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Abstract
Background  Glucagon like peptide-1 receptor agonist (GLP-1RA) use in individuals with high atherosclerotic 
cardiovascular disease (ASCVD) risk reduces major adverse cardiovascular events (MACE). However, its clinical impact, 
in terms of numbers needed to treat (NNT), efficacy and safety profile in reducing the risk of myocardial infarction (MI) 
and the individual ASCVD constituents remain unclear.

Methods  Electronic databases, Medline and Embase were reviewed for randomized trials from inception to 29 May 
2025. Risk-reduction effect of GLP-1RA were pooled using pairwise meta-analysis with random-effects model. The 
primary outcome was MI, and secondary outcomes were the individual ASCVD constituents.

Results  109,846 patients from 25 unique studies were included. Over a follow-up duration of 3.48 ± 1.51 (1.55 to 
5.47) years, GLP-1RA reduced the risk of total MI (RR: 0.86, p < 0.01), with numbers needed to benefit (NNTB) of 207 to 
prevent one event of MI. Higher body mass index was associated with greater MI risk reduction (β: -0.09, p = 0.03) in 
GLP-1RA users. GLP-1RA reduced cardiovascular mortality (RR: 0.87, p < 0.01, NNTB 170), MACE (RR: 0.87, p < 0.01, NNTB 
67) and stroke (RR: 0.88, p < 0.01, NNTB 335) compared to placebo. GLP-1RA commonly resulted in gastrointestinal 
side-effects amongst other systems (RR: 1.55, p  < 0.01, NNTH 9).
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Research insights
What is currently known about this topic?

 	• Landmark cardiovascular outcome trials like 
LEADER and SELECT have demonstrated the 
cardiometabolic benefits of GLP1-RA in the 
reduction of MACE events in populations with 
T2DM as well as populations with overweight or 
obesity in the absence of T2DM. This was further 
substantiated by systematic reviews, which have 
described pooled overall MACE risk reductions in 
both the abovementioned population groups.

What is the key research question?

 	• What is the NNT, efficacy and safety profile of 
GLP-1RA in reducing the risk of myocardial 
infarction (MI) and individual ASCVD constituents, 
namely non-fatal MI, unstable angina, coronary 
revascularization, and/or cardiovascular mortality?

What is new?

 	• GLP-1RA use was associated with a 13% risk 
reduction in total MI with an NNT of 207 to prevent 
one event of MI over a follow-up of 3.48 ± 1.51 
(range: 1.55 to 5.46) years. However, MI risk 
reduction was attenuated in the population with 
T2DM and in the secondary preventative cohort 
with prior ASCVD. The former is likely attributable 
to the competing multimorbid status in the generally 

Conclusion  GLP-1RA reduced the risk of MI, stroke, cardiovascular mortality and MACE in a broad range of patients 
with and without T2DM and/or prior ASCVD, supporting its role in ASCVD prevention, especially in the cohort with 
high BMI.

Trial registration: Open Science Framework (​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​1​7​6​0​​5​/​​O​S​F​.​I​O​/​7​V​X​N​5).
Keywords  GLP-1 receptor agonist, GLP-1RA, Myocardial infarction, Stroke, Cardiovascular mortality, Cardiovascular 
disease, Numbers-needed-to-treat
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higher risk population with T2DM, that can 
attenuate the overall beneficial effects of GLP-1RA.

 	• Increased BMI is associated with significantly 
larger MI risk reduction with GLP-1RA, implying 
that weight reduction may further reduce residual 
ASCVD risk with GLP-1RA use.

 	• In the secondary preventative cohort, GLP-1RA may 
be considered for its significant reduction in unstable 
angina and coronary revascularization risk. Relative 
to its clinical impact on MI reduction, measured by 
NNT, GLP-1RA was more effective in preventing 
one event of cardiovascular mortality and MACE.

How might this study influence clinical practice?

 	• Evidence supports the role of GLP-1RA as part of 
therapy in overall ASCVD risk reduction, especially 
in the cohort with high BMI.

Introduction
Cardiovascular disease (CVD)-related mortality [1, 2] 
and morbidity have surged in recent decades[3], despite 
advancements in medical and healthcare resources [4]. 
The global CVD burden is expected to see a 3.6% year-
on-year increase from 2025 to 2050 [5], thus emphasizing 
the need for effective strategies in cardiometabolic pre-
vention within the global health conundrum [6–9]. With 
the success of landmark cardiovascular outcome trials on 
glucagon-like peptide-1 receptor agonist (GLP-1RA) and 
sodium-glucose cotransporter-2 inhibitors (SGLT2i) [10], 
this has transformed the landscape of cardiometabolic 
disease management [11]. The Liraglutide Effect and 
Action in Diabetes: Evaluation of Cardiovascular Out-
come Results trial (LEADER) led to a paradigm shift in 
the wider use of GLP-1RA from promising antihypergly-
cemic agents to cornerstone cardiometabolic therapies, 
demonstrating the significant reduction of major adverse 
cardiovascular events (MACE) with the use of liraglutide 
in the population with type 2 diabetes mellitus (T2DM) 
[12, 13]. The overall cardiometabolic benefit of GLP-1RA 
rapidly expanded beyond the T2DM population, with the 
Semaglutide Effects on Cardiovascular Outcomes in Peo-
ple with Overweight or Obesity (SELECT) trial describ-
ing MACE reduction in the population with overweight 
and obesity, even in the absence of T2DM [14].

