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Weight loss significantly improves metabolic and cardiovascular healthin people
with obesity' . The remodelling of adipose tissue (AT) is central to these varied and
important clinical effects*. However, surprisingly little is known about the underlying
mechanisms, presenting a barrier to treatment advances. Here we report a spatially
resolved single-nucleus atlas (comprising 171,247 cells from 70 people) investigating
the cell types, molecular events and regulatory factors that reshape human AT, and
thus metabolic health, in obesity and therapeutic weight loss. We discover selective
vulnerability to senescence in metabolic, precursor and vascular cells and reveal that
senescence is potently reversed by weight loss. We define gene regulatory mechanisms
and tissue signals that may drive a degenerative cycle of senescence, tissue injury and
metabolic dysfunction. We find that weight loss reduces adipocyte hypertrophy and
biomechanical constraint pathways, activating global metabolic flux and bioenergetic
substrate cycles that may mediate systemic improvements in metabolic health. In the
immune compartment, we demonstrate that weight loss represses obesity-induced
macrophage infiltration but does not completely reverse activation, leaving these
cells primed to trigger potential weight regain and worsen metabolic dysfunction.
Throughout, we map cells to tissue niches to understand the collective determinants
of tissue injury and recovery. Overall, our complementary single-nucleus and spatial
datasets offer unprecedented insights into the basis of obese AT dysfunction and its
reversal by weight loss and are a key resource for mechanistic and therapeutic
exploration.

ATs have a unique capacity to adapt their structure and functions
to maintain metabolic homeostasis as energy demands change*”. In

Obesity affects more than one billion people worldwide’. Increased
AT mass, which is the defining feature of obesity, is one of the main

risk factors for type 2 diabetes, cardiovascular disease, certain can-
cers and early death®. Reduction in AT mass through weight loss (WL)
significantlyimproves obesity-induced comorbidities and can reduce
mortality' . A synergistic and detailed understanding of the biology
underpinning these contrasting clinical effects is central toimproving
treatment options and health outcomes.

obesity, excess expansion limits this flexibility and induces pathologi-
calremodelling changes, notably adipocyte hypertrophy,immune cell
infiltration, pro-inflammatory cytokine release, impaired angiogen-
esisand fibrosis, that contribute to multiorgan inflammation, insulin
resistance, metabolic dysfunction and disease*’. However, despite
extensive investigation, the molecular triggers, cellular phenotypes
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Fig.1|Asingle-cell atlas of human AT inleanness, obesity and WL.

a, Graphicalrepresentation of the primary study cohort (left; single-nucleus
analysesinn=25obese (OB) people before and after WLand n =24 lean (LN)
people, with spatial analysesinn =4 people per group) and AT anatomical
location (right). b, Clinical characteristics of the primary cohort (n=24 LN and
25 paired OB-WL donors). Boxplot, medianinterquartile range minimum and
maximum. BMI, body massindex (kg m™); Finsulin, fasting insulin (mIU L™");
HbAlc, haemoglobin Alc (%); HDL, high-density lipoprotein cholesterol (mM);
DBP, diastolic blood pressure (mm Hg). ¢, Uniform manifold approximation

and signalling pathways underlying obese AT dysfunction, particularly
inhumans, are only partly understood.

Therapeutic WL leads to a reduction in AT mass, systemic inflam-
mationandinsulinresistance, as well as subsequentimprovementsin
obesity-related comorbidities®*3, Although this strongly suggests that
WL ameliorates AT dysfunction and its harmful physiological effects,
surprisingly littleis known about the underlying mechanisms. Indeed,
certain AT responses to WL may be maladaptive and predispose to
weight regain’.

Defining the cell types, regulatory mechanisms and signalling path-
ways responsible for pathological and therapeutic AT remodelling is
needed to guide therapy development for the harmful health conse-
quences of obesity.

Mapping AT remodelling dynamics

Tobetter understand obese AT dysfunction and its reversal after WL, we
carried out single-nucleus RNA sequencing of approximately 100,000
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and projection (UMAP) 0f 145,452 human AT cells (n = 74 samples of the primary
cohortand n=13 samples of the Emont published cohort", single nucleus).
ASC, adipocyte stem cells; APC, adipocyte progenitor cells; Mono, monocytes;
DCs, dendriticcells; ILCs, innate lymphoid cells. d, Cell-type proportions (for
thecelltypesinc)inthecombined cohort, mean per group, and for eachsample
(singlenucleus). e, Correlations between cell types and clinical traits (Pearson,
LN and OB samples only, single nucleus). lllustrationinacreated using BioRender
(Scott, W., https://BioRender.com/rtmnzaj; 2025).

cells from men and women with extreme obesity (n = 25) before and
after WL surgery and from healthy lean controls (n = 24; Fig. 1a). WL
significantly improved metabolic parameters, although not to thelean
baseline (Fig.1b and Extended Data Table 1). We focused on abdominal
subcutaneous AT because of its contribution to central obesity and its
adverse metabolic effects relative to other subcutaneous AT depots'.
This cohort formed the basis for between-group exploratory analyses.
Our results were integrated with a further 50,000 cells (nuclei) from
the largest published human subcutaneous adipose atlas to improve
cell annotation™ (n =9 obese and n = 4 lean samples; Extended Data
Fig. 1la—c). Spatial transcriptomics in equivalent cohorts (approxi-
mately 25,000 cells, n =4 per group; Fig. 1a, Extended Data Fig. 1b,c
and Extended Data Table 1) enabled us to orient and contextualize
cell phenotypes within the organizational hierarchy of healthy and
dysfunctional AT.

This captured a rich representation of the cellular, structural and
functional dynamics of the subcutaneous AT niche in human weight
gain and WL. Tissue-wide clustering (Fig. 1c) and compositional


https://BioRender.com/rtmnzaj

analyses demonstrated extensive immune cell (mainly macrophage
but also lymphocyte) infiltration in obese AT (Fig. 1d,e and Extended
Data  Fig.1d,e). Obese AT also showed a deficit in mature adipocytes,
suggesting increased cell death and/or a failure to replenish mature
adipocytes. WL mitigated these typically deleterious effects*”.

Persistent macrophage activation

Immune cell infiltration is a pathognomonic feature of obese AT’ but
theimpact of WL oninflammatory remodelling is unclear, with studies
indicating opposing anti-and pro-inflammatory effects’. We clustered
myeloid cells (n =34,280; Fig. 2a, Extended Data Fig. 2a and Supple-
mentary Table 2) into heterogeneous subclasses of AT macrophages,
monocytes and dendritic cells (MYE1-10)".

The increase in AT macrophages (mean from 14% to 31%) primar-
ily comprised lipid-associated macrophages (LAMs; mature MYE2
and immature MYE3) expressing lysosomal, lipid metabolism and
metabolic activation markers (CD9, TREM2, LPL and LIPA; Fig. 2a,b
and Extended DataFig.2a-c). Classical monocytes (MYES5) expressing
VCAN also increased, indicating constitutive trafficking from blood.
Visualization and marker gene patterns supported a differentiation con-
tinuum from monocytes, toimmature and then mature LAMs (Fig. 2a
and Extended DataFig.2a). Proportional analyses revealed lower frac-
tions of tissue-resident macrophages (MYE1 and TRMs) expressing
homeostatic markers (LYVEI, FOLR2 and MRCI; Extended Data Fig. 2c).
Neighbourhood graphs confirmed that this represented arelative (not
absolute) TRM reduction (Extended Data Fig. 2b). Proliferative mac-
rophages expressed MCP-1(CCL2), TRM and LAM markers, supporting
low-level MCP-1-dependent expansion of both populations in human
obesity” (Extended Data Fig. 2a).

Independent of adiposity, LAM abundance increased with metabolic
dysfunction (Extended Data Fig. 2b). This led us to hypothesize that
LAMs might have pleiotropic adaptive and maladaptive features. LAM
subclustering revealed two main subpopulations that separated onlyso-
somal or metabolic (LAM ST1, adaptive) and inflammatory (LAM ST2,
maladaptive; MHC I, NLRP3) signatures (Fig. 2b). Inflammatory LAMs
expressed higher TLR2 and TREMI (Fig. 2b, Extended Data Fig. 2d and
Supplementary Table 5), cooperative receptors thatinitiate and amplify
inflammationin the pathogen-recognition response™*. In keeping with
adeleterious role, inflammatory LAM numbers increased in obesity in
association with metabolic dysfunction (Fig. 2c). Spatial and protein
analysesindicated context-dependent orientations and functions, with
adaptive LAMs aggregating at crown-like structures (CLS; around tran-
scriptionally devoid adipocytes) and inflammatory LAMs being more
abundantinisolation or pairs (Fig. 2d and Extended Data Fig. 2e-g).

To provide an unbiased understanding of macrophage metabolic
reprogramming, we used gene expression to model metabolic flux
systematically. This revealed a global activation state exclusive to
obese macrophages, encompassing known'® and previously unrec-
ognized metabolic changes (1,495 of 1,895 reactions, binomial test,
P=3.1x107"5; Fig. 2e, Extended Data Figs. 1f and 3a,b and Supple-
mentary Table 6). Specifically, we found a shift to a high-glycolysis
(pro-inflammatory), high-respiratory (anti-inflammatory) profile con-
sistent with extracellular flux analysesin obese mice'; corresponding
changes in the pentose phosphate pathway and TCA cycle; pervasive
activation of cholesterol, lipid and fatty acid synthesis, and oxidation
pathways; obligatory upregulation of cellular transport (Fig. 2e,f and
Extended DataFig.3a). Taking fatty acids as an example, fluxmodelling
uncovered significant activation of fatty acid desaturation (FADSI and
SCD) and mitochondrial B-oxidation (Fig. 2e,f), consistent with buffer-
ing and utilization of potentially toxic microenvironmental fatty acids
for energy. Global bioactivation was greatest in, but was not limited
to, LAMs (Extended Data Fig. 2h), establishing that diverse myeloid
classes undergo extensive metabolic priming in obese AT. Experimental
energetic profiling confirmed the higher basal activity and glycolytic

capacity of LAMs over TRMs, substantiating our transcriptome-based
flux results (Fig. 2g and Extended Data Fig. 2i).

WL led to marked reductions in myeloid cell numbers (mean from
31% to 18%) across subclasses (Extended Data Fig. 2b). Proportional
and density analyses showed that myeloid-cell fractions did not differ
between obesity and WL (Fig. 2a and Extended Data Fig. 2c), and we
verified thisinsitu (Extended Data Fig. 2j). WL did, however, shift LAMs
towards less inflammatory subtypes (Fig. 2¢). Overall, this indicated
that obesity-induced myeloid cell states persist despite extensive WL.
Transcriptomic flux analyses confirmed that global metabolic activa-
tion did not fully reverse with WL (Fig. 2e and Extended Data Fig. 3b).
But WL did significantly reduce some aspects of fatty acid synthesis
and oxidation (mainly desaturases and acyl-CoA synthetases; Fig. 2e,f),
temporally linking these pathways to microenvironmental lipid avail-
ability. By contrast, glycolysis, respiratory capacity and pentose phos-
phate pathway fluxincreased (Fig. 2e,f), implying aneed to requisition
energy from other sources as fatty acid levels diminish. Differential
expression analyses demonstrated widespread reductions in inflam-
masome, proinflammatory cytokine and chemotaxis genes (Fig. 2f,
Extended Data Fig. 2k and Supplementary Tables 7 and 8). Network
analyses implicated specific transcription factors (TFs) in TRM and
LAM specification and revealed patterns reinforcing the finding that
WL improves inflammatory and homeostatic networks, but not LAM
transcriptional reprogramming (Fig. 2h and Supplementary Tables 9
and 10). Together, these results demonstrate a complex activation
response in obese AT dominated by monocyte recruitment and per-
sistent metabolic reprogramming.

Reduced lymphocyteinfiltration

Low overall numbers (6,222 cells (4%); Extended Data Fig. 21-n) meant
that we were unable to evaluate lymphoid subclass-level variations. Nev-
ertheless, obese AT had higher proportions of CD4* and CD8" T cells,
NK cells and B cells, remodelling effects ameliorated by WL (Extended
Data Fig. 2n). WL also downregulated the lymphocyte activation and
cytotoxicity genes (ETS1and SYTL3 (refs.17,18); Supplementary Tables 7
and 8), further supporting decreased inflammation.

Enhanced adipocyte metabolic flexibility

Mature adipocytes undergo profound phenotypic changes in obesity
and WL, expanding and shrinking to fit evolving energy needs’. How this
affects their molecular characteristics and diverse metabolic functions
is largely unclear. Subclustering revealed 8 mature adipocyte sub-
populations (AD1-ADS8, n = 44,583 cells; Fig. 3a, Extended Data Fig. 4a,b
and Supplementary Table 2). Two subtypes exhibited ‘stressed’ (AD3,
JUN/NFKBIZ-hi) and ‘fibrotic’ (AD6, NOX4/LOX-hi) profiles. Stressed
and fibrotic adipocytes increased with obesity, indicating that there
isselective vulnerability and pathogenicity to the tissue microenviron-
ment (Fig. 3b). Another subpopulation with alipid biosynthetic profile
(ADS, PNPLA3/MOGATI-hi) unexpectedly decreased in obesity (Fig. 3b).
WL led to amarked reduction in stressed adipocytes (mean from 55%
to14%), a shift towards lower fibrotic numbers, and relative increases
inlipid biosynthetic cells (Fig. 3b). Compositional changesin stressed
and lipid biosynthetic populations were verified in situ (Extended Data
Fig. 4c). Beige adipocytes were rare (AD8 GATM-hi, 1%) and invariant
between conditions.

