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Selective remodelling of the adipose niche in 
obesity and weight loss
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Patricia Ortega4, Ahmed R. Ahmed4,13, Rachel L. Batterham11,14,15, John C. Chambers4,8,9,16,17, 
Jaspal S. Kooner4,9,16,18, Damir Baranasic1,2,19, Michela Noseda18, Tricia Tan3,4 & 
William R. Scott1,2,4 ✉

Weight loss significantly improves metabolic and cardiovascular health in people  
with obesity1–3. The remodelling of adipose tissue (AT) is central to these varied and 
important clinical effects4. However, surprisingly little is known about the underlying 
mechanisms, presenting a barrier to treatment advances. Here we report a spatially 
resolved single-nucleus atlas (comprising 171,247 cells from 70 people) investigating 
the cell types, molecular events and regulatory factors that reshape human AT, and 
thus metabolic health, in obesity and therapeutic weight loss. We discover selective 
vulnerability to senescence in metabolic, precursor and vascular cells and reveal that 
senescence is potently reversed by weight loss. We define gene regulatory mechanisms 
and tissue signals that may drive a degenerative cycle of senescence, tissue injury and 
metabolic dysfunction. We find that weight loss reduces adipocyte hypertrophy and 
biomechanical constraint pathways, activating global metabolic flux and bioenergetic 
substrate cycles that may mediate systemic improvements in metabolic health. In the 
immune compartment, we demonstrate that weight loss represses obesity-induced 
macrophage infiltration but does not completely reverse activation, leaving these  
cells primed to trigger potential weight regain and worsen metabolic dysfunction. 
Throughout, we map cells to tissue niches to understand the collective determinants 
of tissue injury and recovery. Overall, our complementary single-nucleus and spatial 
datasets offer unprecedented insights into the basis of obese AT dysfunction and its 
reversal by weight loss and are a key resource for mechanistic and therapeutic 
exploration.

Obesity affects more than one billion people worldwide5. Increased 
AT mass, which is the defining feature of obesity, is one of the main 
risk factors for type 2 diabetes, cardiovascular disease, certain can-
cers and early death6. Reduction in AT mass through weight loss (WL) 
significantly improves obesity-induced comorbidities and can reduce 
mortality1–3. A synergistic and detailed understanding of the biology 
underpinning these contrasting clinical effects is central to improving 
treatment options and health outcomes.

ATs have a unique capacity to adapt their structure and functions 
to maintain metabolic homeostasis as energy demands change4,7. In 
obesity, excess expansion limits this flexibility and induces pathologi-
cal remodelling changes, notably adipocyte hypertrophy, immune cell 
infiltration, pro-inflammatory cytokine release, impaired angiogen-
esis and fibrosis, that contribute to multiorgan inflammation, insulin 
resistance, metabolic dysfunction and disease4,7. However, despite 
extensive investigation, the molecular triggers, cellular phenotypes 
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and signalling pathways underlying obese AT dysfunction, particularly 
in humans, are only partly understood.

Therapeutic WL leads to a reduction in AT mass, systemic inflam-
mation and insulin resistance, as well as subsequent improvements in 
obesity-related comorbidities3,4,8. Although this strongly suggests that 
WL ameliorates AT dysfunction and its harmful physiological effects, 
surprisingly little is known about the underlying mechanisms. Indeed, 
certain AT responses to WL may be maladaptive and predispose to 
weight regain9.

Defining the cell types, regulatory mechanisms and signalling path-
ways responsible for pathological and therapeutic AT remodelling is 
needed to guide therapy development for the harmful health conse-
quences of obesity.

Mapping AT remodelling dynamics
To better understand obese AT dysfunction and its reversal after WL, we 
carried out single-nucleus RNA sequencing of approximately 100,000 

cells from men and women with extreme obesity (n = 25) before and 
after WL surgery and from healthy lean controls (n = 24; Fig. 1a). WL 
significantly improved metabolic parameters, although not to the lean 
baseline (Fig. 1b and Extended Data Table 1). We focused on abdominal 
subcutaneous AT because of its contribution to central obesity and its 
adverse metabolic effects relative to other subcutaneous AT depots10. 
This cohort formed the basis for between-group exploratory analyses. 
Our results were integrated with a further 50,000 cells (nuclei) from 
the largest published human subcutaneous adipose atlas to improve 
cell annotation11 (n = 9 obese and n = 4 lean samples; Extended Data 
Fig. 1a–c). Spatial transcriptomics in equivalent cohorts (approxi-
mately 25,000 cells, n = 4 per group; Fig. 1a, Extended Data Fig. 1b,c 
and Extended Data Table 1) enabled us to orient and contextualize 
cell phenotypes within the organizational hierarchy of healthy and 
dysfunctional AT.

This captured a rich representation of the cellular, structural and 
functional dynamics of the subcutaneous AT niche in human weight 
gain and WL. Tissue-wide clustering (Fig. 1c) and compositional 
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Fig. 1 | A single-cell atlas of human AT in leanness, obesity and WL.  
a, Graphical representation of the primary study cohort (left; single-nucleus 
analyses in n = 25 obese (OB) people before and after WL and n = 24 lean (LN) 
people, with spatial analyses in n = 4 people per group) and AT anatomical 
location (right). b, Clinical characteristics of the primary cohort (n = 24 LN and 
25 paired OB–WL donors). Boxplot, median interquartile range minimum and 
maximum. BMI, body mass index (kg m–2); F insulin, fasting insulin (mIU L–1); 
HbA1c, haemoglobin A1c (%); HDL, high-density lipoprotein cholesterol (mM); 
DBP, diastolic blood pressure (mm Hg). c, Uniform manifold approximation 

and projection (UMAP) of 145,452 human AT cells (n = 74 samples of the primary 
cohort and n = 13 samples of the Emont published cohort11, single nucleus). 
ASC, adipocyte stem cells; APC, adipocyte progenitor cells; Mono, monocytes; 
DCs, dendritic cells; ILCs, innate lymphoid cells. d, Cell-type proportions (for 
the cell types in c) in the combined cohort, mean per group, and for each sample 
(single nucleus). e, Correlations between cell types and clinical traits (Pearson, 
LN and OB samples only, single nucleus). Illustration in a created using BioRender 
(Scott, W., https://BioRender.com/rtmnzaj; 2025).
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analyses demonstrated extensive immune cell (mainly macrophage 
but also lymphocyte) infiltration in obese AT (Fig. 1d,e and Extended 
Data Fig. 1d,e). Obese AT also showed a deficit in mature adipocytes, 
suggesting increased cell death and/or a failure to replenish mature 
adipocytes. WL mitigated these typically deleterious effects4,7.

Persistent macrophage activation
Immune cell infiltration is a pathognomonic feature of obese AT7 but 
the impact of WL on inflammatory remodelling is unclear, with studies 
indicating opposing anti- and pro-inflammatory effects9. We clustered 
myeloid cells (n = 34,280; Fig. 2a, Extended Data Fig. 2a and Supple-
mentary Table 2) into heterogeneous subclasses of AT macrophages, 
monocytes and dendritic cells (MYE1–10)12.

The increase in AT macrophages (mean from 14% to 31%) primar-
ily comprised lipid-associated macrophages (LAMs; mature MYE2 
and immature MYE3) expressing lysosomal, lipid metabolism and 
metabolic activation markers (CD9, TREM2, LPL and LIPA; Fig. 2a,b 
and Extended Data Fig. 2a–c). Classical monocytes (MYE5) expressing 
VCAN also increased, indicating constitutive trafficking from blood. 
Visualization and marker gene patterns supported a differentiation con-
tinuum from monocytes, to immature and then mature LAMs (Fig. 2a 
and Extended Data Fig. 2a). Proportional analyses revealed lower frac-
tions of tissue-resident macrophages (MYE1 and TRMs) expressing 
homeostatic markers (LYVE1, FOLR2 and MRC1; Extended Data Fig. 2c). 
Neighbourhood graphs confirmed that this represented a relative (not 
absolute) TRM reduction (Extended Data Fig. 2b). Proliferative mac-
rophages expressed MCP-1 (CCL2), TRM and LAM markers, supporting 
low-level MCP-1-dependent expansion of both populations in human 
obesity13 (Extended Data Fig. 2a).

Independent of adiposity, LAM abundance increased with metabolic 
dysfunction (Extended Data Fig. 2b). This led us to hypothesize that 
LAMs might have pleiotropic adaptive and maladaptive features. LAM 
subclustering revealed two main subpopulations that separated on lyso-
somal or metabolic (LAM ST1, adaptive) and inflammatory (LAM ST2, 
maladaptive; MHC II, NLRP3) signatures (Fig. 2b). Inflammatory LAMs 
expressed higher TLR2 and TREM1 (Fig. 2b, Extended Data Fig. 2d and 
Supplementary Table 5), cooperative receptors that initiate and amplify 
inflammation in the pathogen-recognition response14,15. In keeping with 
a deleterious role, inflammatory LAM numbers increased in obesity in 
association with metabolic dysfunction (Fig. 2c). Spatial and protein 
analyses indicated context-dependent orientations and functions, with 
adaptive LAMs aggregating at crown-like structures (CLS; around tran-
scriptionally devoid adipocytes) and inflammatory LAMs being more 
abundant in isolation or pairs (Fig. 2d and Extended Data Fig. 2e–g).

To provide an unbiased understanding of macrophage metabolic 
reprogramming, we used gene expression to model metabolic flux 
systematically. This revealed a global activation state exclusive to 
obese macrophages, encompassing known16 and previously unrec-
ognized metabolic changes (1,495 of 1,895 reactions, binomial test, 
P = 3.1 × 10−148; Fig. 2e, Extended Data Figs. 1f and 3a,b and Supple-
mentary Table 6). Specifically, we found a shift to a high-glycolysis 
(pro-inflammatory), high-respiratory (anti-inflammatory) profile con-
sistent with extracellular flux analyses in obese mice16; corresponding 
changes in the pentose phosphate pathway and TCA cycle; pervasive 
activation of cholesterol, lipid and fatty acid synthesis, and oxidation 
pathways; obligatory upregulation of cellular transport (Fig. 2e,f and 
Extended Data Fig. 3a). Taking fatty acids as an example, flux modelling 
uncovered significant activation of fatty acid desaturation (FADS1 and 
SCD) and mitochondrial β-oxidation (Fig. 2e,f), consistent with buffer-
ing and utilization of potentially toxic microenvironmental fatty acids 
for energy. Global bioactivation was greatest in, but was not limited 
to, LAMs (Extended Data Fig. 2h), establishing that diverse myeloid 
classes undergo extensive metabolic priming in obese AT. Experimental 
energetic profiling confirmed the higher basal activity and glycolytic 

capacity of LAMs over TRMs, substantiating our transcriptome-based 
flux results (Fig. 2g and Extended Data Fig. 2i).

WL led to marked reductions in myeloid cell numbers (mean from 
31% to 18%) across subclasses (Extended Data Fig. 2b). Proportional 
and density analyses showed that myeloid-cell fractions did not differ 
between obesity and WL (Fig. 2a and Extended Data Fig. 2c), and we 
verified this in situ (Extended Data Fig. 2j). WL did, however, shift LAMs 
towards less inflammatory subtypes (Fig. 2c). Overall, this indicated 
that obesity-induced myeloid cell states persist despite extensive WL. 
Transcriptomic flux analyses confirmed that global metabolic activa-
tion did not fully reverse with WL (Fig. 2e and Extended Data Fig. 3b). 
But WL did significantly reduce some aspects of fatty acid synthesis 
and oxidation (mainly desaturases and acyl-CoA synthetases; Fig. 2e,f), 
temporally linking these pathways to microenvironmental lipid avail-
ability. By contrast, glycolysis, respiratory capacity and pentose phos-
phate pathway flux increased (Fig. 2e,f), implying a need to requisition 
energy from other sources as fatty acid levels diminish. Differential 
expression analyses demonstrated widespread reductions in inflam-
masome, proinflammatory cytokine and chemotaxis genes (Fig. 2f, 
Extended Data Fig. 2k and Supplementary Tables 7 and 8). Network 
analyses implicated specific transcription factors (TFs) in TRM and 
LAM specification and revealed patterns reinforcing the finding that 
WL improves inflammatory and homeostatic networks, but not LAM 
transcriptional reprogramming (Fig. 2h and Supplementary Tables 9 
and 10). Together, these results demonstrate a complex activation 
response in obese AT dominated by monocyte recruitment and per-
sistent metabolic reprogramming.

Reduced lymphocyte infiltration
Low overall numbers (6,222 cells (4%); Extended Data Fig. 2l–n) meant 
that we were unable to evaluate lymphoid subclass-level variations. Nev-
ertheless, obese AT had higher proportions of CD4+ and CD8+ T cells, 
NK cells and B cells, remodelling effects ameliorated by WL (Extended 
Data Fig. 2n). WL also downregulated the lymphocyte activation and 
cytotoxicity genes (ETS1 and SYTL3 (refs. 17,18); Supplementary Tables 7 
and 8), further supporting decreased inflammation.