In the era of precision prevention, together with 
updated pooled cohort equations such as the Predicting 
Risk of Cardiovascular Disease Events (PREVENT) cal-
culator [15, 16] that distinguish the individual’s risk of 
atherosclerotic cardiovascular disease (ASCVD) and/or 
heart failure (HF), primary preventative strategies could 
be tailored in accordance to the individual’s risk profile 
[17–19]. Clinical practice guidelines[20, 21] have rec-
ommended the use of SGLT2i in individuals at higher 

risk of HF, while GLP-1RA may be prioritized in those 
with T2DM at higher ASCVD risk (calculated 10-year 
ASCVD risk ≥ 10%, Class IIa, level of evidence: B) given 
their neutral effect on HF hospitalization [22]. While 
other reviews have described the MACE risk reduction in 
the general population with T2DM [23, 24], non-T2DM 
[25], or both [26], the present study seeks to address the 
gap in the literature in providing a comprehensive meta-
analysis on the number need to treat (NNT), efficacy and 
safety profile of GLP-1RA in reducing the risk of myocar-
dial infarction (MI) and individual ASCVD constituents, 
namely non-fatal MI, unstable angina, coronary revascu-
larization, and/or cardiovascular mortality.

Methods
Study design and search strategy
This systematic review and meta-analysis was conducted 
with reference to the Preferred Reporting Items for Sys-
tematic Review and Meta-Analyses (PRISMA) 2020. 
Two electronic databases, Embase and Medline, were 
searched for randomized controlled trials (RCTs) relating 
to treatment with GLP-1RA and prevention of MI from 
inception to 22 May 2025. Key search terms including 
“glucagon-like peptide 1 receptor agonist” and “myocar-
dial infarction” were used in the search strategy and the 
full search strategy can be found in Supplementary Mate-
rial 1. This review was prospective registered in Open 
Science Framework (https:/​/doi.or​g/​​h​​t​t​p​​s​:​/​/​​d​o​i​​.​o​​r​g​/​​1​0​.​1​​7​
6​0​​5​/​​O​S​F​.​I​O​/​7​V​X​N​5).

Eligibility and selection criteria
References were imported into Covidence (Melbourne, 
Victoria, Australia) for the compilation and removal of 
duplicates. Abstracts were independently screened by 
two pairs of authors (FS, JTYH, SKSC, GS). Any discrep-
ancies were resolved by consensus or in consultation with 
a senior author (ASPT, JQ, YHC, NWC). Subsequently, 
full text reviews were conducted to check for eligibil-
ity of studies for inclusion in this review. Only original 
randomized trials with published results in English or 
professionally translated into English were included in 
this study. The inclusion of each study was contingent 
on the use of a GLP-1RA arm and the incidence of MI 
both groups during the trial. Non-randomized controlled 
trials and observational studies, including cohort and 
cross-sectional studies, were excluded from this study. 
Reviews, study protocols, letters, commentaries, confer-
ence abstracts were also excluded. Studies in pediatric 
populations were also excluded in this study. References 
of related reviews and grey literature were screened to 
ensure a comprehensive review.

https://doi.org/
https://doi.org/10.17605/OSF.IO/7VXN5
https://doi.org/10.17605/OSF.IO/7VXN5
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Data extraction and outcomes
Two pairs of authors (FS, JTYH, SKSC, GS) indepen-
dently extracted data including, but not limited to: (1) 
study characteristics (e.g. author, title, publication year, 
trial name, trial registry), (2) patient demographics (e.g. 
age, sex, ethnicity, body mass index [BMI]), (3) base-
line comorbid status (e.g. T2DM, hypertension, obe-
sity, hyperlipidemia), (4) treatment characteristics (e.g. 
drug formulation, dosage, duration of intervention), (5) 
prognostic outcomes, (6) safety data (e.g. general, gas-
trointestinal, endocrine, and neurological side-effects). 
Any discrepancies were resolved by consensus or in con-
sultation with a senior author (ASPT, JQ, YHC, NWC). 
The primary outcome of interest was the incidence of 
MI. Secondary outcomes were the incidence of MACE, 
stroke, unstable angina, coronary revascularization and 
cardiovascular mortality. Where available, the hazard 
ratios of these outcomes were also collated. MACE out-
comes were collated, with most adhering to the MACE-3 
definition (comprising non-fatal MI, non-fatal stroke 
and cardiovascular mortality). A list of MACE defini-
tions used across the included studies are summarized 
in Supplementary Material 2. Cardiovascular mortality 
was defined as deaths resulting from any cardiovascu-
lar causes, which include, but are not limited to, cardiac 
arrest, MI, and arrhythmia.

Statistical methods
All statistical analysis was conducted in RStudio (version 
4.4.0). Statistical significance was considered for out-
comes with a p value of ≤ 0.05. To assess the cardioprotec-
tive impact of GLP-1RA on MI, secondary cardiovascular 
outcomes and safety profile, pairwise meta-analysis was 
conducted using the Paul-Mandel estimator to obtain the 
risk ratio (RR) and corresponding 95% confidence inter-
val [27]. Due to the differing mechanisms of tirzepatide, a 
dual gastric inhibitory polypeptide (GIP) and GLP-1RA, 
compared with the rest of the GLP-1RA medications, 
the results of studies examining tirzepatide were system-
atically reviewed without inclusion in the meta-analysis. 
Statistical heterogeneity was assessed via I2, where a value 
of 25%, 50% and 75% indicated low, moderate and high 
heterogeneity respectively, and Cochran Q test, where p 
< 0.10 was considered significant for heterogeneity [28]. 
Hartung-Knapp adjustments were employed to adjust for 
confidence intervals by controlling for the heterogeneity 
arising from between-study estimations [29]. Zero total 
event trials for each outcome were accounted in our anal-
ysis using the continuity correction of 0.5 [30]. The ran-
dom effects model was used regardless of heterogeneity 
scores, based on evidence of more robust estimates when 
compared to fixed-effect models [31–33].

To estimate the absolute risk reduction and its cor-
responding numbers needed to treat, data extracted for 

the efficacy outcomes mentioned in Sect.  "Data Extrac-
tion and Outcomes" were used to calculate NNT, which 
yielded either numbers needed to benefit (NNTB) and 
number needed to harm (NNTH) based on formulas rec-
ommended by the Cochrane guidelines [34].