Expression-based metabolic flux analyses detected significant
defectsinfatty acidsand branched-chain amino acid (BCAA) breakdown
in obese compared with lean adipocytes, mirroring previous results®?°
and together suggesting that metabolic flexibility was impaired (Fig. 3¢
and Extended Data Fig. 3a). By contrast, WL led to a marked global
increaseinadipocyte metabolic flux (1,485 of 1,895 reactions; binomial
test, P=1.4 x 107 Fig. 3¢, Extended Data Figs. 1f and 3b and Supple-
mentary Table 6) probably reflecting a negative energy balance.
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Fig.2|Immune cellinfiltration, activation and reprogramming in obesity
and WL. a, UMAP embedding of myeloid (MYE) cell classes (top) and densities
(bottom).cDCland c¢DC2, dendritic cells1and2; cMono and ncMono, classical
and non-classical monocytes; plasm., plasmacytoid. b, LAM subtype (ST)
marker genes relative to the main macrophage classes. FCG, fraction of cells in
thegroup.c,LAMsubtype proportionsin LN, OB and WL (left) and OB splitinto
low and high fastinginsulin (FI, right), relative to total macrophages/sample.
Boxplot, median IQR minimum and maximum; n, number of donors. Wilcoxon
paired (OB-WL) and unpaired (OB-LN, FI) two-tailed, FDR adjusted P-values.
Intermed., intermediate; Prolif., proliferative. d, CellTypist predicted LAM
subtypesinspatial datasets at CLS (top). Immunohistochemistry of TREM2
(pan-LAM marker) and TLR2 (ST2 marker) at CLS (middle, bottom). Scale bar,
50 pm. e, Transcriptomic flux-based analyses showing global (top) and pathway-
specific (middle and bottom) metabolic activation in OB compared with LN and
WL macrophages. Cohen’s D, coloured at FDR < 0.05 (Wilcoxon): red, obese high;
blue, obese low; grey, non-significant. Pie charts show the proportions of
significantreactions (n=24 LN; n=250B; n=24 WLdonors). Pent. ph, pentose
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phosphate pathway; OxPhos, oxidative phosphorylation; Glycol/glucoN,
glycolysis/glucogenesis; FAsyn., fatty acid synthesis; FA ox., fatty acid oxidation.
f, Differentially expressed genesin macrophagesin LN-OB and OB-WL
comparisons, separated by datasets. Coloured by log,-transformed fold change
(log,FC):red, obese high; blue, obese low; sized by adjusted -log,,P-value;
negative binomial mixed-effects model. Circled dots represent comparisons
withabsolutelog,FC > 0.3 and adjusted P< 0.05. g, Transcriptomic flux-based
analyses (top) showing global metabolic activationin LAMs compared with
TRMs. Cohen’s D, coloured at FDR < 0.05 (Wilcoxon); red, LAM high; blue, LAM
low; grey, non-significant (n=86 MYE1,n = 74MYE2and n = 8O MYE3 samples).
SCENITH (bottom) basal respiration (HPG incorporation) and glycolytic
capacity (changein HPGincorporation) in LAMs and TRMs from OB donors
(n=7,mean =s.e.m., paired Student’s t-test). MFI, mean fluorescence intensity.
h, Differential gene regulatory networksin: left, macrophage subtypes (scaled
log,FC>0.3, subtype versusall other subtypes, Wilcoxon, FDR < 0.05); and
right, allmacrophages (M) in LN-OB and OB-WL comparisons (log,FC,
Wilcoxon, red, OB high).
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Fig.3|Dynamicregulation of adipocyte cellular and molecular profiles
inobesity and WL. a, Marker-gene expressionin mature adipocyte
subpopulations. b, Beeswarm plots showing changesin neighbourhood
abundancein LN-OBand OB-WL comparisonsin adipocyte subpopulations.
Log,FC, coloured by spatial FDR < 0.1:red, OB high; blue, OB low. The circles
showthe percentage of significant neighbourhoods. ¢, Transcriptomic flux-
based analyses of global (top) and example (middle and bottom) metabolic
pathwaysin OB compared with LNand WL adipocytes. Reactionlevel, Cohen’s
D, coloured by FDR < 0.05 (Wilcoxon): red, OB high; blue, OB low; grey, non-
significant; cat., catabolism; syn., synthesis; ox., oxidation. Pie charts show
the proportion of significant reactions. d, Scores measuring overall activity
inmajor metabolic pathwaysinindividual adipocytes, averaged by participant
(density, medianIQR), then compared between conditions. DNL, de novo
lipogenesis. Two-tailed Wilcoxon test unpaired (LN-OB and LN-WL) and paired
(OB-WL) FDR-adjusted P-values are shown (n =24 LN; n =25 paired OB-WL
donors). e, Differential expression of enzymatic genesinlipidand BCAA

metabolism pathwaysin OB compared with LN and WL adipocytes, separated
by datasets. Coloured by log,FC:red, OB high; blue, OB low; sized by adjusted -
log,, P-value, negative binomial mixed-effects model. Circles represent
comparisons with absolute log,FC > 0.3 and adjusted P < 0.05.f, Overall activity
inmetabolic pathwaysinadipocyte subpopulations (scaled mean scores).
Therm., thermogenesis; Creat., creatine; Cal., calcium; Adap., adaptive. g, Mean
expression of mechanosensitive, stress, fibroticand homeostatic genes across
conditions and adipocyte subpopulations, insingle nucleus (left) and spatial
(middle) datasets (limited to genes in both datasets, nucleus segmentation).
Spearman correlation (right) of genes with adipocyte areasin each condition
and across all conditions combined (spatial dataset, boundary segmentation).
The#denotesrank (high-to-low) across 97 genes (P-value threshold less than
1x10°inmore than one correlation). h, Representative spatial sections showing
altered adipocyte sizes (WGA segmented) and JUN (stress marker) expression
across conditions. Bottom bars, mean JUN expression and meanlog,areain
adipocytesacrossall spatial samples for each condition. Scale bar,1mm.

Unexpected anabolic activity led us to investigate whether tri-
glyceride mobilization, which is a physiological response to caloric
restriction, mightinitiate lipid cycling (repetitive degradation and
resynthesis). To verify flux models, we compared enzymatic activity
scores and pathway-limiting enzymes in important substrate path-
ways across groups® (Fig. 3d,e and Extended Data Fig. 4d-f). Obese
adipocytes had consistently lower metabolic activities (scores and
enzymes), again indicating metabolic inflexibility. WL systemati-
callyincreased opposing lipid biosynthesis and breakdown pathways
(Fig.3d). Consistent with this, we found significant changes in canonical
enzymes in sequential cycle steps (Fig. 3e), including DGAT2, which
encodes an acyltransferase that catalyses triglyceride synthesis and
mediates lipid cycling in vitro?. Because enzymatic expressionis a
crucial determinant of catalytic competence, this indicates that WL
may initiate triglyceride cycling, a highly bioenergetic process with
important lipid-diversifying, toxic fatty acid-quenching metabolic
benefits?>. WL also reversed defects in BCAA catabolism (pathway
flux and canonical enzymes; Fig. 3c-e and Extended Data Fig. 4f), the
predicted consequences of which are systemic BCAA clearance and
improved insulin sensitivity?. Lipid cycling was a feature of PNPLA3-hi
adipocytes (ADS5), whereas stressed (AD3) adipocytes were character-
ized by lower metabolic turnover (Fig. 3f). These typical catabolic and
previously unrecognized anabolic effects of WL suggest that substrate
mobilization engages cell-autonomous cycling pathways that may
underlie widespread improvements in metabolic homeostasis.

To see which TFs were explicitly responsible for WL-induced meta-
bolicactivation, we carried out network analyses limited to metabolic
pathway genes (Extended Data Fig. 5g and Supplementary Table 11).
MLXILPand SREBF1ranked highly in triglyceride synthesis, validating
our approach and implicating them in control of WL-induced lipid
cycling. Other notable findings were TFs linked to redox biology and
BCAA catabolism. Many of the leading TFs (38 of 53, P < 0.05 Bonferroni
adjusted, more than 50 metabolic target genes) overlapped human met-
abolic disease genome-wide association study (GWAS) loci** (Extended
DataFig.4g), causally implicating specific TFs and the respective meta-
bolic pathways in pathophysiology and treatment response.

Differential expressionanalyses identified altered biomechanics as
apotential driver of adipocyte stress and metabolic dysfunction that
was mitigated by WL. Specifically, obesity increased and WL decreased
expression of key cytoskeletal tension, mechanotransduction, extracel-
lular matrix (ECM) formation and fibrosis genes (ACTA2, LOX, LOXL2
and VGLL3)®>%, effects we verified in unbiased pathway analyses and
insitu (Fig.3g, Extended DataFig. 4h and Supplementary Tables 7 and
8). Biomechanical genes were enriched in stressed and fibrotic AD3
and AD6 cells (Fig. 3g). We therefore evaluated whether adipocyte
hypertrophy and mechanical strain might initiate these maladaptive
changes, and whether adipocyte shrinkage during WL might reverse
them. As expected, adipocyte sizes increased in obesity and reduced
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withWL (Fig.3hand Extended Data Fig. 4i). Despite intrasample hetero-
geneity, adipocyte size correlated positively with mechanosensitive,
stressed and fibrotic gene expression and negatively with homeostatic
genes (Fig. 3g, exemplified by the stress marker JUN in Fig. 3h). The
levels of correlation indicated that this may be one of several factors
eliciting tissue stress and fibrosis, or perhaps itis adriver eventin a
degenerative cycle.

Reversal of multicellular stress

Adipocyte progenitor cells (APCs) regenerate mature adipocytes and
maintain tissue stroma, crucial homeostatic functions that may become
impaired in obesity’. APCs clustered into: ‘multipotent’ DPP4-CDS5-hi
progenitors (ASC/APC1); ‘committed’ preadipocytes (APC2 and APC3)
expressing canonical differentiation genes; adipogenesis-regulatory
cells (APC4, KCNIP-hi and CD142/F3-hi); and profibrotic precursors
(APCS5, ADAM12-hi and POSTN-hi) (Extended Data Fig. 5a-c and Sup-
plementary Table 2). APC3 exhibited a stressed profile similar to that
observed in mature adipocytes, as well as higher expression of NOCT
(Fig.4aand Extended DataFig. 5c), a potentially restrictive gatekeeper
to preadipocyte commitment?. In support of this, APC2 selectively
expressed late-stage adipocyte maturation genes within a localized
subregion (Extended Data Fig. 5¢). Stressed and profibrotic cell num-
bersagainreflected adiposity and reduced significantly with WL (Fig. 4b
and Extended Data Fig. 6a,b). Both populations had higher expres-
sion of hypoxia-inducible factor 1A (HIFIA; Fig. 4a and Extended Data
Fig. 6a,c), which promotes fibrosis and suppresses adipogenesis inmice
(through PPARG phosphorylation)®. Correspondingly, WL downregu-
lated hypoxia, profibrotic (TGFf) and anti-adipogenic (WNT) genes
(Extended Data Fig. 6¢c and Supplementary Tables 7 and 8). Thus, WL
may attenuate hypoxia-induced impairment of differentiation compe-
tency and profibroticsignalling in certain human APC subpopulations.

Coordinated growth of the vascular network is essential for healthy
AT expansion. Vascular cell subclustering recapitulated the endothe-
lial (arterial, capillary and venous) and mural (smooth muscle and
pericyte) zonations observed in other tissue types (Extended Data
Fig.5d-gand Supplementary Table 2). As with mature adipocytes and
APCs, capillary endothelia and mural cells each showed ‘basal’ and
‘stressed’ profiles (Fig. 4a), which changed reciprocally with adiposity
(Extended DataFig. 6a,b). Stressed endothelia overexpressed APOLD1
and SNA/I (Fig.4aand Supplementary Table 4), highlighting potential
pathological neovascularization and endothelial-to-mesenchymal
transition®**, Stressed mural cells enriched for ADAMTSI (Fig. 4a),
an anti-angiogenic protein linked to pericyte detachment, fibrotic
transition and capillary rarefaction®. In distinct single-nucleus and
spatial datasets, WL markedly reduced stressed vascular cell content
and markers (Fig.4c and Extended DataFig. 6a), implying the reversal
of this pathological transformation.
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Fig. 4 |Stressed cellsform aspatial niche and enrich for stress-associated
signalling pathways. a, Marker-gene expression profiles inbasal and stressed
subpopulations of mature adipocytes (AD), precursors (APC), endothelial cells
(EC) and mural pericytes (Per.). b, Pairwise changes instressed cell proportions
inOBand subsequent WL insingle nucleus (grey) and spatial (orange) datasets.
c, Tissue-wide stress scores (calculated from the 24 common upregulated
stress genes presentinthe spatial dataset, logged score) inrepresentative LN,
OB and WL spatial tissue sections, and the mean stress score for each condition
inallsamples. d, Spatial zonations. Top, mean cell state stress scorein 50-pm
bins. Middle, percentage of cellsin stress quantiles, across all conditions, per
cellstate (Qllow, Q4 high stress). Bottom, cell state composition of tissue
niches, represented as scaled percentage per cell state. Stressed states are
showninbold. e, Spatial nichesinrepresentative tissue sections. f, Imputed
CellChat communication between spatial niches for THBSI (top) and ADGRES

All stressed cell states upregulated a common gene signature (188
genes; Extended DataFig. 6d,e and Supplementary Table 12). Multicel-
lular stress, although highest in obesity, was a feature of lean tissues,

+FDR < 0.01
0B versus LNwL Il Upin OB
—Inf W +nf [ Downin OB
-4 4

(bottom). Links represent the scaled mean probability (line thickness) and
directions of connectivity. Line colour reflects signal source. All conditions
were combined to identify the main niches underlying the pathway effects.
g, CellChat communication between cell states for THBSI (left) and ADGRES
(right) in the single-nucleus dataset, across all conditions. Links represent the
scaled mean probability (line thickness) and directions of connectivity. Line
colourreflects signal source. Lower probability interactions for ADGRE5 were
removed for clarity. h, Ligand-receptor pathways with significant differential
interactionsin OB-LN and OB-WL comparisons (tissue-wide, single-nucleus
dataset). Separated into reciprocal (significantin both comparisons, top) and
other (significantin one comparison, bottom). Coloured by relative flow: red,
OB high; blue, OB low; *FDR < 0.05. Infinity (Inf) represents pathways that were
presentinonly one of the conditions. Dashesindicate null ligand-receptor
interactions. Scale bars,1mm.

where itincreased with age and metabolic dysfunction (Fig. 4c and
Extended DataFig. 6f,g). Gene and pathway analysis revealed putative
mediators of multicellular stress (hypoxia, mechanical and oxidative
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stress, Gp130-mediated cytokines, DNA damage and cell cycle arrest;
Extended Data Fig. 7a,b). In vitro induction of DNA damage (using
Etoposide) recapitulated the in vivo effects on stress marker proteins
andimpaired ASPC differentiation capacity (Extended DataFig.7c-e).
WL led to a marked reduction in multicellular stress genes (Extended
Data Fig. 6¢), overall emphasizing the importance of multicellular
stress pathways in tissue injury and repair.

Altered tissue niches and cell crosstalk

We used our spatial datasets to investigate the orientation and impact of
stressed cellsin tissues. To define the cells most associated with stress
signals, we quantified the cellular composition of low- and high-stress
regions (50-umbins; Fig.4d and Extended Data Fig. 8a,b). Stressed cell
states were generally enriched in high-stress zonations, apart from
stressed capillaries (EC2), whichwere spread throughout the tissue. We
alsofound astrong association between regions of stress and immune
cells, except TRM and NK cells, and an unexpected connection to arte-
rial ECs (EC4; Fig. 4d).

Although this localized individual cell states to stressed zonations,
itdid not address the non-random grouping of cells in microenviron-
mental compartments. To evaluate this, we used spatially resolved
proximity enrichment (within300 pm, to capture adipocytes) to search
for tissue niches based on cell state neighbourhoods. This identified
five distinct cellular communities, termed arterial, venous, adipocyte,
stem and stress niches (Fig. 4d,e and Extended Data Fig. 8c). No cell
type was niche exclusive, indicating that these patterns reflect tissue
gradations. Stem niches were enriched for multipotent ASC/APCland
homeostatic TRMs. Stress niches were enriched for AD3, APC3, LAMs,
other innate (cMono and cDC2) and adaptive (T cells) immune cells,
implicating these states in stress induction and/or response. Arterial
endothelial cells formed their own niche, associating with stressed
precursors (APC3) and stressed mural cells (Mu4). Direct cell-cell colo-
calization uncovered immune cell proximity to large venous vessels
and LAMs (Extended DataFig. 8d), potentially reflecting extravasation
and transmigration to CLS.