Enhanced adipocyte metabolic flexibility
Mature adipocytes undergo profound phenotypic changes in obesity 
and WL, expanding and shrinking to fit evolving energy needs7. How this 
affects their molecular characteristics and diverse metabolic functions 
is largely unclear. Subclustering revealed 8 mature adipocyte sub-
populations (AD1–AD8, n = 44,583 cells; Fig. 3a, Extended Data Fig. 4a,b 
and Supplementary Table 2). Two subtypes exhibited ‘stressed’ (AD3, 
JUN/NFKBIZ-hi) and ‘fibrotic’ (AD6, NOX4/LOX-hi) profiles. Stressed 
and fibrotic adipocytes increased with obesity, indicating that there 
is selective vulnerability and pathogenicity to the tissue microenviron-
ment (Fig. 3b). Another subpopulation with a lipid biosynthetic profile 
(AD5, PNPLA3/MOGAT1-hi) unexpectedly decreased in obesity (Fig. 3b). 
WL led to a marked reduction in stressed adipocytes (mean from 55% 
to 14%), a shift towards lower fibrotic numbers, and relative increases 
in lipid biosynthetic cells (Fig. 3b). Compositional changes in stressed 
and lipid biosynthetic populations were verified in situ (Extended Data 
Fig. 4c). Beige adipocytes were rare (AD8 GATM-hi, 1%) and invariant 
between conditions.

Expression-based metabolic flux analyses detected significant 
defects in fatty acids and branched-chain amino acid (BCAA) breakdown 
in obese compared with lean adipocytes, mirroring previous results19,20 
and together suggesting that metabolic flexibility was impaired (Fig. 3c 
and Extended Data Fig. 3a). By contrast, WL led to a marked global 
increase in adipocyte metabolic flux (1,485 of 1,895 reactions; binomial 
test, P = 1.4 × 10−142; Fig. 3c, Extended Data Figs. 1f and 3b and Supple-
mentary Table 6) probably reflecting a negative energy balance.
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Unexpected anabolic activity led us to investigate whether tri-
glyceride mobilization, which is a physiological response to caloric 
restriction, might initiate lipid cycling (repetitive degradation and 
resynthesis). To verify flux models, we compared enzymatic activity 
scores and pathway-limiting enzymes in important substrate path-
ways across groups21 (Fig. 3d,e and Extended Data Fig. 4d–f). Obese 
adipocytes had consistently lower metabolic activities (scores and 
enzymes), again indicating metabolic inflexibility. WL systemati-
cally increased opposing lipid biosynthesis and breakdown pathways 
(Fig. 3d). Consistent with this, we found significant changes in canonical 
enzymes in sequential cycle steps (Fig. 3e), including DGAT2, which 
encodes an acyltransferase that catalyses triglyceride synthesis and 
mediates lipid cycling in vitro22. Because enzymatic expression is a 
crucial determinant of catalytic competence, this indicates that WL 
may initiate triglyceride cycling, a highly bioenergetic process with 
important lipid-diversifying, toxic fatty acid-quenching metabolic 
benefits22. WL also reversed defects in BCAA catabolism (pathway 
flux and canonical enzymes; Fig. 3c–e and Extended Data Fig. 4f), the 
predicted consequences of which are systemic BCAA clearance and 
improved insulin sensitivity23. Lipid cycling was a feature of PNPLA3-hi 
adipocytes (AD5), whereas stressed (AD3) adipocytes were character-
ized by lower metabolic turnover (Fig. 3f). These typical catabolic and 
previously unrecognized anabolic effects of WL suggest that substrate 
mobilization engages cell-autonomous cycling pathways that may 
underlie widespread improvements in metabolic homeostasis.

To see which TFs were explicitly responsible for WL-induced meta-
bolic activation, we carried out network analyses limited to metabolic 
pathway genes (Extended Data Fig. 5g and Supplementary Table 11). 
MLXILP and SREBF1 ranked highly in triglyceride synthesis, validating 
our approach and implicating them in control of WL-induced lipid 
cycling. Other notable findings were TFs linked to redox biology and 
BCAA catabolism. Many of the leading TFs (38 of 53, P < 0.05 Bonferroni 
adjusted, more than 50 metabolic target genes) overlapped human met-
abolic disease genome-wide association study (GWAS) loci24 (Extended 
Data Fig. 4g), causally implicating specific TFs and the respective meta-
bolic pathways in pathophysiology and treatment response.

Differential expression analyses identified altered biomechanics as 
a potential driver of adipocyte stress and metabolic dysfunction that 
was mitigated by WL. Specifically, obesity increased and WL decreased 
expression of key cytoskeletal tension, mechanotransduction, extracel-
lular matrix (ECM) formation and fibrosis genes (ACTA2, LOX, LOXL2 
and VGLL3)25,26, effects we verified in unbiased pathway analyses and 
in situ (Fig. 3g, Extended Data Fig. 4h and Supplementary Tables 7 and 
8). Biomechanical genes were enriched in stressed and fibrotic AD3 
and AD6 cells (Fig. 3g). We therefore evaluated whether adipocyte 
hypertrophy and mechanical strain might initiate these maladaptive 
changes, and whether adipocyte shrinkage during WL might reverse 
them. As expected, adipocyte sizes increased in obesity and reduced 

with WL (Fig. 3h and Extended Data Fig. 4i). Despite intrasample hetero-
geneity, adipocyte size correlated positively with mechanosensitive, 
stressed and fibrotic gene expression and negatively with homeostatic 
genes (Fig. 3g, exemplified by the stress marker JUN in Fig. 3h). The 
levels of correlation indicated that this may be one of several factors 
eliciting tissue stress and fibrosis, or perhaps it is a driver event in a 
degenerative cycle.

Reversal of multicellular stress
Adipocyte progenitor cells (APCs) regenerate mature adipocytes and 
maintain tissue stroma, crucial homeostatic functions that may become 
impaired in obesity7. APCs clustered into: ‘multipotent’ DPP4-CD55-hi 
progenitors (ASC/APC1); ‘committed’ preadipocytes (APC2 and APC3) 
expressing canonical differentiation genes; adipogenesis-regulatory 
cells (APC4, KCNIP-hi and CD142/F3-hi); and profibrotic precursors 
(APC5, ADAM12-hi and POSTN-hi) (Extended Data Fig. 5a–c and Sup-
plementary Table 2). APC3 exhibited a stressed profile similar to that 
observed in mature adipocytes, as well as higher expression of NOCT 
(Fig. 4a and Extended Data Fig. 5c), a potentially restrictive gatekeeper 
to preadipocyte commitment27. In support of this, APC2 selectively 
expressed late-stage adipocyte maturation genes within a localized 
subregion (Extended Data Fig. 5c). Stressed and profibrotic cell num-
bers again reflected adiposity and reduced significantly with WL (Fig. 4b 
and Extended Data Fig. 6a,b). Both populations had higher expres-
sion of hypoxia-inducible factor 1A (HIF1A; Fig. 4a and Extended Data 
Fig. 6a,c), which promotes fibrosis and suppresses adipogenesis in mice 
(through PPARG phosphorylation)28. Correspondingly, WL downregu-
lated hypoxia, profibrotic (TGFβ) and anti-adipogenic (WNT) genes 
(Extended Data Fig. 6c and Supplementary Tables 7 and 8). Thus, WL 
may attenuate hypoxia-induced impairment of differentiation compe-
tency and profibrotic signalling in certain human APC subpopulations.

Coordinated growth of the vascular network is essential for healthy 
AT expansion. Vascular cell subclustering recapitulated the endothe-
lial (arterial, capillary and venous) and mural (smooth muscle and 
pericyte) zonations observed in other tissue types (Extended Data 
Fig. 5d–g and Supplementary Table 2). As with mature adipocytes and 
APCs, capillary endothelia and mural cells each showed ‘basal’ and 
‘stressed’ profiles (Fig. 4a), which changed reciprocally with adiposity 
(Extended Data Fig. 6a,b). Stressed endothelia overexpressed APOLD1 
and SNAI1 (Fig. 4a and Supplementary Table 4), highlighting potential 
pathological neovascularization and endothelial-to-mesenchymal 
transition29,30. Stressed mural cells enriched for ADAMTS1 (Fig. 4a), 
an anti-angiogenic protein linked to pericyte detachment, fibrotic 
transition and capillary rarefaction31. In distinct single-nucleus and 
spatial datasets, WL markedly reduced stressed vascular cell content 
and markers (Fig. 4c and Extended Data Fig. 6a), implying the reversal 
of this pathological transformation.

Fig. 3 | Dynamic regulation of adipocyte cellular and molecular profiles  
in obesity and WL. a, Marker-gene expression in mature adipocyte 
subpopulations. b, Beeswarm plots showing changes in neighbourhood 
abundance in LN–OB and OB–WL comparisons in adipocyte subpopulations. 
Log2FC, coloured by spatial FDR < 0.1: red, OB high; blue, OB low. The circles 
show the percentage of significant neighbourhoods. c, Transcriptomic flux-
based analyses of global (top) and example (middle and bottom) metabolic 
pathways in OB compared with LN and WL adipocytes. Reaction level, Cohen’s 
D, coloured by FDR < 0.05 (Wilcoxon): red, OB high; blue, OB low; grey, non-
significant; cat., catabolism; syn., synthesis; ox., oxidation. Pie charts show  
the proportion of significant reactions. d, Scores measuring overall activity  
in major metabolic pathways in individual adipocytes, averaged by participant 
(density, median IQR), then compared between conditions. DNL, de novo 
lipogenesis. Two-tailed Wilcoxon test unpaired (LN–OB and LN–WL) and paired 
(OB–WL) FDR-adjusted P-values are shown (n = 24 LN; n = 25 paired OB–WL 
donors). e, Differential expression of enzymatic genes in lipid and BCAA 

metabolism pathways in OB compared with LN and WL adipocytes, separated 
by datasets. Coloured by log2FC: red, OB high; blue, OB low; sized by adjusted −
log10 P-value, negative binomial mixed-effects model. Circles represent 
comparisons with absolute log2FC > 0.3 and adjusted P < 0.05. f, Overall activity 
in metabolic pathways in adipocyte subpopulations (scaled mean scores). 
Therm., thermogenesis; Creat., creatine; Cal., calcium; Adap., adaptive. g, Mean 
expression of mechanosensitive, stress, fibrotic and homeostatic genes across 
conditions and adipocyte subpopulations, in single nucleus (left) and spatial 
(middle) datasets (limited to genes in both datasets, nucleus segmentation). 
Spearman correlation (right) of genes with adipocyte areas in each condition 
and across all conditions combined (spatial dataset, boundary segmentation). 
The # denotes rank (high-to-low) across 97 genes (P-value threshold less than 
1 × 10−5 in more than one correlation). h, Representative spatial sections showing 
altered adipocyte sizes (WGA segmented) and JUN (stress marker) expression 
across conditions. Bottom bars, mean JUN expression and mean log10area in 
adipocytes across all spatial samples for each condition. Scale bar, 1 mm.
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All stressed cell states upregulated a common gene signature (188 
genes; Extended Data Fig. 6d,e and Supplementary Table 12). Multicel-
lular stress, although highest in obesity, was a feature of lean tissues, 

where it increased with age and metabolic dysfunction (Fig. 4c and 
Extended Data Fig. 6f,g). Gene and pathway analysis revealed putative 
mediators of multicellular stress (hypoxia, mechanical and oxidative 
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stress, Gp130-mediated cytokines, DNA damage and cell cycle arrest; 
Extended Data Fig. 7a,b). In vitro induction of DNA damage (using 
Etoposide) recapitulated the in vivo effects on stress marker proteins 
and impaired ASPC differentiation capacity (Extended Data Fig. 7c–e). 
WL led to a marked reduction in multicellular stress genes (Extended 
Data Fig. 6c), overall emphasizing the importance of multicellular 
stress pathways in tissue injury and repair.

Altered tissue niches and cell crosstalk
We used our spatial datasets to investigate the orientation and impact of 
stressed cells in tissues. To define the cells most associated with stress 
signals, we quantified the cellular composition of low- and high-stress 
regions (50-µm bins; Fig. 4d and Extended Data Fig. 8a,b). Stressed cell 
states were generally enriched in high-stress zonations, apart from 
stressed capillaries (EC2), which were spread throughout the tissue. We 
also found a strong association between regions of stress and immune 
cells, except TRM and NK cells, and an unexpected connection to arte-
rial ECs (EC4; Fig. 4d).

