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ABSTRACT
In individuals with obesity, the onset of chronic comorbidities coincides with the excessive accumulation of adipose tissue 
in various tissue beds. As obesity progresses, adipose tissue becomes increasingly dysfunctional causing chronic low-grade 
inflammation. Indeed, adipose tissue inflammation, which partially stems from macrophage infiltration and expression of 
macrophage-derived cytokines, has local and systemic consequences on health and increases the likelihood of developing 
obesity-associated comorbidities. In addition, cellular changes driven by macrophages may also further aggravate both adi-
pose tissue dysfunction and inflammation, thus contributing to the onset and progression of several comorbidities including 
type 2 diabetes, cardiovascular diseases, nonalcoholic fatty liver disease, osteoarthritis, some cancers, and dementia. The 
purpose of this review is to discuss how adipose tissue inflammation relates and contributes to the pathogenesis of obesity-
associated comorbidities.

1   |   Introduction

It is estimated that by 2030, more people will be overweight or 
obese than not [1]. Of particular concern is that obesity greatly 
augments the risk of developing life-threatening diseases, 
such as type 2 diabetes (T2D), cardiovascular diseases (CVD), 
and certain cancers [2]. In obesity, the excessive accumulation 
of adipose tissue (AT) results in morphologic, functional, and 

metabolic abnormalities causing AT dysfunction and whole-
body metabolic derangements [2]. Notable predominant features 
of AT dysfunction are adipocyte hypertrophy, fibrosis, impaired 
angiogenesis and adipogenesis, and immune cell infiltration, es-
pecially macrophages.

Imbalances in anti- and pro-inflammatory cytokine secretion 
from both adipocytes and adipose tissue macrophages (ATM) 
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have demonstrable impact on insulin resistance (IR), ectopic fat 
deposition leading to the nonalcoholic fatty disease (NAFLD), 
CVD, deteriorating joint health, carcinogenesis, and brain health 
[3–8]. Furthermore, the contribution of regional AT depots, such 
as femoral and gluteal fatty depots, toward obesity-associated 
comorbidities remains unclear. Building on prior reviews that 
have focused on AT inflammation in relation to insulin resis-
tance and metabolic syndrome, this review provides a novel 
synthesis of recent evidence linking obesity-associated AT in-
flammation to a broader range of comorbidities including CVD, 
NAFLD, osteoarthritis (OA), breast and colorectal cancers, and 
cognitive disorders. With this expanded framework, the aim of 
this review is to discuss the local and systemic consequences of 
regional AT inflammation as a potential underlying mechanism 
for obesity-associated comorbidities.

2   |   Adipose Tissue Inflammation and Obesity

Adipose tissue plays a pivotal role in whole-body energy reserves 
and metabolism. Most notably, AT from various depots function 
as hormone-secreting organs important to whole-body metab-
olism [9, 10]. The architecture and homeostasis of AT are intri-
cately regulated by the equilibrium between hypertrophy and 
hyperplasia, which are altered, in part, by weight fluctuations 
[11]. Indeed, in the context of obesity, positive energy balance re-
quires extensive AT remodeling on multiple levels, implicating 
mechanisms underlying AT plasticity, especially hypertrophy 
[11]. The AT microenvironment undergoes dramatic quantita-
tive and qualitative changes, ultimately promoting inflamma-
tion [2, 12, 13].

2.1   |   The Pathogenic Potential of Adipose Tissue 
Remodeling

In response to chronic positive energy balance, AT expands 
to accommodate excess lipid via adipocyte hypertrophy and 
hyperplasia, thus maintaining blood glucose and fatty acid 
concentrations below toxic levels [14]. This AT expansion is 
accompanied by acute local inflammation. Acute increases 
in AT inflammation have been shown to be beneficial - with 
studies in mice showing that suppression of inflammation in 
the initial stages of expansion increases insulin resistance, ec-
topic lipid accumulation, and systemic inflammation [15, 16]. 
However, chronic inflammation in AT appears to perturb AT 
function, contributing to metabolic derangements [4, 7, 17, 18]. 
Pro-inflammatory changes of AT include increased angio-
genic responses, reduced adipogenesis, cellular senescence, 
excessive extracellular matrix (ECM) synthesis, dysregu-
lated secretion of adipocytokines, and subcellular damage 
[2, 12, 19–23], which may contribute to the development of 
pro-inflammatory milieu within AT (Figure 1).

Regional AT depots exhibit distinct characteristics in response 
to obesity because of their anatomical and functional differ-
ences (Table 1). For example, VAT is more metabolically active 
compared to other AT depots, while gluteofemoral AT is meta-
bolically protective against obesity-associated diseases. We have 
previously reviewed the sexual dimorphism in AT and found 
that regional differences may partially explain the different pat-
terns of disease development in males versus females. Of note, 
the hyperplastic ability of female AT in all regions may protect 
them against AT inflammation compared to males [83].

FIGURE 1    |    Adipose tissue remodeling in obesity. Excessive accumulation of adipose tissue leads to adipocyte hypertrophy, hypoxia, immune cell 
infiltration, increased secretion of pro-inflammatory adipokines and cytokines, fibrosis, impaired angiogenesis, and distrupted adipogenesis result-
ing in a pro-inflammatory microenvironment.
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2.2   |   Adipose Tissue Macrophages and Obesity

Of all immune cells in AT, macrophages are the most abundant 
comprising up to 50% of stromovascular cells in AT from hu-
mans with obesity [62, 63]. These macrophages have been shown 
to play an important role in AT remodeling and have been im-
plicated in metabolic disease risk. ATMs are heterogeneous and 
exhibit high levels of plasticity; they can acquire multiple molec-
ular and immunophenotypes in response to various stimuli in 
their surrounding microenvironment [105, 106]. Functionally, 
macrophages can be divided into two broad categories: M1 and 
M2 macrophages. M1 macrophages are typically considered 
pro-inflammatory as they secrete IL-1𝛽, IL-6, IL-8, IL-12, and 
TNF-α and play an important role in tissue injury [107, 108]. 
Oppositely, M2 macrophages are generally anti-inflammatory 
as they secrete IL-4, IL-13, and IL-10 and are associated with 
wound healing, resolution of inflammation, clearing of cellu-
lar debris, regulating proliferation, and remodeling of the ECM 
[81, 107, 108]. In humans, M1 macrophages tend to express cell 
surface markers such as CD11c, CD14, and CD40, whereas M2 
macrophages most commonly express CD163 and CD206 [108]. 
While this M1/M2 macrophage paradigm was an initially useful 
model, recent advances suggest that macrophages may be more 
phenotypically diverse with a more complex range of activa-
tion states. The different subsets of pro- and anti-inflammatory 

macrophages have been extensively reviewed by Russo et  al. 
[108]. The diversity of ATM implies that the pathogenesis of 
obesity-associated comorbidities characterized by macrophage-
mediated inflammation may be more complex than previously 
thought with different subsets of macrophages playing different 
roles in obesity pathology. Although we acknowledge this diver-
sity in ATM, for the purpose of this review, ATM will be exam-
ined as the simplified dichotomous division between M1 and M2 
macrophages since there is little literature that classifies ATM 
into more specific phenotypes.

In obesity, the macrophages appear to exhibit a phenotypic shift 
to favor M1 over M2 macrophages, contributing to the devel-
opment of a pro-inflammatory microenvironment in AT [109] 
(Figure  1). The degree of AT inflammation and macrophage 
infiltration is depot dependent. Visceral adipose tissue (VAT) 
was shown to contain more macrophages of all phenotypes and 
express higher levels of pro-inflammatory cytokines in com-
parison to subcutaneous adipose tissue (SAT), highlighting the 
unique inflammatory signature of VAT that may affect disease 
risk differently [24, 29] (Table 1). Accordingly, compared to SAT, 
the accumulation of macrophages in VAT is more often associ-
ated with cellular and metabolic derangements that lead to AT 
dysfunction and possibly the pathogenesis of obesity-associated 
comorbidities [24, 110] (Figure 2).