	 NNT = 1/absolute value of risk difference.

Subgroup analyses (duration of trial, type of medication) 
and sensitivity analyses (secondary prevention, T2DM 
only) were conducted. To assess the modulatory effect 
of demographic factors, such as age, sex, ethnicity, BMI 
and comorbid status, mixed-model meta-regression with 
Hartung-Knapp estimator was conducted [35]. In view of 
limited information (n < 3) when making head-to-head 
comparisons of identified outcomes with other glucose 
lowering agents, the results were systematically reported.

Study quality, publication bias and certainty of outcomes
Each study was independently screened by two pairs of 
authors (FS, JTYH, SKSC, GS). Any discrepancies were 
resolved by consensus or in consultation with a senior 
author (ASPT, JQ, YHC, NWC). Quality assessment of 
included articles was conducted using the Cochrane 
Risk of Bias 2 (ROB-2) tool [34]. RoB2 analyses the risk 
of bias by grading the quality of evidence through five 
bias domains including randomization process, deviation 
from intended intervention, missing outcome data, out-
come measurement and reported result selection. A final 
grade of low risk of bias, some concerns of bias and high 
risk of bias was attributed to each article considering the 
score in each section. Publication bias was examined with 
Egger’s [36] regression, where ≥ 10 studies were present. 
Funnel plots were generated for analyses involving ≥ 10 
studies for visual inspection of asymmetrical distribution 
of data points across the vertical treatment effect axis. 
Grading of Recommendations Assessment, Development 
and Evaluation (GRADE) scoring was also performed for 
each of the main outcomes analyzed. GRADE is a system 
of grading used to assess the overall quality and certainty 
of the evidence obtained from the specific outcome or 
intervention [37]. This helps the reader determine the 
level of confidence and robustness the data estimates 
have in each of the specific outcomes.

Results
Summary of included articles
The initial search of the literature yielded a total of 2218 
articles. After the removal of 559 duplicates and auto-
mated removal by Covidence of 399 ineligible articles, 
1260 articles remained for title and abstract screening. 
Further removal of 986 articles resulted in 274 articles 
being sought for retrieval and full-text review. A total of 
26 articles [12, 14, 38–61], derived from 25 unique trials, 
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published between 2013 and 2025, involving 109,846 
patients were selected for inclusion in this study. The 
selection process is depicted in Fig. 1. All trials were ran-
domized trials conducted in adult patients (≥ 18 years). 
Most studies were conducted in a multi-national setting, 
except for two studies conducted only in Japan. Majority 
of studies were also conducted in patients with T2DM, 
except for one study conducted in a cohort with obesity 
in the absence of T2DM [62]. In addition, the Evaluate 
Renal Function with Semaglutide Once Weekly (FLOW) 
trial [60] recruited participants with chronic kidney dis-
ease. The proportion of males ranged from 24 to 76%, 
and the mean age was 62.6 ± 9.2 years. Based on the ROB 
2 tool, most studies were of low risk of bias, while only 
a minority was of some concern or higher. Majority of 
studies compared GLP-1RA to placebo [12, 14, 38–40, 
44, 47, 48, 51–61], while others used insulin regiments 
and other anti-diabetic medications [41–43, 45–47, 49, 
50] as the comparators. A summary of the study char-
acteristics and study quality can be found in Table 1 and 
Supplementary Material 3 respectively.

Number needed to treat
When compared to placebo, the NNT in the overall study 
is based on studies with a mean follow-up time in years of 
3.48 ± 1.51 (range: 1.55 to 5.46). The current results show 
that number needed to benefit (NNTB) was 207 (95%CI: 

NNTB 129 to NNTB 620, Follow-up time: 3.48 ± 1.51 
years) for total MI, NNTB 67 (95%CI: NNTB 46 to 
NNTB 135, Follow-up time: 3.48 ± 1.51 years) for MACE, 
NNTB 170 (95%CI: NNTB 120 to NNTB 306, Follow-up 
time: 3.48 ± 1.51 years) for cardiovascular mortality, and 
NNTB 93 (95%CI: NNTB 52 to NNTB 1717, Follow-up 
time: 3.45 ± 1.21 years) for coronary revascularization. 
These findings are summarized in Table 2.

Subgroup analysis based on GLP-1RA type showed that 
NNTB for albiglutide was 51, followed by semaglutide 
(NNTB 82), whilst the NNT for efpeglenatide, liraglutide, 
dulaglutide and exenatide was insignificant (Supplemen-
tary Material 4).

Efficacy
Comparison to placebo
Table  3; Fig.  2 summarize the comparison of GLP-1RA 
and placebo on the effect of cardiovascular outcomes. 
Across the main outcomes, GLP-1RA significantly 
reduced the rates of most outcomes, including total MI 
(RR: 0.86, 95%I 0.78 to 0.95, p < 0.01), non-fatal MI (RR: 
0.87, 95%CI: 0.79 to 0.97, p = 0.02), MACE (RR: 0.87, 
95%CI: 0.80 to 0.93, p < 0.01), stroke (RR: 0.88, 95%CI: 
0.82 to 0.94, p < 0.01), rates of coronary revasculariza-
tion (RR: 0.85, 95CI: 0.72 to 0.99, p = 0.04) and cardiovas-
cular mortality (RR: 0.87, 95%CI: 0.82 to 0.93, p < 0.01). 