Although this localized individual cell states to stressed zonations, 
it did not address the non-random grouping of cells in microenviron-
mental compartments. To evaluate this, we used spatially resolved 
proximity enrichment (within 300 µm, to capture adipocytes) to search 
for tissue niches based on cell state neighbourhoods. This identified 
five distinct cellular communities, termed arterial, venous, adipocyte, 
stem and stress niches (Fig. 4d,e and Extended Data Fig. 8c). No cell 
type was niche exclusive, indicating that these patterns reflect tissue 
gradations. Stem niches were enriched for multipotent ASC/APC1 and 
homeostatic TRMs. Stress niches were enriched for AD3, APC3, LAMs, 
other innate (cMono and cDC2) and adaptive (T cells) immune cells, 
implicating these states in stress induction and/or response. Arterial 
endothelial cells formed their own niche, associating with stressed 
precursors (APC3) and stressed mural cells (Mu4). Direct cell–cell colo-
calization uncovered immune cell proximity to large venous vessels 
and LAMs (Extended Data Fig. 8d), potentially reflecting extravasation 
and transmigration to CLS.

The identification of tissue zonations enabled us to investigate intra- 
and inter-niche signalling patterns. Ligand–receptor inference analyses 
in the spatial dataset revealed a complex network of communications. 
Adipokines and neurotrophic factors were enriched in the adipocyte 
niche (ADIPOQ, LEP and NRXN3; Extended Data Fig. 8e,f). Canonical WNT 
and ECM components (FN1, collagens and laminins) were prominent 
components of the stem niche (Extended Data Fig. 8e). The stress and 
arterial niches were enriched for proinflammatory chemo-cytokines 
(CXCL2, CCL2 and IL6) and presumptive stress cues (TGFB1, AREG, NAMPT 
and THBS1), several of which overlapped (Fig. 4f and Extended Data 
Fig. 8e,f). Parallel intercellular communication analyses in the larger 
single-nucleus dataset linked diverse niche signals to source and tar-
get cells, as well as disease pathobiology (Fig. 4g,h and Extended Data 
Fig. 8g,h). For example, THBS1 (stressed AD3), ADGRE5 (pan-immune) 
and NAMPT (multicellular), which are emergent triggers of insulin resist-
ance32, immune glycolytic metabolism33 and inflammation34, were all 
amplified in obesity and reversed by WL (Fig. 4h and Extended Data 
Fig. 8h). This showed that stressed niches have a high concentration of 
signals implicated in pathological and restorative tissue remodelling.

Repression of senescence
Differential expression analyses to define AT remodelling pathways 
established that WL broadly reverses the effects of obesity on gene 
regulation (Extended Data Fig. 9a,b). Many of the strongest transcrip-
tional changes associated with WL were conserved across cell types 
(Extended Data Fig. 9c,d), indicating that these genes and their under-
lying pathways might represent important WL mechanisms. Genes 
altered by WL in multiple cell types (three or more cell types; FC > 0.5, 

P < 0.05 Bonferroni corrected) showed systematic downregulation (213 
of 333 genes; binomial test, P = 3.9 × 10−7). Downregulated genes were 
grouped into hallmark pathways of AT dysfunction: inflammation (TNFA 
and IFNG); hypoxia; fibrosis; immune cell recruitment and activation; 
and oxidative stress4,7,26 (Extended Data Fig. 9e). WL also led to down-
regulation of cell cycle arrest genes (Extended Data Fig. 9e), together 
indicating that the reversal of cellular senescence might underlie the 
beneficial effects of WL on inflammation and metabolism.

To examine this, we tested and confirmed the repression of diverse 
senescent signatures (Fig. 5a and Extended Data Fig. 10a). In multiple 
cell types, WL led to the downregulation of CDKN1A (p21), which is one 
of the main cell cycle inhibitors in senescence, and the upregulation of 
cell cycle progression genes repressed by p21 (ref. 35). Correspondingly, 
WL markedly decreased the expression of principal senescence markers 
and unbiased senescence scores (Fig. 5a and Extended Data Fig. 10a–d). 
We found that p21-positive cells, which had transcriptional character-
istics of senescent cells (Extended Data Fig. 10e), were most prevalent 
among stressed adipocyte, precursor and vascular cell states (Extended 
Data Fig. 10f), indicating that the shared stress profile reflects vulner-
ability and transition to senescence. Lean AT also contained substantial 
(albeit significantly lower) numbers of p21-positive cells (Fig. 5b). By 
contrast, WL almost completely eliminated p21-positive cells from the 
tissue (Fig. 5b), a finding that we verified in situ using spatial transcrip-
tomics (Extended Data Fig. 10g) and protein quantification (Fig. 5c). The 
repression of senescence mirrored enhanced adipocyte bioenergetics, 
indicating that these effects may be mechanistically coupled (Extended 
Data Fig. 10h). We therefore established that human WL has previously 
undescribed potent senolytic effects.

Tissue-wide gene regulatory network analyses revealed a tightly con-
served transcriptional nexus in stressed, senescent cells that increased 
in obesity and decreased in WL (Fig. 5d). The identified TFs grouped into 
several classes (Fig. 5e and Extended Data Fig. 10i): the AP-1 superfamily, 
which primes the senescence genome; hallmark signal-dependent TFs 
that activate inflammation and the senescence-associated secretory 
phenotype (SASP); Krüppel-Like TFs, which are implicated in cell cycle 
arrest; TFs that control ciliogenesis (RFX2/RFX3), which is a putative 
senescence regulator; orphan nuclear receptor TFs that are induced by 
DNA damage and oxidative stress, key senescence triggers; and multi-
ple candidate TFs not previously linked to senescence36–40. Individual 
TFs exhibited autoregulatory effects and shared multiple target genes 
(Fig. 5e and Extended Data Fig. 10i), including CDKN1A, indicating that 
these TFs may cooperate to potentiate a degenerative cycle of cell 
stress, senescence, SASP release, inflammation and tissue injury. This 
transcriptional cascade is turned off by WL.

Because of its importance in reinforcing senescence, we sought to 
further define the signatures of the AT SASP by systematically com-
paring the expression of secretory proteins41 across stressed (high 
senescence) and basal cell states. This revealed changes in diverse 
mediators of senescence, tissue injury and metabolic dysfunction, 
including signalling peptides implicated in multicellular stress and 
intra- and inter-niche communication (AREG, ADAMTS1, OSMR, IL6ST 
and CXCL2; refs. 37,42) (Extended Data Fig. 10j and Supplementary 
Table 12). Presumptive SASP components systematically replicated 
in situ and localized to stressed and arterial niches (Fig. 5f and Extended 
Data Fig. 10k,l). Senescent cells strongly upregulated NAMPT, an intra-
cellular driver of the SASP (through enzymatic activity in the NAD 
salvage pathway) and an extracellular adipocytokine (visfatin) with 
pleiotropic, context-dependent, predominantly pro-inflammatory 
effects34,37 (Fig. 5a and Extended Data Fig. 10j). NAMPT expression was 
similarly enriched in obese macrophages and inflammatory LAMs 
(Fig. 2b,f), in keeping with its roles in inflammasome activation and 
immune recruitment. Tissue-level protein analyses confirmed that 
NAMPT abundance increased in obesity and reduced markedly with 
WL (Extended Data Fig. 10b), together highlighting that NAMPT is a 
likely driver of AT SASP.
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In summary, these analyses reveal diverse intracellular and extracel-
lular mediators of the degenerative AT senescence cycle and support 
reversal of AT senescence as a key determinant of the metabolic health 
benefits of WL.

Discussion
As the number of people living with obesity surpasses one billion, there 
has never been a greater need to understand the opposing effects of 
obesity and WL on metabolic health. Here, we report a high-resolution 

single-nucleus and spatial atlas of human AT in people with extreme 
obesity undergoing therapeutic WL and healthy lean counterparts. The 
simultaneous analysis of obesity and WL enables us to understand core 
tissue remodelling principles; capture more than 20 cell states that vary 
with body weight (including degenerative and adaptive populations 
that bridge cell ontologies); and define molecular pathways, regula-
tory factors and intercellular signals that may drive tissue injury and 
subsequent recovery.

Foremost, we reveal selective susceptibility to cellular stress and 
senescence in subpopulations of metabolic, precursor and vascular 
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cells, but not in their immune counterparts. This susceptibility is ampli-
fied in obesity but is evident in ageing and metabolically unhealthy lean-
ness. We discover that WL has potent mitigating effects on senescence 
in vulnerable cell types. We predict from transcriptional patterns and 
previous mechanistic studies43 that this leads to increased metabolic 
flexibility in mature adipocytes, improved differentiation capacity 
in precursors and recovery of vascular abnormalities. Deep molecu-
lar phenotyping across cell types, cohorts and modalities enables us 
to define a tightly conserved regulatory network that may elicit and 
reinforce human AT senescence, putative upstream triggers, key com-
ponents of the degenerative AT SASP and vulnerabilities such as MCL1 
that might be exploited with therapy44. We conclude that reversal of AT 
senescence may be central to the multiorgan anti-inflammatory and 
metabolic benefits of human WL.

By modelling enzymatic gene expression, we show that WL induces 
global metabolic activation in mature adipocytes, presumably to 
release stored fuel to meet energy demands. Two prominent activated 
pathways are BCAA catabolism and lipid cycling (repetitive triglyceride 
hydrolysis and resynthesis). Contrary to expectation, both pathways 
are bioenergetic22, challenging the assumption that WL reduces energy 
expenditure (at least) in AT45, suggesting that there is compensation 
elsewhere and warranting further investigation. Irrespective of this, we 
propose that pervasive activation of substrate turnover in adipocytes 
has effects on insulin sensitivity and ectopic lipid that may be crucial 
to the multiorgan metabolic benefits of human WL.

Despite these effects, our lean cohort was the healthiest, indicating 
that other factors are involved. In the immune compartment, we confirm 
that human obesity leads to monocyte and macrophage infiltration 
and activation to a LAM phenotype. We extend this LAM phenotype to 
metabolic dysfunction independent of body weight and uncover gene 
regulatory mechanisms and metabolic pathways implicated in LAM 
specification and activation. Consistent with an adaptive–maladaptive 
spectrum, we find that LAMs exist on a continuum. At one extreme, we 
define a TLR2–TREM1 inflammatory LAM signature that associates with 
adiposity and metabolic dysfunction, akin to a proatherosclerotic LAM 
subtype46. We show that after WL there are marked reductions in mono-
cyte and macrophage (and lymphocyte) infiltration and inflammation 
pathways, which we predict, even in the absence of classical activation, 
to be anti-inflammatory. Despite overall reductions, we observe persis-
tence of obesity-induced macrophage activation states that are probably 
epigenetically programmed47,48. In mice, AT immune and metabolic cell 
memory is implicated in weight regain and enhanced inflammation48,49. 
Thus, persistent macrophage activation in human AT may impede com-
plete metabolic recovery, trigger weight regain (a major drawback of all 
WL interventions) and worsen long-term clinical outcomes9,50.

We studied WL in its early phase to define potential driver mecha-
nisms. Because of this, we cannot unravel the respective contributions 
of negative energy balance, weight change and absolute fat mass to the 
observed tissue and systemic effects. Other limitations include a focus 
on people without diabetes, the abdominal subcutaneous depot and 
surgical WL, variable biopsy methods and incomplete capture of rarer 
immune cells. Previous studies indicate that AT in different locations has 
important phenotypic differences that may contribute to variability in 
WL outcomes8. However, the degree of weight (fat mass) loss remains one 
of the strongest predictors of metabolic response, irrespective of inter-
vention3. Thus, we anticipate conserved but also context-dependent 
adaptations across AT compartments and WL methods.

Collectively, our results reveal that WL has significant effects on 
cellular processes that are known to affect metabolic health and lon-
gevity. More broadly, our findings highlight the need for proactive 
obesity prevention and support the possibility that sustained lifestyle 
changes could have long-term health benefits mediated through 
dynamic remodelling of diverse AT cell types. This rich representation 
of human AT biology and pathophysiology offers a valuable resource 
for mechanistic and therapeutic exploration.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-025-09233-2.

1.	 Lean, M. E. et al. Primary care-led weight management for remission of type 2 diabetes 
(DiRECT): an open-label, cluster-randomised trial. Lancet 391, 541–551 (2018).

2.	 Look AHEAD Research Group et al.Association of the magnitude of weight loss and 
changes in physical fitness with long-term cardiovascular disease outcomes in 
overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD 
randomised clinical trial. Lancet Diabetes Endocrinol. 4, 913–921 (2016).

3.	 Blüher, M. et al. New insights into the treatment of obesity. Diabetes, Obes. Metab. 25, 
2058–2072 (2023).

4.	 Klein, S., Gastaldelli, A., Yki-Järvinen, H. & Scherer, P. E. Why does obesity cause diabetes? 
Cell Metab. 34, 11–20 (2022).

5.	 Phelps, N. H. et al. Worldwide trends in underweight and obesity from 1990 to 2022:  
a pooled analysis of 3663 population-representative studies with 222 million children, 
adolescents, and adults. Lancet 403, 1027–1050 (2024).

