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Abstract

There is evidence for the involvement of mitochondrial dysfunction, oxidative stress,
ferroptosis, and inflammation in the pathogenesis of obesity. This, in turn, indicates a novel
potential therapeutic role for supplemental coenzyme Q10 (CoQ10) in the management
of obesity, due to the role of CoQ10 in promoting normal mitochondrial function, as an
antioxidant, and as an anti-ferroptotic and anti-inflammatory agent. In the present article
we have, therefore, reviewed the potential role of CoQ10 in the prevention and treatment
of obesity. A potential role for supplementary CoQ10 (in combination with selenium) in
preserving skeletal muscle mass in obese individuals undergoing weight loss procedures is
also discussed.

Keywords: obesity; mitochondrial dysfunction; oxidative stress; ferroptosis; inflammation;
coenzyme Q10

1. Introduction

Obesity refers to the accumulation of excess body fat that presents a risk to health, and
it is a growing global health concern, affecting millions worldwide and placing significant
burdens on healthcare systems [1]. Individuals are classified as obese when their body mass
index (BMIL; the weight divided by the square of the height in meters) is over 30 kg/m?.
A BMI value in the range 25-30 is classified as being overweight. Although widely used,
BMI as a measure of obesity has its limitations, since it does not differentiate between
fat and muscle mass, or consider body fat distribution, which can result in a misleading
interpretation of an individual’s health risks.

In the UK, the current prevalence of obesity is approximately 25% of the adult popula-
tion. Causes of obesity include excessive dietary calorie intake, lack of exercise, medical
conditions such as an under-active thyroid, the effect of certain medications such as steroids,
and genetic factors [2]. Obesity increases the risk of developing a number of disorders,
including metabolic syndrome/type II diabetes, non-alcoholic fatty liver disease (NAFLD),
cardiovascular disease (heart disease, hypertension, atherosclerosis, stroke), certain types
of cancer (endometrial, breast, colon), and osteoarthritis [3]. The treatment of obesity in
the first instance is based on dietary modification and exercise; other therapeutic options
include the use of drugs such as orlistat, GLP-1 receptor agonists (GLP-1 RAs) such as
semaglutide, and bariatric (weight loss) surgery [4].At the biochemical level, there is evi-
dence for the involvement of mitochondrial dysfunction, oxidative stress, and inflammation
in the pathogenesis of obesity, as reviewed in the following sections. This, in turn, indicates
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a novel potential therapeutic role for supplemental coenzyme Q10 (CoQ10) in the manage-
ment of obesity, due to the role of CoQ10 in promoting normal mitochondrial function, as
an antioxidant, and as an anti-inflammatory and anti-ferroptotic agent [5]. As the preva-
lence of obesity continues to rise, exploring innovative therapeutic approaches such as
supplementation with CoQ10 could provide new avenues for intervention. In the present
article, we have, therefore, reviewed the potential role of CoQ10 in the prevention and
treatment of obesity. The inter-relationship between obesity, mitochondrial dysfunction,
inflammation, and ferroptosis has been summarised in Figure 1.
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Figure 1. Schematic representation of the mechanistic interplay between obesity and mitochondrial
dysfunction, and the regulatory actions of Coenzyme Q10 (CoQ10), based on current literature.
Arrows are annotated with “+” (promoting effect) or “—" (inhibitory effect) to indicate the direc-
tionality of influence. Obesity exerts a multifaceted impact on cellular homeostasis. It promotes
inflammation (+), oxidative stress (+), ferroptosis (+), and phospholipid peroxidation (+). Inflam-
mation and oxidative stress are closely interlinked: inflammation increases oxidative stress (+), and,
in turn, oxidative stress can sustain or amplify inflammatory responses (+), forming a reinforcing
loop. Ferroptosis, a regulated form of cell death driven by iron-dependent lipid peroxidation, is
independently promoted by both obesity (+) and increased phospholipid peroxidation (+). Coenzyme
Q10 (Co-Q10), a lipid-soluble antioxidant and essential component of the mitochondrial electron
transport chain, attenuates several key pathological features. It reduces inflammation (—), oxidative
stress (—), ferroptosis (—), and phospholipid peroxidation (—), suggesting a broad protective role
across these interconnected pathways. Additionally, Co-Q10 supports the action of vitamins E and C
(+), which themselves exert anti-inflammatory (—) and antioxidant (—) effects.