Fig. 1  PRISMA flowchart
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Study Trial name Trial registry 
number

Intervention arms Sam-
ple 
size

Sex 
(male)

Age (years) Risk 
of 
bias

Mean SD

Lincoff et al. 
2023

SELECT NCT03574597 - Semaglutide
- Placebo

17,604 0.72 61.60 8.85 High

Ruff et al. 
2022

FREEDOM CVO NCT01455896 - Exenatide
- Placebo

4156 0.63 62.83 7.7993 Low

Perkovic et 
al. 2024

FLOW NCT03819153 - Semaglutide
- Placebo

3533 0.70 66.60 9.00 Low

Gerstein et 
al. 2019

REWIND NCT01394952 - Dulaglutide
- Placebo

9901 0.54 66.20 6.50 Low

Pfeffer et al. 
2015

ELIXA NCT01147250 - Lixisenatide + standard of care
- Placebo + standard of care

6068 0.69 60.25 9.66 Low

Green et al. 
2024

GRADE NCT01794143 - Liraglutide + metformin
- Insulin Glargine + metformin
- Glimepiride + metformin
- Sitagliptin + metformin

5047 0.64 57.20 10.00 Some 
con-
cerns

Del Prato et 
al. 2022

SURPASS-4 NCT03730662 - Tirzepatide (± metformin, sulfonylurea, SGLT2 
inhibitor)
- Insulin Glargine (± metformin, sulfonylurea, SGLT2 
inhibitor)

1995 0.62 63.60 8.60 Low

Pei et al. 
2021

DUAL II China NCT03175120 - IDegLira (Degludec, Liraglutide) + basal insulin + met-
formin ± oral antidiabetic drugs (OADs)
- Insulin degludec + basal insulin + metformin ± oral 
antidiabetic drugs (OADs)

453 0.60 54.70 9.90 Low

Frias et al. 
2019

- Dulaglutide + metformin
- Placebo + metformin

317 0.50 56.80 9.74 Low

Philis-
Tsimikas et 
al. 2019

DUALTM IX NCT02773368 -Insulin Degludec/Liraglutide (IDegLira) + SGLT2 
inhibitor
-Insulin Glargine + SGLT2 inhibitor

420 0.59 56.65 10.30 Low

Seino et al. 
2018

NCT02254291 -Semaglutide
-Sitagliptin

308 0.76 58.30 10.70 Low

Jabbour et 
al. 2018

DURATION-8 NCT02229396 -Exenatide/Dapagliflozin + metformin
-Exenatide/Placebo + metformin
-Dapagliflozin/Placebo + metformin

685 0.48 54.17 9.53 Low

Le Roux et 
al. 2017

SCALE NCT01272219 -Liraglutide + reduced-calorie diet and increased physi-
cal activity
-Placebo + reduced-calorie diet and increased physical 
activity

2254 0.24 47.43 11.73 High

Araki et al. 
2015

NCT01584232 -Dulaglutide + sulphonylureas (± biguanides)
-Insulin Glargine + sulphonylureas (± biguanides)

361 0.71 56.80 10.90 Low

Gough et 
al. 2014

DUAL I NCT01336023 -Insulin Degludec/Liraglutide + metformin 
(± pioglitazone)
-Liraglutide + metformin (± pioglitazone)
-Insulin Degludec + metformin (± pioglitazone)

1663 0.51 55.03 9.92 Low

Pan et al. 
2014

GetGoal-M-Asia NCT01169779 -Lixisenatide + metformin (± sulfonylurea)
-Placebo + metformin (± sulfonylurea)

390 0.49 54.80 10.39 Low

Pinget et al. 
2013

GETGOAL-P NCT00763815 -Lixisenatide + pioglitazone (± metformin)
-Placebo + pioglitazone (± metformin)

484 0.52 55.77 9.50 Low

Riddle et al. 
2013

GetGoal-Duo1 NCT00975286 -Insulin Glargine + metformin (± TZDs) + lixisenatide
-Insulin Glargine + metformin (± TZDs) + placebo

446 0.50 56.00 10.00 Low

Gerstein et 
al. 2023

AMPLITUDE O NCT03496298 - Efpeglenatide
- Placebo

4076 0.67 64.50 8.20 Low

Gerstein et 
al. 2021

AMPLITUDE O NCT03496298 - Efpeglenatide
- Placebo

4076 0.67 64.50 8.20 Low

Holman et 
al. 2017

EXSCEL NCT01144338 - Exenatide + usual care
- Placebo + usual care

14,752 0.62 62.00 8.90 Low

Hernandez 
et al. 2018

HARMONY NCT02465515 - Albiglutide + standard care
- Placebo + standard care

9463 0.69 64.15 8.70 Low

Table 1  Summary of included studies
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There were no significant differences for fatal MI, HF and 
unstable angina.

Comparison to insulin and glucose-lowering agents
Table 3 summarizes the comparison between the impact 
of GLP-1RA to other glucose-lowering agents on cardio-
vascular outcomes. GLP-1RA significantly reduces the 
rates of MACE (RR: 0.73, 95%CI: 0.69 to 0.79, p = 0.01), 

rates of coronary revascularization (RR: 0.61, 95%CI: 
0.40 to 0.94, p = 0.02) and cardiovascular mortality RR: 
0.43, 95%CI: 0.34 to 0.54, p < 0.01). However, no statistical 
differences were observed for other outcomes (MI, non-
fatal MI, stroke, heart failure, unstable angina). Com-
parison with other glucose-lowering agents, comprising 
sulfonylurea, dipeptidyl peptidase 4 inhibitors (DPP4-I) 
and SGLT2i are summarized in Supplementary Material 
5.

Sensitivity analysis based on prior ASCVD
Sensitivity analysis was conducted on the population with 
prior ASCVD events and summarized in Supplementary 
Material 6. In the secondary prevention population, the 
use of GLP-1RA led to significant reduction in unstable 
angina events (RR: 0.88, 95%CI: 0.82 to 0.95, p = 0.03) and 
coronary revascularization (RR: 0.78, 95%CI: 0.69 to 0.87, 
p < 0.01) compared to placebo. However, the rates of total 
MI and non-fatal MI were not significantly reduced in 
the prior ASCVD population (Total MI RR: 0.82, 95%CI: 
0.49 to 1.36, p = 0.23;non-fatal MI RR: 0.87, 95%CI: 0.09 
to 7.96, p = 0.56).