6.	 Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of 
obesity. N. Engl. J. Med. 376, 254–266 (2017).

7.	 Sakers, A., Siqueira, M. K. D., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health 
and disease. Cell 185, 419–446 (2022).

8.	 Sandforth, A. et al. Mechanisms of weight loss-induced remission in people with 
prediabetes: a post-hoc analysis of the randomised, controlled, multicentre Prediabetes 
Lifestyle Intervention Study (PLIS). Lancet Diabetes Endocrinol. 11, 798–810 (2023).

9.	 van Baak, M. A. & Mariman, E. C. M. Mechanisms of weight regain after weight loss — the 
role of adipose tissue. Nat. Rev. Endocrinol. 15, 274–287 (2019).

10.	 Swarbrick, M. M. A lifetime on the hips: programming lower-body fat to protect against 
metabolic disease. Diabetes 63, 3575–3577 (2014).

11.	 Emont, M. P. et al. A single-cell atlas of human and mouse white adipose tissue. Nature 
603, 926–933 (2022).

12.	 Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new 
cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

13.	 Amano, S. U. et al. Local proliferation of macrophages contributes to obesity-associated 
adipose tissue inflammation. Cell Metab. 19, 162–171 (2014).

14.	 Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update 
on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

15.	 Colonna, M. The biology of TREM receptors. Nat. Rev. Immunol. 23, 580–594 (2023).
16.	 Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism  

of tissue macrophages in homeostasis and pathology. Cell. Mol. Immunol. 19, 384–408 
(2022).

17.	 Muthusamy, N., Barton, K. & Leiden, J. M. Defective activation and survival of T cells lacking 
the Ets-1 transcription factor. Nature 377, 639–642 (1995).

18.	 Kurowska, M. et al. Terminal transport of lytic granules to the immune synapse is mediated 
by the kinesin-1/Slp3/Rab27a complex. Blood 119, 3879–3889 (2012).

19.	 Arner, P. et al. Dynamics of human adipose lipid turnover in health and metabolic disease. 
Nature 478, 110–113 (2011).

20.	 Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and 
insulin resistance. Nat. Rev. Endocrinol. 10, 723–736 (2014).

21.	 Sharma, A. K. & Wolfrum, C. Lipid cycling isn’t all futile. Nat. Metab. 5, 540–541 (2023).
22.	 Sharma, A. K., Khandelwal, R. & Wolfrum, C. Futile cycles: emerging utility from apparent 

futility. Cell Metab. 36, 1184–1203 (2024).
23.	 Yoneshiro, T. et al. BCAA catabolism in brown fat controls energy homeostasis through 

SLC25A44. Nature 572, 614–619 (2019).
24.	 Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. 

Nucleic Acids Res. 51, D977–D985 (2023).
25.	 Horii, Y. et al. VGLL3 is a mechanosensitive protein that promotes cardiac fibrosis through 

liquid–liquid phase separation. Nat. Commun. 14, 550 (2023).
26.	 Lecoutre, S. et al. Importance of the microenvironment and mechanosensing in adipose 

tissue biology. Cells 11, 2310 (2022).
27.	 Chen, M. et al. Identification of an adipose tissue-resident pro-preadipocyte population. 

Cell Rep. 42, 112440 (2023).
28.	 Shao, M. et al. Pathologic HIF1α signaling drives adipose progenitor dysfunction in obesity. 

Cell Stem Cell 28, 685–701 (2021).
29.	 Fan, Z. et al. The vascular gene Apold1 is dispensable for normal development but controls 

angiogenesis under pathological conditions. Angiogenesis 26, 385–407 (2023).
30.	 Mahmoud, M. M. et al. Shear stress induces endothelial-to-mesenchymal transition via 

the transcription factor Snail. Sci. Rep. 7, 3375 (2017).
31.	 Schrimpf, C. et al. Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney 

injury. J. Am. Soc. Nephrol. 23, 868–883 (2012).
32.	 Varma, V. et al. Thrombospondin-1 Is an adipokine associated with obesity, adipose 

inflammation, and insulin resistance. Diabetes 57, 432–439 (2008).
33.	 Ravn-Boess, N. et al. The expression profile and tumorigenic mechanisms of CD97 

(ADGRE5) in glioblastoma render it a targetable vulnerability. Cell Rep. 42, 113374 (2023).
34.	 Kumari, B. & Yadav, U. C. S. Adipokine visfatin’s role in pathogenesis of diabesity and 

related metabolic derangements. Curr. Mol. Med. 18, 116–125 (2018).
35.	 Wang, L. et al. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin 

resistance in obesity. Cell Metab. 34, 75–89 (2022).
36.	 Martínez-Zamudio, R. I. et al. AP-1 imprints a reversible transcriptional programme of 

senescent cells. Nat. Cell Biol. 22, 842–855 (2020).

https://doi.org/10.1038/s41586-025-09233-2


Nature  |  www.nature.com  |  11

37.	 Kumari, R. & Jat, P. Mechanisms of cellular senescence: cell cycle arrest and senescence 
associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593 (2021).

38.	 Krones-Herzig, A., Adamson, E. & Mercola, D. Early growth response 1 protein, an upstream 
gatekeeper of the p53 tumor suppressor, controls replicative senescence. Proc. Natl Acad. 
Sci. USA 100, 3233–3238 (2003).

39.	 Ma, X. et al. A stress-induced cilium-to-PML-NB route drives senescence initiation. Nat. 
Commun. 14, 1840 (2023).

40.	 Hsieh, P. N., Sweet, D. R., Fan, L. & Jain, M. K. Aging and the Krüppel-like factors. Trends 
Cell Mol. Biol. 12, 1–15 (2017).

41.	 Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
42.	 Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-

associated pathways across tissues. Nat. Commun. 13, 4827 (2022).
43.	 Smith, U., Li, Q., Rydén, M. & Spalding, K. L. Cellular senescence and its role in white 

adipose tissue. Int. J. Obes. 45, 934–943 (2021).
44.	 Troiani, M. et al. Single-cell transcriptomics identifies Mcl-1 as a target for senolytic therapy 

in cancer. Nat. Commun. 13, 2177 (2022).
45.	 Leibel, R. L., Rosenbaum, M. & Hirsch, J. Changes in energy expenditure resulting from 

altered body weight. N. Engl. J. Med. 332, 621–628 (1995).
46.	 Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human 

atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. 
Res. 2, 656–672 (2023).

47.	 Hata, M. et al. Past history of obesity triggers persistent epigenetic changes in innate 
immunity and exacerbates neuroinflammation. Science 379, 45–62 (2023).

48.	 Hinte, L. C. et al. Adipose tissue retains an epigenetic memory of obesity after weight 
loss. Nature https://doi.org/10.1038/s41586-024-08165-7 (2024).

49.	 Cottam, M. A., Caslin, H. L., Winn, N. C. & Hasty, A. H. Multiomics reveals persistence of 
obesity-associated immune cell phenotypes in adipose tissue during weight loss and 
weight regain in mice. Nat. Commun. 13, 2950 (2022).

50.	 Bangalore, S. et al. Body-weight fluctuations and outcomes in coronary disease. N. Engl. 
J. Med. 376, 1332–1340 (2017).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41586-024-08165-7
http://creativecommons.org/licenses/by/4.0/


Article
Methods

Study design
Single-nucleus RNA sequencing (snRNA-seq) was done in subcutaneous 
abdominal AT from 25 people with obesity before and after marked 
WL (paired samples) and in 26 healthy lean controls. Two lean samples 
were removed as described below. Obese case and control groups were 
well matched for age, sex and ethnicity. Spatial transcriptomics was 
done in equivalent groups (n = 4 per condition), as were histological 
cross-validation studies (n = 4–5 per condition). All molecular pheno-
typing was done after overnight fasting. The WL interval was a mini-
mum of 5 months (median 7, range 5–18 months). Median percentage 
WL was 22% (range 13–33%). Primary snRNA-seq data were integrated 
with previously published snRNA-seq data in whole subcutaneous AT 
from nine obese and four lean people to increase obese and lean cell 
numbers and improve cell annotation11. Participant characteristics are 
provided in Extended Data Table 1.

Sample collection
The AT samples were obtained intra-operatively from morbidly 
obese individuals (BMI > 35 kg m−2) undergoing laparoscopic bari-
atric surgery (gastric bypass or gastric sleeve) and healthy controls 
(BMI < 26 kg m−2) undergoing non-bariatric laparoscopic abdominal 
surgery51. Subcutaneous AT was collected from abdominal surgical 
incision sites. Follow-up subcutaneous AT samples were collected from 
the peri-umbilical region using needle biopsy more than 5 months after 
WL intervention. Whole AT samples were snap frozen at collection and 
stored at −80 °C for future use. Participants were unrelated, between 
20 and 70 years of age, from a multiethnic background and free from 
systemic illnesses not related to obesity. People with treated type 2 
diabetes were excluded because of the potential effects of hypogly-
caemic medications on AT metabolism. Metabolic characteristics were 
collected at baseline and follow-up. All participants gave informed 
consent. The study complies with all relevant ethical regulations and 
was approved by the London – City Road and Hampstead Research 
Ethics Committee, United Kingdom (reference 13/LO/0477). Human 
tissue validation also used samples from the Imperial College Health-
care Tissue Bank, approved by Wales REC3 to release human material 
for research (reference 17/WA/0161).

Nucleus isolation
The AT nuclei from individual participants were pooled for library 
preparation and sequencing to increase efficiency, cohort diversity 
and study power. Pooled samples were separated by condition to 
avoid cross-over (4–5 samples per pool; a total of 6 pools per group). 
Sample pools for each experimental group were processed through 
to sequencing in lean–obese–WL trios to minimize between-group 
batch effects. For each participant sample, nucleus extraction was 
done using a modified version of a previously described protocol52. 
In brief, frozen human AT (about 100 mg) was cut into pieces of less 
than 0.2 cm and homogenized with 1 ml ice-cold lysis buffer (Tris-HCl 
10 mM (Invitrogen, 15567-027), NaCl 10 mM (Invitrogen, AM9760G), 
MgCl2 3 mM (Invitrogen, AM9530G), 0.1% NP40 (BioBasic, NDB0385), 
0.2 U µl−1 RNase inhibitor (Roche, 03335402001)) in a glass dounce 
homogenizer (Merck, T2690/P0485/P1110, 15 strokes, loose then 
tight pestles) on ice. After homogenization, samples were transferred 
through a 100 µM cell strainer (Greiner Bio-One, 542000) into a pre-
chilled tube using ART wide-bore tips (Thermo Scientific, 2079 G). The 
filtered homogenate was then transferred to 1.5 ml low DNA-bind tubes 
(Sarstedt, 72.706.700) and centrifuged at 500g and 4 °C for 5 min. After 
lipid/supernatant removal, the nuclei pellet was resuspended in 1 ml 
wash buffer (PBS with 0.5% BSA (Invitrogen, AM2616) and 0.2 U µl−1 
RNase inhibitor), transferred to new 1.5 ml low DNA-bind tubes and 
recentrifuged at 500g and 4 °C for 5 min. After repeat lipid/superna-
tant removal, the nuclei pellet was resuspended in 300 µl wash buffer 

containing DAPI (Thermo Scientific, 62248) at 0.1 µg ml−1 to stain nuclei, 
and filtered through a 35 µM cell strainer into a fluorescence-activated 
cell sorting (FACS) tube (Falcon, 352235) on ice. At this point, the iso-
lated nuclei from 4–5 samples from the same experimental group were 
pooled before sorting by flow cytometry.

FACS was used to clean up residual debris and lipid from isolated 
nuclei and to remove doublets. Pooled nuclei were sorted on a BD 
FACS Aria SORP. The sheath tank was bleach cleaned before each run 
and nuclease-free PBS (1×) (Invitrogen, AM9625) was used as sheath 
fluid. A 405 nm laser was used to excite DAPI, and emission was col-
lected using a 450/50 nm bandpass filter. Single nuclei were selected 
by gating on the first DAPI-positive band on the DAPI versus forward 
scatter (FSC) plot and then subsequently gating on side scatter (SSC) 
versus FSC and FSC A versus FSC H to ensure better debris and dou-
blet removal. All sorts were performed using an 85 μm nozzle. The 
sorted nuclei were collected into a BSA- and RNase inhibitor-rich 
collection buffer (70 µl of PBS with 1.375% BSA and 2.15 U µl−1 RNase 
inhibitor) in low DNA-bind tubes kept at 4 °C. After sorting, nuclei 
were centrifuged at 500g for 5 min at 4 °C to pellet. Supernatant was 
removed to leave about 40 µl, which was used to resuspend pellets 
with a wide-bore pipette tip.