FIGURE 2    |    Adipose tissue inflammation leads to obesity-associated comorbidities. An overview of the main pathogenic processes that lead to 
multiple metabolic and pathological conditions. Adipose tissue inflammation promotes insulin resistance, impaired lipolysis, ectopic fat deposition, 
and increased vascular stiffness, leading to diseases such as type 2 diabetes, nonalcoholic fatty liver disease (NAFLD), and cardiovascular diseases 
(CVD). Each of these conditions is interconnected with the inflammatory processes rooted in adipose tissue dysfunction, highlighting its role in sys-
temic metabolic and degenerative diseases.
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3   |   Type 2 Diabetes

3.1   |   Markers of Adipose Tissue Dysfunction 
and Insulin Resistance

There is a large body of evidence indicating that changes 
in AT characteristics are important catalysts in the de-
velopment of insulin resistance and consequently T2D 
in individuals with obesity. Indeed, adipocyte hypertro-
phy [2, 25, 26, 28, 30, 31, 33, 41, 46, 110–112], AT fibrosis 
[3, 11, 113–122], hypoxia [123–125], angiogenesis [123–125], 
and AT senescence [61, 126–134] have all been associated with 
IR and other metabolic derangements in AT. Of these charac-
teristics, adipocyte hypertrophy is one of the best studied AT 
characteristics and is especially well linked with IR. Several 
studies have observed that adipocyte hypertrophy is associ-
ated with a multitude of markers of cardiometabolic health 
including IR or sensitivity; these correlations were found to 
be more significant in VAT than in SAT [28, 110]. Although 
most studies emphasize the harmful effects of VAT accumu-
lation, research from our group and others showed that VAT 
and SAT both contribute to metabolic health in different ways 
[46, 83, 135].

3.2   |   Circulatory Adipokines and Cytokines on 
Insulin Resistance

The role of AT-derived adipokines and cytokines in IR has been 
extensively studied and is well established. Leptin is an im-
portant homeostatic adipokine that  regulates energy balance, 
metabolism, immune function, and many other physiological 
processes of the body [136]. In obesity, higher levels of leptin pro-
mote IR in adipocytes by disrupting insulin signaling pathways, 
such as mitogen-activated protein kinase (MAPK) activity, 
glycogen synthase kinase 3- β (GSK-3β) phosphorylation, and 
insulin receptor tyrosine phosphorylation [137]. Obesity also 
increases the expression of suppressor of cytokine signaling 3 
(SOCS3) protein, which is thought to upregulate leptin and insu-
lin signaling [138]. In addition, chronically high levels of leptin 
may lead to leptin resistance in the hypothalamus, ultimately 
disrupting glucose homeostasis [139]. Although significantly 
higher leptin levels were observed in females when compared 
to males, in both sexes, leptin levels were independently associ-
ated with the degree of IR [140, 141]. However, Klöting et al. in a 
study done on both males and females, observed no significant 
differences in leptin levels in individuals with insulin-resistant 
obesity versus insulin-sensitive obesity [30]. Such differences 
could be partly due to the selective leptin and insulin resistance 
in various tissues and the complex interplay between the leptin 
and insulin signaling pathways [142, 143].

In contrast with leptin, reductions in AT adiponectin secretion 
with obesity decrease AMP-activated protein kinase (AMPK) 
and peroxisome proliferator–activator receptor-α (PPAR-α) ac-
tivity. Lowering of AMPK and PPAR-α activity results in dis-
rupted glucose and lipid metabolism, increasing IR [144, 145]. 
Low adiponectin levels along with high leptin levels may also 
indirectly affect the insulin receptor function via activation of 
pro-inflammatory pathways, such as nuclear factor-kappa B 
(NF-κB) [145]. Moreover, low adiponectin levels promote lipid 

accumulation, lipotoxicity, and oxidative stress, which further 
impairs insulin sensitivity [146, 147]. In line with the afore-
mentioned findings, significantly lower adiponectin levels were 
observed in individuals with insulin-resistant obesity versus 
insulin-sensitive obesity [30]. This observation did not differ be-
tween males and females even though females had higher adi-
ponectin levels compared to males in both groups [30].

Increased levels of pro-inflammatory cytokines also promote IR 
by interfering with insulin signaling pathways. Tumor necrosis 
factor-α (TNF-α) inhibits insulin receptor activity by increasing 
serine phosphorylation and reducing tyrosine phosphorylation 
of insulin receptor substrate proteins, while also activating 
pro-inflammatory pathways such as NF-κB and JNK (c-Jun N-
terminal kinase) [148, 149]. Similarly, interleukin-6 (IL-6) dis-
rupts insulin signaling through the JAK/STAT pathway, leading 
to SOCS protein–mediated inhibition and insulin receptor sub-
strate-1 (IRS-1) degradation. Additionally, TNF-α and IL-6 pro-
mote oxidative stress and mitochondrial dysfunction, which 
exacerbate metabolic disturbances [148]. IL-6 also enhances 
hepatic glucose production, contributing to hyperglycemia and 
worsening IR [150]. As such, the effects of obesity-derived adi-
pokines and cytokines on insulin resistance are brought on by 
complex, overlapping intracellular signaling pathways.

3.3   |   Adipose Tissue Macrophages and Insulin 
Resistance

Both preclinical and clinical studies have demonstrated the 
link between macrophage number, phenotype, and insulin re-
sistance [151, 152]. For example, in male mice, Patsouris et al. 
[153] demonstrated that the depletion of CD11c + cells (M1-like 
macrophages) from epididymal fat pads caused rapid normal-
ization of insulin sensitivity along with decreases in local and 
systemic inflammatory markers [153]. In humans, however, 
the relationship between pro-inflammatory macrophages 
and IR is more ambiguous. Nonetheless, several studies found 
that in adults and children with obesity, IR was related to in-
creased infiltration of ATM, including both M1- and M2-like 
macrophages, as well as a greater number of crown-like struc-
tures  [30, 66, 67, 69, 72, 111, 112, 154, 155]. Kunz et  al. [155] 
found that across a wide range of body mass index (BMI) (20.5–
45.8 kg/m2), CD68+, and CD206 + macrophages and local and 
systemic markers of inflammation were associated with reduced 
insulin sensitivity in abdominal SAT of nondiabetic, middle-
aged adults. In line with the previous study, Fjeldborg et al. [72] 
found that while all macrophage markers (CD68, CD14, CD163, 
and CD206) were elevated in SAT of sedentary male and female 
participants with obesity, only the increases of CD163 + (M2-
like) macrophages correlated with IR. Therefore, regardless of 
phenotype, macrophage infiltration in general may contribute 
toward IR. Furthermore, because skeletal muscle is the largest 
driver of systemic IR, compared to AT and liver [156], ATMs 
may contribute to skeletal muscle IR, particularly through the 
release of pro-inflammatory cytokines [155].

However, other studies suggest that macrophage-mediated in-
flammation in AT may not be associated with IR. Jia et al. [25] 
demonstrated that in 97 participants with obesity, metabolic 
parameters, including IR, did not associate with abdominal 

https://journals.physiology.org/doi/full/10.1152/ajpendo.00586.2009


7 of 30

subcutaneous CD68 + (total ATM), CD14 + (M1-like), and 
CD206 + (M2-like) ATM density. These findings remained 
consistent across sexes despite males having significantly 
higher crown-like structures containing CD14 + (M1-like) 
ATMs when compared to females [25]. Their analysis revealed 
that indexes of IR (systemic and AT IR) were predicted by 
body composition and adipocyte size [25]. Similarly, Espinosa 
de Ycaza et al. [41] observed that in individuals with obesity 
and normal weight, AT IR did not correlate with either ab-
dominal or femoral SAT ATM markers (CD68, CD14, and 
CD206). Instead, it was found that femoral fat cell size was 
a stronger predictor of the ability of insulin to suppress AT 
lipolysis [41]. However, the study population in consideration 
was predominantly female (72%) [41], and the effects of ATM 
on IR may differ depending on the sex differences [83]. Thus, 
the role of ATM in IR remains unclear, and further studies are 
required to understand the diverse roles of ATM in different 
subpopulations.

3.4   |   Regional Adipose Tissue Macrophages 
and Their Association With Insulin Resistance

Only a few studies have compared how SAT versus VAT 
macrophages are associated with IR in adults with obesity 
[30, 66, 67, 111] (Table 1). While femoral and gluteal adipose 
tissue were not examined, the presence of ATM in both SAT 
and VAT may be an important contributor to IR and thus, the 
onset of T2D. In bariatric surgery candidates with insulin re-
sistance, omental AT mass, concentrations of inflammatory 
markers, as well as the number of CD68 + macrophages, were 
higher than in those with insulin sensitivity [30]; these differ-
ences were not observed in abdominal SAT. Similarly, Hardy 
et al. [111] found that in bariatric surgery candidates, omental 
CD68 + cell infiltration significantly correlated with IR [111]. 
Conversely, in females with moderate-to-severe obesity (BMI 
39–56 kg/m2), CD11c + cells (M1-like macrophages) density 
was greater in SAT than in VAT and correlated more strongly 
with IR [66]. Bigornia et al. [67] found that the increased pres-
ence of CD68 + crown-like structures in both SAT and VAT 
correlated with markers of systemic IR [67]. Thus, it appears 
that visceral ATMs may play a more significant role in IR 
than subcutaneous ATMs except in severe obesity. In a study 
involving healthy individuals who followed an overfeeding 
diet (1250 kcal/day, 45% fat) for 28 days, insulin sensitivity de-
creased by 11% without significant changes in abdominal sub-
cutaneous ATM or adipocyte size [157]. Similarly, Jia et al.[25] 
suggest that the effects of subcutaneous ATM on IR may be 
confounded by adipocyte size/body composition, given the 
variability in predictive values across different adipocyte sizes 
[25]. The hyperplastic capacity of SAT may play a protective 
role in ATM-mediated AT inflammation. However, in cases 
of severe obesity where the hyperplastic capacity of SAT is 
diminished, subcutaneous ATMs may contribute to a greater 
degree of AT inflammation and IR.