Sensitivity analysis based on T2DM
The effects of GLP-1RA in the T2DM population were 
largely congruent with the overall population, except 
for its effects on the rates of coronary revascularization. 
While the levels of risk reduction were similar (Overall 
RR: 0.85 vs. T2DM RR: 0.86), this effect did not achieve 
statistical significance within this analysis. The results of 
this sensitivity analysis is summarized in Supplementary 
Material 6.

Meta-regression on modulators of GLP-1RA effectiveness
Sufficient studies (n ≥ 10) were available for the conduc-
tance of meta-regression on the following baseline, bio-
chemical and demographic factors. Higher BMI was 
independently associated with reductions in total MI 
incidence (β: -0.09, 95%CI: -0.18 to -0.01, p = 0.03) with 
GLP-1RA use. On the other hand, the Asian ethnicity 
was associated with increased risk of total MI incidence 
with GLP-1RA use (β: 3.49, 95%CI: 0.95 to 6.03, p = 0.01). 

Table 2  Numbers needed to treat for total MI (overall)
Outcome Number of 

studies
Numbers needed 
to treat (95% con-
fidence interval)

Follow-
up time 
(Years)a

Total MI 15 NNTB 207 (NNTB 
129 to NNTB 620)

3.48 ± 1.51 
(Range: 1.55 
to 5.47)

Fatal MI 6 NNTB 1744 (NNTB 
401 to ∞ to NNTH 
312)

4.15 ± 1.70 
(Range: 3.27 
to 5.47)

Non-Fatal MI 13 NNTB 208 (NNTB 
123 to NNTB 931)

4.06 ± 1.18 
(Range: 3.32 
to 5.47)

MACE 12 NNTB 67 (NNTB 46 
to NNTB 135)

3.48 ± 1.51 
(Range: 1.55 
to 5.47)

Stroke 11 NNTB 335 (NNTB 
224 to NNTB 714)

3.48 ± 1.51 
(Range: 1.55 
to 5.47)

Coronary 
Revascularization

6 NNTB 93 (NNTB 52 
to NNTB 1717)

3.45 ± 1.21 
(Range: 3.27 
to 3.96)

Cardiovascular 
Mortality

13 NNTB 170 (NNTB 
120 to NNTB 306)

3.48 ± 1.51 
(Range: 1.55 
to 5.47)

Heart Failure 10 NNTB 551 (NNTB 
119 to ∞ to NNTH 
153)

4.10 ± 1.52 
(Range: 3.27 
to 5.47)

Unstable Angina 8 NNTB 2919 (NNTB 
659 to ∞ NNTH 
1031)

3.03 ± 1.18 
(Range: 3.32 
to 5.47)

When the numbers needed to benefit crosses infinity, it means that for the 
current outcome, no clear benefit for the outcome can be seen statistically

Legend: NNTB, Numbers needed to treat; NNTH, Numbers needed to harm; MI, 
Myocardial Infarction; MACE, Major Adverse Cardiovascular Events; ∞, Infinity
a Follow-up Time is presented in Mean ± Standard deviation (Range) unless 
stated otherwise

Study Trial name Trial registry 
number

Intervention arms Sam-
ple 
size

Sex 
(male)

Age (years) Risk 
of 
bias

Mean SD

Marso et al. 
2016

LEADER NCT01179048 - Liraglutide + standard of care
- Placebo + standard of care

9340 0.64 64.30 7.20 Low

Husain et al. 
2019

PIONEER 6 NCT02692716 - Semaglutide
- Placebo

3183 0.68 66.00 7.00 Low

Marso et al. 
2016

SUSTAIN 6 NCT01720446 - Semaglutide + standard-care regimen
- Placebo + standard-care regimen

3297 0.61 64.60 7.40 Low

McGuire et 
al. 2025

SOUL NCT03914326 - Oral semaglutide
- Placebo"

9650 0.71 66.10 7.55 Low

Table 1  (continued) 
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Age, sex and hemoglobin A1c (HbA1c) levels was not 
associated with total MI risk reduction. These findings 
are summarized in Table 4.

Safety analysis
Amongst the 16 safety domains (Supplementary Mate-
rial 7), most of the side-effects were related to the gas-
trointestinal system. Patients taking GLP-1RA were at 
elevated risk of nausea (NNTH 8, RR: 3.56, 95%CI: 2.43 to 
5.21, p < 0.01), vomiting (NNTH 9, RR: 3.99, 95%CI: 2.44 
to 6.54, p < 0.01), diarrhea (NNTH 20, RR: 1.85, 95%CI: 
1.33 to 2.59, p < 0.01), and constipation (NNTH 21, RR: 
2.04, 95%CI: 1.46 to 2.83, p < 0.01). Overall, patients were 
55% more likely to develop gastrointestinal side-effects 
(NNTH 8, RR: 1.55, 95%CI: 1.22 to 1.97, p < 0.01) com-
pared to placebo. Other side effects included, but are 
not limited to, minor (NNTH 36, RR: 2.17, 95%CI: 1.38 
to 3.43, p = 0.03), symptomatic (NNTH 22, RR: 1.78, 
95%CI: 1.15 to 2.74, p = 0.03) hypoglycemic events, diz-
ziness (NNTH 60, RR: 1.39, 95%CI: 1.03 to 1.87, p = 0.04) 
(Table 5).

Publication bias and certainty of outcomes
From the visual assessment of funnel plots, there was no 
significant publication bias in the analysis of cardiovascu-
lar outcomes. The funnel plots are shown in Supplemen-
tary Material 8. Egger’s regression performed also did not 
reveal any statistically significant publication bias, with 
p < 0.05 as the threshold for significance. The GRADE 
methodology was employed and the assessment noted 
moderate to high level of certainty in all the main out-
comes Supplementary Material 9). Nonetheless, attenu-
ation of the certainty of outcomes for total MI, fatal MI, 
MACE and coronary revascularization was attributed to 
the domain of inconsistency and imprecision.