2. Mitochondrial Dysfunction and Obesity

Mitochondria have a key role in the metabolism of normal adipocytes, oxidizing
metabolic fuels to produce ATP and generating heat during thermogenesis. However,
mitochondrial function is impaired in obese individuals. The supply of excess nutrients
associated with obesity can saturate the tricarboxylic acid cycle and the electron transport
chain [6], reducing the ability to regenerate oxidized nicotinamide adenine dinucleotide
(NAD+). The resulting mitochondrial dysfunction is characterised by a reduction in mi-
tochondrial mass, impaired mitochondrial membrane potential, reduced mitochondrial
oxygen respiration, decreased fatty acid oxidation, increased mitochondrial Ca?* flux,
and low cellular ATP levels [7]. This, in turn, can lead to excessive production of free
radical species and associated oxidative stress, which, in turn, exacerbates inflammation,
as reviewed in the following sections of this article. These processes have been described
in obesity as occurring mainly in peripheral tissues. However, some studies have already
shown that obesity is also associated with changes in the central nervous system, with alter-
ations in the blood-brain barrier (BBB) and in cerebral structures, such as the hypothalamus
and hippocampus.



Antioxidants 2025, 14, 871

3o0f14

Within adipose tissue, obesity can induce mitochondrial dysfunction in cell types
other than adipocytes. During obesity, the progressive accumulation of lipids in adipocytes
results in hypertrophy and hyperplasia of adipose tissue, leading to the infiltration of
macrophages. The macrophages, in turn, absorb lipids released from adipocytes. When
the accumulation of lipids within macrophages becomes excessive, then mitochondrial
dysfunction results [8,9].

Mitochondrial dysfunction is characteristic of both rodent and human obesity. Thus,
reduced levels of mitochondrial amount or function (biogenesis and oxidative phosphory-
lation) have been described in adipose tissues of obese human subjects; downregulated
mitochondrial DNA, altered mitochondrial oxidative function/respiratory chain Com-
plex I-IV activities, reduced fatty acid oxidation, and depleted ATP levels have been
observed in muscle, as well as adipose tissue from obese compared to healthy weight
individuals [10-17].

The above studies have focused on obesity-related mitochondrial dysfunction in adi-
pose tissue, but other tissues are also affected by obesity and could potentially benefit from
improved mitochondrial function; examples include obesity-related mitochondrial dys-
function/oxidative stress/inflammation in brain tissue [18], in skeletal muscle tissue [19],
and in renal tissue [20].

In animal models, a number of studies have highlighted a reduction in mitochondrial
mass and function in adipose tissues of obese ob/ob and db/db mice [21,22]. Xia et al. [23]
demonstrated that high-fat diet feeding causes mitochondrial fragmentation and reduced
oxidative capacity in inguinal white adipocytes from male mice. In aged mice, Li et al. [24]
found a reduction specifically in mitochondrial complex IV activity, resulting in reduced
fatty acid oxidation and subsequent adipocyte hypertrophy. The latter study is of note in
that aging, per se, is known to affect mitochondrial function [25], and mitochondrial dys-
function in obese, aged subjects may represent a novel therapeutic target in the otherwise
difficult-to-treat disorder of sarcopenic obesity [26].

Recent research has focused on the role of the mitochondrial unfolded protein response
(UPRmt) in obesity; the UPRmt is a protective mechanism that maintains mitochondrial
function during stress by activating genes that produce chaperones and proteases to repair
or remove damaged proteins [27]. Whilst initially beneficial in restoring mitochondrial
health, prolonged UPRmt activation in obesity can contribute to metabolic imbalances
and worsen dysfunction. Recent findings highlight that obesity-induced metabolic stress
activates the UPRmt, a dual-effect quality-control pathway that influences mitochondrial
function and metabolic balance depending on the tissue, cell type, and physiological
state [28-30]. Since UPRmt is activated by mitochondrial dysfunction to restore home-
ostasis, the authors speculate that CoQ10 supplementation could modulate UPRmt activ-
ity by enhancing mitochondrial efficiency and reducing the accumulation of misfolded
proteins [31]. However, further targeted research is necessary to elucidate the specific
effects of CoQ10 on UPRmt activation and its implications for conditions like obesity. The
potential role of mitochondrial transplantation to replace defective mitochondria in obesity
has also been the subject of recent research [32].