Single-nucleus library preparation and next-generation 
sequencing
Pooled single-nucleus suspensions were used to generate barcoded 
single-nucleus libraries for next-generation sequencing. For each pool, 
5,000–10,000 nuclei were co-encapsulated with 10x barcoded gel 
beads to generate gel beads in emulsion (GEMs) using a 10x Chromium 
Controller and a 10x Genomics Single Cell 3′ v.3.1 kit, according to the 
manufacturer’s instructions. After GEM-RT and clean-up, the quantity 
and fragment size distribution of amplified cDNAs derived from bar-
coded single-cell RNAs were assessed using an Agilent 2100 Bioanalyzer 
High Sensitivity DNA assay. From this cDNA, snRNA-seq libraries were 
constructed and sequenced (Illumina NextSeq2000) in three batches, 
containing equal numbers of obese, lean and control library pools, 
to minimize between-group batch effects. Each unique library was 
sequenced to a minimum depth of more than 20,000 paired-end reads 
per nucleus (read 1, 28 base pairs (bp) and read 2, 90 bp, with unique 
dual 10-bp indexes). Raw sequencing data were demultiplexed and 
analysed using CellRanger v.5.0.1 and bcl2fastq v.2.20.0. Libraries 
were demultiplexed using CellRanger mkfastq based on the sample 
indices (allowing one mismatch), and the CellRanger count pipeline 
was used to perform alignment against human genome GRCh38 (using 
STAR), filtering and counting unique molecular identifiers (UMIs) 
(including introns).

Single-nucleus quality control
For each pooled library, raw count matrices from CellRanger were 
processed using CellBender53 (--epochs 150-200, --learning-rate 0.0001-
0.00005) to remove ambient RNA molecules and random barcode 
swapping, and filter inferred cells. The number of expected cells 
was based on CellRanger estimations. Filtered count matrices were 
processed separately using Seurat54 and SeuratObject. Low-quality 
cells with low read or gene counts (less than 1,000 UMIs or less than 
400 genes), low complexity (log10(genes per UMI) < 0.85) and high 
mitochondrial or ribosomal fractions (greater than 5%) were removed 
from each pooled dataset. Clean libraries were normalized and trans-
formed (sctransform v.2 regularization55) to stabilize count variances. 
Potential doublet nuclei were detected using three approaches: 
expression-based DoubletFinder56, using doublet estimates from 
genotyping to set the expectation; genotype-based, Vireo57 (details 
below); and iterative clustering and detection of clusters with high 
expression or genotype-based doublet fractions. Assigned dou-
blets, ambiguous cells and doublet clusters were then removed and 
singlet-only datasets were retransformed. Participant-level annotation 



information from genotyping was then added to generate high-quality cell  
datasets.

Participant annotation from genotype information
Genotype information present in the RNA sequencing reads was 
aligned to existing genome-wide genotyping to attribute specific cells 
to specific participants in each sample pool. Participant-level geno-
type data were generated from whole blood using Illumina Infinium 
OmniExpress-24 v.1.2 bead chips. Directly genotyped single-nucleotide 
polymorphisms (SNPs) with call rates of less than 90%, minor allele 
frequency of less than 0.01, Hardy–Weinberg equilibrium P < 1 × 10−6, 
SNPs on sex chromosomes and duplicated SNPs were removed. After 
quality control, 649,007 SNPs were taken forward for imputation. 
SHAPEIT58 (v.2.r900) was used to infer haplotypes, and imputation 
was done in IMPUTE2 (v.2.3.2)59 using a 1,000 genomes reference panel 
phase 3 (all ancestries). Each chromosome was divided into 5-megabase 
chunks for imputation and merged at the end. A random seed was sup-
plied automatically. An effective population size (Ne) reflecting genetic 
diversity was 20,000, as recommended when using a multi-population 
reference panel. After imputation, genotype data were available for 
81,656,368 SNPs.

Cell-level SNP data were generated for each pooled sample using 
cellsnp-lite60 (using the combined imputed SNP list as the reference). 
Cell-level SNP data were then intersected with participant-specific 
genotype references in Vireo57 to identify variants that segregated 
the samples, and we used these variants to demultiplex participant 
specific cells, ambiguous cells and doublets. A range of cellsnp-lite MAF 
settings were tested and MAF > 0.05 was selected to maximize singlet 
recovery. Participant-level cell annotations were then incorporated 
into pre-cleaned high-quality cell datasets.

Integration
High-quality, doublet-removed cell libraries containing participant- 
level annotations were then integrated to a unifying atlas. Two samples, 
one with very high lymphocyte counts and one with very few cells, were 
removed at this stage, leaving 24 samples in the lean group. A further 
13 whole subcutaneous AT samples from obese and lean people in a 
previously published dataset11 were also incorporated in the integration 
phase to increase cohort diversity and improve cell annotation. Of note, 
only samples meeting the following criteria were selected: whole tissue; 
nucleus only; subcutaneous depot; and BMI < 26 or BMI > 30 kg m–2. 
Previously published samples were individually reprocessed from raw 
counts using thresholds equivalent to our own datasets.

To integrate our dataset with the previously published dataset11, we 
updated the gene IDs from the latter to match the same Ensembl release. 
Both datasets were then normalized to 10,000 counts per nuclei before 
proceeding with downstream analysis. To minimize any sample-driven 
effect for cell-type identification, we took a three-step approach. First, 
we regressed out the effects of number of original counts, as well as the 
percentage of mitochondrial and ribosomal genes. Then we calculated 
the PCA space on the highly variable genes, detected by Scanpy61, fol-
lowed by correction of the PCA space with Harmonypy62 using samples 
as batches. Finally, we used BBKNN63 with samples as a batch to identify 
neighbourhoods.

Analysis overview
Cell type and state annotation was done in the combined (our own and 
that from ref. 11) integrated dataset. Primary exploratory analyses were 
performed in our own dataset, which was processed in experimen-
tal group trios (lean–obese–WL) to minimize batch effects and com-
prised paired obese–WL samples and age-, sex- and ethnicity-matched 
lean controls. Differential neighbourhood abundance and expression 
analyses between groups (in which biological, technical and batch 
covariates could be adjusted for) were repeated using the combined 
dataset to verify reproducibility.

Cell annotation
We identified the main cell types with unbiased clustering, using a 
low-resolution (0.15) Leiden algorithm, and each cell type was anno-
tated according to known markers. To identify cell states, we isolated 
the barcodes for each of the main cell type identities, except for mast 
and lymphatic endothelial cells, owing to low numbers. Each cell type 
was then reintegrated and reclustered twice, as described above. First, 
we used a high-resolution Leiden (1.2 or higher) to identify barcodes 
that contained a mixed signature, with markers of different lineages. 
These barcodes were flagged as ‘unassigned’ and were excluded from 
any downstream analysis. Then, we removed these barcodes and 
proceeded with the second round of reintegration and clustering. 
Resolution varied across cell types (0.65 or higher), with myeloid cells 
requiring the highest Leiden to identify rare, known cell types (2.25). 
Clusters that were similar to each other and had no unique identifiable 
features between them were merged. Cell states were annotated based 
on a mix between unbiased and known markers. To identify unbiased 
markers, we used Scanpy’s rank_gene_groups function to perform a 
Wilcoxon test.

Compositional analyses
To analyse changes in cellular composition, we used a neighbourhood 
graph-based approach in Milo64. We performed comparisons of lean–
obese and WL–obese groups, adjusting for biological covariates in 
the lean–obese analyses. Neighbours were recalculated with BBKNN 
using samples as a batch, restricted to the comparison groups (lean–
obese and WL–obese). To analyse global shifts, we used Milo on all 
cell types together and within each cell type to analyse shifts in cell 
state composition. Only neighbourhoods containing at least 90% of a 
single cell type or state were considered neighbourhoods, and those 
with a spatial FDR < 0.1 were considered significant. Fasting insulin 
adjusted for BMI abundance analyses were carried out in steady state 
lean and obese samples, using lean–obese neighbourhoods, adjusting 
for biological covariates.

Metabolic analyses
The metabolic profiles of different cells were inferred using flux-based 
analysis modelling in COMPASS65. For this, we created an expression 
matrix for every main cell type, consisting of the mean expression of 
each gene per sample. These matrices were then used to run COMPASS. 
Statistical analysis to compare conditions was performed with a Wil-
coxon test for every reaction, using their COMPASS score. COMPASS 
plots consisted of both positive and negative reactions grouped by 
their defined subsystem.

Differential expression analyses
Differential expression analyses were carried out between obese cases 
and controls, and between obese–WL pairs, in Nebula66 using negative 
binomial mixed-effect models to correct for subject- and cell-level 
correlation structure. In all comparisons, further thresholding was 
applied (mitochondrial fraction less than 1% and ribosomal fraction 
less than 1%) to minimize false discovery, and fractions of mitochon-
drial and ribosomal counts were incorporated as technical covariates; 
in obese–lean comparisons, age, sex and ethnicity were included as 
covariates; in obese–WL comparisons of paired samples, biological 
covariates were not included. Statistical significance was inferred at 
P < 0.05 Bonferroni corrected for obese–WL pairwise comparisons 
(where power was higher) and FDR < 0.01 for lean–obese compari-
sons. Cell type and state differences were examined using Scanpy’s 
rank_gene_groups function to perform a Wilcoxon test, as were spatial 
differences in gene expression within cell types between conditions. 
Amphiregulin (AREG), which is known to be secreted67, was added to 
the curated secretory protein list from the Human Protein Atlas41 for 
comparisons in stressed and basal cells.
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Inference of regulatory networks
To infer regulon activity, we used the Python implementation of the 
SCENIC68 pipeline (pySCENIC). The expression matrix used consisted 
of nuclei from all 3 conditions, downsampled to the same number of 
nuclei (20,000 each). Genes that were expressed in all nuclei, or in 
less than 5% of nuclei for any given cell state, as well as mitochondrial, 
ribosomal, haemoglobin, non-coding, antisense, contig and microRNA 
genes, were also removed from the analysis. For TF binding sites, we 
used the Encode 2019/06/21 ChIP-seq hg38 refseq-r80 10 kilobases 
up and down database. Only regulons with a minimum of five target 
genes were considered. Analyses in adipocytes were restricted to all 
TF genes and genes in dysregulated metabolic pathways from COM-
PASS. Differential networks between cell states and within cell types 
between conditions were identified by comparing cell-level network 
scores between groups (non-parametric Wilcoxon rank-sum test). 
Significance was inferred at P < 0.05 (Bonferroni corrected). Within a 
cell state, fold changes were scaled for visualization.

Cell–cell communication
We used CellChat69 to infer intercellular communication, based on 
known receptor–ligand interactions. For the purpose of this analysis, 
to compare the differences between each condition, cellular commu-
nication was inferred for each condition separately. Each condition 
was down-sampled to 20,000 barcodes to avoid any confounding 
effects arising from higher cell numbers in obese and lean groups, 
and cell types with very low numbers were removed because these cell 
types often have higher mean gene expression owing to low cluster 
background. To analyse the differential communication between two 
conditions, we used the rankNet function in CellChat to obtain overall 
signalling differences, as well as pairwise comparison with each cell 
type as a sender and as a receiver. To analyse communication at the 
cell state level, we performed a condition-agnostic analysis to maintain 
cell states with low numbers of nuclei. For intra- and inter-niche com-
munication analyses, because of the lack of most ligand–receptor pairs 
in the Xenium gene panel, we imputed spatial data using ENVI70. This 
was done for each condition separately, training on the single-nucleus 
data for each condition. We did this step ten times and averaged the 
results in a final imputed expression matrix because of the stochastic 
nature of imputation. Imputed genes with low expression (below the 
mean across all genes, the gene-level quality control) and those with 
below the mean for that gene (cell-level quality control) were removed.

Metabolic and senescence scores
Gene list scoring was done in Scanpy using the score_genes function, 
with the normalized ln expression and a control size of 50. Senescence 
signatures were obtained from MSigDB71,72. Housekeeping genes were 
obtained from the 20 most stable human transcripts in the House-
keeping Transcription Atlas73, supplemented with commonly used 
housekeeping genes (RRN18S, ACTB, GAPDH, PGK1, PPIA, RPL13A, 
RPLP0, ARBP, B2M, YWHAZ, SDHA, TFRC, GUSB, HMBS, HPRT1 and TBP). 
The BCAA score was performed using the genes associated with the 
respective pathways on COMPASS.

Pathway analyses
Pathway analyses of differentially expressed genes were done in Clus-
terProfiler74 using the Over Representation Analysis and MSigDB71,72 
datasets (H, C2 and C5) as inputs. All genes present in the comparison 
datasets were used as background. Significant pathway enrichment 
was inferred at FDR < 0.01.