Discussion
Current clinical practice guidelines [63, 64] recommend 
the use of GLP-1RA in patients with T2DM at high 
risk of ASCVD. While these guidelines are informed by 
the surmounting evidence of MACE reduction in the 

primary preventative cohort at risk of ASCVD [26], the 
present study adds to the current evidence by providing 
an in-depth assessment of clinical impact, in terms of the 
NNT, efficacy and safety of GLP-1RA on MI risk and the 
individual constituents of ASCVD risk reduction. There 
were several principal findings from the comprehensive 
evaluation of 25 trials enrolling over 109,846 partici-
pants. The therapeutic effect of GLP-1RA was observed 
with 14% risk reduction in total MI, although these 
effects should be interpreted in the context of the NNT 
of 207 to prevent one event of MI over a follow-up of 
3.48 ± 1.51 years. However, the significant MI risk reduc-
tion was slightly attenuated in the population with T2DM 
(Overall RR: 0.86 vs. T2DM RR: 0.89) and in the second-
ary preventative cohort with prior ASCVD (Overall  p 
< 0.01 vs. Prior ASCVD p = 0.23). Importantly, the meta-
regression analysis revealed greater effectiveness in MI 
reduction in individuals with high BMI from early initia-
tion of GLP-1RA. It is also notable that significant reduc-
tion in unstable angina and unplanned revascularization 
with the use of GLP-1RA was observed in the second-
ary preventative cohort, potentially translating to clini-
cal impact in individuals with prior ASCVD events. The 
benefits in ASCVD risk reduction with GLP-1RA are evi-
denced by 14% risk reduction in cardiovascular mortality 
with an NNTB of 207 to prevent one event, 13% MACE 
reduction with an NNT of 67 to prevent one event and 
12% risk reduction in stroke with an NNT of 335 to pre-
vent one event, along with their favourable safety profile 
of 6% increased overall adverse events.

The ASCVD risk reduction of GLP-1RA is largely 
attributed to the 13% reduction of three-point MACE, 
which comprised of cardiovascular death, non-fatal MI 
and non-fatal stroke. However, little is known about 
the weight of each individual component’s contribu-
tion to the overall composite risk reduction. Prior evi-
dence suggested that, while GLP-1RA exhibits beneficial 
effects on MACE, the reduction of MI may not be the 
primary driver to the improvement of overall cardiovas-
cular outcomes. These studies described an insignificant 
trend towards the risk reduction of fatal and non-fatal 

Table 3  Effect on cardiovascular outcomes compared to placebo and insulin regimen
Outcomes Number of Studies Risk Ratio (95% Confidence Interval) I2 Cochran Q p-value
Comparison to Placebo
Total MI 15 0.86 (0.78 to 0.95) 47.10% 0.02 < 0.01*
Fatal MI 6 0.87 (0.44 to 1.72) 32.80% 0.19 0.62
Non-fatal MI 13 0.87 (0.79 to 0.97) 38.30% 0.08 0.02*
MACE 12 0.87 (0.80 to 0.93) 52.50% 0.02 < 0.01*
Stroke 11 0.88 (0.82 to 0.94) 00.00% 0.82 < 0.01*
Coronary Revascularization 6 0.85 (0.72 to 0.99) 72.00% < 0.01 0.04*
Cardiovascular Mortality 13 0.87 (0.82 to 0.93) 00.00% 0.50 < 0.01*
Heart Failure 10 0.95 (0.75 to 1.19) 35.90% 0.12 0.60
Unstable Angina 8 0.97 (0.87 to 1.08) 00.00% 0.84 0.54
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Fig. 2  Forest plots of cardiovascular outcome prevention compared to placebo
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MI, as well as unstable angina [65–68]. Our study chal-
lenges current observations by demonstrating significant 
risk reduction of MI, with the use of GLP-1RA. Several 
mechanistic pathways have been hypothesized to under-
pin these clinical observations, which involves the influ-
ence of GLP-1RA on inflammatory, oxidative stress, and 

angiogenesis pathways in the atherosclerotic process 
[69–72].

GLP-1RA has comparable efficacy in MI risk reduc-
tion compared to current guideline-guided medical 
therapy in ASCVD prevention. The NNT for MI risk 
reduction over a course of five years has been reported 
to be 361 for aspirin [73], 104 for statins [74], and 100 

Fig. 2  (continued)
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for anti-hypertensive medications [75], compared to the 
NNT of 207 for GLP-1RA. In terms of the individual 

MACE components, the present study informs clini-
cians that the impact of GLP-1RA, based on the NNT, 

Fig. 2  (continued)
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is predominantly in the reduction of coronary revas-
cularization risk, followed by total MI, then cardiovas-
cular mortality, non-fatal MI and stroke. In addition, 
studies have shown that use of GLP-1RA has significant 

reduction in MI, CV mortality, and/or MACE in patients 
with a history of MI [12, 76], with our data demonstrating 
reduction in unstable angina and coronary revasculariza-
tion risk in the secondary preventative cohort. The next 
important step will be to examine the cost effectiveness 
of GLP-1RA medications in patients following MI, and 
the role in further ASCVD risk reduction. Future studies 
are needed to compare the clinical impact of GLP-1RA, 
in terms of NNT, with other therapies in the pipeline 
that target the various pathways in the ASCVD process, 
such as bempedoic acid which has been associated with 
reduced risk of MI and coronary revascularization due to 
the improvement in lipid and inflammatory profiles [77]. 
However, the comparison of NNT across various drug 
classes must be nuanced given the NNT values are spe-
cific to individual trial design, study population baseline 
characteristics, and the time of outcome measurement.

