which suppresses the absorption of glucose and lipids [33]. Additionally,
dietary fiber promotes the production of short-chain fatty acids (SCFAs), which have a lipid-
lowering effect, and modulates genes associated with lipid metabolism [33]. Moreover,
by promoting the consumption of olive oil, fish, and nuts, the MIND dietary pattern
provides appropriate proportions of polyunsaturated fatty acids (PUFAs) and MUFAs.
Evidence has suggested that the consumption of MUFAs, which can be found in vegetable
oils such as olive and canola, is associated with increased HDL-C levels and decreased
LDL-C and TG [139–141]. Furthermore, the omega-3 PUFA family, which can be found
in flaxseed, walnuts, chia seeds, soybeans, hemp seeds, algae, mackerel, herring, and
salmon, contributes to the inhibition of the endogenous synthesis and esterification of
cholesterol, an increase in cholesterol excretion in the bile, and bile salt synthesis [142].
Additionally, omega-3 PUFAs contribute to lowering plasma TGs by lowering very low-
density lipoprotein (VLDL) synthesis in the liver [142]. Other potential mechanisms for the
benefits of the MIND dietary pattern on hyperlipidemia include the antioxidant content
of the MIND dietary pattern, such as polyphenols and flavonoids, which can inhibit the
synthesis of endogenous cholesterol and decrease the risk of CVDs [142].

3.3. MIND Dietary Pattern and Diabetes Mellitus

Despite some inconsistency among the results of observational studies that have
investigated the relationship between the MIND dietary pattern and T2DM, the majority
have reported a negative association between adherence to the MIND dietary pattern and
the risk of T2DM and glucose levels [121,137,138,143,144]. Notably, these findings are in
line with the results of the two available RCTs by Yau et al. and Gholami et al., which
reported reductions in glucose levels in participants assigned to the MIND diet intervention
compared to the control groups (Table 2) [122,123].

The MIND dietary pattern can contribute to the prevention of T2DM through several
mechanisms, including reductions in inflammation and insulin resistance. As inflammation
is a key mechanism in the pathogenesis of CVD risk factors and especially T2DM, the
benefits of the MIND dietary pattern on T2DM can be attributed to its rich antioxidant
and anti-inflammatory compounds [36]. Dietary antioxidants, including vitamins A, E,
and C, plant polyphenols, carotenoids, flavonoids, glutathione, alpha-lipoic acid, and
polyamines, are known for their protective effects against T2DM (Table 3). Studies have
shown that antioxidant treatments, including dietary antioxidants and supplements, protect
beta-cells from oxidative stress-induced apoptosis, help maintain beta-cell function, and
reduce complications associated with T2DM [145,146]. Furthermore, dietary fiber may
improve insulin resistance through gut microbiome-derived SCFAs, while PUFAs do so
by the suppression of TLR2/4 signaling and activation of the peroxisome proliferator-
activated receptor [147].

3.4. MIND Dietary Pattern and Obesity

Previous studies have revealed a significant beneficial effect of the MIND dietary
pattern on obesity and anthropometric indicators, including reduced waist circumference,
body mass index (BMI), and waist-to-hip ratio (WHR) [121,122,124,125,137]. In particular,
clinical trials have reported reductions in waist circumference, BMI, WHR, and body weight
for MIND dietary pattern groups in comparison to control groups [122–125]. However, the
effects of the MIND dietary pattern on body fat percentage were inconsistent, potentially
due to the heterogeneity in body fat at baseline [39].
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The favorable effects of the MIND dietary pattern on anthropometric indices can
be attributed to several mechanisms, including the restriction of high-calorie foods and
emphasis on the increased consumption of fiber and antioxidants. Limiting high-calorie
foods, such as highly processed foods or sweets, can result in a lower energy intake
and, ultimately, a lower prevalence of obesity (Table 3). The protective mechanism of
fiber against obesity includes decreased absorption of macronutrients and enhanced sati-
ety [34]. Additionally, beneficial alterations in gut microbiota and SCFA production may
underpin the protective effects of high-fiber diets against obesity and may suggest their
potential role in the treatment of obesity [34,35]. Moreover, recent studies highlight the
role of oxidative stress in the development of obesity by stimulating the deposition of
adipose tissue, including preadipocyte proliferation, and adipocyte differentiation and
growth [148,149]. Therefore, a high intake of antioxidants in the MIND dietary pattern may
also contribute to the prevention of obesity.