Theidentification of tissue zonations enabled us to investigate intra-
andinter-nichesignalling patterns. Ligand-receptor inference analyses
inthe spatial dataset revealed acomplex network of communications.
Adipokines and neurotrophic factors were enriched in the adipocyte
niche (ADIPOQ, LEPand NRXN3; Extended Data Fig. 8e,f). Canonical WNT
and ECM components (FN1, collagens and laminins) were prominent
components of the stem niche (Extended Data Fig. 8e). The stress and
arterial niches were enriched for proinflammatory chemo-cytokines
(CXCL2,CCL2and IL6) and presumptive stress cues (TGFBI,AREG, NAMPT
and THBSI), several of which overlapped (Fig. 4f and Extended Data
Fig. 8e,f). Parallel intercellular communication analyses in the larger
single-nucleus dataset linked diverse niche signals to source and tar-
get cells, as well as disease pathobiology (Fig. 4g,h and Extended Data
Fig.8g,h). Forexample, THBSI (stressed AD3), ADGRES (pan-immune)
and NAMPT (multicellular), which are emergent triggers of insulin resist-
ance®, immune glycolytic metabolism*® and inflammation®, were all
amplified in obesity and reversed by WL (Fig. 4h and Extended Data
Fig.8h). This showed that stressed niches have a high concentration of
signals implicated in pathological and restorative tissue remodelling.

Repression of senescence

Differential expression analyses to define AT remodelling pathways
established that WL broadly reverses the effects of obesity on gene
regulation (Extended DataFig. 9a,b). Many of the strongest transcrip-
tional changes associated with WL were conserved across cell types
(Extended DataFig.9c,d), indicating that these genes and their under-
lying pathways might represent important WL mechanisms. Genes
altered by WLin multiple cell types (three or more cell types; FC > 0.5,
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P<0.05Bonferronicorrected) showed systematic downregulation (213
of 333 genes; binomial test, P=3.9 x 10”). Downregulated genes were
grouped into hallmark pathways of AT dysfunction: inflammation (TNFA
and IFNG); hypoxia; fibrosis; immune cell recruitment and activation;
and oxidative stress*”* (Extended Data Fig. 9¢). WL also led to down-
regulation of cell cycle arrest genes (Extended Data Fig. 9e), together
indicating that the reversal of cellular senescence might underlie the
beneficial effects of WL on inflammation and metabolism.

To examine this, we tested and confirmed the repression of diverse
senescent signatures (Fig. 5a and Extended Data Fig.10a). In multiple
celltypes, WL led to the downregulation of CDKNIA (p21), whichis one
ofthe main cell cycleinhibitorsin senescence, and the upregulation of
cellcycle progression genes repressed by p21 (ref. 35). Correspondingly,
WL markedly decreased the expression of principal senescence markers
and unbiased senescence scores (Fig. 5aand Extended Data Fig.10a-d).
We found that p21-positive cells, which had transcriptional character-
istics of senescent cells (Extended Data Fig. 10e), were most prevalent
among stressed adipocyte, precursor and vascular cell states (Extended
DataFig.10f), indicating that the shared stress profile reflects vulner-
ability and transition to senescence. Lean AT also contained substantial
(albeit significantly lower) numbers of p21-positive cells (Fig. 5Sb). By
contrast, WL almost completely eliminated p21-positive cells from the
tissue (Fig. 5b), afinding that we verified in situ using spatial transcrip-
tomics (Extended DataFig.10g) and protein quantification (Fig. 5c). The
repression of senescence mirrored enhanced adipocyte bioenergetics,
indicating that these effects may be mechanistically coupled (Extended
DataFig.10h). We therefore established that human WL has previously
undescribed potent senolytic effects.

Tissue-wide gene regulatory network analyses revealed a tightly con-
served transcriptional nexusin stressed, senescent cells that increased
in obesity and decreased in WL (Fig. 5d). The identified TFs groupedinto
several classes (Fig. 5e and Extended Data Fig. 10i): the AP-1superfamily,
which primes the senescence genome; hallmark signal-dependent TFs
that activate inflammation and the senescence-associated secretory
phenotype (SASP); Kriippel-Like TFs, which areimplicatedin cell cycle
arrest; TFs that control ciliogenesis (RFX2/RFX3), which is a putative
senescenceregulator; orphannuclear receptor TFs that areinduced by
DNA damage and oxidative stress, key senescence triggers; and multi-
ple candidate TFs not previously linked to senescence® . Individual
TFsexhibited autoregulatory effects and shared multiple target genes
(Fig.5e and Extended Data Fig.10i), including CDKNIA, indicating that
these TFs may cooperate to potentiate a degenerative cycle of cell
stress, senescence, SASP release, inflammation and tissue injury. This
transcriptional cascade is turned off by WL.

Because of its importance in reinforcing senescence, we sought to
further define the signatures of the AT SASP by systematically com-
paring the expression of secretory proteins* across stressed (high
senescence) and basal cell states. This revealed changes in diverse
mediators of senescence, tissue injury and metabolic dysfunction,
including signalling peptides implicated in multicellular stress and
intra-and inter-niche communication (AREG, ADAMTSI1, OSMR, IL6ST
and CXCL2; refs. 37,42) (Extended Data Fig. 10j and Supplementary
Table 12). Presumptive SASP components systematically replicated
insituandlocalized to stressed and arterial niches (Fig. 5fand Extended
DataFig.10k,l). Senescent cells strongly upregulated NAMPT, anintra-
cellular driver of the SASP (through enzymatic activity in the NAD
salvage pathway) and an extracellular adipocytokine (visfatin) with
pleiotropic, context-dependent, predominantly pro-inflammatory
effects®** (Fig. 5aand Extended DataFig.10j). NAMPT expression was
similarly enriched in obese macrophages and inflammatory LAMs
(Fig. 2b,f), in keeping with its roles in inflammasome activation and
immune recruitment. Tissue-level protein analyses confirmed that
NAMPT abundance increased in obesity and reduced markedly with
WL (Extended Data Fig. 10b), together highlighting that NAMPT is a
likely driver of AT SASP.
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Fig.5| WL potently reversessenescence and its mediators. a, Differences
inthe expression of cell cycle and senescence marker genesin WLamong
vulnerable celltypes. Prog., progression. b, Mean proportions of p21(0-1)-
positive cellsin each sample across conditions in single-nucleus datasets.
Separated into vulnerable cell types. Two-tailed Wilcoxon (unpaired LN-OB,
LN-WLand paired OB-WL) test, FDR-adjusted P-values; n=24 LN; n =25 paired
OB-WLdonors). ¢, Immunohistochemistry showing the fraction of p21-positive
cells (0-1) intissue sections (n=5LN,n=4 OB, n=4 WL, paired Student’s t-test,
left). Representative images of a pair of OBand WL tissue sections stained for
p21(scalebar,100 um; arrows depict p21-positive nuclei). d, Differential gene
regulatory networks (left) ineach cell state (scaled log,FC > 0.5in one or more
stateversusall other statesinthatcell type; Wilcoxon two-tailed, FDR < 0.05)
andin LN-OB (middle, dark red OB high) and OB-WL (right, red OB high)

Insummary, these analyses reveal diverse intracellular and extracel-
lular mediators of the degenerative AT senescence cycle and support
reversal of AT senescence as a key determinant of the metabolic health
benefits of WL.

Discussion

Asthe number of people living with obesity surpasses one billion, there
has never been a greater need to understand the opposing effects of
obesity and WL on metabolic health. Here, we report a high-resolution

comparisonsineach celltype (log,FC, Wilcoxon two-tailed, red OB high).
Clustered on cell state networks. Non-significant networks at P> 0.05
Bonferronicorrected are coloured grey. e, Anetwork of TFs conserved across
stressed cell states (scaled log,FC > 0.4 in three or more stressed cell states;
Wilcoxon, FDR < 0.05), coloured by TF family, sized by number of forward
interactions with other TFs, encircled ifinteraction with self (41 of 41 TFs) and
linked by the shared number of target genes (width and colour, Jaccard index).
AP1, activator protein 1-family TF; KLF, Kriippel-like TF; SDT, signal-dependent
TF; ONR, orphannuclear receptor; Ciliogen., ciliogenesis TF; EGR, early growth
response TF; NFAT, nuclear factor of activated T cells TF.f, Tissue-wide (50-pm
bins) expression of SASP components, AREG and CXCL2, inrepresentative
spatial tissue sections for each condition. Left, number of transcripts. Right,
averaged across respective sections. Scalebar,1 mm.

single-nucleus and spatial atlas of human AT in people with extreme
obesity undergoing therapeutic WL and healthy lean counterparts. The
simultaneous analysis of obesity and WL enables us to understand core
tissue remodelling principles; capture more than 20 cell states that vary
with body weight (including degenerative and adaptive populations
that bridge cell ontologies); and define molecular pathways, regula-
tory factors and intercellular signals that may drive tissue injury and
subsequent recovery.

Foremost, we reveal selective susceptibility to cellular stress and
senescence in subpopulations of metabolic, precursor and vascular
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cells, but notin theirimmune counterparts. This susceptibility is ampli-
fiedin obesity butis evident in ageing and metabolically unhealthy lean-
ness. We discover that WL has potent mitigating effects on senescence
invulnerable cell types. We predict from transcriptional patterns and
previous mechanistic studies* that this leads to increased metabolic
flexibility in mature adipocytes, improved differentiation capacity
in precursors and recovery of vascular abnormalities. Deep molecu-
lar phenotyping across cell types, cohorts and modalities enables us
to define a tightly conserved regulatory network that may elicit and
reinforce human AT senescence, putative upstream triggers, key com-
ponents of the degenerative AT SASP and vulnerabilities suchas MCL1
that might be exploited with therapy**. We conclude that reversal of AT
senescence may be central to the multiorgan anti-inflammatory and
metabolic benefits of human WL.

By modelling enzymatic gene expression, we show that WLinduces
global metabolic activation in mature adipocytes, presumably to
release stored fuel to meet energy demands. Two prominent activated
pathways are BCAA catabolism and lipid cycling (repetitive triglyceride
hydrolysis and resynthesis). Contrary to expectation, both pathways
are bioenergetic?, challenging the assumption that WL reduces energy
expenditure (at least) in AT*, suggesting that there is compensation
elsewhere and warranting further investigation. Irrespective of this, we
propose that pervasive activation of substrate turnover in adipocytes
has effects on insulin sensitivity and ectopic lipid that may be crucial
to the multiorgan metabolic benefits of human WL.

Despite these effects, our lean cohort was the healthiest, indicating
thatotherfactorsareinvolved. Intheimmune compartment, we confirm
that human obesity leads to monocyte and macrophage infiltration
and activation to aLAM phenotype. We extend this LAM phenotype to
metabolic dysfunctionindependent of body weight and uncover gene
regulatory mechanisms and metabolic pathways implicated in LAM
specification and activation. Consistent with an adaptive-maladaptive
spectrum, we find that LAMs exist on a continuum. At one extreme, we
definea TLR2-TREMIinflammatory LAM signature that associates with
adiposity and metabolic dysfunction, akin to a proatherosclerotic LAM
subtype*. We show that after WL there are marked reductionsinmono-
cyteand macrophage (and lymphocyte) infiltration and inflammation
pathways, whichwe predict, evenin the absence of classical activation,
tobeanti-inflammatory. Despite overall reductions, we observe persis-
tence of obesity-induced macrophage activation states that are probably
epigenetically programmed***8. In mice, AT immune and metabolic cell
memory isimplicated in weight regain and enhanced inflammation*%.
Thus, persistent macrophage activation inhuman AT may impede com-
plete metabolic recovery, trigger weight regain (a major drawback of all
WL interventions) and worsen long-term clinical outcomes®*.

We studied WL in its early phase to define potential driver mecha-
nisms. Because of this, we cannot unravel the respective contributions
of negative energy balance, weight change and absolute fat mass to the
observed tissue and systemic effects. Other limitationsinclude afocus
on people without diabetes, the abdominal subcutaneous depot and
surgical WL, variable biopsy methods and incomplete capture of rarer
immune cells. Previous studiesindicate that AT in different locations has
important phenotypic differences that may contribute to variability in
WL outcomes®. However, the degree of weight (fat mass) loss remains one
ofthe strongest predictors of metabolicresponse, irrespective of inter-
vention®, Thus, we anticipate conserved but also context-dependent
adaptations across AT compartments and WL methods.

Collectively, our results reveal that WL has significant effects on
cellular processes that are known to affect metabolic health and lon-
gevity. More broadly, our findings highlight the need for proactive
obesity prevention and support the possibility that sustained lifestyle
changes could have long-term health benefits mediated through
dynamic remodelling of diverse AT cell types. This richrepresentation
of human AT biology and pathophysiology offers a valuable resource
for mechanistic and therapeutic exploration.
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Methods

Study design

Single-nucleus RNA sequencing (snRNA-seq) was done in subcutaneous
abdominal AT from 25 people with obesity before and after marked
WL (paired samples) and in 26 healthy lean controls. Two lean samples
were removed as described below. Obese case and control groups were
well matched for age, sex and ethnicity. Spatial transcriptomics was
donein equivalent groups (n =4 per condition), as were histological
cross-validation studies (n = 4-5per condition). Allmolecular pheno-
typing was done after overnight fasting. The WL interval was a mini-
mum of 5months (median 7, range 5-18 months). Median percentage
WL was 22% (range 13-33%). Primary snRNA-seq data were integrated
with previously published snRNA-seq data in whole subcutaneous AT
from nine obese and four lean people to increase obese and lean cell
numbers and improve cell annotation™. Participant characteristics are
provided in Extended Data Table 1.

Sample collection

The AT samples were obtained intra-operatively from morbidly
obese individuals (BMI > 35 kg m) undergoing laparoscopic bari-
atric surgery (gastric bypass or gastric sleeve) and healthy controls
(BMI <26 kg m™) undergoing non-bariatric laparoscopic abdominal
surgery®.. Subcutaneous AT was collected from abdominal surgical
incisionsites. Follow-up subcutaneous AT samples were collected from
the peri-umbilical region using needle biopsy more than 5 months after
WL intervention. Whole AT samples were snap frozen at collection and
stored at —80 °C for future use. Participants were unrelated, between
20 and 70 years of age, from a multiethnic background and free from
systemic illnesses not related to obesity. People with treated type 2
diabetes were excluded because of the potential effects of hypogly-
caemic medications on AT metabolism. Metabolic characteristics were
collected at baseline and follow-up. All participants gave informed
consent. The study complies with all relevant ethical regulations and
was approved by the London - City Road and Hampstead Research
Ethics Committee, United Kingdom (reference 13/L0O/0477). Human
tissue validation also used samples from the Imperial College Health-
care Tissue Bank, approved by Wales REC3 to release human material
for research (reference 17/WA/0161).