In summary, AT dysfunction characterized by morphological 
and functional changes as well as increased macrophage infiltra-
tion may play an important role in the development of local and 
systemic IR. However, more mechanistic studies are necessary 
to establish causality. In addition, the contribution of femoral 

and gluteal fatty depots to IR should be further explored as most 
studies focused only on subcutaneous abdominal and VAT.

4   |   Cardiovascular Diseases

The association between adiposity and CVD has been widely 
studied and is well established. It has been found that CVD 
risk increases by 10% for every 5 kg/m2 increase in BMI [158]. 
Numerous studies have found that inflammation from different 
fatty depots has differential effects on the incidence of CVD. Of 
all AT depots, the accumulation of VAT may be the greatest risk 
factor for the onset and progression of CVD [159, 160]. Further, 
the accumulation of epicardial fat and SAT are likely significant 
contributors to the pathogenesis of CVD [161, 162].

4.1   |   Circulatory Adipokines and Cytokines on 
Cardiovascular Disease

The chronic low-grade inflammation associated with obesity 
and the imbalances in adipokine secretion appear to affect ath-
erogenesis. High levels of leptin were independently associated 
with increased CVD risk, incidence of congestive cardiac fail-
ure, and CVD hazard ratio [163, 164]. Importantly, these associ-
ations remained significant in a cohort of over 6000 participants 
after adjusting for several potentially confounding factors, in-
cluding age, race, hypertension, smoking, dyslipidemia, diabe-
tes, and both total and central adiposity [164]. Leptin appears to 
promote atherosclerosis, thrombosis, and endothelial dysfunc-
tion in mouse models [165]. Although the precise mechanisms 
are not fully understood, it is believed that leptin may attenuate 
coronary vasoreactivity [166] and increase hepatic high-density 
lipoprotein (HDL) cholesterol uptake, thereby lowering serum 
HDL levels in humans [167]. Leptin has also been found to im-
pair endothelial relaxation in resistance vessels and enhance the 
pressor response to angiotensin II, which is a potent vasocon-
strictor [168]. Such effects of leptin may lead to vascular stiff-
ness, which ultimately results in hypertension and increased 
CVD risk [168].

Conversely, adiponectin may be protective for CVD, and high 
adiponectin levels are associated with reduced risk of nonfa-
tal CVD and increased event-free survival ratio [169–171]. The 
protective effects of adiponectin against atherosclerosis are 
elicited via several mechanisms. Adiponectin has been shown 
to activate the NF-κB pathway and prevent cytokine-induced 
endothelial activation [172]. Furthermore, in vitro, adiponectin 
enhanced cholesterol efflux and reduced foam cell formation in 
macrophages extracted from patients with diabetes [173]. While 
adiponectin appears to play a protective role in the pathogene-
sis of CVD, others have found that higher adiponectin levels are 
also considered an independent predictor of mortality associ-
ated with CVD, possibly because of compensatory upregulation 
following a cardiovascular event [169, 174].

In obesity, the increase in leptin and reduction of adiponectin 
may also promote M1-like macrophage activation in AT, thereby 
increasing the secretion of pro-inflammatory cytokines such as 
TNF-α, IL-6, and IL-1 [175]. Elevated levels of TNF-α and IL-6 
were associated with a greater risk of myocardial infarction, 
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with the risk being even more pronounced among individuals 
with obesity [176–180]. TNF-α can enhance atherosclerosis by 
increasing transcytosis of lipoprotein across endothelial cells 
via the activation of NF-κB and PPAR-γ pathways [175, 181]. 
Similarly, IL-6 also augmented the risk of CVD via activation of 
endothelial and smooth muscle cells, and increased macrophage 
recruitment, and lipid accumulation [182–185].

4.2   |   Regional Adiposity on Cardiovascular Disease

Strong associations between increased VAT mass and CVD risk 
factors such as dyslipidemia, increased blood pressure, and IR 
are well established [186–191]. Several studies also showed an 
association between SAT mass and CVD risk [186, 188, 190, 192]. 
This association was nonsignificant in some studies when ad-
justed for age, BMI, and waist circumference [186]. However, 
when it comes to AT, it might not only be the quantity that 
should be considered in predicting CVD risk but also qual-
ity.  Computed tomography (CT) attenuation has been used as 
a marker of AT quality. Lower CT attenuation of VAT and SAT 
was strongly associated with greater BMI levels and increased 
fat accumulation in both males and females [160, 193]. Lower CT 
attenuation in AT is strongly correlated with pro-inflammatory 
biomarkers such as C-reactive protein (CRP), leptin, and insu-
lin in patients who had CVD risk factors [194]. Furthermore, 
reduced VAT and SAT attenuation were associated with in-
creased risk of CVD, and this association was stronger in VAT 
compared to SAT [160, 187, 193–195]. Apart from SAT and VAT, 
increased intrahepatic fat also showed a greater correlation with 
cardiometabolic risk factors [186].

Adipocyte hypertrophy in VAT strongly correlates with car-
diometabolic risk factors in individuals with overweight and 
obesity [31–35, 40, 42]. A 10% increase in the omental adipocyte 
size increased the risk of hypertriglyceridemia by fourfold in 
women with obesity [33]. However, in individuals with mor-
bid obesity, larger adipocytes in SAT were strongly associated 
with cardiometabolic risk factors when compared to VAT [45]. 
Such differences may arise because of the limited expandability 
of SAT depots [28, 45, 196]. For instance, VAT but not SAT adi-
pocyte size correlated strongly with measures of adiposity such 
as BMI, waist circumference, and body fat percentage [35]. We 
hypothesize that larger adipocytes in SAT are an indicator of 
AT dysfunction potentially affecting lipid storage [40, 197, 198] 
(Table 1).

Epicardial AT also plays an important role in CVD risk as this 
AT is adjacent to cardiac tissue and shares the same blood sup-
ply, facilitating the uptake of epicardial AT secretions by cardiac 
tissue [91, 199–201]. Increasing epicardial AT volume was found 
to be associated with the development of high-risk coronary 
artery plaques [201]. Additionally, epicardial AT volume and 
thickness were also found to be associated with an increased 
risk of cardiac death, myocardial infarction, and atrial fibrilla-
tion [200].

Both obesity and abdominal obesity have strong positive associ-
ations with epicardial AT volume [202, 203], however, the effects 
of obesity on epicardial adipocyte size is less clear and may vary 
by sex (Table 1). Greater epicardial adipocyte size significantly 

correlated with CVD risk [58, 59]. Though some studies showed 
no effect of obesity on epicardial adipocyte size [55, 56], when 
sex is considered Waddel et al. found an independent relation-
ship between  adipocyte size and in males but not in females 
[57].  Compared to noncoronary artery disease patients, patients 
with coronary artery disease had greater epicardial AT, gene 
expression of pro-inflammatory cytokines (TNF-α, leptin, IL-6, 
IL-1β, and visfatin), and lower levels of adiponectin [91–95]. In 
patients with coronary artery disease, epicardial AT appears to 
secrete two times the amount of leptin and adiponectin com-
pared to subcutaneous and mediastinal AT [91]. In contrast, epi-
cardial AT from coronary artery disease patients secreted less 
TNF-α, IL-6, leptin, and visfatin compared to abdominal VAT 
[92]. Although obesity is associated with greater epicardial AT 
volume, the aforementioned studies did not consider overall 
adiposity in their analyses. Thus, further studies are required 
to understand the specific effects of obesity on epicardial AT 
inflammation.

4.3   |   Regional Adipose Tissue Macrophages in 
Cardiovascular Disease

A study that compared SAT and three VAT depots (mesenteric, 
peri-aortic, and omental) in patients who underwent abdomi-
nal aortic surgery [64] and found reduced concentrations and 
numbers of adipokines and ATMs in SAT. Compared to patients 
without coronary artery disease, patients with coronary artery 
disease have also been shown to have increased macrophage 
infiltration (CD68+), especially of the M1-like phenotypes 
(CD11c+) in epicardial AT [58, 79]. Moreover, in patients with 
chronic heart failure, epicardial AT is typically thinner, with 
higher macrophage infiltration (CD68+), and impaired angio-
genesis [80]. An ex vivo study compared the effects of SAT and 
VAT exosomes on atherogenesis and observed that VAT exo-
somes markedly increased the generation of macrophage foam 
cells. Visceral adipose tissue exosomes also significantly induced 
an M1 phenotype transition and TNF-α and IL-6 secretion com-
pared to SAT exosomes [87]. These findings suggest a larger 
influence of epicardial AT and VAT in macrophage-mediated 
inflammation leading to atherogenesis compared to SAT.