4. MIND Dietary Pattern and AD
The impact of the MIND dietary pattern on AD goes beyond the relationship between

CVD risk factors and AD, involving neuroprotective antioxidant and anti-inflammatory
pathways, transcriptomic changes linked to cognitive resilience, and gut microbiota
modulation (Figure 2).

One of the central mechanisms for the association between the MIND dietary pattern
and AD involves the high content of antioxidants, such as vitamin E, vitamin C, carotenoids
(e.g., lutein, beta-carotene), and polyphenols found in green leafy vegetables, berries, nuts,
and olive oil (Table 3). These components play a crucial role in neutralizing reactive
oxygen species (ROS), which are elevated in patients with AD and contribute to Aβ plaque
formation by upregulating the amyloidogenic processing of APP, mainly through the
increased activity of enzymes like β-site APP-cleaving enzyme 1 (BACE1) and γ-secretase,
enzymes involved in the production of Aβ peptides [150,151]. Additionally, antioxidants
hold the potential to reduce oxidative stress, which can trigger the phosphorylation of
tau, reducing its ability to bind to microtubules, which leads to their destabilization and
ultimately contributes to the development of NFTs [18].

The MIND dietary pattern is rich in anti-inflammatory components such as omega-3
fatty acids, which downregulate microglial activation and pro-inflammatory signaling
pathways such as nuclear factor kappa B (NF-κB) [152,153]. Downregulation of NF-κB is
associated with decreased BACE1 expression and ultimately lower Aβ production [154].
Moreover, folate, found abundantly in green leafy vegetables and legumes—foods empha-
sized in the MIND dietary pattern—contributes to a reduction in the plasma homocysteine
level, which is elevated in AD [155,156].

Recent studies suggest that soy isoflavones, especially genistein, could have a positive
role in AD through antioxidant, anti-inflammatory, and estrogenic effects. In vitro and
in vivo studies have shown that genistein enhances antioxidant gene expression, supports
neuronal survival during apoptosis, and reduces amyloid-β accumulation by modulating
BACE1 activity and oxidative stress pathways [157–160]. Additionally, a recent RCT
by Viña et al. found a significant reduction in amyloid-β accumulation in the anterior
cingulate gyrus and improvements in cognitive performance after 12 months of genistein
supplementation in patients with prodromal AD [161]. Furthermore, a systematic review
and meta-analysis of RCTs demonstrated that genistein supplementation could significantly
reduce several CVD risk factors, including TC, LDL-C, systolic and diastolic blood pressure,
fasting blood glucose, fasting insulin, HOMA-IR, and homocysteine levels, which could
consequently reduce the risk of AD [162].
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Figure 2. Proposed Biological Mechanisms Linking the MIND Diet to Cardiovascular Disease
and Alzheimer’s Disease Pathology. Abbreviations: Aβ, amyloid-β; BBB, blood–brain bar-
rier; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;
SCFA, short-chain fatty acids; TG, triglycerides; MIND, Mediterranean–DASH Intervention for
Neurodegenerative Delay.

Emerging evidence suggests a role for the MIND dietary pattern in promoting cogni-
tive resilience through transcriptomic changes linked to brain health [38]. A cross-sectional
study by Li et al. explored the connection between the MIND dietary pattern and AD
by using RNA sequencing data from post-mortem prefrontal cortex tissue and annual
cognitive evaluations from 1204 participants. Their results revealed that the adherence
to the MIND dietary pattern, compared to those with lower adherence, was correlated
with a specific brain transcriptomic profile, consisting of 50 genes, which were associ-
ated with slower cognitive decline and lower odds of dementia [38]. For example, the
immune response regulator (TCIM) gene, which showed the strongest positive correla-
tion with the MIND diet score, encodes a transcriptional and immune-response regulator
that activates the wingless-related integration site/beta-catenin (Wnt/β-catenin) signaling
pathway [163]. This pathway plays a role in neuronal development and survival, and it
suppresses APPs by downregulating BACE1. Additionally, evidence suggests a negative
association between Wnt/β-catenin pathway activation and tau phosphorylation, mediated
through the regulation of glycogen synthase kinase-3β (GSK-3β), a key enzyme involved in
tau hyperphosphorylation [164].