Nucleusisolation

The AT nuclei from individual participants were pooled for library
preparation and sequencing to increase efficiency, cohort diversity
and study power. Pooled samples were separated by condition to
avoid cross-over (4-5 samples per pool; a total of 6 pools per group).
Sample pools for each experimental group were processed through
to sequencing in lean-obese-WL trios to minimize between-group
batch effects. For each participant sample, nucleus extraction was
done using a modified version of a previously described protocol*%.
In brief, frozen human AT (about 100 mg) was cut into pieces of less
than 0.2 cmand homogenized with 1 mlice-cold lysis buffer (Tris-HCI
10 mM (Invitrogen, 15567-027), NaCl 10 mM (Invitrogen, AM9760G),
MgCl,3 mM (Invitrogen, AM9530G), 0.1% NP40 (BioBasic, NDB0385),
0.2 U pl™ RNase inhibitor (Roche, 03335402001)) in a glass dounce
homogenizer (Merck, T2690/P0485/P1110, 15 strokes, loose then
tight pestles) onice. After homogenization, samples were transferred
through a100 pM cell strainer (Greiner Bio-One, 542000) into a pre-
chilled tube using ART wide-bore tips (Thermo Scientific, 2079 G). The
filtered homogenate was then transferred to 1.5 mllow DNA-bind tubes
(Sarstedt, 72.706.700) and centrifuged at 500g and 4 °C for 5 min. After
lipid/supernatant removal, the nuclei pellet was resuspended in 1 ml
wash buffer (PBS with 0.5% BSA (Invitrogen, AM2616) and 0.2 U pl ™
RNase inhibitor), transferred to new 1.5 ml low DNA-bind tubes and
recentrifuged at 500g and 4 °C for 5 min. After repeat lipid/superna-
tantremoval, the nuclei pellet was resuspended in 300 pl wash buffer

containing DAPI (Thermo Scientific, 62248) at 0.1 pg ml™ to stain nuclei,
and filtered through a35 pMcell strainer into afluorescence-activated
cell sorting (FACS) tube (Falcon, 352235) on ice. At this point, the iso-
lated nucleifrom4-5samples from the same experimental group were
pooled before sorting by flow cytometry.

FACS was used to clean up residual debris and lipid from isolated
nuclei and to remove doublets. Pooled nuclei were sorted on a BD
FACS Aria SORP. The sheath tank was bleach cleaned before eachrun
and nuclease-free PBS (1x) (Invitrogen, AM9625) was used as sheath
fluid. A 405 nm laser was used to excite DAPI, and emission was col-
lected using a450/50 nm bandpass filter. Single nuclei were selected
by gating on the first DAPI-positive band on the DAPI versus forward
scatter (FSC) plot and then subsequently gating on side scatter (SSC)
versus FSC and FSC A versus FSC H to ensure better debris and dou-
blet removal. All sorts were performed using an 85 pm nozzle. The
sorted nuclei were collected into a BSA- and RNase inhibitor-rich
collection buffer (70 pl of PBS with 1.375% BSA and 2.15 U pul™* RNase
inhibitor) in low DNA-bind tubes kept at 4 °C. After sorting, nuclei
were centrifuged at 500g for 5 minat 4 °C to pellet. Supernatant was
removed to leave about 40 pl, which was used to resuspend pellets
with awide-bore pipette tip.

Single-nucleus library preparation and next-generation
sequencing

Pooled single-nucleus suspensions were used to generate barcoded
single-nucleuslibraries for next-generation sequencing. For each pool,
5,000-10,000 nuclei were co-encapsulated with 10x barcoded gel
beads togenerate gel beads in emulsion (GEMs) using a10x Chromium
Controller and a10x Genomics Single Cell 3’ v.3.1kit, according to the
manufacturer’sinstructions. After GEM-RT and clean-up, the quantity
and fragment size distribution of amplified cDNAs derived from bar-
codedsingle-cell RNAs were assessed using an Agilent 2100 Bioanalyzer
High Sensitivity DNA assay. From this cDNA, snRNA-seq libraries were
constructed and sequenced (Illumina NextSeq2000) in three batches,
containing equal numbers of obese, lean and control library pools,
to minimize between-group batch effects. Each unique library was
sequenced toaminimum depth of more than 20,000 paired-end reads
per nucleus (read 1, 28 base pairs (bp) and read 2, 90 bp, with unique
dual 10-bp indexes). Raw sequencing data were demultiplexed and
analysed using CellRanger v.5.0.1 and bcl2fastq v.2.20.0. Libraries
were demultiplexed using CellRanger mkfastq based on the sample
indices (allowing one mismatch), and the CellRanger count pipeline
was used to performalignment against human genome GRCh38 (using
STAR), filtering and counting unique molecular identifiers (UMIs)
(including introns).

Single-nucleus quality control

For each pooled library, raw count matrices from CellRanger were
processed using CellBender® (--epochs 150-200, --learning-rate 0.0001-
0.00005) to remove ambient RNA molecules and random barcode
swapping, and filter inferred cells. The number of expected cells
was based on CellRanger estimations. Filtered count matrices were
processed separately using Seurat> and SeuratObject. Low-quality
cells with low read or gene counts (less than 1,000 UMIs or less than
400 genes), low complexity (log;,(genes per UMI) < 0.85) and high
mitochondrial or ribosomal fractions (greater than 5%) were removed
fromeach pooled dataset. Clean libraries were normalized and trans-
formed (sctransformv.2 regularization®) to stabilize count variances.
Potential doublet nuclei were detected using three approaches:
expression-based DoubletFinder®, using doublet estimates from
genotyping to set the expectation; genotype-based, Vireo* (details
below); and iterative clustering and detection of clusters with high
expression or genotype-based doublet fractions. Assigned dou-
blets, ambiguous cells and doublet clusters were then removed and
singlet-only datasets were retransformed. Participant-level annotation



informationfromgenotypingwasthenaddedtogeneratehigh-qualitycell
datasets.

Participant annotation from genotype information

Genotype information present in the RNA sequencing reads was
aligned to existing genome-wide genotyping to attribute specific cells
to specific participants in each sample pool. Participant-level geno-
type data were generated from whole blood using Illumina Infinium
OmniExpress-24 v.1.2bead chips. Directly genotyped single-nucleotide
polymorphisms (SNPs) with call rates of less than 90%, minor allele
frequency of less than 0.01, Hardy-Weinberg equilibrium P<1x107%,
SNPs on sex chromosomes and duplicated SNPs were removed. After
quality control, 649,007 SNPs were taken forward for imputation.
SHAPEIT*® (v.2.r900) was used to infer haplotypes, and imputation
was doneinIMPUTE2 (v.2.3.2)* using a1,000 genomes reference panel
phase 3 (allancestries). Each chromosome was divided into 5-megabase
chunks forimputationand merged at the end. Arandom seed was sup-
plied automatically. An effective population size (N,) reflecting genetic
diversity was 20,000, as recommended when using a multi-population
reference panel. After imputation, genotype data were available for
81,656,368 SNPs.

Cell-level SNP data were generated for each pooled sample using
cellsnp-lite®® (using the combined imputed SNP list as the reference).
Cell-level SNP data were then intersected with participant-specific
genotype references in Vireo” to identify variants that segregated
the samples, and we used these variants to demultiplex participant
specific cells,ambiguous cellsand doublets. A range of cellsnp-lite MAF
settings were tested and MAF > 0.05 was selected to maximize singlet
recovery. Participant-level cell annotations were then incorporated
into pre-cleaned high-quality cell datasets.

Integration

High-quality, doublet-removed cell libraries containing participant-
level annotations were thenintegrated to a unifying atlas. Two samples,
onewith very high lymphocyte counts and one with very few cells, were
removed at this stage, leaving 24 samples in the lean group. A further
13 whole subcutaneous AT samples from obese and lean peoplein a
previously published dataset™ were also incorporatedin the integration
phase toincrease cohortdiversity and improve cell annotation. Of note,
only samples meeting the following criteria were selected: whole tissue;
nucleus only; subcutaneous depot; and BMI <26 or BMI>30 kg m™.
Previously published samples were individually reprocessed from raw
counts using thresholds equivalent to our own datasets.

Tointegrate our dataset with the previously published dataset”, we
updated the gene IDs from the latter to match the same Ensembl release.
Both datasets were then normalized to 10,000 counts per nucleibefore
proceeding with downstream analysis. To minimize any sample-driven
effect for cell-typeidentification, we took athree-step approach. First,
weregressed out the effects of number of original counts, aswell as the
percentage of mitochondrial and ribosomal genes. Then we calculated
the PCA space on the highly variable genes, detected by Scanpy?®, fol-
lowed by correction of the PCA space with Harmonypy® using samples
asbatches. Finally, we used BBKNN®*with samples as abatch to identify
neighbourhoods.

Analysis overview

Celltype and state annotation was done in the combined (our own and
that fromref.11) integrated dataset. Primary exploratory analyses were
performed in our own dataset, which was processed in experimen-
tal group trios (lean-obese-WL) to minimize batch effects and com-
prised paired obese-WL samples and age-, sex- and ethnicity-matched
lean controls. Differential neighbourhood abundance and expression
analyses between groups (in which biological, technical and batch
covariates could be adjusted for) were repeated using the combined
dataset to verify reproducibility.

Cell annotation

We identified the main cell types with unbiased clustering, using a
low-resolution (0.15) Leiden algorithm, and each cell type was anno-
tated according to known markers. To identify cell states, we isolated
the barcodes for each of the main cell type identities, except for mast
and lymphaticendothelial cells, owing to low numbers. Each cell type
was thenreintegrated and reclustered twice, as described above. First,
we used a high-resolution Leiden (1.2 or higher) to identify barcodes
that contained a mixed signature, with markers of different lineages.
These barcodes were flagged as ‘unassigned’ and were excluded from
any downstream analysis. Then, we removed these barcodes and
proceeded with the second round of reintegration and clustering.
Resolutionvaried across cell types (0.65 or higher), with myeloid cells
requiring the highest Leiden to identify rare, known cell types (2.25).
Clusters that were similar to each other and had no unique identifiable
features betweenthem were merged. Cell states were annotated based
on amix between unbiased and known markers. To identify unbiased
markers, we used Scanpy’s rank_gene_groups function to perform a
Wilcoxon test.

Compositional analyses

To analyse changesin cellular composition, we used aneighbourhood
graph-based approachinMilo®. We performed comparisons of lean-
obese and WL-obese groups, adjusting for biological covariates in
the lean-obese analyses. Neighbours were recalculated with BBKNN
using samples as a batch, restricted to the comparison groups (lean-
obese and WL-obese). To analyse global shifts, we used Milo on all
cell types together and within each cell type to analyse shifts in cell
state composition. Only neighbourhoods containing atleast 90% of a
single cell type or state were considered neighbourhoods, and those
with a spatial FDR < 0.1 were considered significant. Fasting insulin
adjusted for BMI abundance analyses were carried out in steady state
lean and obese samples, using lean-obese neighbourhoods, adjusting
for biological covariates.

Metabolic analyses

The metabolic profiles of different cells were inferred using flux-based
analysis modelling in COMPASS®. For this, we created an expression
matrix for every main cell type, consisting of the mean expression of
eachgene per sample. These matrices were then used to run COMPASS.
Statistical analysis to compare conditions was performed with a Wil-
coxon test for every reaction, using their COMPASS score. COMPASS
plots consisted of both positive and negative reactions grouped by
their defined subsystem.

Differential expression analyses

Differential expression analyses were carried out between obese cases
and controls, and between obese-WL pairs, in Nebula® using negative
binomial mixed-effect models to correct for subject- and cell-level
correlation structure. In all comparisons, further thresholding was
applied (mitochondrial fraction less than 1% and ribosomal fraction
less than 1%) to minimize false discovery, and fractions of mitochon-
drial and ribosomal counts were incorporated as technical covariates;
in obese-lean comparisons, age, sex and ethnicity were included as
covariates; in obese-WL comparisons of paired samples, biological
covariates were not included. Statistical significance was inferred at
P<0.05Bonferroni corrected for obese-WL pairwise comparisons
(where power was higher) and FDR < 0.01 for lean-obese compari-
sons. Cell type and state differences were examined using Scanpy’s
rank_gene_groups functionto performaWilcoxon test, as were spatial
differences in gene expression within cell types between conditions.
Amphiregulin (AREG), which is known to be secreted®, was added to
the curated secretory protein list from the Human Protein Atlas* for
comparisons in stressed and basal cells.
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Inference of regulatory networks

To infer regulon activity, we used the Python implementation of the
SCENIC®8 pipeline (pySCENIC). The expression matrix used consisted
of nuclei from all 3 conditions, downsampled to the same number of
nuclei (20,000 each). Genes that were expressed in all nuclei, or in
less than 5% of nuclei for any given cell state, as well as mitochondrial,
ribosomal, haemoglobin, non-coding, antisense, contigand microRNA
genes, were also removed from the analysis. For TF binding sites, we
used the Encode 2019/06/21 ChIP-seq hg38 refseq-r80 10 kilobases
up and down database. Only regulons with a minimum of five target
genes were considered. Analyses in adipocytes were restricted to all
TF genes and genes in dysregulated metabolic pathways from COM-
PASS. Differential networks between cell states and within cell types
between conditions were identified by comparing cell-level network
scores between groups (non-parametric Wilcoxon rank-sum test).
Significance was inferred at P < 0.05 (Bonferroni corrected). Within a
cell state, fold changes were scaled for visualization.

Cell-cell communication

We used CellChat® to infer intercellular communication, based on
known receptor-ligand interactions. For the purpose of this analysis,
to compare the differences between each condition, cellular commu-
nication was inferred for each condition separately. Each condition
was down-sampled to 20,000 barcodes to avoid any confounding
effects arising from higher cell numbers in obese and lean groups,
and cell types with very low numbers were removed because these cell
types often have higher mean gene expression owing to low cluster
background. To analyse the differential communication between two
conditions, we used the rankNet functionin CellChat to obtain overall
signalling differences, as well as pairwise comparison with each cell
type as asender and as areceiver. To analyse communication at the
cellstatelevel, we performed a condition-agnostic analysis to maintain
cell states with low numbers of nuclei. For intra- and inter-niche com-
municationanalyses, because of the lack of most ligand-receptor pairs
in the Xenium gene panel, we imputed spatial data using ENVI’. This
was done for each condition separately, training on the single-nucleus
data for each condition. We did this step ten times and averaged the
resultsin afinalimputed expression matrix because of the stochastic
nature of imputation. Imputed genes with low expression (below the
mean across all genes, the gene-level quality control) and those with
below the mean for that gene (cell-level quality control) were removed.