5   |   Nonalcoholic Fatty Liver Disease

Recently, the term “metabolic dysfunction–associated fatty liver 
disease (MAFLD)” has been coined to describe fatty liver dis-
ease of metabolic origin. As the studies reviewed generally refer 
to nonalcoholic fatty liver disease (NAFLD), we will continue 
to use NAFLD with the understanding that these cases likely 
include patients with MAFLD.

5.1   |   Cellular and Metabolic Changes in Adipose 
Tissue Contribute to NAFLD

Nonalcoholic fatty liver disease is increasingly prevalent in in-
dividuals with obesity and T2D, and as obesity progresses, so 
does the severity of the disease. A hallmark feature of NAFLD 
is the ectopic deposition of fatty tissue among hepatocytes lead-
ing to morphologic and functional changes in the liver [204]. 
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Recent studies in humans with NAFLD depict morphological 
alterations and mediators of AT dysfunction that may aggra-
vate AT inflammation and potentiate hepatic injuries [36–39, 
44, 70, 205]. Indeed, several groups found that patients with 
obesity and NAFLD had significantly higher mean adipocyte 
size in both SAT and VAT, indicating that adipocyte hypertro-
phy is associated with fatty liver and consequently NAFLD 
[36–39, 44]. For instance, Osorio-Conles et  al. [38] observed 
that in female adults with both severe obesity and NAFLD, 
VAT, but not SAT cell area, were 20% greater in comparison 
to those without NAFLD. They also found that NAFLD was 
associated with a lower abundance of smaller adipocytes (16% 
less) and higher abundance of larger adipocytes (55% more) in 
VAT relative to those with obesity only.

In addition to adipocyte hypertrophy, other studies also demon-
strated the link between NAFLD and other features of AT dys-
function such as AT fibrosis, impaired microvascular density, 
and markers of hypoxia, apoptosis, and inflammation in VAT 
[70, 205]. There is a large body of evidence demonstrating that 
the dysregulated secretion of adipokines and adipocytokines, 
most notably leptin, adiponectin, TNF-α, and IL-6, is a deter-
minant of NAFLD progression [17, 206]. As such, macrophages 
and their pro-inflammatory cytokines may have the ability to 
dysregulate lipolysis, increasing the release of fatty acids into 
circulation and causing fat deposition to ectopic locations such 
as the liver [207–209]. Furthermore, numerous studies indicate 
that NAFLD progression is sex specific, which may be in part 
due to differences in body fat mass partitioning and regional AT 
characteristics [36, 70, 205, 207]. For example, Leven et al. [205] 
showed that the profibrotic deposition of ECM in VAT of adults 
with both obesity and NAFLD was sex specific with females dis-
playing a greater degree of fibrosis than males. Accordingly, AT 
dysfunction or the cellular changes associated with AT remod-
eling may be potential biomarkers for the presence and severity 
of NAFLD.

5.2   |   Adipose Tissue Macrophages and NAFLD

Direct evidence of the role of ATM as a potential contributor 
to NAFLD was recently highlighted by Bijnen et al. [210] who 
observed that compared with lean-transplanted mice, trans-
planting donor VAT from obese to lean mice increased hepatic 
macrophage content and worsened liver injury. Moreover, ATM 
depletion prior to VAT transplantation markedly reduced he-
patic macrophage accumulation. Another murine study also 
found that surgical removal of inflamed epididymal fatty tissue 
after 12 weeks of high-fat diet significantly attenuated the pro-
gression of NAFLD, as well as the expression of inflammatory 
cytokines [211].

In humans, patients with NAFLD had heightened AT inflamma-
tion with greater infiltration of inflammatory immune cells, espe-
cially macrophages [38, 68–71, 74, 210, 212, 213]. In several studies, 
adult participants with NAFLD consistently had increased pro-
portions of pro-inflammatory macrophages in VAT, which cor-
related positively with the hepatic infiltration of immune cells 
and fibro-inflammatory lesions [38, 68–71, 210, 212]. For exam-
ple, Cancello et al. [68] found that in 55 bariatric surgery candi-
dates with at least two comorbidities out of T2D, hypertension, or 

dyslipidemia, there were twice as many HAM56 + macrophages 
in omental VAT than in abdominal SAT and that increased ac-
cumulation of macrophages in omental AT correlated strongly 
with hepatic lesions. While these studies found associations be-
tween VAT macrophages and NAFLD, two others found that 
both fat compartments had differentially expressed genes asso-
ciated with AT inflammation and NAFLD, suggesting that these 
tissue beds may contribute differently to NAFLD progression 
[38, 71]. Fuchs et al. [213] also demonstrated that the total num-
ber of CD206 + CD11c + macrophages along with the expression 
of several cytokines in abdominal SAT was greater in those with 
both obesity and NAFLD compared to lean and obese individuals 
with normal intrahepatic triglyceride content. As such, it is likely 
that SAT inflammation may also play a role in the pathogenesis 
of NAFLD.

Overall, macrophage-mediated inflammation and changes in 
AT characteristics may represent a possible mechanism affect-
ing NAFLD progression and severity. However, most studies 
focused on VAT only and very few have investigated the contri-
bution of SAT in NAFLD. As SAT represents approximately 80% 
of fat mass, any disturbances in SAT metabolism, morphology, 
and overall homeostasis may have notable local and systemic 
consequences on health. Future studies may want to include 
subcutaneous depots from various anatomical locations to pro-
vide a larger picture of how AT inflammation and dysfunction 
affect NAFLD.

6   |   Osteoarthritis

6.1   |   Adipose Tissue–Derived Markers 
and Osteoarthritis

Osteoarthritis (OA) is one of the most common joint diseases 
characterized mainly by the progressive degeneration of ar-
ticular joints [214]. Emerging evidence suggests that changes 
in the inflammatory profiles of systemic AT via the increased 
secretion of adipokines and adipocytokines may damage joint 
tissue [5, 215]. Furthermore, the infrapatellar fat pad (IFP), a 
naturally occurring fatty depot within the knee joint, was found 
to present quintessential markers of AT dysfunction leading to 
inflammation and damage in joint tissue [5, 215]. A vast array 
of murine studies has investigated whether pro-inflammatory 
cytokines and adipokines were mediators of OA pathogenesis. 
Consistently, OA progression and severity were positively asso-
ciated with not only body fat mass, but also several adipokines 
and cytokines, most notably leptin and adiponectin [215]. 
Further evidence of the contribution of adipokines in OA patho-
genesis was highlighted by Griffin et al. [216] who found that 
regardless of obesity severity and body fat levels, the absence of 
the leptin gene or receptor in mice prevented the development 
of knee OA.

Findings in humans with both OA and obesity are consistent 
with preclinical studies. Adipokine levels, such as leptin, adi-
ponectin, visfatin, and resistin, in both serum and synovial 
fluid correlated with OA onset, progression, and radiographic 
severity; they were also found to upregulate downstream in-
flammatory pathways, cartilage degradation, infiltration of im-
mune cells in joint tissue, mesenchymal cell differentiation, and 
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chondrocyte de-differentiation [217, 218]. The deleterious effects 
of adipokines and several other inflammatory molecules in the 
development of OA were extensively discussed in recent reviews 
[217, 218].

Newly published studies also identified adipokines as potential 
biomarkers for pain in those with both OA and obesity in a rela-
tionship that may be sex dependent [219–221]. For instance, in 
596 women who were overweight to obese with knee or hip OA, 
higher pain intensity was significantly associated with higher 
leptin-to-adiponectin ratio independently of radiographic se-
verity [221]. Interestingly, in the 267 males participating in this 
study, no correlation between pain intensity and the biomarkers 
of AT inflammation was found [221]. Similarly, a meta-analysis 
of 11 studies found that increased leptin expression was strongly 
associated with OA severity, especially in females compared to 
males [222].

6.2   |   The Inflammation of the Intra–Articular 
Adipose Tissue in Osteoarthritis

Intra–articular AT are highly innervated fat pads located within 
joints of several articulations found between the synovium and 
the joint capsule [217]. The most studied and largest intra–ar-
ticular AT is the IFP located in the knee. Although the phys-
iological role played by intra–articular fatty depots is thought 
to be protective [217], recent research has found that the IFP 
may have detrimental effects in OA progression. Histologically, 
intra–articular AT individuals who are overweight or obese 
with OA were found to closely resemble VAT and differ from 
SAT in terms of adipocyte size, fibrotic depots, resident im-
mune cell profile, and inflammatory gene expression [223–225]. 
Harasymowicz et al. [226] found that in patients with end-stage 
OA and moderate-to-severe obesity, intra–articular AT had a 
greater proportion of hypertrophied adipocytes, marked in-
creases in fibrosis, and increased expression of the TLR4 gene 
while the expression of PPARγ was reduced when compared to 
lean individuals with OA. Thus, IFP adipocytes are metaboli-
cally active and may be responsive to systemic stimuli, as well as 
a potential mediator of inflammation in joint tissue.