Tissue processing for spatial transcriptomics and histology
Frozen stored AT samples (stored at −80 °C) were directly thawed in a 
4% paraformaldehyde solution and kept at 4 °C for 24 h. Samples were 
then transferred to a 70% ethanol solution and stored until paraffin 

embedding. Ethanol-dehydrated samples were cleared with xylene, 
infiltrated with molten wax using the Sakura Tissue Tek VIP6 vacuum 
infiltration processor and embedded in paraffin using the Sakura Tis-
sue Tek TEC5 embedding system.

Spatial transcriptomic preparation
Slide preparation. Formalin-fixed paraffin-embedded (FFPE) blocks 
were stored at 4 °C. Xenium slides stored at −20 °C were equilibrated 
to room temperature for 30 min before sectioning. The FFPE blocks 
were rehydrated in an ice bath with distilled water for 10–30 min and 
sectioned at 5 µm thickness. Sections were floated in a 42 °C water bath 
and slides containing tissue sections were incubated at 42 °C for 3 h 
and then dried overnight at room temperature in a desiccator. Slides 
were kept at 4 °C in a desiccator until use. All histology was done in 
RNase-free conditions using sterilized equipment.

Technical pilot. A technical pilot was done on a single frozen stored 
AT sample separated into three sections for fixation at 24 h, 48 h and 
72 h to evaluate the effects on tissue integrity (H&E) and transcript 
recovery using the 10x Xenium Human Multi-Tissue and Cancer Panel 
(P/N 1000626), with two slides and one tissue section for each fixation 
time/slide (Institute of Developmental and Regenerative Medicine 
(IDRM), Oxford).

Panel design. A 10x Xenium Human Multi-Tissue and Cancer Panel 
(P/N 1000626) supplemented by 100 custom genes was selected to 
annotate prominent cell types, states and effector pathways identified 
in single-nucleus datasets.

Xenium in situ transcriptomics. The FFPE tissues were analysed on 
a 10x Xenium Analyser following 10x Genomics Xenium in situ gene 
expression protocols CG000580, CG000582 and CG000584. In brief, 
5-µm FFPE tissue sections on Xenium slides were deparaffinized and 
permeabilized to make the mRNA accessible. Gene panel probes were 
hybridized for 20 h overnight followed by washing, ligation of probe 
ends to targeted RNAs, generating circular DNA probes with high speci-
ficity. Rolling circle amplification was used to generate hundreds of 
copies of gene-specific barcodes for each RNA-binding event, result-
ing in a strong signal-to-noise ratio. Background fluorescence was 
quenched chemically to mitigate tissue auto-fluorescence. Tissues 
sections were stained with DAPI nuclear stain and Xenium slides were 
loaded onto the Xenium instrument for imaging and then decoding 
of image data to transcripts. Secondary analysis to segment cells and 
assign transcripts was performed on-instrument (Xenium Analyser 
v.1.7.1.0). Xenium Explorer was used to evaluate the initial data quality 
and visualize morphology images, transcript localization at subcellular 
resolution, segmentation and data clustering.

Post-Xenium processing. After Xenium in situ transcriptomics, slides 
were kept in PBS and stored at 4 °C for up to 24 h. For immunofluores-
cence staining, slides were washed three times in PBS for 5 min and then 
incubated in CF 594 wheat germ agglutinin (1:200; Biotium, 29023-1) 
for 20 min. Slices were then rewashed three times with PBS, and tissue 
stained with DAPI (1:5,000; Thermo Scientific, 62248) for 10 min at room 
temperature. Finally, sections were rewashed as before and then mount-
ed using antifade medium Vectashield (Vector Laboratories, H-1000). 
Full slide scans for the immunofluorescence channels were performed 
at 20× magnification using a ZEISS Axio Scan.Z1 slide scanner.

Spatial data analysis
Xenium data were analysed by three different methods, depending 
on the purpose of the analysis. Regardless of the type of analysis, only 
transcripts with a quality value higher than 35 were considered.

To plot transcript and score densities, regardless of cell type we took 
a segmentation-free approach creating 50-µm bins using the transcript 



coordinates provided by Xenium. Only bins that contained more than 
ten transcripts were kept for downstream analysis.

For cell-type identification, we took the nucleus segmentation from 
Xenium and assigned only transcripts within 2 µm of each nucleus 
(selected to maximize recovery of transcripts but minimize the cap-
ture of known cross-contaminating marker transcripts from adjacent 
cells, designated nucleus segmentation). The resulting matrices were 
then imported into Scanpy for analysis. Here, only nuclei with more 
than 40 transcripts were kept for downstream analysis. Clustering 
was performed similarly to the single-nucleus data, with Harmonypy62 
and BBKNN63 used to correct batch effects in the PCA and neighbour-
hoods, respectively. However, here gene expression was scaled using 
Scanpy’s61 scale function to give more weight to low-expression genes. 
A low-resolution Leiden algorithm was then used to identify the main 
cell types, and cell states were identified by reintegrating and reclus-
tering each of these cell types individually. Clusters were labelled to 
match the single-nucleus reference. Ambiguous clusters were labelled 
‘unassigned’. To delineate rarer LAM subtypes in the spatial dataset 
we used CellTypist for label transfer75, creating a model trained on the 
single-nucleus LAM subtypes and applying a ‘best match’ prediction 
on the MYE2 LAM spatial cluster.

To correlate genes with adipocyte size, we performed a semi-manual 
segmentation using ImageJ, designated boundary segmentation. WGA 
staining, performed after the Xenium run, was aligned to the Xenium 
data using the DAPI channel as a guide and utilized for segmentation. 
To avoid any issues arising for multiple adipocytes being merged in the 
segmentation, we manually closed some gaps where the WGA staining 
was not strong enough to be detected by the binary threshold of ImageJ. 
We then used the Analyse particles function of ImageJ to detect each 
object and measure the area and centroid coordinates. Furthermore, 
we created a separate table with coordinates for each pixel contained in 
each object. To assign transcripts to the ImageJ objects, and to remove 
any noise derived from other cell types, we first removed any transcript 
that was assigned to non-adipocytes during the nuclei segmentation. 
We then created a distance tree between the remaining transcript coor-
dinates and the pixel coordinates obtained for every ImageJ object. This 
was achieved using the KDTree function from Scipy’s spatial module. Adi-
pocyte transcripts that were found on the cell boundary were assigned 
to the closest adipocyte(s) (any adipocyte within 2 µm of the nearest 
segmented pixel). Only objects with an area greater than 1,000 µm2 and 
less than 25,000 µm2 were considered as adipocytes for this analysis. 
As larger objects were found to have higher probability of capturing 
more transcripts, gene expression was normalized to the total number 
of counts per cell. Clustering was done as described above, using a high 
resolution to identify and then remove fine clusters containing con-
taminating transcripts from other cell types. A Spearman correlation 
was done to investigate which genes correlated with adipocyte area.

Finally, to cluster cells in spatial niches, we made use of Scipy’s KDTree 
function to create a distance tree between every cell in each sample. We 
then created a neighbourhood matrix by counting, for each cell, the 
number of proximate cells (within 300 µm) at a cell state level. Because 
adipocyte sizes increased in obesity, cells in lean samples had roughly 
twice the number of neighbouring cells that cells in obese samples 
did. To prevent this from biasing the niche clustering, the neighbour-
hood matrix was normalized such that each cell was represented by 
the percentage of neighbouring cells in each cell state. To cluster cells 
into niches, we created an anndata object of the neighbourhood matrix 
for use in Scanpy and corrected for batch effects with Harmony and 
BBKNN before Leiden clustering. Very similar clusters, driven by small 
fluctuations, were merged into the AD niche.

Tissue immunohistochemistry
The FFPE blocks were sectioned at 5 µm thickness for immunohisto-
chemistry and immunofluorescence. Sections were deparaffinized 
and hydrated, and then heat-mediated antigen retrieval was done in 

an EDTA-based pH 9.0 solution. Endogenous peroxidase was quenched 
with 3% hydrogen peroxide. Sections were incubated with rabbit mono-
clonal to p21 Waf1/Cip1 (1:50 dilution; Cell Signalling, 2947, clone 12D1), 
followed by anti-rabbit IgG conjugated with polymeric horseradish 
peroxidase linker (25 μg ml−1; Leica Bond Polymer Refine Detection, 
DS9800). DAB was used as the chromogen and the sections were then 
counterstained with haematoxylin and mounted with DPX. Immunohis-
tochemistry was performed on a Leica BOND RX. To evaluate p21-positive 
cells, full virtual slide scans were loaded into QuPath 0.5.1 (ref. 76) and 
the positive cell detection module was used to count the total haema-
toxylin and DAB-positive nuclei in two slices per sample. The fraction of 
p21-positive cells relative to the total cell number was then calculated 
for each slice, and the mean was used for between-group analyses.

Tissue immunofluorescence
Tissue sections of 5 µm were deparaffinized by submerging three sepa-
rate times in Histoclear (National Diagnostics, HS-200) for 5 min and 
then rehydrated by submerging in a series of graded alcohol solutions 
of decreasing concentrations for 5 min each. After rehydration, antigen 
retrieval was done by heating the samples in 10 mM sodium citrate 
buffer, pH 6 (Abcam, ab64236) for 5 min in a decloaking chamber (Bio-
care Medical, DC2012-220V). The sections were then permeabilized 
in 0.2% Triton X (Sigma-Aldrich, X100-500mL) in PBS for 10 min and 
subsequently blocked in 1× ACE blocking solution (Bio-Rad, BUF029) 
for 30 min. After blocking, sections were incubated in primary anti-
body solutions diluted in 0.5× block ACE at 4 °C overnight: anti-NAMPT 
(1:200, Affinity Biosciences, DF6059); anti-TREM2 (clone D8I4C, 1:400, 
Cell Signalling, 91068); or anti-TLR2 (clone TL2.1, 1:400, Invitrogen, 
14-9922-82). After primary antibody removal, the tissue was washed 
in PBS and then incubated with secondary antibody, goat anti-rabbit 
Alexa Fluor 488 (1:200, Invitrogen, A11034), donkey anti-rabbit Alexa 
Fluor Plus 488 (1:250, Invitrogen, A32790) or goat anti-mouse Alexa 
Fluor Plus 647 (1:250, Invitrogen, A32728) in 0.5× block ACE for 45 min at 
room temperature. For NAMPT, sections were incubated with DyLight 
594 Lycopersicon Esculentum Lectin (1:250, Invitrogen, L32471) for 
20 min (room temperature), rewashed with PBS and then stained with 
a DAPI solution (1:5,000, Thermo Scientific, 62248) for 10 min at room 
temperature. For TREM2/TRL2 at CLS, only DAPI was used. Finally, sec-
tions were washed and mounted using antifade medium Vectashield 
(Vector Laboratories, H-1000). For each sample, representative images 
were taken at 40× magnification (NAMPT) or 20× (CLS) using a Leica 
SP8 DLS confocal microscope. Image analysis was done in QuPath 0.5.1 
(ref. 76). To quantify the NAMPT:lectin ratio, the positive pixel area of 
the NAMPT and lectin channels was measured in two z-stack maximum 
projection images per sample using the pixel classifier module. Meas-
urement precision was evaluated between two images per sample (to 
confirm low within-sample variability) and the mean sample intensity 
was used for between-group analysis.

Macrophage isolation and HPG uptake
We used a modified SCENITH-based approach to evaluate human mac-
rophage metabolic pathways ex vivo77,78. Fresh subcutaneous AT was cut 
into approximately 2-mm pieces with 30 ml HBSS (Gibco, 14175-053) in 
a 50 ml tube, washed and collected using a 100 µM cell strainer. Tissue 
was digested for 20 min at 37 °C with 3 mg ml−1 collagenase II (Sigma 
C6885) in methionine-free RPMI (Sigma, R7513), 65 mg l−1 l-cystine 
dihydrochloride (Sigma, C6727), 1× GlutaMAX (Gibco, 35050061), 10% 
dialysed fetal bovine serum (FBS, Gibco, A3382001). Digested tissue 
was filtered through a 100 μm strainer and digestion was terminated by 
adding methionine-free RPMI containing 10% FBS, followed by centrifu-
gation (300g at 4 °C for 7 min). After resuspension in methionine-free 
RPMI (65 mg l−1 cystine, 10% FBS, 1× glutamax), cells were plated (160 µl) 
into wells on a 96-well V-bottomed plate. Cells were methionine starved 
for a further 15 min (total starvation of 45 min including digestion and 
isolation) before treatment with inhibitors or control media (40 µl) for 
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15 min. The four treatments were medium, 2-deoxy-d-glucose (2-DG; 
100 mM final concentration; Sigma, D8375), oligomycin (2 µM final 
concentration; Sigma, 495455) and 2-DG plus oligomycin (100 mM and 
2 µM final concentration, respectively). Homopropargylglycine (HPG; 
Cayman Chemical, 11785) was then added to wells at a final concentra-
tion of 500 µM and incubated for 30 min to initiate cell HPG uptake. An 
additional well received cells and media but no HPG and no treatment 
(click chemistry negative control). After HPG uptake, cells were stained 
with zombie aqua live/dead stain (1:500 in PBS; BioLegend, 423101) for 
20 min at room temperature in the dark, washed with PBS and then 
fixed with 2% PFA for 15 min.