Metabolic and senescence scores

Gene list scoring was done in Scanpy using the score_genes function,
with the normalized In expression and a control size of 50. Senescence
signatures were obtained from MSigDB””2, Housekeeping genes were
obtained from the 20 most stable human transcripts in the House-
keeping Transcription Atlas’, supplemented with commonly used
housekeeping genes (RRNISS, ACTB, GAPDH, PGK1, PPIA, RPL13A,
RPLPO,ARBP, B2M, YWHAZ,SDHA, TFRC, GUSB, HMBS, HPRT1 and TBP).
The BCAA score was performed using the genes associated with the
respective pathways on COMPASS.

Pathway analyses

Pathway analyses of differentially expressed genes were done in Clus-
terProfiler’ using the Over Representation Analysis and MSigDB™"7
datasets (H, C2 and C5) as inputs. All genes present in the comparison
datasets were used as background. Significant pathway enrichment
was inferred at FDR < 0.01.

Tissue processing for spatial transcriptomics and histology

Frozenstored AT samples (stored at —-80 °C) were directly thawedina
4% paraformaldehyde solutionand kept at 4 °C for 24 h. Samples were
then transferred to a 70% ethanol solution and stored until paraffin

embedding. Ethanol-dehydrated samples were cleared with xylene,
infiltrated with molten wax using the Sakura Tissue Tek VIP6 vacuum
infiltration processor and embedded in paraffin using the Sakura Tis-
sue Tek TEC5 embedding system.

Spatial transcriptomic preparation

Slide preparation. Formalin-fixed paraffin-embedded (FFPE) blocks
were stored at 4 °C. Xenium slides stored at —20 °C were equilibrated
to room temperature for 30 min before sectioning. The FFPE blocks
were rehydrated in an ice bath with distilled water for 10-30 min and
sectioned at 5 pmthickness. Sections were floated ina42 °C water bath
and slides containing tissue sections were incubated at 42 °Cfor3 h
and then dried overnight at room temperature in a desiccator. Slides
were kept at 4 °Cin a desiccator until use. All histology was done in
RNase-free conditions using sterilized equipment.

Technical pilot. A technical pilot was done on a single frozen stored
AT sample separated into three sections for fixation at 24 h, 48 h and
72 hto evaluate the effects on tissue integrity (H&E) and transcript
recovery using the 10x Xenium Human Multi-Tissue and Cancer Panel
(P/N1000626), with two slides and one tissue section for each fixation
time/slide (Institute of Developmental and Regenerative Medicine
(IDRM), Oxford).

Panel design. A 10x Xenium Human Multi-Tissue and Cancer Panel
(P/N1000626) supplemented by 100 custom genes was selected to
annotate prominent cell types, states and effector pathwaysidentified
insingle-nucleus datasets.

Xenium in situ transcriptomics. The FFPE tissues were analysed on
a10x Xenium Analyser following 10x Genomics Xenium in situ gene
expression protocols CGO00580, CG000582 and CGO00584. Inbrief,
5-um FFPE tissue sections on Xenium slides were deparaffinized and
permeabilized to make the mRNA accessible. Gene panel probes were
hybridized for 20 h overnight followed by washing, ligation of probe
endstotargeted RNAs, generating circular DNA probes with high speci-
ficity. Rolling circle amplification was used to generate hundreds of
copies of gene-specific barcodes for each RNA-binding event, result-
ing in a strong signal-to-noise ratio. Background fluorescence was
quenched chemically to mitigate tissue auto-fluorescence. Tissues
sections were stained with DAPI nuclear stain and Xenium slides were
loaded onto the Xenium instrument for imaging and then decoding
of image data to transcripts. Secondary analysis to segment cells and
assign transcripts was performed on-instrument (Xenium Analyser
v.1.7.1.0). Xenium Explorer was used to evaluate the initial data quality
and visualize morphology images, transcript localization at subcellular
resolution, segmentation and data clustering.

Post-Xenium processing. After Xenium insitu transcriptomics, slides
were kept in PBS and stored at 4 °C for up to 24 h. Forimmunofluores-
cence staining, slides were washed three times in PBS for 5 minand then
incubated in CF 594 wheat germ agglutinin (1:200; Biotium, 29023-1)
for 20 min. Slices were then rewashed three times with PBS, and tissue
stained with DAPI (1:5,000; Thermo Scientific, 62248) for 10 min atroom
temperature. Finally, sections were rewashed as before and then mount-
ed using antifade medium Vectashield (Vector Laboratories, H-1000).
Fullslide scans for theimmunofluorescence channels were performed
at20x magnification using a ZEISS Axio Scan.Z1slide scanner.

Spatial data analysis

Xenium data were analysed by three different methods, depending

onthe purpose of the analysis. Regardless of the type of analysis, only

transcripts with a quality value higher than 35 were considered.
Toplottranscriptand score densities, regardless of cell type we took

asegmentation-free approach creating 50-um bins using the transcript



coordinates provided by Xenium. Only bins that contained more than
ten transcripts were kept for downstream analysis.

For cell-type identification, we took the nucleus segmentation from
Xenium and assigned only transcripts within 2 pum of each nucleus
(selected to maximize recovery of transcripts but minimize the cap-
ture of known cross-contaminating marker transcripts from adjacent
cells, designated nucleus segmentation). The resulting matrices were
thenimported into Scanpy for analysis. Here, only nuclei with more
than 40 transcripts were kept for downstream analysis. Clustering
was performed similarly to the single-nucleus data, with Harmonypy®
and BBKNN® used to correct batch effects in the PCA and neighbour-
hoods, respectively. However, here gene expression was scaled using
Scanpy’s® scale function to give more weight to low-expression genes.
Alow-resolution Leiden algorithm was then used to identify the main
cell types, and cell states were identified by reintegrating and reclus-
tering each of these cell types individually. Clusters were labelled to
match thessingle-nucleus reference. Ambiguous clusters were labelled
‘unassigned’. To delineate rarer LAM subtypes in the spatial dataset
we used CellTypist for label transfer”, creating amodel trained on the
single-nucleus LAM subtypes and applying a ‘best match’ prediction
onthe MYE2 LAM spatial cluster.

Tocorrelate genes with adipocyte size, we performed a semi-manual
segmentation using ImageJ, designated boundary segmentation. WGA
staining, performed after the Xenium run, was aligned to the Xenium
data using the DAPI channel as a guide and utilized for segmentation.
Toavoid anyissues arising for multiple adipocytes being mergedinthe
segmentation, we manually closed some gaps where the WGA staining
was not strong enoughto be detected by the binary threshold of Image)J.
We then used the Analyse particles function of ImageJ to detect each
object and measure the area and centroid coordinates. Furthermore,
we created a separate table with coordinates for each pixel contained in
each object. To assign transcripts to the ImageJ objects, and toremove
any noise derived fromother cell types, we first removed any transcript
that was assigned to non-adipocytes during the nuclei segmentation.
Wethen created adistance tree between the remaining transcript coor-
dinates and the pixel coordinates obtained for every ImageJ object. This
wasachieved using the KDTree function from Scipy’s spatial module. Adi-
pocytetranscripts that were found on the cellboundary were assigned
to the closest adipocyte(s) (any adipocyte within 2 pm of the nearest
segmented pixel). Only objects with an area greater than1,000 um?and
less than 25,000 pum? were considered as adipocytes for this analysis.
As larger objects were found to have higher probability of capturing
more transcripts, gene expression was normalized to the total number
of counts per cell. Clustering was done as described above, using a high
resolution to identify and then remove fine clusters containing con-
taminating transcripts from other cell types. A Spearman correlation
was done to investigate which genes correlated with adipocyte area.

Finally, tocluster cellsin spatial niches, we made use of Scipy’s KDTree
functionto createadistance tree betweenevery cellin eachsample. We
then created a neighbourhood matrix by counting, for each cell, the
number of proximate cells (within300 pum) at a cell state level. Because
adipocyte sizesincreased in obesity, cellsinlean samples had roughly
twice the number of neighbouring cells that cells in obese samples
did. To prevent this from biasing the niche clustering, the neighbour-
hood matrix was normalized such that each cell was represented by
the percentage of neighbouring cellsin each cell state. To cluster cells
into niches, we created an anndata object of the neighbourhood matrix
for use in Scanpy and corrected for batch effects with Harmony and
BBKNN before Leiden clustering. Very similar clusters, driven by small
fluctuations, were merged into the AD niche.

Tissue immunohistochemistry

The FFPE blocks were sectioned at 5 pm thickness for immunohisto-
chemistry and immunofluorescence. Sections were deparaffinized
and hydrated, and then heat-mediated antigen retrieval was done in

anEDTA-based pH 9.0 solution. Endogenous peroxidase was quenched
with3% hydrogen peroxide. Sections were incubated with rabbit mono-
clonal to p21 Waf1/Cip1(1:50 dilution; Cell Signalling, 2947, clone 12D1),
followed by anti-rabbit IgG conjugated with polymeric horseradish
peroxidase linker (25 pg ml™; Leica Bond Polymer Refine Detection,
DS9800). DAB was used as the chromogen and the sections were then
counterstained with haematoxylinand mounted with DPX. Immunohis-
tochemistry was performed onaLeicaBOND RX. To evaluate p21-positive
cells, full virtual slide scans were loaded into QuPath 0.5.1 (ref. 76) and
the positive cell detection module was used to count the total haema-
toxylinand DAB-positive nucleiin two slices per sample. The fraction of
p21-positive cells relative to the total cell number was then calculated
for eachsslice, and the mean was used for between-group analyses.

Tissue immunofluorescence

Tissue sections of 5 um were deparaffinized by submerging three sepa-
rate times in Histoclear (National Diagnostics, HS-200) for 5 min and
thenrehydrated by submerginginaseries of graded alcohol solutions
of decreasing concentrations for 5 min each. After rehydration, antigen
retrieval was done by heating the samples in 10 mM sodium citrate
buffer, pH 6 (Abcam, ab64236) for 5 mininadecloaking chamber (Bio-
care Medical, DC2012-220V). The sections were then permeabilized
in 0.2% Triton X (Sigma-Aldrich, X100-500mL) in PBS for 10 min and
subsequently blocked in 1x ACE blocking solution (Bio-Rad, BUF029)
for 30 min. After blocking, sections were incubated in primary anti-
body solutions dilutedin 0.5x block ACE at 4 °C overnight: anti-NAMPT
(1:200, Affinity Biosciences, DF6059); anti-TREM2 (clone D8I4C, 1:400,
Cell Signalling, 91068); or anti-TLR2 (clone TL2.1, 1:400, Invitrogen,
14-9922-82). After primary antibody removal, the tissue was washed
in PBS and then incubated with secondary antibody, goat anti-rabbit
Alexa Fluor 488 (1:200, Invitrogen, A11034), donkey anti-rabbit Alexa
Fluor Plus 488 (1:250, Invitrogen, A32790) or goat anti-mouse Alexa
Fluor Plus 647 (1:250, Invitrogen, A32728) in 0.5x block ACE for 45 min at
room temperature. For NAMPT, sections were incubated with DyLight
594 Lycopersicon Esculentum Lectin (1:250, Invitrogen, L32471) for
20 min (room temperature), rewashed with PBS and then stained with
aDAPIsolution (1:5,000, Thermo Scientific, 62248) for 10 minat room
temperature. For TREM2/TRL2 at CLS, only DAPI was used. Finally, sec-
tions were washed and mounted using antifade medium Vectashield
(Vector Laboratories, H-1000). For each sample, representative images
were taken at 40x magnification (NAMPT) or 20x (CLS) using a Leica
SP8DLS confocal microscope. Image analysis was donein QuPath 0.5.1
(ref. 76). To quantify the NAMPT:lectin ratio, the positive pixel area of
the NAMPT and lectin channels was measured in two z-stack maximum
projectionimages per sample using the pixel classifier module. Meas-
urement precision was evaluated between two images per sample (to
confirm low within-sample variability) and the mean sample intensity
was used for between-group analysis.

Macrophage isolation and HPG uptake

We used amodified SCENITH-based approach to evaluate human mac-
rophage metabolic pathways ex vivo’”’8, Fresh subcutaneous AT was cut
into approximately 2-mm pieces with30 mIHBSS (Gibco, 14175-053) in
a50 mltube, washed and collected using a100 pM cell strainer. Tissue
was digested for 20 min at 37 °C with 3 mg ml™ collagenase Il (Sigma
C6885) in methionine-free RPMI (Sigma, R7513), 65 mg I L-cystine
dihydrochloride (Sigma, C6727),1x GlutaMAX (Gibco, 35050061),10%
dialysed fetal bovine serum (FBS, Gibco, A3382001). Digested tissue
was filtered through a100 pmstrainer and digestion was terminated by
adding methionine-free RPMI containing 10% FBS, followed by centrifu-
gation (300gat4 °C for 7 min). After resuspension in methionine-free
RPMI (65 mg I cystine,10% FBS, 1x glutamax), cells were plated (160 pl)
intowells on a 96-well V-bottomed plate. Cells were methionine starved
forafurther15 min (total starvation of 45 minincluding digestion and
isolation) before treatment withinhibitors or control media (40 pl) for
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15 min. The four treatments were medium, 2-deoxy-D-glucose (2-DG;
100 mM final concentration; Sigma, D8375), oligomycin (2 uM final
concentration; Sigma, 495455) and 2-DG plus oligomycin (100 mM and
2 pM final concentration, respectively). Homopropargylglycine (HPG;
Cayman Chemical, 11785) was then added to wells at a final concentra-
tion of 500 puM and incubated for 30 min toinitiate cell HPG uptake. An
additional well received cells and mediabut no HPG and no treatment
(click chemistry negative control). After HPG uptake, cells were stained
with zombie aqualive/dead stain (1:500 in PBS; BioLegend, 423101) for
20 min at room temperature in the dark, washed with PBS and then
fixed with 2% PFA for 15 min.

Click chemistry, staining and FACS analysis

Fixed cells were permeabilized (0.1% saponin and 1% BSA in PBS) for
15 min, washed with click buffer (100 mM Tris-HCI, pH 7.4; Invitrogen,
1556-027) and incubated with Fc receptor blocker (25 pg mi™in PBS;
Fcl, BD Biosciences, 564765) for 10 min. Cells were rewashed and incu-
batedin100 plof click reaction mixinthe dark at room temperature for
30 min. Click reaction mix was made sequentially, adding CuSO, (final
concentration, 0.5 mM; Sigma, 209198), THPTA (final concentration,
2 mM; Antibodies.com, A270328), sodium ascorbate (final concentra-
tion, 10 mM; Sigma, A7631) and then AZDye 555 (final concentration,
25 uM; Vector Laboratories, CCT1479) to click buffer (final concentra-
tion, 100 mM Tris-HCI).