As with SAT and VAT, the IFP may also become increasingly 
dysfunctional in individuals with OA and obesity. Macrophages 
were found to permanently reside within the IFP and exhibit 
M1-like and M2-like polarization states when exposed to bioac-
tive molecules [225]. Accordingly, in patients with obesity and 
OA, the inflammatory profile of IFP was shown to change with 
variations in immune cell abundance [226–229]. Harasymowicz 
et al. [226] found that compared to lean individuals, those with 
both obesity and OA had an increased abundance of CD45+, 
CD45 + CD14+, and CD14 + CD206 + macrophages in the IFP. 
Additionally, two other studies found that in the IFP of patients 
with OA, there was a greater proportion of macrophages present-
ing cell surface markers associated with anti-inflammatory M2-
like macrophages (CD206 and CD163) than pro-inflammatory 
M1-like macrophages [227–230]. However, the latter studies and 
others [225, 227, 230] did not find that BMI influenced the pro-
portion of infiltrating macrophages in the IFP and surrounding 
tissue, suggesting that obesity itself may not directly affect mac-
rophage abundance but rather the phenotypes of these immune 

cells. The IFP contains various populations of macrophages, al-
though the mechanisms underlying macrophage infiltration in 
the IFP, as well as their specific functions with regard to OA 
pathogenesis, remain to be elucidated.

Overall, the physiology of the IFP may impact the progression of 
OA in individuals with obesity. However, whether adipocyte- and 
macrophage-derived soluble factors, macrophage infiltration, or 
cellular changes within the IFP contribute to the initiation and 
progression of OA is unclear because most studies examined IFP 
samples harvested from patients with end-stage OA during knee 
replacement surgery. At this late stage of the disease, the IFP was 
usually found to contain more anti-inflammatory macrophages 
(CD206 + or CD163 + cells), hypertrophied adipocytes, fibrotic 
lesions, and increased concentrations of inflammatory signals 
[215]. Future research may want to further characterize the IFP 
during earlier stages of OA to understand more clearly whether 
these characteristics are unique to the IFP and to fully grasp the 
contribution of these cellular changes in OA pathogenesis.

7   |   Cancer

Adipose tissue inflammation may contribute to carcinogenesis 
via multiple mechanisms, including the dysregulation of adipo-
kine and cytokine secretion, enhanced immune cell responses, 
and increased production of certain hormones. To examine the 
contribution of AT inflammation in carcinogenesis, most studies 
have focused on AT depots adjacent to cancerous cells. However, 
AT inflammation in other depots may also contribute to the oc-
currence of cancer. While obesity is associated with more than 
13 different types of cancers [231, 232], this review will focus on 
breast and colorectal cancers because they are the most preva-
lent cancers in men and women with obesity [233, 234].

7.1   |   Breast Cancer

7.1.1   |   Cellular Characteristics of Adipose Tissue in 
Breast Cancer

Changes in the breast AT microenvironment can influence the 
development of pathological conditions in breast tissue. The 
presence of crown-like structures is a hallmark feature of AT 
inflammation in various depots including breast AT and is as-
sociated with a higher risk of breast cancer, poor prognosis and 
progression toward metastatic disease  [50, 51, 76, 235–238]. 
Patients with breast cancer and obesity had about three to 
seven times higher odds ratio for crown-like structures in 
breast tissue compared to patients with breast cancer who 
were normal weight [50]. Furthermore, crown-like structures 
were more abundant and contained more M2-like macro-
phages in breast AT adjacent to the tumors when compared to 
healthy breast tissue [75, 78]. Although M2-like macrophages 
are typically known to have anti-inflammatory properties, 
their immunosuppressive role may promote tumor develop-
ment and progression [240]. In addition, obesity may also alter 
breast ATM function, causing them to adopt a metabolically 
activated pro-inflammatory phenotype, which may promote 
tumorigenesis [108]. An in vitro study demonstrated that the 
secretory factors extracted from obese VAT macrophages 
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promoted lipid accumulation and expression of inflamma-
tory markers in human breast cancer cells when compared to 
monocyte-derived macrophages [241].

BMI increments and indices of central obesity have been 
shown to be positively associated with breast adipocyte size 
independent of age, and menapausal status [52, 53]. Breast ad-
ipocyte size was also found to be positively associated with 
breast cancer grade, stage, and prognosis [50, 52, 54]. For in-
stance, Almekinders et  al. [54], found that large breast adi-
pocyte size was significantly associated with an increased 
risk of invasive ductal carcinoma regardless of the stage and 
receptor status. Among other markers of AT dysfucntion, AT 
fibrosis may also contribute to the development of breast can-
cer as increased mammographic breast density is an indepen-
dent risk factor for breast cancer [242–244]. Obesity promotes 
mammary gland fibrosis by increasing the recruitment of fi-
brocytes, collagen biosynthesis, and ECM remodeling, which 
may increase the risk of breast cancer [245, 246]. In fact, sev-
eral in vitro studies showed that obesity triggered ECM remod-
eling and increased breast cancer cell growth, invasion, and 
metastasis [247–253].

7.1.2   |   Contribution of Regional Adiposity Toward 
Breast Cancer Progression

The impact of regional adiposity among breast cancer patients 
has been investigated through numerous retrospective stud-
ies. Central adiposity, particularly increased VAT, emerges as 
a critical determinant associated with poor prognosis among 
breast cancer patients when compared to other AT depots. 
Increased waist circumference and waist-to-hip ratio (WHR) 
were associated with increased all-cause mortality and in-
creased breast cancer–specific mortality [254]. A U-shaped 
relationship was also observed where  low and high BMIs 
and WHRs were associated with an increased mortality rate 
among patients with breast cancer [255]. Moreover, increased 
VAT and decreased VAT/SAT ratio were associated with wors-
ened outcomes, poor survival rates, and increased recurrence 
rates in breast cancer patients [256–259]. Greater VAT mass 
and VAT containing more lipid were associated with poor 
survival outcomes in patients with breast cancer [260]. Aside 
from VAT, increased SAT volume was also associated with an 
increased risk of death in patients with non-metastatic breast 
cancer [258]. However, depending on the region, SAT appears 
to have different effects on breast cancer. Increased abdom-
inal and low gluteofemoral SAT volume has been associated 
with increased recurrence and poor survival rates [261]. More 
studies should investigate the potentially protective role of 
gluteofemoral SAT in breast cancer.

Tumor stage, histological type, and receptor status may also 
be associated with regional adiposity. Stages 3 and 4 cancers, 
human epidermal growth factor receptor 2 positive (HER-2+), 
and triple-negative breast cancers had the highest hazard ratios 
for mortality and poor survival rates [255–257, 259–261]. Only 
a few studies examined these factors in relation to adiposity, 
and the findings remain inconclusive. Zhang et  al. [255] re-
ported that the association between BMI and all-cause mortal-
ity in breast cancer patients is consistent regardless of estrogen 

receptor status, tumor stage, or menopausal status [255]. The U-
shaped relationship between WHR and mortality was margin-
ally decreased in estrogen receptor positive patients. However, 
researchers speculate that this could be due to endocrine ther-
apies, such as tamoxifen, that improves the outcomes in estro-
gen receptor–positive patients [255]. In contrast, another study 
observed that stage 3 and 4 breast cancers and estrogen recep-
tor positivity significantly increased the negative associations 
between abdominal and gluteofemoral SAT volumes with sur-
vival rates [261]. No significant effects were observed by pro-
gesterone receptor or triple-negative tumor status [261]. While 
the evidence is limited, tumor stage and estrogen receptor status 
may influence the impact of obesity on breast cancer risk and 
survival.

7.1.3   |   The Role of Adipokines and Cytokines in 
Breast Cancer

AT inflammation may also increase breast cancer risk via the 
dysregulation of adipokine and cytokine secretion. Greater 
leptin and low adiponectin concentrations have been associated 
with increased breast cancer risk even after the adjustments 
for obesity indices [262–266]. While most studies observed 
no significant differences in leptin and adiponectin levels in 
either estrogen, progesterone, or HER2 positive  or negative 
breast cancer patients [262–265], Kang et  al. [266] observed 
significantly higher adiponectin levels in estrogen receptor–
positive patients [266]. Adiponectin has antiproliferative and 
proapoptotic effects on breast cancer cells. Recombinant adi-
ponectin increased the expression of proapoptotic genes and 
inhibited the cell cycle in triple-negative breast cancer cells 
(MDA-MB 231) [267] and estrogen and progesterone recep-
tor–positive breast cancer cells (MCF-7) [268]. Adiponectin 
is found in lower concentrations among those with obesity, 
especially in postmenopausal women, corresponding with a 
greater risk of breast cancer in this demographic [270–272]. 
On the other hand, leptin has been found to promote the pro-
liferation, migration, and invasion of breast cancer cells by 
increasing various signaling pathways [273, 274]. Leptin pro-
moted the epithelial–mesenchymal transition via upregula-
tion of pyruvate kinase M2 expression and activation of PI3K/
AKT signaling pathway, thereby promoting breast cancer 
growth and metastasis [273]. These findings were observed 
across multiple breast cancer cell lines, including estrogen re-
ceptor positive, progesterone receptor positive, HER2 positive, 
and triple-negative cell lines. With obesity, the accumulation 
of AT increases leptin secretion, resulting in a poorer breast 
cancer prognosis.