With regard to mitochondrial dysfunction, as noted in the introduction, CoQ10 has a
key role in the normal functioning of mitochondria. CoQ10 has a key role as an electron
carrier (from complex I and II to complex III) in the mitochondrial electron transport chain
during oxidative phosphorylation. CoQ10 is also a key component in the reactions medi-
ated by other mitochondrial enzymes; for example, it is also involved in the metabolism
of pyrimidines, fatty acids, and mitochondrial uncoupling proteins, as well as in the reg-
ulation of the mitochondrial permeability transition pore [33,34]. The potential role of
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supplementary CoQ10 in the management of obesity-related mitochondrial dysfunction is
addressed in a subsequent section of this article.

3. Oxidative Stress and Obesity

Cells constantly generate reactive oxygen species (ROS) from multiple sources, with
mitochondria being the primary site of production. Within mitochondria, electron leakage
from the electron transport chain (ETC) to combine with oxygen leads to the formation
of superoxide radicals [35]. Additionally, uncoupling proteins can alter mitochondrial
ROS levels by allowing protons to re-enter the mitochondrial matrix, reducing the proton
gradient and decreasing superoxide formation. Beyond mitochondria, enzymes, such as
NAD(P)H oxidase, xanthine oxidase, lipoxygenase, and cyclooxygenase, also contribute to
ROS production [36].

While often associated with oxidative stress, ROS plays a crucial role in cellular energy
regulation. When fuel supply exceeds demand, excess NADH drives mitochondrial ROS
production, signaling a surplus and triggering insulin secretion to promote fuel storage. As
energy reserves are balanced, ROS levels naturally decline. Conversely, when fuel is scarce,
NADH and ROS levels drop, reflecting the need for energy intake [37]. Mitochondrial ROS
removal depends on NADPH, produced through glucose and fat metabolism, positioning
redox reactants as key regulators of metabolic balance [38]. To prevent oxidative damage,
cells maintain a robust defence system of antioxidants, including specialised enzymes,
vitamins, and CoQ10, ensuring that ROS functions as precise metabolic signals rather than
sources of harm [39].

Although ROS plays an important role in normal cellular signaling, increased levels
or prolonged exposure to ROS can lead to pathological changes to a variety of cellular
components, including the modification of DNA, RNA, carbohydrates, proteins, and lipids.
An imbalance between ROS-generating and antioxidant protective systems is known as
oxidative stress. Malondialdehyde, F-2 isoprostanes, 8-iso prostaglandin F2«, and protein
carbonylation are established biomarkers used to quantify oxidative stress in plasma or
other tissues [40].

As noted in the previous section of this article, obesity-induced mitochondrial dysfunc-
tion results in increased ROS production. In addition, the activity of antioxidant enzymes
such as superoxide dismutase and glutathione peroxidase has been reported to be signif-
icantly reduced in obese individuals [41,42]; the levels of other antioxidants, including
vitamin C and vitamin E, are also decreased in obesity [43,44]. The combination of increased
ROS generation and reduced antioxidant levels results in oxidative stress characteristic of
obesity. Numerous studies have reported elevated levels of oxidative stress biomarkers in
obese individuals, including malondialdehyde, F-2 isoprostanes, and oxidized low-density
lipoprotein [45,46]. Oxidative stress not only damages cellular components but also acti-
vates redox-sensitive transcription factors such as nuclear factor-«B (NF-«B) and activator
protein-1 (AP-1), triggering the release of pro-inflammatory cytokines such as TNF-a and
IL-6. This sustained inflammatory response contributes to the chronic low-grade inflamma-
tion characteristic of obesity [47], further exacerbating metabolic dysfunction, as discussed
in the following section.