After click chemistry exposure, cells were washed using FACS buffer
(PBS, 1% BSA, 5 mM EDTA, 25 mM HEPES) and stained with antibody
mix (FACS buffer, anti-CD45 FITC (1:20; H130; BioLegend, 304006),
anti-FOLR2 APC (1:20; 94b/FOLR2; BioLegend, 391705), anti-CD9
APC-fire (1:20; H19a; BioLegend, 312114), Fcblock reagent (25 pg ml™))
at4 °Cinthedark for 30 min. After rewashing, cells werefiltered (35 uM
cap strainer) for FACS analysis.

Spectral flow cytometry was done onaSony ID7000 in standardiza-
tionmode. The ID7000 software was used to calculate distinct spectral
signatures for each fluorochrome based on single stained controls.
Fluorochrome signatures, together with autofluorescence signatures
identified in unstained aliquots of each sample using the AF finder
software feature, were used to unmix the signals in fully stained sam-
ples with the built-in WLSM algorithm. Unmixed signals were used for
gating (Extended Data Fig. 2i and Supplementary Fig. 1) and analysis
of median fluorescence intensity in FlowJo.

Invitro stress studies
Immortalized human adipose-derived stromal cells (Bmi-1/hTERT,
iHASC) were acquired from Applied Biological Materials (T0540).
For differentiation experiment cells, iHASC were seeded in six-well
plates. Differentiation wasinduced at confluence using growth medium
(DMEM/F-12 (Gibco, D8437),10% FBS (Gibco, F7524), 2 ng mI™ rhbFGF
(Z101455),1% gentamicin (G255)) supplemented with 10 pg ml™ insulin
(Actrapic, Novo Nordisk), 500 uM 3-isobutyl-1-methylxanthine (Sigma,
15879),1 uM dexamethasone (Sigma, D4902) and 2 pM rosiglitazone
(Sigma, R2408) for 15 days. Etoposide (Sigma-Aldrich, E1383) was used
toinduce the DNA damage stress response’®. From day 1to day 5 of dif-
ferentiation, cells were treated with DMSO (Fisher-Scientific, BP231100)
(control) or etoposide 5 uM or 10 uM. Medium was refreshed every
3 days. For stress-marker experiments, undifferentiated cells were
seeded in 96-well plates and treated with DMSO control or etoposide
(5puMand 10 uM) at 80% confluence.

0-Red-oil (ORO) staining was performed as previously described™. In
brief, cells were fixed with formalin, washed with sterile water, treated
with 60% isopropanol and stained with ORO solution (Sigma, 00625)
and DAPI (1:5,000). After washing, stained cells were imaged onan Evos
m7000 (Thermo Scientific) capturing aminimum of 100 fields at 20x
magnification per well. Marker quantification was done in Qupath;
nuclear segmentation was done using the cell-detection module in
the DAPIchannel. Mean ORO intensity was quantified ina15 pmradius

to each nucleus. Positive cells were called empirically at a threshold
greater than 32.2, 8-bit depth. The proportion of ORO-positive cells
to the total number of nuclei was calculated.

For stress-marker quantification, after etoposide and media treat-
ment, 96-well plates were fixed in 10% formalin for 10 min and then
washed with PBS. The following primary antibodies were used for
staining: anti-STAT3 (clone 124H6, 1:500; Cell Signalling, 9139S) and
anti-JUN (clone 60A8,1:500; Cell Signalling, 9165S). Otherwise, stain-
ing procedures used the same steps, reagents and concentrations as
for tissue immunofluorescence. After staining, wells were kept in PBS
and imaged using a high-throughput fluorescent microscope IN Cell
Analyzer 2500HS (Cytiva, objectives 20x for JUN and 40x for STAT3).
Positive cells were determined using IN Cartaimage analysis software
(v.1.14), based on the nuclear fluorescence intensity for the target
protein (empirical positive threshold for JUN, greater than 396.9, and
STAT3, greater than 505.3, 16-bit depth). Data were expressed as the
percentage of positive cells (JUN or STAT3) of the total number of nuclei.

Statistics and reproducibility

Unless otherwise stated, significance was inferred at P < 0.05 for
single-variable tests and FDR < 0.05 for multiple-hypothesis tests. For
spatial datasets, where representative images are provided, all analyses
were repeatedinn =4 samples per group. For histological verification,
where representative images are shown, all analyses were repeated in
n=4-5samples per group.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

Raw single-cell and spatial transcriptomic datasets have been depos-
ited on the Gene Expression Omnibus (accessions GSE295708 and
GSE295862, respectively). Integrated single-nucleus and Xenium
objects, together with auxiliaryfiles, are available at the Single Cell Por-
tal (accessions SCP3116 and SCP3117, respectively). The following pub-
licly available datasets were used in this study: human AT single-nucleus
transcriptomic data (Single Cell Portal, SCP1376; and GEO accession,
GSE176171); human reference genome (https://cf.10xgenomics.com/
refdata-gex-GRCh38-2020-A.tar.gz); Molecular Signatures Database
(https://www.gsea-msigdb.org/gsea/msigdb/); secreted proteins in
the Human Protein Atlas (https://www.proteinatlas.org/humanpro-
teome/tissue/secretome); motifs for SCENIC (https://resources.aert-
slab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/tc_v1/
gene_based/); and human GWAS (https://www.ebi.ac.uk/gwas/).Source
data are provided with this paper.

Code availability

Data analysis pipelines used in this work can be obtained from https://
github.com/WRScottimperial/WAT _single_cell_analysis_Nature_2024.
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Extended DataFig.1|Single nucleus and spatially resolved variations
incelltypesandstatesinlean, obese and WL adipose tissues.a, UMAP
embedding of AT cell types across conditions and datasets demonstrating
successfulintegration and cell type conservation. b, Cell type marker genes
inthe single nucleus (Nuc, left) and spatial datasets (right). ASC, adipose stem
cells. APC, other adipose progenitor cells. Endothelial, vascular endothelial
cells.ILC, innate lymphoid cells. Lymphatic, lymphatic endothelial cells. Mono/
DC, monocytes and dendritic cells. ¢, Cell state marker genes in the Nuc (left)
and spatial datasets (right). b,c, Scaled mean expression and proportion (%)

of cells expressing marker. d, Proportion of cell neighbourhoods exhibiting

significant differencesin cellabundance between conditions (Spatial FDR < 0.1)
foreachcelltype. Orange obese-high, blue obese-low, grey non-significant
(NS). e, Proportional changesin adipocytes and macrophages between
conditionsinsingle Nuc and spatial datasets. Restricted to these cell types
duetolimited spatial cohort numbers (N=4/group) and intra-sample/group
heterogeneityinvascularand precursor cellnumbers. Boxplot, medianIQR
min/max. Wilcoxon Paired (OB-WL) and Unpaired (OB-LN), FDR adjusted P
value.f, Alterations in pathway-wide metabolic flux between conditionsin
major AT cell types. Cohen’s D, coloured at FDR < 0.05, red obese-high, blue
obese-low.
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Extended DataFig.2|Adipose tissue immune system variationsin human
weight gainand WL. a, Myeloid cell marker genes, scaled mean expression,
proportion (%) of cells expressing marker. b, Beeswarm plots showing
significant changes (Spatial FDR < 0.1) in neighbourhood abundance in myeloid
cell classes. Lean-obese, obese-WL comparisons, Log2FC between conditions,
red obese-high, blue obese-low. Fastinginsulin adjusted for body massindex
(FladjBMI), Log2FC per unitchange, red FI-high, blue FI-low. ¢, Proportional
changesin myeloid cellabundanceinsingle nucleus dataset. Boxplot, median
IQR min/max. Lean-Obese unpaired, WL-Obese paired Two-tailed Wilcoxon
test. FDR adjusted P values. d, Volcano plot of differentially expressed genesin
LAMsubtypes (ST)1(adaptive) and 2 (maladaptive/inflammatory). Two-tailed
Wilcoxon unpairedtest, FDR < 0.05.Red, LAM ST2-high, Blue LAM ST2-low.

e, Representative spatialimages of a CLS. Top, individual transcripts detected
by Xenium for Adipocyte markers (ADIPOQ Orange, PLIN4 Cyan), aLAM marker
(PLA2G7Magenta), and a nuclei counterstain (DAPI Gray), showing LAMs
surroundatranscriptionally devoid/dead adipocyte. Bottom, CellTypist “best
match” prediction of LAMST at the CLS. f, Shared LAM subtype marker genes,
scaled mean expression, proportion (%) of cells expressing marker, in the single
nucleus (sNuc, top) and spatial (bottom) datasets. sNuc was used as the training
datasetto predicta“best match” inthe spatial dataset (CellTypist). g, Proportion
of LAMST1and ST2in CLS (defined as >3 LAMs) orisolated (defined as<2 LAMs
in Neighbourhood). Two-tailed Chi’ test. h, Alterations in pathway-wide
metabolic flux. Top, between conditions in mature (MYE2) and immature

(MYE3) LAM and TRM (MYE1). Red obese-high, blue obese-low. Bottom,
between TRM and LAM. Wine-red LAM-high, Yale-blue LAM-low. Cohen’s D,
coloured at FDR <0.05.1i, SCENITH strategy (top) for LAM and TRM metabolic
activity from Obese donors (V=7). Cells were gated as single cells (FSC-A-SSC-A,
FSC-A-FSC-H, not shown), Zombie-neg (Live/Dead dye) and CD45-pos (pan-
immune marker), followed by FOLR2 (TRM marker) and CD9 (LAM marker).
HPG-AZ555 Click chemistry was used to measure metabolic activity. Cells were
treated with combinations of drugs (Control, 2DG, Oligo, 2DG+0ligo) to assess
metabolic profiles, calculated using formulas (right panel). Bottom, Click
intensity (MFI) for each drug treatment (left) and calculated metabolic profiles
(right). Mean SEM. Paired Student’s two-tailed t-test P value. j, Proportional
changesinmyeloid cellabundancein spatial dataset.k, Differentially expressed
inflammatory cyto/chemokine genes between conditions insingle nucleus
(Nuc) and spatial datasets. Red obese-high, blue obese-low. Size adjusted
-logl0 P value, negative binomial mixed effects model. Circled dots represent
comparisons with absolutelog2FC > 0.3 and adjusted P value < 0.05.1, UMAP
embedding of lymphoid cell classes, all conditionsin single nucleus dataset.

m, Lymphoid cell marker genes, scaled mean expression, proportion (%) of cells
expressing marker. n, Global proportional changes (%) in cellabundancein
broad lymphoid cell classes across conditions. Boxplot, median IQR min/max.
Two-tailed Wilcoxon paired (OB-WL) and unpaired (OB-LN) test. FDR adjusted
Pvalues.
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Extended DataFig. 3 |See next page for caption.
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Extended DataFig.3|Thefull spectrum of metabolic pathway fluxchanges  whichglobal metabolicshifts were observed and endothelial cellsasa
inmature adipocytes and macrophages (83 pathways, 1895 reactions). representative other cell type to demonstrate absence of global activation.
Allmetabolic pathway changesin flux-based analysesin a, lean-obese and Cohen’s D, coloured at FDR < 0.05, red obese-high, blue obese-low.

b, obese-WL comparisons. Presented for adipocytes and macrophagesin
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Extended DataFig.4|Mature adipocyte molecular heterogeneity and
regulationinobesity and WL.a, UMAP embedding of mature adipocytes, all
conditions grouped. b, Adipocyte cell state proportions (0 to1) inthe combined
cohort, mean (Av.) per group, and for each sample. ¢, Proportional changesin
adipocyte cellabundance in spatial datasets. d, Scores measuring overall
activity in major metabolic pathwaysin each adipocyte, averaged for each
participant (density, median IQR) then compared between conditions. Two-
tailed Wilcoxon unpaired (LN-OB, LN-WL) and paired (OB-WL) FDR adjusted P
values (V=24 LN;25paired OB/WLdonors). e, Schematic of the triglyceride (TG)
toglycerol cycle, broken downintoreactionsteps, and annotated by reaction
enzyme families. ATP consuming steps are highlighted. Adapted from Sharma
etal.f, Extended differentially expressed genes between conditionsinsingle
nucleus (Nuc) and spatial datasetsinadipocytes. Encompassing enzymesin
metabolic substrate pathways, including the TG cycle, and upstream regulators.
Red obese-high, blue obese-low. Size adjusted -log10 P value, negative binomial

mixed effects model. Circled dots represent comparisons with absolute
log2FC > 0.3 and adjusted P value < 0.05. g, Differential gene regulatory
networks between obesity and WL in mature adipocytes, restricted to
metabolic pathway genes. TF networks with >50 metabolic genes/network and
network P < 0.05Bonferroniadjusted are shown. Coloured by proportion of all
pathway genesin the network. Barplots show sum of genes in pathway (top) and
network (right). Left, heatmaps show network (two-tailed Wilcoxon test)
log2FC and human GWAS intersection. h, Pathways underlying reciprocally
differentially expressed genesinlean-obese (LN-OB, log2FC > 0.5, FDR < 0.01)
and obese-WL (OB-WL, log2FC > 0.5,P < 0.05, Bonferroni adjusted) comparisons.
ORA, hypergeometricdistribution, coloured by FDR adjusted -log10 P values,
sized by count, enrichment factor is gene ratio/backgroundratio. i, Variations
inmature adipocytesizes (top, logl0 Area; bottom, Area) between groupsin
spatial analyses, and two-tailed Wilcoxon test P value (N =4850 LN; 3315 OB;
3909 WL; number of segmented adipocytes across 4 donorsin each group).
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Extended DataFig. 5| Precursor and vascular cell phenotypes and
adaptationsinobesity and WL. a, Adipocyte precursor (APC) subpopulation
marker genes presented as scaled mean expression and proportion (%) of
cellsexpressing marker. UMAP embedding of APCs, all conditions grouped,
accordingtob, subtypes and c, subtype marker gene expression.d, Vascular
endothelial cell (EC) subpopulation marker genes presented as scaled mean

expression and proportion (%) of cells expressing marker. e, UMAP embedding
ofvascular EC, all conditions grouped. f, Mural cell subpopulation marker genes
presented as scaled mean expression and proportion (%) of cells expressing
marker.g, UMAP embedding, all conditions grouped. a,b,d-g, Cell states
highlightedinbold represent stressed populations.
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Extended DataFig. 6 | Stressed signatures are conserved across susceptible
celltypes. a, Proportions (%) of differentially abundant neighbourhoods
(Spatial FDR < 0.1) inlean-obese and obese-WL comparisons among basaland
stressed cell states. Orange obese-high, blue obese-low, grey non-significant
(n.s.). Mature adipocytes (AD), precursors (APC), endothelial cells (EC) and
mural pericytes (Per.). b, Pairwise changesin basal and stressed cell proportions
inobesity and subsequent WL for each donorinsingle nucleus (grey) and spatial
(orange) datasets (V=25 single nucleus; 4 spatial). ¢, Differential expression
between conditions of common stress genesinall vulnerable cell types (left)
and homeostatic and maladaptive genesin metabolic and precursor (right, top)
and vascular (right, bottom) cell types. Red obese-high, blue obese-low. Size
adjusted-logl0 P value, negative binomial mixed effects model. Circled dots
representcomparisons with absolute log2FC > 0.3 and adjusted P value < 0.05.