Moreover, clinical studies on AD patients have shown that diets rich in antioxidant
and anti-inflammatory nutrients promote the growth of beneficial gut microbiota, which
are often diminished in AD [165]. One such example is the Bifidobacterium, which plays
a role in maintaining a balanced microbial state (eubiosis) [165]. When this balance is
disrupted (dysbiosis), it can lead to the production of bacterial toxins that contribute
to brain amyloidogenesis [166,167]. Specifically, dysbiosis may result in the release of
neurotoxic metabolites such as lipopolysaccharides (LPSs), which can cross the BBB, trigger
neuroinflammation, and upregulate amyloidogenic enzymes like BACE1 and γ-secretase,
ultimately leading to increased Aβ production [168].
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5. Discussion
There is a substantial body of evidence that supports the connections between CVDs

and AD [10–12]. Additionally, the pathologies of these conditions start decades before
the development of clinical events such as myocardial infarction, heart failure, cognitive
impairment, or death. Therefore, there is a prolonged window of opportunity to implement
prevention strategies in order to reduce the risk of both CVDs and AD simultaneously.

Due to the connections between CVDs and AD, the management of CVD risk factors,
including HTN, dyslipidemia, DM, obesity, smoking, or physical inactivity, might be critical
for the prevention of both CVDs and AD. Healthful dietary patterns, in particular, hold
the potential to contribute to the prevention of most CVD risk factors, and ultimately,
AD [30,39,169]. Specifically, healthy plant-based dietary patterns including Mediterranean,
DASH, or the MIND dietary pattern are associated with reduced risk of both CVD risk
factors and AD [39,170]. Convincing evidence from both observational studies and clin-
ical trials has suggested a beneficial role for the MIND dietary pattern in CVD preven-
tion [39,122,123]. In agreement with the current narrative review, a systematic review
and meta-analysis by Akbar et al. found that the MIND dietary pattern was significantly
associated with reduced CVD risk, including anthropometric measures, blood pressure,
glycemic control, lipid profiles, and inflammation [39]. Furthermore, evidence suggests
that the strongest positive associations between dietary pattern and cognitive function were
observed for the MIND dietary pattern [171].

While experimental human studies remain limited, recent systematic review articles
explored animal and epidemiological studies and revealed a strong negative association
between adherence to the MIND dietary pattern and dementia [30,169]. However, the three
available RCTs to date have reported conflicting findings (Table 2) [30,146,147,172]. For
example, an RCT conducted in the U.S. by Barnes and colleagues found no effect of a 3-year
MIND diet intervention on cognitive function in older adults who were overweight [126].
In contrast, a relatively small Iranian trial by Arjmand et al. involving middle-aged women
with obesity demonstrated short-term beneficial cognitive effects of the MIND diet interven-
tion [172]. After a 3-month intervention, participants in the MIND diet group demonstrated
improvements in cognitive function compared to the control group. The observed inconsis-
tencies among existing RCTs may stem from methodological limitations, including short
intervention durations (e.g., 12 weeks in Arjmand et al. [124] and Elsayed et al. [125] versus
3 years in Barnes et al. [126]), relatively small sample sizes (n = 40–68 in the Arjmand et al.
and Elsayed et al. studies), lack of blinding, heterogeneity in baseline cognitive function,
differences in control groups, and the inclusion of participants with a family history of
cognitive disorders (Barnes et al. study). Additionally, the outcome measures varied
considerably—from subjective neuropsychological assessments such as working memory,
attention, and verbal fluency to objective neuroimaging outcomes, including hippocampal
volume and white matter hyperintensities. Future studies should prioritize standardized
protocols, longer durations, and consistent, validated tools for the assessment of cognitive
health (Table 2).

The beneficial impacts of the MIND dietary pattern for CVDs and AD can be explained
by the role of the MIND dietary pattern in reducing CVD risk factors, neuroinflamma-
tion and oxidative stress, transcriptomic changes linked to cognitive resilience, and gut
microbiota modulation (Figure 3).
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Figure 3. Mechanistic Pathways Linking the MIND Dietary Pattern to Alzheimer’s disease. Abbreviations: Aβ: amyloid-β; BACE1: β-site amyloid precursor
protein-cleaving enzyme 1; BBB: blood–brain barrier; CVD: cardiovascular disease; GSK-3β: glycogen synthase kinase 3 beta; HDL-C: high-density lipoprotein
cholesterol; LDL-C: low-density lipoprotein cholesterol; LPSs: lipopolysaccharides; MIND: Mediterranean–DASH Intervention for Neurodegenerative Delay;
NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NO: nitric oxide; RAAS: renin–angiotensin–aldosterone system; ROS: reactive oxygen species;
SCFAs: short-chain fatty acids; TG: triglycerides; TCIM: transcriptional and immune response modulator gene.