Click chemistry, staining and FACS analysis
Fixed cells were permeabilized (0.1% saponin and 1% BSA in PBS) for 
15 min, washed with click buffer (100 mM Tris-HCl, pH 7.4; Invitrogen, 
1556-027) and incubated with Fc receptor blocker (25 µg ml−1 in PBS; 
Fc1, BD Biosciences, 564765) for 10 min. Cells were rewashed and incu-
bated in 100 µl of click reaction mix in the dark at room temperature for 
30 min. Click reaction mix was made sequentially, adding CuSO4 (final 
concentration, 0.5 mM; Sigma, 209198), THPTA (final concentration, 
2 mM; Antibodies.com, A270328), sodium ascorbate (final concentra-
tion, 10 mM; Sigma, A7631) and then AZDye 555 (final concentration, 
25 µM; Vector Laboratories, CCT1479) to click buffer (final concentra-
tion, 100 mM Tris-HCl).

After click chemistry exposure, cells were washed using FACS buffer 
(PBS, 1% BSA, 5 mM EDTA, 25 mM HEPES) and stained with antibody 
mix (FACS buffer, anti-CD45 FITC (1:20; H130; BioLegend, 304006), 
anti-FOLR2 APC (1:20; 94b/FOLR2; BioLegend, 391705), anti-CD9 
APC-fire (1:20; H19α; BioLegend, 312114), Fc block reagent (25 µg ml−1)) 
at 4 °C in the dark for 30 min. After rewashing, cells were filtered (35 µM 
cap strainer) for FACS analysis.

Spectral flow cytometry was done on a Sony ID7000 in standardiza-
tion mode. The ID7000 software was used to calculate distinct spectral 
signatures for each fluorochrome based on single stained controls. 
Fluorochrome signatures, together with autofluorescence signatures 
identified in unstained aliquots of each sample using the AF finder 
software feature, were used to unmix the signals in fully stained sam-
ples with the built-in WLSM algorithm. Unmixed signals were used for 
gating (Extended Data Fig. 2i and Supplementary Fig. 1) and analysis 
of median fluorescence intensity in FlowJo.

In vitro stress studies
Immortalized human adipose-derived stromal cells (Bmi-1/hTERT, 
iHASC) were acquired from Applied Biological Materials (T0540). 
For differentiation experiment cells, iHASC were seeded in six-well 
plates. Differentiation was induced at confluence using growth medium 
(DMEM/F-12 (Gibco, D8437), 10% FBS (Gibco, F7524), 2 ng ml−1 rhbFGF 
(Z101455), 1% gentamicin (G255)) supplemented with 10 µg ml−1 insulin 
(Actrapic, Novo Nordisk), 500 µM 3-isobutyl-1-methylxanthine (Sigma, 
I5879), 1 µM dexamethasone (Sigma, D4902) and 2 µM rosiglitazone 
(Sigma, R2408) for 15 days. Etoposide (Sigma-Aldrich, E1383) was used 
to induce the DNA damage stress response79. From day 1 to day 5 of dif-
ferentiation, cells were treated with DMSO (Fisher-Scientific, BP231100) 
(control) or etoposide 5 µM or 10 µM. Medium was refreshed every 
3 days. For stress-marker experiments, undifferentiated cells were 
seeded in 96-well plates and treated with DMSO control or etoposide 
(5 µM and 10 µM) at 80% confluence.

O-Red-oil (ORO) staining was performed as previously described51. In 
brief, cells were fixed with formalin, washed with sterile water, treated 
with 60% isopropanol and stained with ORO solution (Sigma, O0625) 
and DAPI (1:5,000). After washing, stained cells were imaged on an Evos 
m7000 (Thermo Scientific) capturing a minimum of 100 fields at 20× 
magnification per well. Marker quantification was done in Qupath; 
nuclear segmentation was done using the cell-detection module in 
the DAPI channel. Mean ORO intensity was quantified in a 15 µm radius 

to each nucleus. Positive cells were called empirically at a threshold 
greater than 32.2, 8-bit depth. The proportion of ORO-positive cells 
to the total number of nuclei was calculated.

For stress-marker quantification, after etoposide and media treat-
ment, 96-well plates were fixed in 10% formalin for 10 min and then 
washed with PBS. The following primary antibodies were used for 
staining: anti-STAT3 (clone 124H6, 1:500; Cell Signalling, 9139S) and 
anti-JUN (clone 60A8, 1:500; Cell Signalling, 9165S). Otherwise, stain-
ing procedures used the same steps, reagents and concentrations as 
for tissue immunofluorescence. After staining, wells were kept in PBS 
and imaged using a high-throughput fluorescent microscope IN Cell 
Analyzer 2500HS (Cytiva, objectives 20× for JUN and 40× for STAT3). 
Positive cells were determined using IN Carta image analysis software 
(v.1.14), based on the nuclear fluorescence intensity for the target 
protein (empirical positive threshold for JUN, greater than 396.9, and 
STAT3, greater than 505.3, 16-bit depth). Data were expressed as the 
percentage of positive cells ( JUN or STAT3) of the total number of nuclei.

Statistics and reproducibility
Unless otherwise stated, significance was inferred at P < 0.05 for 
single-variable tests and FDR < 0.05 for multiple-hypothesis tests. For 
spatial datasets, where representative images are provided, all analyses 
were repeated in n = 4 samples per group. For histological verification, 
where representative images are shown, all analyses were repeated in 
n = 4–5 samples per group.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Raw single-cell and spatial transcriptomic datasets have been depos-
ited on the Gene Expression Omnibus (accessions GSE295708 and 
GSE295862, respectively). Integrated single-nucleus and Xenium 
objects, together with auxiliary files, are available at the Single Cell Por-
tal (accessions SCP3116 and SCP3117, respectively). The following pub-
licly available datasets were used in this study: human AT single-nucleus 
transcriptomic data (Single Cell Portal, SCP1376; and GEO accession, 
GSE176171); human reference genome (https://cf.10xgenomics.com/
refdata-gex-GRCh38-2020-A.tar.gz); Molecular Signatures Database 
(https://www.gsea-msigdb.org/gsea/msigdb/); secreted proteins in 
the Human Protein Atlas (https://www.proteinatlas.org/humanpro-
teome/tissue/secretome); motifs for SCENIC (https://resources.aert-
slab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/tc_v1/
gene_based/); and human GWAS (https://www.ebi.ac.uk/gwas/). Source 
data are provided with this paper.

Code availability
Data analysis pipelines used in this work can be obtained from https://
github.com/WRScottImperial/WAT_single_cell_analysis_Nature_2024.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Single nucleus and spatially resolved variations  
in cell types and states in lean, obese and WL adipose tissues. a, UMAP 
embedding of AT cell types across conditions and datasets demonstrating 
successful integration and cell type conservation. b, Cell type marker genes  
in the single nucleus (Nuc, left) and spatial datasets (right). ASC, adipose stem 
cells. APC, other adipose progenitor cells. Endothelial, vascular endothelial 
cells. ILC, innate lymphoid cells. Lymphatic, lymphatic endothelial cells. Mono/
DC, monocytes and dendritic cells. c, Cell state marker genes in the Nuc (left) 
and spatial datasets (right). b,c, Scaled mean expression and proportion (%)  
of cells expressing marker. d, Proportion of cell neighbourhoods exhibiting 

significant differences in cell abundance between conditions (Spatial FDR < 0.1) 
for each cell type. Orange obese-high, blue obese-low, grey non-significant 
(NS). e, Proportional changes in adipocytes and macrophages between 
conditions in single Nuc and spatial datasets. Restricted to these cell types  
due to limited spatial cohort numbers (N = 4/group) and intra-sample/group 
heterogeneity in vascular and precursor cell numbers. Boxplot, median IQR 
min/max. Wilcoxon Paired (OB-WL) and Unpaired (OB-LN), FDR adjusted P 
value. f, Alterations in pathway-wide metabolic flux between conditions in 
major AT cell types. Cohen’s D, coloured at FDR < 0.05, red obese-high, blue 
obese-low.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Adipose tissue immune system variations in human 
weight gain and WL. a, Myeloid cell marker genes, scaled mean expression, 
proportion (%) of cells expressing marker. b, Beeswarm plots showing 
significant changes (Spatial FDR < 0.1) in neighbourhood abundance in myeloid 
cell classes. Lean-obese, obese-WL comparisons, Log2FC between conditions, 
red obese-high, blue obese-low. Fasting insulin adjusted for body mass index  
(FI adj BMI), Log2FC per unit change, red FI-high, blue FI-low. c, Proportional 
changes in myeloid cell abundance in single nucleus dataset. Boxplot, median 
IQR min/max. Lean-Obese unpaired, WL-Obese paired Two-tailed Wilcoxon 
test. FDR adjusted P values. d, Volcano plot of differentially expressed genes in 
LAM subtypes (ST) 1 (adaptive) and 2 (maladaptive/inflammatory). Two-tailed 
Wilcoxon unpaired test, FDR < 0.05. Red, LAM ST2-high, Blue LAM ST2-low.  
e, Representative spatial images of a CLS. Top, individual transcripts detected 
by Xenium for Adipocyte markers (ADIPOQ Orange, PLIN4 Cyan), a LAM marker 
(PLA2G7 Magenta), and a nuclei counterstain (DAPI Gray), showing LAMs 
surround a transcriptionally devoid/dead adipocyte. Bottom, CellTypist “best 
match” prediction of LAM ST at the CLS. f, Shared LAM subtype marker genes, 
scaled mean expression, proportion (%) of cells expressing marker, in the single 
nucleus (sNuc, top) and spatial (bottom) datasets. sNuc was used as the training 
dataset to predict a “best match” in the spatial dataset (CellTypist). g, Proportion 
of LAM ST1 and ST2 in CLS (defined as ≥3 LAMs) or isolated (defined as ≤2 LAMs 
in Neighbourhood). Two-tailed Chi2 test. h, Alterations in pathway-wide 
metabolic flux. Top, between conditions in mature (MYE2) and immature 

(MYE3) LAM and TRM (MYE1). Red obese-high, blue obese-low. Bottom, 
between TRM and LAM. Wine-red LAM-high, Yale-blue LAM-low. Cohen’s D, 
coloured at FDR < 0.05. i, SCENITH strategy (top) for LAM and TRM metabolic 
activity from Obese donors (N = 7). Cells were gated as single cells (FSC-A-SSC-A, 
FSC-A-FSC-H, not shown), Zombie-neg (Live/Dead dye) and CD45-pos (pan-
immune marker), followed by FOLR2 (TRM marker) and CD9 (LAM marker). 
HPG-AZ555 Click chemistry was used to measure metabolic activity. Cells were 
treated with combinations of drugs (Control, 2DG, Oligo, 2DG+Oligo) to assess 
metabolic profiles, calculated using formulas (right panel). Bottom, Click 
intensity (MFI) for each drug treatment (left) and calculated metabolic profiles 
(right). Mean SEM. Paired Student’s two-tailed t-test P value. j, Proportional 
changes in myeloid cell abundance in spatial dataset. k, Differentially expressed 
inflammatory cyto/chemokine genes between conditions in single nucleus 
(Nuc) and spatial datasets. Red obese-high, blue obese-low. Size adjusted  
-log10 P value, negative binomial mixed effects model. Circled dots represent 
comparisons with absolute log2FC > 0.3 and adjusted P value < 0.05. l, UMAP 
embedding of lymphoid cell classes, all conditions in single nucleus dataset.  
m, Lymphoid cell marker genes, scaled mean expression, proportion (%) of cells 
expressing marker. n, Global proportional changes (%) in cell abundance in 
broad lymphoid cell classes across conditions. Boxplot, median IQR min/max. 
Two-tailed Wilcoxon paired (OB-WL) and unpaired (OB-LN) test. FDR adjusted  
P values.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | The full spectrum of metabolic pathway flux changes 
in mature adipocytes and macrophages (83 pathways, 1895 reactions).  
All metabolic pathway changes in flux-based analyses in a, lean-obese and  
b, obese-WL comparisons. Presented for adipocytes and macrophages in 