Among the inflammatory cytokines associated with obesity, 
TNF-α and IL-6 are the most studied for their tumorigenic 
properties in breast cancer development [274–276]. High 
TNF-α and IL-6 levels are strongly associated with increased 
breast cancer risk in women with central adiposity [277, 278]. 
TNF-α is thought to promote breast cancer by sustaining tumor 
cell proliferation and stimulating breast cancer cell invasion 
and metastasis [279]. AT-derived IL-6 has also been found to 
promote breast cancer metastasis via upregulation of several 
cell signaling pathways [274, 280, 281, 284]. In addition, IL-6 
may expand cancer stem cell populations in ductal carcinoma 
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in situ [284] and HER2 positive cancer cells [284]. However, 
some clinical studies have shown contradictory findings ob-
serving either positive associations or nonsignificant asso-
ciations between TNF-α, IL-6, and breast cancer [285–287]. 
These differences may partly arise because of the variations 
in the breast cancer cell phenotypes. An in vitro study found 
that TNF-α had different effects on cell proliferation, cell sig-
naling pathways, and cell cycle progression on three breast 
cancer cell phenotypes [276]. For example, TNF-α increased 
cancer cell apoptosis and reduced cell cycle progression on 
MDA-MB-231 (triple-negative) breast cancer cells, while cell 
proliferation and cell signaling pathways were increased in 
SK-BR-3(HER + ve) breast cancer cells [276]. Similarly, IL-6 
also exhibited varying anti-adhesive and growth-inhibitory 
effects on different breast cancer cell lines [288–290].

Locally secreted factors may also be crucial in the develop-
ment of breast cancer in obesity because of the direct effects 
on the tumor microenvironment. However, limited studies 
have investigated the local expression of adipocytokines and 
their receptors in relation to BMI. For instance, the expression 
of leptin was higher in the tumor microenvironment of pa-
tients with obesity when compared to overweight and normal-
weight patients [291]. Conversely, another study observed no 
statistically significant difference in either leptin, leptin re-
ceptor (ObR), adiponectin, or adiponectin receptor (AdipoR) 
between patients with ductal carcinoma in  situ or invasive 
breast cancer across BMI categories [292]. To date, no studies 
have directly compared the expression of adipocytokines in 
breast AT to other AT depots.

7.1.4   |   Other Obesity-Associated Factors Increasing 
Breast Cancer Risk

Adipose tissue inflammation may also further potentiate the de-
velopment of breast cancer in postmenopausal women with obe-
sity by increasing the circulating levels of estrogen, especially in 
estrogen-dependent breast cancer [293–296]. In postmenopausal 
women who developed breast cancer, those with obesity had 35% 
higher circulating concentrations of estrone and 130% higher 
concentrations of estradiol when compared with lean women 
[296]. Moreover, increased BMI and higher levels of an estrogen 
metabolite (16α-hydroxy estrone) were individually and jointly 
associated with increased breast cancer risk when compared 
to postmenopausal women with low BMI and low circulating 
estrogen metabolite levels [297]. The increased estrogen produc-
tion in obesity may be the result of greater aromatase activity 
and aromatase mRNA expression in AT [51, 298]. Furthermore, 
leptin and IL-6 appear to also facilitate the increase in aro-
matase activity by influencing several cellular signaling mech-
anisms such as NF-κB pathway and increased prostaglandin E2 
production [51, 299, 300].

The effects of obesity-associated AT inflammation is often 
underexplored as most studies focus on genetic and hormonal 
factors because of their well-established roles in breast cancer 
development. However, the effects of nongenetic factors such as 
higher BMI, increased physical activity, and low alcohol intake 
have been shown to reduce breast cancer risk even in genetically 
predisposed women [301]. Therefore, more integrative research 

approaches are required to understand the multifactorial nature 
of the disease.

7.2   |   Colorectal Cancer

7.2.1   |   Local Adipose Tissue Inflammation in 
Colorectal Cancer

The association between obesity and colorectal cancers is well 
established [302–305], and early-life obesity carries a greater 
risk of developing colorectal cancer [306–308]. Studies showed 
that the inflammation of the peritumoral VAT is highly asso-
ciated with colorectal cancers [309–312], and this association 
is stronger in patients with obesity [312]. One of the changes 
that occurs in peritumoral VAT is adipocyte transformation 
into cancer-associated adipocytes where the surrounding adi-
pocytes adopt a different phenotype, which promotes colorec-
tal cancer progression [313, 314]. The cross-talk between the 
cancer cells and the adipocytes creates an ideal tumor micro-
environment by altering immune cell infiltration, secretion of 
adipokines and cytokines, and expression of adhesion mole-
cules [313–316].

Peritumoral VAT has been found to be infiltrated with M2-like 
macrophages, which have protumorigenic effects in colorectal 
cancer [310, 311]. Zoico et al. compared peritumoral VAT, VAT, 
and SAT obtained from 20 male patients with colorectal cancer 
and observed that peritumoral VAT was predominantly infil-
trated by a CD68+/CD163+/IDO- M2–like macrophage subset 
when compared to other depots [310]. On the other hand, mu-
rine studies demonstrated that M1 macrophages may be pro-
tective against tumor local invasion and peritoneal seeding by 
enhanced tumor phagocytosis, promotion of cytotoxic T-cell 
recruitment and activation, and increased cancer stem cell 
apoptosis [317, 318]. As obesity is characterized by an increased 
infiltration of M1-like macrophages in VAT [319], obesity should 
be protective against colorectal cancer. However, such protective 
effects are not observed clinically. The differential macrophage 
polarization in the peritumoral VAT in patients with colorectal 
cancer may arise from the unique tumor microenvironment 
created by cancer cells and AT. An in vitro study observed that 
colorectal cancer cells secreted factors that resulted in a mixed 
population of M1/M2 ATM phenotypes, suggesting that tumor-
secreted factors alone cannot facilitate the polarization of mac-
rophages [320]. Thus, additional factors, such as adipokines, 
present in AT are likely important in ATM polarization [316]. 
However, the limited evidence precludes definitive conclusions 
on the role played by peritumoral VAT macrophages in colorec-
tal cancer.

In addition, peritumoral VAT also has an increased expression 
of pro-inflammatory cytokines (IL-6, TNF-α, and angiogenic 
factors) [309, 311, 312] and increased expression of the number 
of receptors and adhesion molecules [309, 321] in patients with 
colorectal cancer. The expression of such markers may promote 
cancer cell invasion and metastasis and was further increased 
in patients with colorectal cancer who had obesity compared to 
those who were lean [312]. Furthermore, peritumoral VAT also 
exhibit increased expression of adiponectin [310, 312]. Although 
adiponectin is typically known for having anti-inflammatory 
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properties, adiponectin also plays a role in tissue repair and cell 
regeneration that may promote tumor progression [322].

7.2.2   |   Systemic Markers of Adipose Tissue 
Inflammation on Colorectal Cancer

Several studies found significant associations between 
AT-derived cytokines and adipokines in colorectal cancer 
[312, 323, 324]. Pro-inflammatory cytokines including TNF-α, 
IL-6, and IL-8 were positively associated with colorectal cancer 
[312, 324, 325], and these associations were strongest in colorec-
tal cancer patients with obesity compared to healthy control and 
lean patients with colorectal cancer [312]. Greater serum levels 
of IL-6 and TNF-α were also associated with greater BMI in pa-
tients with colorectal adenomas [324]. Similarly, TNF-α recep-
tor–lacking mice had reduced infiltration of immune cells and 
mucosal damage, thereby attenuating colorectal carcinogenesis 
following ingestion of inflammation-inducing agents [326]. IL-6 
may induce tumorigenesis by promoting M2-like macrophage 
polarization in the tumor microenvironment [327]. IL-6 also 
activates the signal transducer and activator of transcription 
factor 3 (STAT3) pathway in the gut mucosa, which ultimately 
promotes tumorigenesis and cancer development [328].