CoQ10 (particularly in its reduced ubiquinol form) serves as an important lipid-soluble
antioxidant protecting cellular membranes, both mitochondrial and extra-mitochondrial
(Golgi apparatus, lysosomes, endoplasmic reticulum, peroxisomes) from free radical-
induced oxidative stress. In addition to acting as an antioxidant directly, CoQ10 is also
involved in the regeneration of the antioxidants vitamin C and vitamin E, respectively [33].
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4. Apoptosis, Ferroptosis, and Obesity

Apoptosis is a tightly regulated process of programmed cell death, which can occur
as a result of mitochondrial dysfunction associated with obesity; pro-apoptotic factors,
such as cytochrome c, are released from damaged mitochondria into the cytoplasm to
induce apoptosis mediated by caspase-type proteolytic enzymes [48]. Adipocyte apoptosis
has been reported in both obese mice and obese humans [49]. A considerable number of
preclinical studies have been reported in which the administration of CoQ10 has inhibited
apoptosis; for example, after spinal cord injury in rats [50] and in a mouse cell model
of diabetes [51]. Supplementation with CoQ10 has been shown to increase levels of the
anti-apoptotic protein B-cell lymphoma-2 (Bcl-2) in obese rats [52].

Another consequence of mitochondrial dysfunction associated with obesity is ferropto-
sis. Ferroptosis is an iron-dependent form of cell death characterized by iron accumulation
and extensive lipid peroxidation; it differs morphologically, genetically, and biochemi-
cally from other cell death types, including apoptosis. The CoQ10-NAD(P)H/ferroptosis
suppressor protein (SP1) pathway is responsible for inhibiting phospholipid peroxidation
and ferroptosis. FSP1 is a membrane-associated oxidoreductase that catalyses the trans-
port of reduced NADH analogs of CoQ10 into the lipid bilayer, thereby inhibiting lipid
peroxidation [53]. Several preclinical studies have demonstrated the action of CoQ10 or
its structural analogues in inhibiting ferroptosis; these include models of epilepsy [54],
subarachnoid haemorrhage [55], myocardial infarction [56], Parkinson’s disease [57], and
acute liver injury [58].

5. Inflammation and Obesity

Mitochondrial dysfunction in adipocytes results in reduced synthesis of adiponectin,
the most abundant adipokine synthesized by adipocytes, which has systemic anti-
inflammatory action [59]. In addition to mitochondrial dysfunction and oxidative stress in
adipocytes as an inducer of inflammation in obesity, as discussed in the previous sections
of this article, similar dysfunctions in macrophages are also responsible for obesity-related
inflammation. During obesity, the progressive accumulation of lipids in adipocytes leads to
hypertrophy and hyperplasia of adipose tissue, resulting in the infiltration of macrophages.

In normal individuals, macrophages comprise approximately 5% of the total cells
in adipose tissue. However, in obese individuals, this increases to approximately 50%.
Mitochondria are essential for the normal functioning of macrophages. Excessive lipid
accumulation in macrophages results in obesity-induced mitochondrial dysfunction and
subsequent oxidative stress, which drives the activation of the NLRP3 inflammasome
and the release of pro-inflammatory cytokines such as interleukin-1f (IL-1$3) and tumour
necrosis factor alpha (TNF-alpha) [60,61]. This inflammatory response, in turn, results in
the decreased sensitivity of insulin target cells characteristic of obese individuals [8].

CoQ10 performs a number of cellular functions of potential relevance to the immune
system. Firstly, the immune response has intensive energy requirements, and an adequate
supply of CoQ10 is, therefore, required to enable the various cell types of the immune
system to function optimally. Secondly, since phagocytic cells destroy invading pathogens
via the production of free radicals, the antioxidant action of CoQ10 may protect phagocytic
cells from self-destruction caused by their generation of free radicals. Thirdly, CoQ10 is
able to directly modulate the action of genes involved in inflammation and may have a role
in controlling the release of pro-inflammatory cytokines [62].

6. CoQ10 and Obesity

In preclinical studies, reduced levels of CoQ10 in subcutaneous adipose tissue were
identified in obese ob/ob mice by Bour et al. [63]; the same authors identified a similar
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deficiency of CoQ10 in adipose tissue of obese human subjects. Goncalves et al. [64]
showed that in obesity, hepatic ubiquinone synthesis is impaired, causing an increase in
the ubiquinol /ubiquinone ratio, resulting in excessive ROS production via reverse electron
transport from Complex L.