which global metabolic shifts were observed and endothelial cells as a 
representative other cell type to demonstrate absence of global activation. 
Cohen’s D, coloured at FDR < 0.05, red obese-high, blue obese-low.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Mature adipocyte molecular heterogeneity and 
regulation in obesity and WL. a, UMAP embedding of mature adipocytes, all 
conditions grouped. b, Adipocyte cell state proportions (0 to 1) in the combined 
cohort, mean (Av.) per group, and for each sample. c, Proportional changes in 
adipocyte cell abundance in spatial datasets. d, Scores measuring overall 
activity in major metabolic pathways in each adipocyte, averaged for each 
participant (density, median IQR) then compared between conditions. Two-
tailed Wilcoxon unpaired (LN-OB, LN-WL) and paired (OB-WL) FDR adjusted P 
values (N = 24 LN; 25 paired OB/WL donors). e, Schematic of the triglyceride (TG) 
to glycerol cycle, broken down into reaction steps, and annotated by reaction 
enzyme families. ATP consuming steps are highlighted. Adapted from Sharma 
et al.23 f, Extended differentially expressed genes between conditions in single 
nucleus (Nuc) and spatial datasets in adipocytes. Encompassing enzymes in 
metabolic substrate pathways, including the TG cycle, and upstream regulators. 
Red obese-high, blue obese-low. Size adjusted -log10 P value, negative binomial 

mixed effects model. Circled dots represent comparisons with absolute 
log2FC > 0.3 and adjusted P value < 0.05. g, Differential gene regulatory 
networks between obesity and WL in mature adipocytes, restricted to 
metabolic pathway genes. TF networks with >50 metabolic genes/network and 
network P < 0.05 Bonferroni adjusted are shown. Coloured by proportion of all 
pathway genes in the network. Barplots show sum of genes in pathway (top) and 
network (right). Left, heatmaps show network (two-tailed Wilcoxon test) 
log2FC and human GWAS intersection. h, Pathways underlying reciprocally 
differentially expressed genes in lean-obese (LN-OB, log2FC > 0.5, FDR < 0.01) 
and obese-WL (OB-WL, log2FC > 0.5, P < 0.05, Bonferroni adjusted) comparisons. 
ORA, hypergeometric distribution, coloured by FDR adjusted -log10 P values, 
sized by count, enrichment factor is gene ratio/background ratio. i, Variations 
in mature adipocyte sizes (top, log10 Area; bottom, Area) between groups in 
spatial analyses, and two-tailed Wilcoxon test P value (N = 4850 LN; 3315 OB; 
3909 WL; number of segmented adipocytes across 4 donors in each group).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Precursor and vascular cell phenotypes and 
adaptations in obesity and WL. a, Adipocyte precursor (APC) subpopulation 
marker genes presented as scaled mean expression and proportion (%) of  
cells expressing marker. UMAP embedding of APCs, all conditions grouped, 
according to b, subtypes and c, subtype marker gene expression. d, Vascular 
endothelial cell (EC) subpopulation marker genes presented as scaled mean 

expression and proportion (%) of cells expressing marker. e, UMAP embedding 
of vascular EC, all conditions grouped. f, Mural cell subpopulation marker genes 
presented as scaled mean expression and proportion (%) of cells expressing 
marker. g, UMAP embedding, all conditions grouped. a,b,d–g, Cell states 
highlighted in bold represent stressed populations.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Stressed signatures are conserved across susceptible 
cell types. a, Proportions (%) of differentially abundant neighbourhoods 
(Spatial FDR < 0.1) in lean-obese and obese-WL comparisons among basal and 
stressed cell states. Orange obese-high, blue obese-low, grey non-significant 
(n.s.). Mature adipocytes (AD), precursors (APC), endothelial cells (EC) and 
mural pericytes (Per.). b, Pairwise changes in basal and stressed cell proportions 
in obesity and subsequent WL for each donor in single nucleus (grey) and spatial 
(orange) datasets (N = 25 single nucleus; 4 spatial). c, Differential expression 
between conditions of common stress genes in all vulnerable cell types (left) 
and homeostatic and maladaptive genes in metabolic and precursor (right, top) 
and vascular (right, bottom) cell types. Red obese-high, blue obese-low. Size 
adjusted -log10 P value, negative binomial mixed effects model. Circled dots 
represent comparisons with absolute log2FC > 0.3 and adjusted P value < 0.05. 

d, Overlap of differentially expressed genes in stressed states compared to the 
respective basal state, among vulnerable cell types (Wilcoxon test, FDR < 0.05). 
Red represents a common set of 188 differentially upregulated and 15 
downregulated genes in all represented stressed cell states (Single Nuc. 
dataset). e, UMAP embedding of example stress genes across susceptible cell 
types. f, Stress score based on 188 conserved upregulated genes in stress cell 
states (AD3, EC2, APC3, Mu4), by cell type and condition, represented as a 
scaled z-score. g, Changes in neighbourhood abundance in lean tissues in 
association with age (top) and fasting insulin (bottom) adjusted for age (FI age 
adj., Log2FC per unit change in trait). For AD3 and APC3, two-tailed Binomial 
sign test P values comparing the observed directions of effect in each cell 
neighbourhood with the expected null of 0.5.
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Extended Data Fig. 7 | Regulation of cellular stress in adipose tissue.  
a, Violin plots of stress enriched-genes for example pathways, averaged per 
sample in stressed (dark grey) and basal (light grey) cell states. Violins outlined 
in black have Log2FC > 0.1 and FDR < 0.05 (Wilcoxon, Supplementary Table 12). 
b, Selected examples of enriched pathways underlying conserved stress  
genes (differentially expressed in ≥3 stressed-basal state comparisons). ORA, 
hypergeometric distribution, coloured by FDR adjusted -log10 P values, sized 
by count, enrichment factor is gene ratio/background ratio. c, In vitro effects 
of stress induction on: i. human adipocyte differentiation (left, % Oil Red-O 

(ORO) positive mature adipocytes) in undifferentiated (Negative Control, 
N = 8), 14-day differentiated (Positive Control, N = 6), and 14-day differentiated 
5-day Etoposide treated (5 µM and 10 µM, N = 6) cells; ii. expression of  
stress marker proteins (middle/right, % JUN and STAT3 positive nuclei, 
immunohistochemistry) in undifferentiated control and Etoposide treated 
cells (N = 8 per group). Bar plot, mean SEM. Boxplot, median IQR min/max.  
d, Representative images of ORO accumulation and e, JUN and STAT3 protein 
expression in each experimental group.
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Extended Data Fig. 8 | Tissue niche and tissue-wide communication 
patterns. a, Representative images of the spatial datasets showing tissue 
architecture (top, WGA staining), stress scores in 50-µm bins (middle) and 
tissue niches (bottom). b, Proportion of cell states in stress quantiles for each 
condition (Q1 low stress; Q4 high stress). c, Proportions (0 to 1) of cell states in 
each tissue niche. d, average distance within 300 µm between spatial cell states. 
e, Clustermap of imputed scaled average ligand communication probabilities 
(CellChat) per tissue niche, limited to significant communications. f, Imputed 
CellChat communication between spatial niches for selected ligands. Links 
represent the scaled mean probability (line thickness) and directions  
of connectivity. Line colour reflects signal source. All conditions were 

combined to identify the main niches underlying pathway effects. g, CellChat 
communication between single nucleus cell states for NAMPT (Visfatin, top) and 
TGFB1 (bottom). Links represent the scaled mean probability (line thickness) 
and directions of connectivity. Line colour reflects signal source. All conditions 
were combined to identify the main cell states underlying pathway effects. 
Lower probability interactions for NAMPT were removed to improve visualisation. 
h, Sankey plots showing differential signalling pathways between source and 
target cells in lean-obese (left) and obese-WL comparisons (right). Source and 
target cells and pathways sized by overall number of interactions. Connection 
size represents number of cell type interactions for each pathway and colour 
relative flow (red obese-high, blue obese-low).
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Extended Data Fig. 9 | Systematic differential gene expression and pathway 
analyses in human obesity and WL across the full spectrum of adipose 
tissue cell types. a, Number of differentially expressed genes in major AT cell 
types in lean-obese (FDR < 0.01) and obese-WL (P < 0.05 Bonferroni adjusted) 
comparisons. b, Heatmaps showing proportion of significant genes (0–1, 
green) in the primary comparison that had i. concordant directions of effect 
(concordant), ii. concordant and significant at P < 0.05 (concordant + pval 
nominal) or iii. concordant and robustly significant (at FDR < 0.01 lean-obese or 
P < 0.05 Bonferroni adjusted obese-WL, concordant + pval stringent) in the 
alternative comparison, as well as the associated binomial test -log10 P value 
(orange). Barplots depict total number of robustly significant reciprocal genes. 
c, Volcano plots of differentially expressed genes associated with WL across  

AT cell types. Log2FC positive obese-high and association -log10 P value. 
Horizontal line, Bonferroni adjusted significance threshold. Selected 
representative genes annotated. d, Pathway analysis of genes downregulated 
by WL (FC > 0.5, P < 0.05 Bonferroni adjusted) in cell type intrinsic analyses. 
Sized by FDR adjusted -log10 P values (ORA, hypergeometric distribution)  
and coloured by enrichment factor (gene ratio/background ratio). Shown 44 
representative of 660 total pathways at FDR < 0.01. e, Pathway analysis of 
conserved genes, downregulated by weight-loss in ≥3 distinct cell types 
(FC > 0.5, P < 0.05 Bonferroni adjusted), clustered by gene (N = 213) and 
pathway (N = 304, ORA, hypergeometric distribution, FDR < 0.01). All 
differential expression analyses applied two-tailed neg. binom. mixed effect 
models.
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Extended Data Fig. 10 | Senescence vulnerability and regulatory pathways 
in human adipose tissue cell types and the mitigating effects of WL.  
a, Differences in expression of cell cycle and senescence marker genes in WL, 
separated into vulnerable and other cell types. Coloured by log2FC, sized by 
-log10 P value, neg. binom. mixed effect models. b, Immuno-fluorescence of 
NAMPT protein expression (N = 4 samples/group), scaled to connective tissue 
marker Lectin, paired student’s two-tailed t-test (left). Representative images  
of an obese and WL pair, scale bar 50 µm resolution, Grn NAMPT, Rd Lectin, blue 
DAPI nuclei. c, Left (All), tissue-wide senescence score (Oncogene induced), 
averaged across every cell for each participant (density, median IQR), then 
compared between conditions. Two-tailed Wilcoxon unpaired (LN-OB, LN-WL) 
and paired (OB-WL) P values. Right, density heatmaps of cell-level senescence 
scores (Oncogene induced) encompassing all cell types for each individual 
sample separated into Lean, Obese, WL groups, single nucleus datasets (N = 24 
LN; 25 paired OB/WL donors). d, Other unbiased senescence score heatmaps 
across groups and vulnerable cell types. e, Proportion of p21 negative (−) and 
p21 positive (+) cells with high senescence scores (defined by score higher than 
median in ≥3 of 4 distinct senescence scores). Proportion presented for each 
sample (N = 87). Two-tailed Wilcoxon unpaired test. f, Proportion of p21 positive 
cells (range 0–1) in each cell state grouped by cell type. Stressed cell states 
coloured yellow, other cell states coloured dark grey. g, Mean proportions  
of p21 (range 0–1) positive cells in each sample across conditions in spatial 

datasets (N = 4/group). Boxplot, median IQR min/max. Two-tailed Wilcoxon 
unpaired (LN-OB) and paired (OB-WL) FDR adjusted P values. Separated into 
vulnerable cell types. h, Heatmap showing pairwise correlation (Pearson, R) 
between delta (Δ) changes in pathway scores before and after WL in paired 
samples. Pathway scores were calculated from the mean pathways score in 
mature adipocytes within each paired sample. i, Gene regulatory networks 
upregulated in stressed, senescent cells (scaled log2FC > 0.4 compared to  
all other cell states in cell type, and in ≥3 stressed cell states) and coloured by 
number of shared genes in the network (Jaccard index, top). Interactions 
between TFs within the network (bottom), sized by number of interactions  
with other TFs, connected by forward interactions, # annotates self-interaction, 
coloured by Walktrap community. j, Expression of secretory proteins from the 
Human Protein Atlas (HPA) in stressed compared to basal cell states among 
vulnerable cell types. Wilcoxon test, Log2FC (positive, stress-high) coloured  
by cell type, grey if non-secretory or non-significant (P > 0.05 Bonferroni 
adjusted). AREG which is not in the HPA was included as a well-established 
secreted protein67. k, Scatter plot of 11 predicted SASP proteins present in both 
single nucleus and spatial datasets according to dataset log2FC in lean-obese 
and obese-WL comparisons (obese-high). Border coloured by comparison, fill 
coloured by SASP gene, shape by cell type. l, Senescence and SASP gene 
expression (imputed) in tissue niches, represented as a scaled z-score.



Extended Data Table 1 | Patient characteristics in the primary cohort and Emont dataset

Data presented as Mean (Standard Deviation) for continuous variables, and as percentage (%) for categorical variables. Continuous variables: Lean-Obese two-tailed unpaired Student’s t-test, 
Obese-Weight loss (WL) two-tailed paired Student’s t-test. Categorical variables: two-tailed Chi-Square test. EW: European White. # represents % Caucasian in the Emont dataset.
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