The possibility that specific GLP-1RAs may differen-
tially impact on MI risk cannot be dismissed. Four GLP-
1RAs demonstrated similar degree of protection against 
total MI, with albiglutide associated with the lowest 
NNTB for total MI, followed by semaglutide, efpeglena-
tide, and liraglutide. While lixisenatide was found to be 
the only GLP-1RA subtype to increase the risk of MI, it is 
important to consider that the ELIXA trial, which studied 
lixisenatide in patients with T2DM, had the highest risk 
population as it included participants with recent acute 
coronary events in the past 180 days [40]. Moreover, the 
lack of cardiovascular benefits observed with lixisenatide 
may be contributed to its relatively short half-life [78]. 
Interestingly, our analysis revealed that the unfavorable 
impact of lixisenatide on MI rates was reversed upon the 
removal of the ELIXA trial [40] in the sensitivity analysis 
(NNTB: 569, 95%CI: NNTB 252 to ∞ to NNTH 10). In 
addition, our study revealed that exenatide demonstrated 
the least favorable NNTB profile in terms of MI risk 
reduction. This was partly contributed by the relatively 
higher discontinuation rate observed in the EXSCEL 
trial [55], which studied once-weekly exenatide on car-
diovascular outcomes in T2DM, given that the study did 
not have a run-in period to optimize medication adher-
ence. Together with the EXSCEL trial’s shorter follow-up 
duration, this could have attenuated the significance in 
the study outcome. It will be important to consider the 
specific GLP1-RAs that have shown clear benefit in the 
reduction of MI risk when integrating them into con-
temporary primary and secondary ASCVD prevention 
guidelines.

Specific patient factors can modify the beneficial effect 
of GLP-1RA in MI risk reduction [79, 80]. The presence 
of obesity is intricately associated with the risk of isch-
emic heart diseases [81], associated with a dose–response 
relationship[82]. Our findings are suggestive that an 
increased BMI is associated with significantly larger MI 

Table 4  Meta-regression of demographic factors on myocardial 
infarction compared to placebo
Demographic 
Factor

Number of 
Studies

Sample 
size

β coefficient 
(95% Confidence 
Interval)

p-
val-
ue

Age 15 84,374 -0.02 (-0.06 to 0.03) 0.37
Male 15 84,374 -1.24 (-2.69 to 0.20) 0.09
Caucasian 14 83,969 0.21 (-1.51 to 1.93) 0.79
African American 11 64,727 0.30 (-4.10 to 9.91) 0.37
Asian 11 56,882 3.49 (0.95 to 6.03) 0.01*
Bodymass Index 14 74,724 -0.09 (-0.18 to -0.01) 0.03*
HbA1C 13 70,568 0.02 (-0.09 to 0.12) 0.76
Bolded p value with asterix (*) are of p ≤ 0.05, denotingstatistical significance

Legend: HbA1C, hemoglobin A1C;

Table 5  Safety analysis (Numbers needed to Harm)
Outcome Number of 

Studies
Numbers Needed to Harm 
(95% Confidence Interval)

Gastrointestinal
Gastrointestinal side 
effects

8 NNTH 8 (NNTH 5 to NNTH 21)

Nausea 12 NNTH 8 (NNTH 5 to NNTH 14)
Vomiting 9 NNTH 12 (NNTH 7 to NNTH 25)
Diarrhea 12 NNTH 20 (NNTH 11 to NNTH 53)
Constipation 4 NNTH 21 (NNTH 12 to NNTH 46)
Endocrinology
Minor hypoglycaemic 
events

2 NNTH 36 (NNTH 18 to NNTH 
113)

Symptomatic hypogly-
caemic events

3 NNTH 22 (NNTH 10 to NNTH 
113)

Severe symptomatic 
hypoglycaemic events

7 NNTH 2307 (NNTH 82 to ∞ to 
NNTB 125)

Neurology
Dizziness 4 NNTH 60 (NNTH 27 to NNTH 

848)
Headache 6 NNTH 152 (NNTH 45 to ∞ to 

NNTB 162)
Hepatobiliary
Overall pancreatitis s5 NNTH 1743 (NNTH 368 to ∞ to 

NNTB 1612)
Acute Pancreatitis 5 NNTH 2550 (NNTH 523 to ∞ to 

NNTB 436)
Cholelithiasis 2 NNTH 459 (NNTH 132 ∞ to 

NNTB 670)
Rheumatology
Severe allergic 
reactions

3 NNTH 425 (NNTH 42 to ∞ to 
NNTB 105)

Hypersensitivity syn-
drome or symptoms

2 NNTB 638 (NNTB 589 to NNTB 
695)

When the numbers needed to harm crosses infinity, it means that for the current 
outcome, no clear harm for the outcome can be seen statistically

Legend: NNTH, Numbers needed to harm; TEAE, Treatment-emergent adverse 
events; ∞, Infinity;
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risk reduction with GLP-1RA. With weight reduction, 
GLP-1RA can improve dysregulated lipid profile and 
insulin resistance of individuals with obesity, thus reduc-
ing residual ASCVD risk [83–85]. In addition, GLP-1RA 
did not result in improvements in total MI and non-fatal 
MI compared to placebo, in our sensitivity analysis of the 
T2DM as well as the secondary prevention populations. 
This is likely attributable to the competing multimor-
bid status in the generally higher risk population with 
T2DM, that can attenuate the overall beneficial effects 
of GLP-1RA [86–88]. Some studies suggest that the ben-
eficial effects of GLP-1RAs can be dampened by the del-
eterious effects of long-standing T2DM resulting in the 
reduced capacity to secrete insulin and diminished incre-
tin effects, resulting in reduced glucose-lowering efficacy 
of GLP-1RA [89, 90]. While others have reported on the 
significant MACE reduction with GLP-1RA therapy in 
the secondary prevention cohort, but not in the primary 
prevention setting [91], our findings extend the cur-
rent notion that the beneficial impact on the individual 
MACE constituents, particularly MI risk reduction, may 
be attenuated in the higher risk secondary preventative 
population with established CVD, often characterized 
by advanced age and multimorbidity status [90]. Taken 
together, this emphasizes the importance in timely initia-
tion of GLP-1RA, targeting the primary preventive popu-
lation with overweight/obesity, prior to the manifestation 
of T2DM and development of ASCVD [92–95].