Supplementation with CoQ10 reduced elevated plasma lipid profiles and decreased
mRNA expression of the pro-inflammatory cytokine TNF-«x in adipose tissues of ob/ob
mice [65]. In the latter study, decreased mRNA expression of the lipogenic enzymes
fatty acid synthase and acetyl-CoA carboxylase 1, and the glycerogenic enzyme phospho-
enolpyruvate carboxykinase was responsible for the lipid-lowering effect of CoQ10.

In C57BL/6 mice with diet-induced obesity, CoQ10 supplementation reduced the
levels of oxidative stress and inflammation in hepatic tissue [66]. In KKAy obese mice,
supplementation with the ubiquinol form of CoQ10 enhanced mitochondrial function,
improved lipid metabolism, and ameliorated obesity by reducing white adipose tissue
content [67]. In C57BL/6 mice with diet-induced obesity, supplementation with CoQ10
improved mitochondrial function and oocyte competence [68]. Fink et al. [69] demon-
strated that supplementation with the CoQ10 analogue mitoquinone reduced fat mass
and oxidative stress in C57BL /6 mice with diet-induced obesity. Supplementary CoQ10
improved lipid metabolism and reduced fat mass in rats with diet-induced obesity [70]. Pre-
clinical studies supplementing CoQ10 in animal models of obesity have been summarised
in Table 1.

Table 1. Summary of preclinical studies supplementing CoQ10 in animal models of obesity.

Study Model System CoQ10 Dosage Outcome
Reduction in elevated plasma
lipid profiles and decreased
Carmona et al. [65] ob/ob mice .10. mg /k.g/day CoQ10 mRNA expression of the
injected ip for 13 days.

pro-inflammatory cytokine
TNF-o in adipose tissue.

Reduced levels of oxidative

Sohet et al. [66] C57BL/6 mice 1% CoQ10 in feed for 8 weeks. stress and inflammation in
hepatic tissue.
Enhanced mitochondrial
o . function, improved lipid
Xu et al. [67] KKAy mice 0.3% CoQ10 in feed for metabolism, and ameliorated
12 weeks. o . .
obesity via reduction of white
adipose tissue content.
22 mg/kg CoQ10 three times Improved mitochondrial
Boots et al. [68] C57BL/6 mice weekly via subcutaneous function and oocyte
injection for 6 weeks. competence.
Al-Ghamdi et al. [70] Rats (high fat diet) 10 mcg CoQ10/kg/day via  Improved lipid metabolism and

intragastric tube for 6 weeks. reduced fat mass.

In clinical studies, Grenier-Larouche et al. [71] measured the CoQ10 content and redox
state in omental and subcutaneous adipose tissue depots of lean, overweight, and obese
women; obese women had reduced CoQ10 levels and increased lipid peroxidation levels.
Mehmetoglu et al. [72] reported reduced lipid-adjusted CoQ10 levels in sera from obese
individuals. Proteomic analysis of visceral adipose tissue from obese individuals showed
reduced levels of a number of mitochondrial proteins, including quinone biosynthesis
protein COQ9 [73].

Not all clinical studies have reported beneficial outcomes following CoQ10 supple-
mentation in obesity. Thus, a randomised controlled trial by Lee et al. [74] found CoQ10
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supplementation had no significant effect on the levels of serum lipid profiles or oxida-
tive and inflammatory biomarkers. However, this outcome may have been influenced by
the mean BMI of the obese (27.9 + 2.3 kg/m?) subjects. A meta-analysis of randomised
controlled trials by Ghavami et al. [75] failed to demonstrate any significant effect of
supplementary CoQ10 on anthropometric indices (body weight, body mass index, waist
circumference). However, this study had a number of limitations; for example, included
trials were performed in subjects with a wide range of different medical disorders making
the interpretation of results difficult. In addition, included trials ignored the measurement
of the baseline levels of CoQ10 in study participants, so the lack of efficacy could be related
to low levels of CoQ10 in participants.

Beneficial effects of supplementary CoQ10 have been reported in obese patients with
disorders such as polycystic ovary syndrome [76] or type II diabetes [77]. However, such
studies have, in general, been excluded from the present review because of the confounding
effect of the comorbidities.