Many studies observed a negative correlation between serum ad-
iponectin levels and colorectal cancer risk [329–333]; this asso-
ciation was stronger in men than in women [329, 330]. However, 
although adiponectin is generally considered protective to met-
abolic disease, a recent meta-analysis revealed that elevated 
adiponectin levels in overweight individuals were linked to an 
increased risk of colorectal cancer [329]. The same study showed 
that high adiponectin levels were only protective in lean individ-
uals where greater adiponectin was associated with a decreased 
risk in colorectal cancer [329]. Thus, further investigations are 
required to understand the different effects of adiponectin on 
colorectal cancer in the context of adiposity and sex.

Human colorectal cancer cells have been found to express adi-
ponectin receptors [322, 331], and in vitro, adiponectin inhibited 
the growth of colorectal cancer via the activation of the AMP-
activated protein kinase pathway [332]. As such, even though 
colorectal cancers express adiponectin receptors, low adiponec-
tin levels in obesity may be insufficient to elicit protective ef-
fects. The stage of colorectal cancer may also play a role in the 
tumor response to adiponectin. In the more advanced stages of 
colorectal cancer, the expression of the adiponectin receptor was 
at its lowest indicating that regardless of adiponectin concentra-
tions, the response of cells to adiponectin is limited [322].

Circulatory levels of leptin were positively associated with in-
creased colorectal cancer risk [330, 333–336]. Although this as-
sociation was stronger in males [330, 336], a few studies done on 
females showed that leptin was an independent risk factor for 
colorectal cancer in women regardless of BMI, age, and other 
known risk factors [333, 334]. In mice with obesity, leptin pro-
moted tumorigenesis via the increased proliferation of colonic 
epithelial and cancer cells [337–339]. Furthermore, mice with 
colorectal cancer exhibited a marked increase in leptin recep-
tor expression, whereas in leptin receptor–deficient mice, tumor 
growth was reduced [337]. Overexpression of leptin receptors 

has also been found in human colorectal tumors [340]. As such, 
higher leptin levels may in part underlie the development of col-
orectal cancer in humans.

Although leptin and adiponectin have been independently im-
plicated in colorectal adenoma, interactive opposing effects 
have been observed; high adiponectin appears to interfere with 
the tumorigenic effects of leptin and vice versa [330]. As obesity 
is associated with low adiponectin and high leptin levels, a tum-
origenic environment is likely dominant.

7.2.3   |   VAT and SAT Inflammation 
and Colorectal Cancer

Aside from peritumoral VAT, other VAT depots may also impact 
the occurence of  colorectal cancer in obesity [341–344]. Visceral 
adipose tissue area was positively associated with the presence 
of colorectal adenomas and was a better obesity index for col-
orectal adenomas in both sexes when compared to BMI [342]. In 
patients with colorectal adenomas, multiple and advanced col-
orectal adenomas were associated with higher VAT areas than 
solitary non–advanced colorectal adenomas [342]. Indicators of 
AT inflammation such as pro-inflammatory immune cell infil-
tration [345], cytokine expression, and adhesion molecule ex-
pression were higher in VAT when compared to SAT in patients 
with colorectal cancer [346, 347]. A study done on 131 patients 
with colorectal cancer found that the presence of metabolically 
activated M1-like ATM in VAT was significantly associated with 
distant metastasis [345].

Although the relationship between SAT and colorectal cancer is 
poorly documented, SAT may play a protective role in colorectal 
cancer [348, 349]. However, poor-quality SAT may increase the 
risk of colorectal cancer. For instance, increased SAT density 
was associated with increased risk of mortality in patients with 
colorectal cancer [350]. In 250 patients with colorectal cancer, 
the total SAT volume-to-density ratio was an independent prog-
nostic factor for survival in patients with metastatic colorectal 
cancer [348], and higher SAT volume correlated with longer sur-
vival in patients with colorectal cancer [348, 349]. Another study 
observed that in patients with colorectal cancer, gene expression 
of CD68 and CD163 (M2-like) macrophage markers were posi-
tively correlated with BMI in SAT but not in VAT [346]. These 
findings suggest that SAT depot may play a protective role in col-
orectal cancer. However, AT dysfunction, as seen in obesity, may 
elicit counterprotective effects on colorectal cancer [319]. Thus, 
more research is needed to further understand the mechanisms 
by which AT inflammation contributes to colorectal cancer.

8   |   Cognition, Dementia, and Alzheimer's Disease

8.1   |   Excess Adiposity and Cognition

There is increasing evidence suggesting that obesity is an indepen-
dent risk factor for dementia and Alzheimer's disease even after 
the adjustments for confounding factors such as APOE ɛ4 gene, 
sex, T2DM, smoking, hypertension, education level, or marital 
status [351, 352]. Excess adiposity may impact cognition by alter-
ing brain morphology via gray matter degeneration. Interestingly, 
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obesity-induced gray matter degeneration was shown to be simi-
lar to what is observed in patients with Alzheimer's disease [353]. 
Several studies indicate that increasing BMI is associated with 
smaller total brain volume, gray matter volume, hippocampal 
volume, and reduced gray matter density [353–356]. In addition, 
increased WC/WHR is related to an increased risk of lacunar in-
farcts and white matter hyperintensity [354]. Some other structural 
changes include reduced myelin, altered water and iron content in 
the white matter [357, 358], and cortical thinning, particularly in 
the areas that are involved in memory and cognition [355, 358, 359]. 
Although the exact mechanisms are unclear, obesity-associated 
inflammation originating in AT may potentially lead to neuroin-
flammation and neuronal loss [360, 361].

Adipose tissue depots of various anatomical locations may differ-
entially affect brain degeneration and cognition because of their 
different metabolic and inflammatory characteristics [362–365]. 
For example, Widya et  al. [364] found that in older adults, in-
creased VAT rather than SAT volume was linked to significant mi-
crostructural brain tissue damage in both gray and white matter. 
Increased VAT also seemed to be associated with poor cognitive 
outcomes and an increased risk of dementia when compared to 
SAT [363, 365–367]. Kim et al. [368] demonstrated that increased 
VAT metabolism, in the context of glucose uptake, was positively 
associated with enhanced cerebral amyloid-β load, which is an 
indicator of dementia [368]. Interestingly, in the aforementioned 
studies, the associations with VAT persisted even after the adjust-
ments for age, sex, comorbidities, and other confounding factors 
[363, 364, 368]. However, the effects of SAT appear to be protective 
and may depend on sex. In women but not men, increased abdom-
inal and thigh SAT volume was associated with a decreased risk 
of dementia [371]. Furthermore, in mice, SAT transplantation into 
the visceral compartment restored hippocampal synaptic plas-
ticity and improved chronic obesity, indicating that SAT may be 
neuroprotective [371]. Further research is needed to understand 
the effects of adiposity on cognition.

8.2   |   Adipokines and Cognition, Dementia, 
and Alzheimer's Disease

Unlike other organs, the brain is protected by the blood–brain 
barrier and cerebrospinal fluid, which regulate the brain micro-
environment [371]. Thus, when assessing the impact of adipo-
cytokines in dementia and cognition, adipokines and cytokines 
levels in serum and cerebrospinal fluid, blood–brain barrier 
permeability, and bioavailability need to be carefully consid-
ered. For instance, among the adipocytokines secreted by AT, 
leptin, TNF-α, and IL-6 pass through the blood–brain barrier 
via  a saturable transport system [372]. However, IL-6 has a 
shorter half-life in cerebrospinal fluid due to its rapid degra-
dation [372]. Because of its low molecular weight, adiponectin 
crosses the blood brain barrier through receptor-mediated tran-
scytosis [373].

Leptin plays a protective role on cognition via interactions with 
the hippocampus and hypothalamus, resulting in improved 
performance in spatial learning and memory [6]. According to 
a systemic review and meta-analysis that included 24 cross–sec-
tional and 18 observational studies, lower plasma and cerebro-
spinal fluid levels of leptin were associated with increased risk 

of dementia and Alzheimer's disease, whereas higher serum 
leptin levels were associated with better cognitive function [374]. 
As such, one would expect the risk of dementia and Alzheimer's 
disease to be reduced in obesity because greater adiposity results 
in greater  leptin concentrations. However, ncreasing BMI and 
age significantly weakened the association between leptin and 
cognitive function  [374]. The limited leptin transport into the 
cerebrospinal fluid via the saturable transport system, and the 
development of leptin resistance with obesity may explain the 
absence of protective effects by leptin on cognition in patients 
with obesity. A few studies demonstrated a higher cerebrospi-
nal fluid/plasma leptin ratio in normal-weight individuals when 
compared to individuals with obesity, suggesting that leptin 
transport into the brain may be impaired in those with obe-
sity [375]. The expression of leptin receptor mRNA has also been 
shown to be decreased in Alzheimer's disease patients, indicat-
ing a significant disruption to the leptin signaling pathway [376].