Nutrients 2025, 17, 2328 16 of 25

The MIND dietary pattern is rich in antioxidants, fiber, MUFAs, omega-3 fatty acids,
polyphenols, and flavonoids. These components promote vascular health, improved lipid
profiles, enhanced glucose metabolism, and better anthropometric indices through vari-
ous mechanisms, particularly through decreased inflammation (Table 3) [31–37]. These
improvements can ultimately result in improved cerebral blood flow, decreased neuroin-
flammation and enhanced neurogenesis and can promote neuroplasticity, which collectively
affect Aβ production and metabolism [170]. It is also worth noting that the beneficial im-
pacts of the MIND dietary pattern on cognitive and cardiovascular health may extend
beyond individual foods. Rather than isolated foods and nutrients, the synergistic effects
of the overall dietary pattern may better predict health outcomes.

While our narrative approach has provided a broad synthesis of mechanisms, it may
have overlooked other nuanced interactions due to the non-systematic literature selection
and potential selection bias. Additionally, most available studies emphasized positive
associations, which may have limited our ability to reflect mixed, null, or negative findings.
Therefore, prospective studies employing systematic methodologies—including systematic
reviews, meta-analyses of intervention studies, and carefully controlled prospective cohort
designs—are needed to further validate these mechanisms and findings. Additionally,
future research should explore currently understudied areas in greater depth—particularly
the influence of the MIND dietary pattern and other nutritional interventions on the tran-
scriptomic changes associated with cognitive resilience, as well as the temporal dynamics,
dose-dependent effects, and robust human clinical evidence required to clarify these rela-
tionships. Lastly, the current evidence has focused mainly on exploring individual nutrients
and foods rather than the MIND dietary pattern as a whole. This underscores the need for
future research to investigate the complex interactions, synergistic effects, and both acute
and chronic impacts of dietary patterns as integrated systems.

6. Conclusions
There is a substantial body of evidence to support the connections between CVD

risk factors and AD. The MIND dietary pattern has been suggested to play a beneficial
role in these conditions through multiple distinct mechanisms, including reductions in
oxidative stress and inflammation, modulation of the gene expression associated with
cognitive resilience, improvements in vascular and metabolic health, preservation of BBB
integrity, inhibition of amyloid-β and tau pathology, and gut microbiota modulation. Based
primarily on preclinical studies, the MIND dietary pattern may inhibit Aβ deposition and
contribute to the prevention of AD, either directly or indirectly by affecting CVD risk factors.
However, only three RCTs have investigated the effects of the MIND dietary pattern on
cognitive health, with inconsistent findings. Therefore, further long-term RCTs are required
to elucidate the potential role of the MIND dietary pattern in preventing and possibly in
managing the symptoms of AD.

Author Contributions: Conceptualization, N.S.A. and A.A.K.; writing—original draft preparation,
A.A.K.; writing—review and editing, S.S., A.W., J.D.F., S.K.R., R.R.R. and N.S.A.; visualization, A.A.K.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.



Nutrients 2025, 17, 2328 17 of 25

Abbreviations
The following abbreviations are used in this manuscript:

Aβ Amyloid-beta
AD Alzheimer’s Disease
APOE Apolipoprotein E
APOJ Apolipoprotein J
APP Amyloid Precursor Protein
BBB Blood–Brain Barrier
BMI Body Mass Index
CVDs Cardiovascular Diseases
DASH Dietary Approaches to Stop Hypertension
DM Diabetes Mellitus
GSK-3β glycogen synthase kinase-3β
HDL-C High-Density Lipoprotein Cholesterol
HLP Hyperlipidemia
HTN Hypertension
LPSs Lipopolysaccharides
LV Left Ventricle
METs Metabolic Equivalents
MIND Mediterranean–DASH Intervention for Neurodegenerative Delay
MUFAs Monounsaturated Fatty Acids
NF-κB Nuclear Factor kappa B
NFTs Neurofibrillary Tangles
NO Nitric Oxide
PUFAs Polyunsaturated Fatty Acids
RCTs Randomized Controlled Trials
RAGE Receptors for Advanced Glycation End
ROS Reactive Oxygen Species

SCFAs Short-Chain Fatty Acids
SORL1 Sortilin-Related Receptor
T2DM Type 2 Diabetes Mellitus
TCIM Transcriptional and Immune-response Modulator
TG Triglyceride
VLDL Very Low-Density Lipoprotein
Wnt/β-catenin wingless-related integration site/beta-catenin
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