Obesity is linked to alterations in cardiolipin, a phospholipid located in the inner
mitochondrial membrane, with a key role in maintaining normal mitochondrial function.
These alterations to cardiolipin include a reduction in cardiolipin levels, as well as structural
changes to the phospholipid’s acyl chains, in turn promoting mitochondrial dysfunction
and increased oxidative stress [78]. In rats that were fed an obesogenic diet, supplemen-
tation with the CoQ10 analogue mitoquinone (MitoQ)) improved mitochondrial function
and reduced oxidative stress in liver tissue by increasing the levels of cardiolipin [79].
However, it should be noted that a beneficial effect following mitoquinone administration
was observed in the process of inducing obesity, not in the obese animals. In addition, it
only preserved mitochondrial function. However, it did not ameliorate liver lipid contents.
This suggests that CoQ10 does not directly improve obesity-associated MASLD itself; it
may only function to maintain mitochondrial function by supplementing CoQ10, which is
lost due to the obesity- or lipid-induced oxidative stress.

7. Weight Loss and CoQ10/Selenium

In the previous section of this article, the role of CoQ10 deficiency and supplementation
with regard to obesity was discussed. However, CoQ10 is also of relevance for obese
individuals wishing to lose weight. Skeletal muscle mass is important for overall health.
Muscle mass loss is normally seen with aging [80]. During weight loss, lean body mass loss
is also seen, with a magnitude of around 25-39% of the weight lost [81]. It seems as if the
loss in muscle mass does not affect muscle strength [82], but strength is only one function
of the muscle. Muscle mass also has many important metabolic roles (myokine production,
amino acid reserve, glycaemic regulation, and immune function). Therefore, it is highly
relevant to focus on how to preserve muscle mass during weight loss.

It has been reported that combining exercise (resistance or endurance) with a weight-
loss intervention preserves muscle mass [83]. Testosterone, growth hormone (GH), and
Insulin-like growth factor-1 (IGF-1) all seem to be important for muscle mass growth. It
has been reported that GH and IGF-1 are decreased in obese participants compared to lean
control participants, and that a bariatric surgery-induced weight loss increases IGF-1 and
GH [84]. Interestingly, it has also been reported that IGF-1 increases with a diet-induced
weight loss in obese participants, but when participants were followed for a longer time, the
levels were comparable to before weight loss [85]. It has previously been shown that supple-
mentation with CoQ10 and selenium increases IGF-1 in a group of older participants [86].
Cavedon and colleagues [87] investigated the effect of selenium supplementation on body
composition in participants with obesity after a mild hypocaloric diet. They supplemented
obese participants with 240 pg of selenium per day for 3 months and measured body com-
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position before and after the intervention. Participants in both the selenium and placebo
group lost approximately 3—4 kg during the 3 months, but the selenium group gained
muscle mass and lost a considerable amount of fat [87]. Unfortunately, the authors did
not measure selenium concentration in that study. The studies outlined above raise the
question of whether it would be beneficial to supplement participants with CoQ10, and
especially selenium, when losing weight (diet or medical) in order to try to maintain more
muscle mass. This is especially interesting at the moment when many different weight loss
drugs are on the market, and many people are using them.

8. Discussion and Conclusions

1. In the present article, we have reviewed evidence for the involvement of mitochon-
drial dysfunction, oxidative stress, ferroptosis, and inflammation in the pathogenesis of
obesity. Due to the key role of CoQ10 in promoting normal mitochondrial function, as an
antioxidant, as an anti-ferroptosis agent, and as an anti-inflammatory agent [34,88], there is
a rationale for investigating the potential role of supplementary CoQ10 in the management
of obesity.

2. There is evidence for reduced levels of CoQ10 in adipose tissue or serum/plasma in
both animal models of obesity and in obese human subjects. A number of preclinical studies
have reported beneficial effects of CoQ10 supplementation in animal models of obesity,
including improved lipid metabolism and reduced levels of oxidative stress and inflamma-
tory biomarkers. However, to date, there have been no randomised controlled clinical trials
supplementing CoQ10 in obese individuals without confounding comorbidities, and this
remains an area for future research.

3. While this review has focused on mitochondrial dysfunction (and associated oxida-
tive stress/inflammation) in adipose tissue, many other tissues (e.g., brain, skeletal muscle,
kidney) are also affected by obesity and could potentially benefit from improved mitochon-
drial function. No relevant studies were identified in which supplementary CoQ10 had
been administered to address obesity-related mitochondrial dysfunction in such tissues,
and this remains a further area for future research.