d, Overlap of differentially expressed genes in stressed states compared to the
respective basal state,among vulnerable cell types (Wilcoxon test, FDR < 0.05).
Redrepresentsacommon set of 188 differentially upregulated and 15
downregulated genesinall represented stressed cell states (Single Nuc.
dataset). e, UMAP embedding of example stress genes across susceptible cell
types.f, Stressscore based on188 conserved upregulated genesinstress cell
states (AD3,EC2, APC3,Mu4), by cell type and condition, represented asa
scaled z-score. g, Changesinneighbourhood abundanceinleantissuesin
association withage (top) and fasting insulin (bottom) adjusted for age (Fl age
adj.,Log2FC per unit changein trait). For AD3 and APC3, two-tailed Binomial
signtest Pvalues comparing the observed directions of effectineachcell
neighbourhood with the expected null of 0.5.
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Extended DataFig.7|Regulation of cellular stressinadipose tissue.

a, Violin plots of stress enriched-genes for example pathways, averaged per
sampleinstressed (dark grey) and basal (light grey) cell states. Violins outlined
inblack have Log2FC > 0.1and FDR < 0.05 (Wilcoxon, Supplementary Table 12).
b, Selected examples of enriched pathways underlying conserved stress
genes (differentially expressedin >3 stressed-basal state comparisons). ORA,
hypergeometric distribution, coloured by FDR adjusted -log10 P values, sized
by count, enrichment factor is gene ratio/background ratio. ¢, In vitro effects
of stressinduction on:i. human adipocyte differentiation (left, % Oil Red-O

Gray DAPI / Magenta JUN or STAT3

(ORO) positive mature adipocytes) in undifferentiated (Negative Control,
N=8),14-day differentiated (Positive Control, N = 6), and 14-day differentiated
5-day Etoposide treated (5 pM and 10 pM, N = 6) cells; ii. expression of

stress marker proteins (middle/right, % JUN and STAT3 positive nuclei,
immunohistochemistry) in undifferentiated control and Etoposide treated
cells (V=8 per group). Bar plot, mean SEM. Boxplot, median IQR min/max.

d, Representative images of ORO accumulationand e,JUN and STAT3 protein
expressionin each experimental group.
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Extended DataFig. 8|See next page for caption.
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Extended DataFig. 8| Tissue niche and tissue-wide communication
patterns. a, Representative images of the spatial datasets showingtissue
architecture (top, WGA staining), stress scores in 50-pm bins (middle) and
tissue niches (bottom). b, Proportion of cell states in stress quantiles for each
condition (Q1low stress; Q4 high stress). ¢, Proportions (0 to1) of cell statesin

eachtissueniche.d, average distance within 300 pm between spatial cell states.

e, Clustermap ofimputed scaled average ligand communication probabilities
(CellChat) per tissue niche, limited to significant communications. f, Imputed
CellChat communication between spatial niches for selected ligands. Links
represent the scaled mean probability (line thickness) and directions

of connectivity. Line colour reflects signal source. All conditions were

combined to identify the main niches underlying pathway effects. g, CellChat
communication between single nucleus cell states for NAMPT (Visfatin, top) and
TGFBI (bottom). Links represent the scaled mean probability (line thickness)
and directions of connectivity. Line colour reflects signal source. All conditions
were combined toidentify the main cell states underlying pathway effects.
Lower probability interactions for NMAMPT were removed to improve visualisation.
h, Sankey plots showing differential signalling pathways between source and
targetcellsinlean-obese (left) and obese-WL comparisons (right). Source and
target cells and pathways sized by overall number of interactions. Connection
sizerepresents number of cell type interactions for each pathway and colour
relative flow (red obese-high, blue obese-low).
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Extended DataFig. 9 |Systematic differential gene expression and pathway
analysesinhumanobesity and WL across the full spectrum of adipose
tissue celltypes.a, Number of differentially expressed genesin major AT cell
typesinlean-obese (FDR < 0.01) and obese-WL (P < 0.05 Bonferroni adjusted)
comparisons. b, Heatmaps showing proportion of significant genes (0-1,
green) inthe primary comparison thathadi. concordant directions of effect
(concordant), ii.concordant and significantat P < 0.05 (concordant + pval
nominal) oriii. concordant and robustly significant (at FDR < 0.01lean-obese or
P <0.05Bonferroniadjusted obese-WL, concordant + pval stringent) inthe
alternative comparison, as well as the associated binomial test -log10 P value
(orange). Barplots depict total number of robustly significant reciprocal genes.
¢, Volcano plots of differentially expressed genes associated with WL across

AT celltypes. Log2FC positive obese-high and association -log10 P value.
Horizontal line, Bonferroni adjusted significance threshold. Selected
representative genes annotated. d, Pathway analysis of genes downregulated
by WL (FC>0.5,P <0.05Bonferroniadjusted) in cell typeintrinsic analyses.
Sized by FDR adjusted -log10 P values (ORA, hypergeometric distribution)
and coloured by enrichment factor (gene ratio/background ratio). Shown 44
representative of 660 total pathways at FDR < 0.01. e, Pathway analysis of
conserved genes, downregulated by weight-loss in >3 distinct cell types
(FC>0.5,P<0.05Bonferroni adjusted), clustered by gene (N =213) and
pathway (N=304, ORA, hypergeometric distribution, FDR < 0.01). All
differential expressionanalyses applied two-tailed neg. binom. mixed effect
models.
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Extended DataFig.10|See next page for caption.
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Extended DataFig.10|Senescence vulnerability and regulatory pathways
inhumanadipose tissue cell types and the mitigating effects of WL.

a, Differencesin expression of cell cycle and senescence marker genesin WL,
separated into vulnerable and other cell types. Coloured by log2FC, sized by
-logl0 P value, neg. binom. mixed effect models. b, Immuno-fluorescence of
NAMPT protein expression (N =4 samples/group), scaled to connective tissue
marker Lectin, paired student’s two-tailed t-test (left). Representative images
ofanobese and WL pair, scale bar 50 pmresolution, Grn NAMPT, Rd Lectin, blue
DAPInuclei. ¢, Left (All), tissue-wide senescence score (Oncogene induced),
averaged across every cell for each participant (density, median IQR), then
compared between conditions. Two-tailed Wilcoxon unpaired (LN-OB, LN-WL)
and paired (OB-WL) P values. Right, density heatmaps of cell-level senescence
scores (Oncogeneinduced) encompassingall cell types for each individual
sample separatedinto Lean, Obese, WL groups, single nucleus datasets (N =24
LN; 25 paired OB/WL donors).d, Other unbiased senescence score heatmaps
acrossgroupsand vulnerable cell types. e, Proportion of p21 negative (-) and
p21positive (+) cells with high senescence scores (defined by score higher than
medianin >3 of 4 distinct senescence scores). Proportion presented for each
sample (N =87). Two-tailed Wilcoxon unpaired test. f, Proportion of p21 positive
cells (range 0-1) ineach cell state grouped by cell type. Stressed cell states
colouredyellow, other cell states coloured dark grey. g, Mean proportions

of p21(range 0-1) positive cellsin each sample across conditions in spatial

datasets (N =4/group). Boxplot, median IQR min/max. Two-tailed Wilcoxon
unpaired (LN-OB) and paired (OB-WL) FDR adjusted P values. Separated into
vulnerable cell types. h, Heatmap showing pairwise correlation (Pearson, R)
betweendelta (A) changesin pathway scores before and after WL in paired
samples. Pathway scores were calculated from the mean pathways score in
mature adipocytes within each paired sample. i, Generegulatory networks
upregulatedinstressed, senescent cells (scaled log2FC > 0.4 compared to
allother cell statesin cell type, and in >3 stressed cell states) and coloured by
number of shared genesinthe network (Jaccard index, top). Interactions
between TFs within the network (bottom), sized by number of interactions
withother TFs, connected by forward interactions, # annotates self-interaction,
coloured by Walktrap community.j, Expression of secretory proteins fromthe
Human Protein Atlas (HPA) in stressed compared to basal cell statesamong
vulnerable cell types. Wilcoxon test, Log2FC (positive, stress-high) coloured
by celltype, grey ifnon-secretory or non-significant (P > 0.05 Bonferroni
adjusted). AREGwhichis notinthe HPAwasincluded as awell-established
secreted protein®.k, Scatter plot of 11 predicted SASP proteins present in both
single nucleus and spatial datasets according to datasetlog2FCinlean-obese
and obese-WL comparisons (obese-high). Border coloured by comparison, fill
coloured by SASP gene, shape by celltype.l, Senescence and SASP gene
expression (imputed) intissue niches, represented as ascaled z-score.



Extended Data Table 1| Patient characteristics in the primary cohort and Emont dataset

Primary Primary + Spatial Lean-Obese pval Obese-WL pval Emont

Lean Obese Weight loss Lean Obese Weight loss _ Primary All Primary All Lean Obese
N 24 25 25 28 29 29 NA NA NA NA 4 9
Age 47.2 (12.7) 43.4 (10.9) NA 46 (13.2) 46 (13.2) NA 26E-01  6.3E-01 NA NA 58.2(14.9) 44.9 (11.3)
Sex (% Female) 63% 72% NA 68% 76% NA 6.9E-01 7.1E-01 NA NA 100% 100%
Ethnicity (% EW) 88% 88% NA 86% 79% NA 1.0E+00 7.7E-01 NA NA 100% # 78% #
Weight (kg) 68.3 (11.5) 127.9 (26.5) 99.9 (22.2) 67.4 (11.1) 125.9 (25.8) 98.6(22.6) 8.1E-12 13E-13 5.1E-16 1.3E-17 NA NA
BMI (kg/m2) 23.7(2) 452 (6.7) 35.2 (5.5) 234 (2.1) 44.8 (6.3) 35.1(55) 28E-15 95E-11 28E-16 1.0E-17 23.9(1.3) 40.5(6.3)
Fasting Insulin (mIU/L) 49(3.1) 11.8 (3.5) 7.6 (3.3) 5(2.9) 11.8 (3.5) 7.9 (3.5) 23E-09 4.6E-10 1.0E-06 1.0E-06 NA NA
Fasting Glucose (mmol/L) 4.9(0.9) 5.1(0.5) 4.5(0.3) 47(1.2) 5.1 (0.6) 4.6 (0.5) 75E-01 15E-01 1.9E-05 2.0E-05 NA NA
HbA1c (%) 5.4 (0.5) 5.5 (0.4) 5.3 (0.3) 5.2(1.1) 5.6 (0.4) 5.3 (0.3) 17E-01 1.0E-01 59E-05 1.3E-05 NA NA
HOMAIR 1.1 (1.0) 2.7 (0.9) 1.5 (0.6) 1.1(0.9) 2.7 (0.9) 1.6 (0.8) 59E-07 8.0E-08 45E-08 3.3E-08 NA NA
HOMAB 90.7 (96.6) 180.1 (109.5) 193.2 (153.5) 89.4 (90.7) 173.2 (108.2) 185 (147) 43E-03 3.6E-03 7.0E-01 6.9E-01 NA NA
CRP (mg/dL) 34(7.1) 7.4 (6.2) 7.7 (14.1) 37(7) 7.5(6) 7.3(13.3) 43E02 29E-02 7.7E-01 9.7E-01 NA NA
Systolic BP (mmHg) 123.1 (18.8) 133.4 (14.2) 120.1 (14) 118.2 (29.8) 134.7 (15.1) 119 (14.9) 4.7E-02 1.7E-02 4.3E-04 5.6E-05 NA NA
Diastolic BP (mmHg) 74.8 (12.5) 79.5 (10.1) 78.6 (10.2) 72.1 (18.8) 79.2 (9.6) 78 (10.1) 18E-01 9.7E-02 6.3E-01 4.3E-01 NA NA
LDL cholesterol (mmol/L) 2.9(0.9) 2.9(0.7) 3.0 (1.0) 2.7 (1.0) 2.9(0.7) 2.9 (1.0) 9.8E-01 1.0E-01 7.0E-01 8.1E-01 NA NA
HDL cholesterol (mmol/L) 1.6 (0.4) 1.1(0.2) 14 (0.3) 1.5(0.5) 1.1(0.2) 1.4 (0.3) 38E-06 27E-04 41E-06 4.8E-07 NA NA
Triglycerides (mmol/L) 1.0 (0.5) 1.6 (0.8) 1.4 (0.6) 0.9 (0.5) 1.5(0.8) 13(06) 44E-03 47E-03 36E-01 3.5E-01 NA NA

Data presented as Mean (Standard Deviation) for continuous variables, and as percentage (%) for categorical variables. Continuous variables: Lean-Obese two-tailed unpaired Student's t-test,
Obese-Weight loss (WL) two-tailed paired Student'’s t-test. Categorical variables: two-tailed Chi-Square test. EW: European White. # represents % Caucasian in the Emont dataset.
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Data analysis pipelines used in this work can be obtained from: https://github.com/WRScottimperial/WAT_single_cell_analysis_Nature_2024
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Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Raw single cell and spatial transcriptomic datasets are deposited on Gene Expression Omnibus (accessions GSE295708 and GSE295862 respectively). Integrated
single-nucleus and Xenium objects, together with auxiliary files, can be found at the Single Cell Portal (accessions SCP3116 and SCP3117 respectively). The following
publicly available datasets were used in this study: human AT single nucleus transcriptomic data (Single Cell Portal, SCP1376 and GEO accession GSE176171); human
reference genome (cf.10xgenomics.com/refdata-gex-GRCh38-2020-A tar.gz); Molecular Signatures Database (MsigDB, https://www.gsea-msigdb.org/gsea/
msigdb/); secreted proteins in the Human Protein Atlas (https://www.proteinatlas.org/humanproteome/tissue/secretome); motifs for SCENIC
(resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/tc_v1/gene_based/); human GWAS (https://www.ebi.ac.uk/gwas/).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Adult males and females were included in the study design. Primary and spatial cohort: N=Female 41, N=Male 16. Numbers
or proportions of each sex are provided in the design figures, participant characteristics tables and methods. Sex specific
analyses were not carried out because of the limited sample size, and insufficient power to detect and therefore report sex
specific effects.

Reporting on race, ethnicity, or  Ethnicity is reported for all study participants within participant meta-data files. Ethnicity is based on self reported NHS
other socially relevant ethnicity categories, which were then grouped into one of: European White; South Asian; and Black, Black British, Caribbean
or African. Confounding was controlled for by selecting obese cases and lean controls that were well matched for age, sex
and ethnicity. These biological and other technical factors were also included as covariates in regression based analyses.
Paired analyses were used to control for participant level factors before and after weight loss.

groupings

Population characteristics Detailed population characteristics are provided in extended data table 1. Obese participants had BMI>35kg/m2, lean
pariticipants BMI<25kg/m2. Groups were well matched for age (within 5yrs), sex and ethnicity. People with systemic illnesses
not related to obesity were excluded, as were people with treated type 2 diabetes due to the potential effects of medications
on adipose tissues.