Animal studies observed protective effects of adiponec-
tin against oxidative stress–induced dementia [377, 378]. 
Adiponectin elicited anti-inflammatory effects in the brain by 
reducing microglial and astrocyte activation and cytokine mod-
ulation [377, 378]. Furthermore, adiponectin deficiency in mice 
brains led to the inactivation of AMP-activated protein kinase, 
insulin desensitization, and an Alzheimer's disease–like pathol-
ogy [379]. However, these results may not translate clinically to 
humans. A systemic review with meta-analysis that included 24 
studies found that in 71% of the included studies, patients with 
Alzheimer's disease had marginally higher adiponectin circu-
latory levels when compared to cognitively normal individuals 
[374]. Furthermore, increased cerebrospinal fluid adiponectin 
levels were significantly associated with mild cognitive im-
pairment when compared to cognitively normal controls [380]. 
However, the meta-analysis revealed no significant correlation 
between adiponectin levels and dementia severity. Confounding 
factors, such as advanced age, sex, and higher BMI were associ-
ated with a weaker correlation and may explain the variability 
observed across studies [374]. Though, the discrepancies be-
tween pre and clinical studies may be due to the suppression 
of adiponectin receptors caused by obesity-associated inflam-
mation. A murine study observed that a high-fat diet-induced 
oxidative stress suppressed adiponectin receptor 1 and induced 
Alzheimer's disease–like pathology in the brains of the mice 
[381]. Low levels of adiponectin in obesity along with the sup-
pression of adiponectin receptors may dampened the protective 
effects of adiponectin in individuals with obesity.

Although TNF-α has been widely studied in the context of obe-
sity, dementia, and Alzheimer's disease, clinical studies show 
contradictory findings. While several studies have found pos-
itive associations [382–385] between dementia/Alzheimer's 
disease and serum  levels of TNF-α, others observed negative 
[386, 387] or no association [388–391]. Similar observations 
were also made in cerebrospinal fluid [391, 392]. Like adi-
pokines, such differences may also stem from the bioavailability 
of TNF-α at the tissue level, expression of receptors, and blood–
brain barrier permeability. Additionally, TNF-α may have pro-
tective and degenerative effects on neurons depending on the 
type of receptor activated [393, 394]. Upon binding to TNF re-
ceptor-1, TNF-α can induce the secretion of enzymes that pro-
duce reactive oxygen and nitrogen species, thereby promoting 
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neuroinflammation. Conversely, activation of TNF receptor-2 
is neuroprotective and promotes tissue regeneration [395]. The 
regulation of these receptors in relation to obesity has not been 
explored and the differential activation of TNF receptors via the 
NF-κB pathway may underlie the neurodegenerative effects of 
TNF-α [396].

The role of IL-6 in dementia and Alzheimer's disease is un-
clear. Most clinical studies that measured  serum and cere-
brospinal fluid IL-6 in  dementia and Alzheimer's disease 
patients showed either positive [382–384] or nonsignificant as-
sociations [385, 386, 389–391], while only a few showed negative 
correlations [387, 397]. IL-6 is thought to worsen dementia and 
Alzheimer's disease by inhibiting neurogenesis, decreasing syn-
aptic plasticity, and disrupting learning and memory processes 
[394]. In contrast, it was also observed that IL-6 and IL-6 recep-
tor/IL-6 fusion protein prevented neuronal and oligodendrocyte 
degeneration [398].

Although most of the clinical studies that examined the effects 
of TNF-α and IL-6 on cognition included both males and fe-
males, none specifically assessed the effects of sex as a potential 
confounding factor. Additionally, no studies reported adjusted 
results for BMI or adiposity, which may explain the variability 
observed across the studies. Thus, further research is required 
to fully understand how these mechanisms are associated with 
Alzheimer's disease in obesity.

8.3   |   Adipose Tissue Macrophages and Cognition, 
Dementia, and Alzheimer's Disease

To our knowledge, there is limited clinical evidence on the ef-
fects of ATM in Alzheimer's disease and dementia.   A recent 
study done on humans observed greater infiltration of pro-
inflammatory immune cells including M1-like macrophages 
into the brains of patients with Alzheimer's disease when com-
pared to the control group [399]. Similarly, in mice, proinflam-
matory M1-like macrophages were found in the hypothalamus 
of high-fat diet–fed obese mice, which exhibited similar pro-
inflammatory and metabolic markers to ATM [400]. Further 
investigation revealed that in the obese mice, pro-inflammatory 
macrophages translocate from VAT and infiltrate the hypothal-
amus, causing neuroinflammation [400]. Another murine study 
observed that obesity increased blood–brain barrier perme-
ability  promoting macrophage infiltration into the brain mat-
ter - a process potentially mediated by IL1β, indicating a role 
of peripherial inflammation on blood brain barrier permeabil-
ity  [401]. Increased hypothalamic macrophage infiltration has 
also been shown to increase neuroinflammation through elevat-
ing nitric oxide synthase [402]. These findings highlight path-
ways by which macrophage-mediated inflammation in AT may 
contribute to neurodegenerative disorders.

9   |   Emerging Areas of Interest in Adipose 
Tissue Inflammation and Obesity-Associated 
Comorbidities

While AT inflammation is still being explored, recent research 
has focused on novel areas such as inflammasomes, extracellular 

vesicles, neuroimmune interactions, and single-cell transcrip-
tomics to understand the underlying mechanisms of obesity-
associated comorbidities. Inflammasomes, particularly NLRP3 
(nucleotide-binding oligomerization domain–like receptor P3), 
are intracellular protein receptors activated by metabolic stress 
and lipotoxicity, which promote the release of pro-inflammatory 
cytokines like IL-1β and IL-18 [403]. This activation exacerbates 
systemic IR [403, 404] and vascular inflammation, driving met-
abolic dysfunction and other comorbidities [405, 406].

Extracellular vesicles such as exosomes and microvesicles se-
creted by the adipocytes and macrophages serve as carriers 
of bioactive molecules, including cytokines and microRNAs 
[407, 408]. These vesicles facilitate long-range signaling ampli-
fying inflammation and disrupting metabolic homeostasis in 
distant tissues [409]. In vitro and rodent studies have shown that 
extracellular vesicles promote vascular remodeling [410] and in-
crease leukocyte attachment to vascular endothelial cells [411], 
resulting in CVD in obesity. The cellular cross-talk between AT 
and target organs via extracellular vesicles may further exacer-
bate chronic AT inflammation and its adverse effects.

The autonomic nervous system, particularly sympathetic in-
nervation inputs, has been shown to influence immune cell re-
sponses directly within AT, modulating inflammation [412]. In 
rodent models, sympathetic nerve activity may modulate AT in-
flammation by inhibiting TNF-α gene expression in ATMs [413]. 
Obesity is associated with dysregulated catecholamine signaling 
via NF-κB pathway activation, attenuating β-adrenergic signal-
ing in the AT, which impairs lipolysis and exacerbates chronic 
inflammation [414]. In addition, studies also show that upregu-
lation of the cholinergic anti-inflammatory pathway, which is 
activated by ATM α7 nicotinic acetylcholine receptors, improves 
glucose homeostasis and IR in obese mice [415]. Thus, therapeutic 
interventions targeting neural pathways could be a novel strategy 
to regulate inflammation and obesity-associated comorbidities.

The application of single-cell transcriptomic has revolutionized 
the study of AT by providing a granular view of its cellular com-
position and has uncovered novel subpopulations of immune 
cells, fibroblasts, and adipocytes that were previously unchar-
acterized [416]. For example, distinct lipid-associated macro-
phage subtypes with unique inflammatory profiles have been 
identified in obese AT [417]. Single-cell RNA sequencing has 
also revealed dynamic changes in stromal cells and adipocytes, 
particularly in response to metabolic stress [418]. These insights 
enable researchers to pinpoint cell-specific contributions to AT 
inflammation and its systemic effects, paving the way for more 
precise therapeutic interventions.

10   |   Conclusion and Future Prospect

In this review, we provide an overview of the relevance and 
contribution of obesity-induced AT inflammation in the patho-
genesis of related comorbidities, specifically T2D, nonalcoholic 
fatty liver disease, CVD, OA, certain cancers, and dementia. AT 
inflammation, mediated by macrophages, cytokines, and adi-
pokines, may have local and systemic consequences on health 
by disrupting the normal functioning of various tissue beds 
and organs and whole-body homeostasis. Furthermore, cellular 
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changes in AT characteristics may aggravate inflammation and 
thus exacerbate the progression of chronic comorbidities in obe-
sity. Future studies should aim to gain a better understanding of 
AT biology to unravel the underlying mechanisms by which AT 
inflammation may contribute to obesity-associated comorbidi-
ties. Mitigating AT inflammation and macrophage infiltration 
may represent potential therapeutic targets in the prevention 
and treatment of metabolic diseases in obesity.
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