4. Obesity is associated with lysosomal dysfunction, in turn resulting from an obesity-
linked increase in oxidative stress, causing ROS-induced damage to lysosomal mem-
branes [89]. CoQ10 has a key role in mediating normal lysosomal function. In addi-
tion to its role in maintaining the lysosomal acidic pH, it protects lysosomal membranes
from ROS-induced oxidative damage [90]. The potential role of supplemental CoQ10 in
preventing obesity related lysosomal dysfunction is another area of research requiring
further investigation.

5. In addition to its potential role in the management of obesity-related mitochondrial
dysfunction, a possible role for supplementary CoQ10 in the preservation of skeletal
muscle mass in obese individuals undergoing weight loss procedures has been identified
by the authors.

6. Obesity is an independent risk factor for the development of heart failure, in turn,
involving mitochondrial dysfunction and increased oxidative stress [91,92]. This, therefore,
suggests a potential role for supplementary CoQ10 in the treatment of heart failure in
obese individuals. No randomised controlled clinical trials were identified to date in
which supplementary CoQ10 was used to treat heart failure in obese individuals without
significant comorbidities, and this remains another area for future research. In this regard,
it is of note that in the Q-SYMBIO randomised controlled trial, in which individuals with
heart failure were supplemented with 300 mg CoQ10 per day for 2 years, cardiac-related
mortality was reduced by 50% [93].
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7. As noted in the Introduction section of this article, in addition to heart failure,
obesity increases the risk of developing a number of co-morbidities, including NAFLD [94].
Two randomized controlled clinical trials have been conducted to date, supplementing
CoQ10 in NAFLD patients. In both cases, 100 mg/day of CoQ10 supplemented for
4 weeks [95] or 12 weeks [96], respectively, resulted in significant reductions in blood
markers for inflammation and liver damage. Similarly, randomised controlled trials have
demonstrated the benefit of supplementary CoQ10 in improving glycaemic control in
patients with type II diabetes [97], and in improving renal function in patients with chronic
kidney disease [98], both disorders being co-morbidities of obesity [99,100].

8. This article has focused on the consequences of mitochondrial dysfunction in obesity
and the potential beneficial effects of supplementation with CoQ10. However, there is a ra-
tionale in general terms to investigate the potential benefit of supplementation of CoQ10 in
combination with other metabolites of relevance to promoting normal mitochondrial func-
tion, including B-vitamins, L-carnitine, and alpha lipoic acid [101]. Some clinical studies
based on this approach have already been reported with some benefit in obese individuals.
For example, a randomised controlled clinical trial supplementing a number of nutrients
designed to improve mitochondrial function, including CoQ10 and alpha-lipoic acid, re-
ported significant improvements in weight, body composition, and metabolic biomarkers
in obese subjects [102]. In this regard, it is of note that randomised controlled clinical trials
supplementing individual supplements as above have reported benefit in obese subjects.
Thus, supplementation with alpha lipoic acid (600 mg/day for 24 weeks) resulted in weight
loss and improved oxidative stress and inflammation [103]. Supplementation with the
NAD precursor beta-nicotinamide mononucleotide reduced body weight and improved
cholesterol parameters [104]. Several meta-analyses of randomised controlled trials sup-
plementing L-carnitine in obese subjects concluded this nutrient was effective in reducing
weight, BMI, or waist circumference [105-107]. Supplementation with multiple nutrients
of relevance to normal mitochondrial function in obese subjects is, therefore, another area
requiring further research.

9. As noted previously in this article, there is evidence for reduced levels of CoQ10
in obesity. The question arises whether the reduction in CoQ10 levels might result from
an adverse effect of obesity on CoQ10 biosynthesis. The biosynthesis of CoQ10 occurs via
a complex pathway involving at least 10 steps, each of which is mediated via a specific
enzyme [108]. No studies were identified in which the effect of obesity on these various
biosynthetic steps had been investigated, and this remains yet another area of research
open to further investigation.

In conclusion, most of the evidence relating to CoQ10 and obesity is derived from
animal model studies, with relatively few clinical studies identified relating to CoQ10
supplementation in obese individuals without serious confounding comorbidities. We
have, therefore, suggested a number of areas for further research in human subjects as
described in items 2 to 9 above.
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