Recruitment Prospective participants were recurited sequentially from bariatric and other general surgery preassessment clinics. Study
participants were then selected from the larger cohort to enable groups to be well matched for age sex and ethnicity. People
with diabetes taking medication that might impact adipose tissue function were excluded. This may skew the obese study
group towards less severe pathobiology but it is unlikely to impact results from the between group comparisions.

Ethics oversight All participants gave informed consent. The study was approved by the London — City Road and Hampstead Research Ethics

Committee, United Kingdom (reference 13/LO/0477). Human tissue validation also used samples from the Imperial College
Healthcare Tissue Bank (ICHTB) —approved by Wales REC3 to release human material for research (reference 17/WA/0161).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Prospective sample sizes calculations were performed using the hierarchicell package and dispersion estimates from a pilot cohort of N=6
samples. Extreme trait (N=24 lean, N= 25 obese) and paired longitudinal (N=25 marked weight loss) sampling were combined with cell level
analyses (>100K cells) to provide sufficient discovery power at the cell type and common/infrequent cell state levels.

Data exclusions  Two lean samples were excluded at integration because of very low cell numbers (technical failure) and very high lymphocyte counts
(suggesting lymph node content in adipose tissue biopsy) respectively.

Replication Each study participant/timepoint was considered an experimental replicate (N=24 lean, N=25 obese, N=25 weight loss). Individual samples
were processed in pools (4-5 samples/pool; total of 6 pools/group). Sample pools for each experimental group were processed through to
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sequencing in lean-obese-weight loss trios across 4 batches, to minimise between group batch effects. Single cell nucleus results were
systematically replicated in independent samples (N=4/group) using a distinct spatial Xenium technology.

Randomization  Lean, obese and weight loss samples were processed in triplets, comprising the obese-weight loss pair and designated control, in random
order to minimise batch effects.

Blinding Unbiased genomic analyses were carried out unblinded. Blinding was not undertaken because single cell studies require iterative analysis,
interpretaiton, and contextualization within the existing knowledge base. Tissue histological analyses were unblinded because manifest
differences in human adipocyte sizes between conditions made blinding impossible. Cell culture validation experiments were quantified using
unbiased imaging methods and did not thus require blinding.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
™| Antibodies |:| ChIP-seq
Eukaryotic cell lines |:| |Z Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Antibodies

Antibodies used Immunohistochemistry:

anti-p21 Waf1/Cip1 (1:50, Cell Signalling, catalogue no. 2947, clone 12D1)
anti-rabbit 1gG conjugated with polymeric horseradish peroxidase linker (25ug/ml, Leica Bond Polymer Refine Detection, DS9800).

Immunofluorescence:

anti-NAMPT (1:200, Affinity Biosciences #DF6059)

anti-TREM2 (clone D814C, 1:400, Cell Signalling #91068)

anti-TLR2 (clone TL2.1, 1:400, Invitrogen #14-9922-82)

anti-Stat3 (clone 124H6, 1:500, Cell Signalling # 9139S)

anti-c Jun (clone 60A8, 1:500, Cell Signalling # 9165S)

Goat anti-Rabbit Alexa Fluor 488 (1:200, Invitrogen #A-11034)
Donkey anti-Rabbit Alexa Fluor Plus 488 (1:250, Invitrogen # A32790)
Goat anti-Mouse Alexa Fluor Plus 647 (1:250, Invitrogen # A32728)

FACS

anti-human CD45 antibody conjugated to FITC (1:20, BioLegend # 304006, clone HI30)
anti-human CD9 antibody conjugated to APC-Fire (1:20, BioLegend # 312114, clone H19q)
anti-human FOLR2 antibody conjugated to APC (1:20, BioLegend # 391705, clone 94b/FOLR2 )

Validation Histology antibodies:

The anti-p21 Waf1/Cip1 (clone 12D1) antibody has been validated by Western blot analysis of p21 Waf1/Cip1 knockout Hela cells. Its
specificity on human tissue has been previously demonstrated by Zhu et al. (2019) using immunohistochemistry (IHC). In our study,
we utilised a human breast cancer sample as a positive control to assess the specificity and functionality of the antibody dilution.

The anti-NAMPT (DF6059) antibody is specific to human, rat, and mouse tissues. According to the manufacturer, this antibody has
been validated by IHC on rat adipose tissue and human esophageal cancer. Further specificity validation was conducted by Tang et al.
(2020) using Western blot analysis with viral-induced NAMPT overexpression. In our study, we included a staining protocol using only
the secondary antibody to evaluate potential non-specific secondary antibody binding in adipose tissue.

The anti-TREM2 (D8I4C) antibody has been validated by the manufacturer by western blot analysis of extracts from 293T cells
transfected with a construct expressing Myc-tagged full-length human TREM2 protein or a mock construct.

The anti-TLR2 (TL2.1) has been validated by da Rocha et al. (2021) where its specificity its specificity to dectec TLR2 postive
monocytes was shown.

The anti-Stat3 (124H6) antibody has been validated on several human cells lines by the manufacturer and this further confirmed by
siRNA knock-down by Peng et al. (2017).

)
Q
—
(e
(D
©
O
=
s
S
-
(D
o
O
a
>
(@)
wn
[
3
=
Q
A




The anti-c Jun (60A8) antibody has valdated by the manufacturer by western blot analysis of extracts from control Hela cells or c-Jun
knockout HelLa cells and further confirmed by Yu et al. (2012) by knock-down using siRNA.

Zhu L, Ding R, Zhang J, Zhang J, Lin Z. Cyclin-dependent kinase 5 acts as a promising biomarker in clear cell Renal Cell Carcinoma. BMC
Cancer. 2019 Jul 16;19(1):698. doi: 10.1186/512885-019-5905-9. PMID: 31311512; PMCID: PMC6636025.

Tang JZ, Xu WQ, Wei FJ, Jiang YZ, Zheng XX. Role of Nampt overexpression in a rat model of Hashimoto's thyroiditis and its
mechanism of action. Exp Ther Med. 2020 Apr;19(4):2895-2900. doi: 10.3892/etm.2020.8539. Epub 2020 Feb 21. PMID: 32256774;
PMCID: PMC7086292.

da Rocha Sobrinho HM, Saar Gomes R, da Silva DJ, Quixabeira VBL, Joosten LAB, Ribeiro de Barros Cardoso C, Ribeiro-Dias F. Toll-like
receptor 10 controls TLR2-induced cytokine production in monocytes from patients with Parkinson's disease. J Neurosci Res. 2021
Oct;99(10):2511-2524. doi: 10.1002/jnr.24916. Epub 2021 Jul 14. PMID: 34260774.

Peng C, Zhang S, Lei L, Zhang X, Jia X, Luo Z, Huang X, Kuang Y, Zeng W, Su J, Chen X. Epidermal CD147 expression plays a key role in
|L-22-induced psoriatic dermatitis. Sci Rep. 2017 Mar 8;7:44172. doi: 10.1038/srep44172. PMID: 28272440; PMCID: PMC5341158.
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Yu Z, Sato S, Trackman PC, Kirsch KH, Sonenshein GE. Blimp1 activation by AP-1 in human lung cancer cells promotes a migratory
phenotype and is inhibited by the lysyl oxidase propeptide. PLoS One. 2012;7(3):e33287. doi: 10.1371/journal.pone.0033287. Epub
2012 Mar 15. PMID: 22438909; PMCID: PMC3305320.

Flow cytometry antibodies:

Antibodies for Flow cytometry were validated by the manufacturer (Biolegend) by staining of positive cells/tissue against matched
Isotype control.

The anti-Human CD45-FITC (clone H130) was validated for FACS in cell lines by manufacturer and authors using human and murine
cells. These include the validation of anti-Human CD45-FITC (clone H130) in FACS analysis of hepatic NK cells (Marquardt et al. 2015)
and human hematopoietic progenitors (Chabi et al. 2019).

The anti-CD9-APC/Fire (clone H19a) antibody was validated for FACS using by Earley et al., (2021) in iPSC-derived neural cell mixture.

The anti-FOLR2 (clone 94b/FOLR2) has been validated by Western blot in analysis of folate receptor B (FRB)—transfected B300-19
macrophage cells (Nagayoshi et al., 2005). Anti-human FRB was validated in for FACS using human peripheral blood monocytes:
https://www.biolegend.com/en-us/products/apc-anti-humanfolate-receptor-beta-fr-beta-antibody-15117

Chabi S, Uzan B, Naguibneva, |, Rucci, J, Fahy, L, Calvo, J, Arcangeli ML, Mazurier F, Pflumio F, Haddad R. Hypoxia Regulates Lymphoid
Development of Human Hematopoietic Progenitors. Cell Rep. 2019 Nov 19;29(8):2307-2320.e6. doi: 10.1016/j.celrep.2019.10.050.
PMID: 31747603

Marquardt N, Beziat V, Nystrom S, Hengst J, lvarsson MA, Kekalainen E, Johansson H, Mjosberg, J, Westgren M, Lankisch TO,
Wedemeyer, H, Ellis EC, Ljunggren HG, Michaelsson, J. Bjorkstrom NK. Cutting Edge: Identification and Characterization of Human
Intrahepatic CD49a+ NK Cells. J Immunol (2015) 194 (6): 2467—2471. https://doi.org/10.4049/jimmunol.1402756

Earley AM, Burbulla LF, Krainc D, Awatramani R. Identification of ASCL1 as a determinant for human iPSC-derived dopaminergic
neurons. Sci Rep. 2021 Nov 15;11(1):22257. doi: 10.1038/s41598-021-01366-4. PPMID: 34782629; PMCID: PMC8593045

Nagayoshi, R, Nagai, T, Matsushita, K, Sato, K. Sunahara, N, Matsuda, T, Nakamura, T, Komiya, S, Onda, M, Matsuyama, T.

Effectiveness of anti—folate receptor B antibody conjugated with truncated Pseudomonas exotoxin in the targeting of rheumatoid
arthritis synovial macrophages. Arthritis Rheum. 2005 Sep;52(9):2666-75. doi: 10.1002/art.21228. PMID: 16142741

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Immortalized human adipose-derived stromal cells (Bmi-1/hTERT, iHASC) were acquired from Applied Biological Materials
(TO540), derived from a female donor (30yrs-old).

Authentication Cells were authentified by the manufactured by confirming the expression profile ( CD44,CD73,CD105).
Mycoplasma contamination Cell tested negative for mycoplasma at source.

Commonly misidentified lines  no commonly misidentified cell lines used in the study.
(See ICLAC register)




Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atuthentication-procedures foreach-seed-stock-used-ornovel-genotype-generated—-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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Flow Cytometry

Plots
Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|Z| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation We used a modified SCENITH-based approach to evaluate human macrophage metabolic pathways ex vivo29 . Fresh
subcutaneous AT was cut into ~2mm pieces (30ml HBSS (Gibco 14175-053) in a 50ml tube), washed and collected using a
100-uM cell strainer. Tissue was digested for 20-mins at 37C (3mg/ml Collagenase Il (Sigma C6885) in methionine-free RPMI
(Sigma R7513), 65 mg/L L-cystine dihydrochloride (Sigma C6727), 1x GlutaMAX (Gibco 35050061), 10% dialysed foetal calf
serum (Gibco A3382001)). Digested tissue was filtered through a 100-um strainer and digestion was terminated by addition
of Methionine-free RPMI containing 10% FCS, followed by centrifugation (300-g at 4C for 7-min). Following resuspension in
methionine-free RPMI (65 mg/L cystine, 10% FBS, 1x Glutamax), cells were plated (160-ul) into wells on a 96-well V-bottom
plate. Cells were methionine starved for a further 15mins (total starvation ~45mins including digestion and isolation) before
treatment with inhibitors or control media (40ul) for 15mins. The four treatments were media, 2-Deoxy-D-glucose (2-DG)
(100mM final conc.; Sigma D8375), Oligomycin (2 uM final conc.; Sigma 495455) and 2-DG+Q0ligomycin (100mM & 2uM final
conc. respectively). Homopropargylglycine (HPG; Cayman Chemical, 11785) was then added to wells at a final concentration
of 500-puM and incubated for 30-min to initiate cell HPG uptake. An additional well received cells and media but no HPG and
no treatment (click-chemistry negative control). After HPG uptake, cells were stained with zombie aqua live/dead stain (1:500
in PBS; BioLegend 423101) for 20-mins at RT in the dark, washed with PBS and then fixed with 2% PFA for 15-min.

Fixed cells were permeabilised (0.1% saponin/1% BSA in PBS) for 15-mins, washed with Click buffer (100mM Tris-HCL, pH7.4;
Invitrogen 1556-027), and incubated with Fc receptor blocker (25ug/ml in PBS; Fcl, BD Biosciences 564765) for 10-mins. Cells
were rewashed and incubated in 100ul of Click reaction mix in the dark at RT for 30-mins. Click reaction mix was made
sequentially, adding CuSO4 (Final conc. 0.5mM; Sigma 209198), THPTA (Final conc. 2mM; Antibodies.com A270328), Sodium
Ascorbate (Final conc., 10mM; Sigma, A7631) and then AZDye 555 (Final conc. 25uM; Vector Laboratories, CCT1479) to Click
buffer (final concentration, 100mM Tris-HCL).

After Click chemistry exposure, cells were washed using FACS buffer (PBS, 1% BSA, 5mM EDTA, 25mM HEPES), and stained
with antibody mix (FACS buffer, anti-CD45 FITC [1:20; H130, Biolegend 304006], anti-FOLR2 APC [1:20; 94b/FOLR2, Biolegend
391705], anti-CD9 APC-fire [1:20; H19q, Biolegend 312114], Fc Block reagent [25ug/ml]) at 4C in the dark for 30mins. After
re-washing, cells were filtered (35uM cap strainer) for FACS analysis

Instrument Sony ID7000
Software AF Finder tool, Flowjo

Cell population abundance CD45 positive immune cells, median 9.9% (IQR 6.5-12.3%) of live single cells. FORL2 positive TRMs, median 24.4%
(IQR17.7-28.8%) of CD45 positive immune cells. CD9 positive LAMs, median 9.9% (IQR 7.7-11.9%) of CD45 positive immune
cells.




Gating strategy LAM and TRM gating for SCENITH-based bioenergetic studies. Gate 1: All cells (FSC-A and SSC-A). Gate 2: Single cells (FSC-A
and FSC-H). Gate 3: Live immune cells (CD45-hi, Zombie-Aqua-lo). Gate 4A: TRM cells (FORL2-hi, CD9-lo). Gate 4B: LAM cells
(FORL2-lo, CD9-hi). AZ555: Click Chemistry histogram of AZ555 for respective Gates 4A and 4B. Fluorochrome and
autofluorescence signatures were identified in unstained aliquots of each sample using the "AF Finder" software feature,
were used to unmix the signals in fully stained samples with the built-in WLSM algorithm.

|Z| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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