In the context of heart failure, GLP-1RA were associ-
ated with a directionally favorable but statistically non-
significant effect. This finding diverges from the results 
reported by Sattar et al. 2021 [96], wherein GLP-1RA 
therapy was linked to a statistically significant reduc-
tion in heart failure risk. A critical distinction lies in the 
substantially larger sample size of the present analysis—
encompassing over 9,000 additional participants—which 
may confer greater statistical power and reliability. Fur-
thermore, the current findings are concordant with those 
of Villaschi et a. 2024 [97], suggesting that earlier signals 
of cardioprotective benefit may have led to pre-mature 
conclusions. These inconsistencies underscore the neces-
sity for additional high-powered methodologically rig-
orous trials to more definitively delineate the effect of 
GLP-1RA therapy on heart failure outcomes, thereby 
informing future revisions of clinical practice guidelines.

Moreover, emerging evidence has shown that the 
SGLT2i and GLP-1RA combination therapy was associ-
ated with fewer cardiovascular events in the population 
with T2DM and MI, compared to either drug used alone 
[98]. Both these classes can synergistically improve the 
plethora of metabolic risk factors and reduce peri-infarct 
tissue inflammation as well as infarct size molecular, 
thus improving myocardial remodeling post-infarct [99, 
100]. This could further position GLP-1RA as part of a 

comprehensive cardiometabolic strategy, optimizing its 
potential synergistic cardiovascular benefit with SGLT2i.

GLP-1RA demonstrated mixed evidence on the reduc-
tion of MI, coronary revascularization, HF and/or 
cardiovascular mortality when compared to other glu-
cose-lowering agents [101–104]. Several studies reported 
larger risk reduction in coronary revascularization by 
44% when compared to sulfonylurea[41] and DPP-4I[46]. 
Our study postulates improved MI rates, albeit statisti-
cally non-significant, with the use of GLP-1RA compared 
to other glucose-lowering agents. Larger head-to-head 
analysis comparing GLP-1RA and other glucose lowering 
agents are needed to evaluate the effects on atherosclero-
sis and plaque regression [95, 105, 106].

Limitations
This study has its limitations. First, in composite out-
comes such as MACE, differences in definition introduce 
heterogeneity in the analysis as seen in Supplementary 
Material 2. Thus, caution should be taken in the inter-
pretation of the NNT and RRs derived from the MACE 
analysis. Second, most studies included participants 
with T2DM, except the SELECT trial. Therefore, gen-
eralizing the MI reduction effect on populations with-
out T2DM must be done with caution. Further analyses 
are warranted to examine the cardioprotective effects of 
GLP-1RA in this subgroup without T2DM. Third, the 
included studies consisted mostly of mixed prior and 
non-prior ASCVD patients, preventing a direct com-
parison of the utility of GLP-1RA between primary and 
secondary prevention cohorts. Future study designs 
with homogeneous inclusion criteria are warranted to 
delineate primary and secondary prevention cohorts to 
facilitate more informative interpretation of the effects 
and safety of GLP-1RA. Fourth, despite the mounting 
evidence of the clinical impact of GLP-1RA on MACE 
reduction, the present study extends the current litera-
ture on the clinical impact and efficacy of GLP-1RA on 
the MI risk reduction and its individual ASCVD compo-
nents. However, comparisons with novel glucose-lower-
ing medications (e.g. SGLT2i) and other newer GLP-1RA 
medications such as the dual GIP and GLP-1RA medi-
cations (tirzepatide and mazdutide) on their effective-
ness in ASCVD risk reduction remain lacking. Thus, 
future studies are warranted to examine a head-to-head 
or indirect comparison through network meta-analyses 
to compare the clinical utility in ASCVD risk reduction 
across these emerging pharmacotherapies. Fifth, other 
studies have reported high one-year discontinuation 
rates (64.8% in non-T2DM and 46.5% in T2DM cohorts) 
and low 1-year re-initiation rates of GLP-1RA (36.3% in 
non-T2DM and 47.3% in T2DM cohorts), largely con-
tributed by moderate or severe incident gastrointestinal 
adverse events and lower income status [107–111]. As 
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such, suboptimal medication adherence and access can 
underestimate long-term ASCVD risk reduction corre-
lates associated with GLP-1RA therapy. Sixth, the current 
estimates for NNT show large uncertainty, as seen with 
wide confidence intervals in some of the NNT results. 
This is largely owing to trial variability, incorporation of 
trials with smaller scale trials reporting on MI rates [44, 
47, 48, 51, 52, 59], the heterogeneity of the study popu-
lation, and incorporation of zero total event trials in the 
current analysis [47, 48, 51, 52, 59]. Though this has been 
shown to lead to larger variability, numerous simulation 
papers have shown that this leads to a more conservative 
estimate and allows for the most generalizable estimate 
of treatment effect. Nevertheless, larger-scale research 
with harmonized study endpoints of ASCVD risk should 
be done to better clarify the overall treatment effect of 
GLP-1RA in cardiovascular outcomes.

Conclusions
In this meta-analysis of 100,196 patients, across the full 
spectrum of those with and without prior ASCVD and/
or T2DM, GLP-1RA demonstrated significant reduction 
of MI risk by 12% with NNT of 248 to prevent one event 
of MI. This benefit was more pronounced in those with 
higher BMI. In the secondary preventative cohort, GLP-
1RA may be considered for its significant reduction in 
unstable angina and coronary revascularization risk. Rel-
ative to its clinical impact on MI reduction, measured by 
NNT, GLP-1RA was more effective in preventing 1 event 
of cardiovascular mortality and MACE. Together with 
its favorable safety profile, the evidence supports the role 
of GLP-1RA as part of therapy in overall ASCVD risk 
reduction, especially in the cohort with high BMI.
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