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In combatting the obesity crisis, leveraging mechanisms
that lower body weight is critical. The finding that treat-
ment with tirzepatide, a glucose-dependent insulinotropic
polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) re-
ceptor agonist, produces profound weight loss highlights
the value of activating the incretin receptors. Supporting
this, recent studies have revealed mechanisms by which
GIP receptor (GIPR) activation is beneficial in pancreatic is-
lets, the central nervous system (CNS), and adipose tissue.
Paradoxically, a hypothesis has emerged that GIPR antag-
onism could be an additional option in treating obesity.
This concept stems from concern that GIP facilitates lipid
uptake and storage in adipose tissue, although the lipid-
buffering capacity of adipocytes versus other cell types is
metabolically favorable. In this article, we highlight the nat-
ural physiology of the incretins, noting GIP as the primary
incretin. In the CNS, GIPR agonism attenuates nausea and
suppresses appetite, features that also help GLP-1 recep-
tor agonism promote a negative energy balance. Further,
we provide rationale that, in protecting against ectopic fat
distribution and augmenting substrate utilization to pro-
mote insulin sensitivity, GIPR activity in adipose tissue is
advantageous. Collectively, these attributes support GIPR
agonism in the treatment of obesity andmetabolic disease.

EMERGENCE OF GIPR AGONISM

The case for agonists of the glucose-dependent insulino-
tropic polypeptide receptor (GIPR) in treating obesity is
supported by compelling evidence at the intersection of
metabolic physiology and translational pharmacology: the
long-established role of GIP as an incretin hormone and
recently reported findings from pharmacology studies re-
vealing the consequences of activating the GIPR in the

brain and adipose tissue, along with historical precedence
where other peptide hormones have served as templates
for therapeutic agonists. In drug discovery, taking direction
from Mother Nature to engineer molecules that possess
pharmacological characteristics similar to those of naturally
occurring ligands has often been a successful therapeutic
approach—perhaps best exemplified by agents targeting
members of the class B1 family of G-protein–coupled recep-
tors (GPCRs), the phylogenetic classification that includes
the GIPR (1). Most of the class B1 GPCR systems were char-
acterized nearly three decades ago (2), and several native
ligands for these receptors have been foundational for de-
veloping therapeutic agonists to treat a variety of condi-
tions. These include parathyroid hormone for osteoporosis
(3), growth hormone (GH)-releasing hormone for GH defi-
ciency (4), glucagon-like peptide 2 for short bowel syn-
drome (5), and glucagon-like peptide 1 (GLP-1) for type 2
diabetes (T2D) and obesity (6–8). For GIP, counter to the
aforementioned ligands, the pursuit of medicines containing
GIP receptor agonist pharmacology took longer tomaterialize.

Although GLP-1 and GIP were both shown to be nutrient-
stimulated hormones from the gastrointestinal tract
that cooperate to augment postprandial insulin secre-
tion, only GLP-1 receptor (GLP-1R) agonists were ini-
tially sought after. This was largely due to findings
from early infusion studies demonstrating that native
GLP-1 lowered hyperglycemia in patients with T2D, whereas
GIP showed a comparably weaker effect (9). The lack of in-
terest was further perpetuated when the physiological basis
underlying the inability of Gipr null mice to develop obesity
was misinterpreted in the initial report (10)—a phenome-
non now known to result from thermal stress. However, the
narrative around GIPR agonism finally pivoted when it was
demonstrated that sensitivity to GIP could be partially
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restored upon an improvement in glycemic control (11),
prompting interest in investigating the therapeutic poten-
tial of GIPR agonism. Soon thereafter, the interest in GIPR
activation came to fruition when a number of patents dis-
closed the discovery of various molecules containing GIPR
agonist activity, where both GIPR monoagonists and dual
GIP and GLP-1 receptor agonists were described (12–17)
(Fig. 1).

During this time, there were reports from studies that
the weight loss effects of GLP-1R activation can be en-
hanced by coadministration of a GIPR agonist (18), a com-
plement to the earlier finding that sensitivity to GIP for
insulin secretion is recovered in response to improved met-
abolic control. Furthermore, this effect on body weight was
recapitulated in studies of single-agent dual GIP and GLP-1
receptor agonists (18,19). For one molecule, the newfound
efficacy translated into the clinic as studies of the GIP and
GLP-1 receptor agonist tirzepatide showed substantial
improvements in glycemic control and chronic weight
management in patients with T2D and obesity (20). The
imbalanced pharmacology of tirzepatide, favoring activity
for the GIPR over the GLP-1R (21), may account for its
efficacy. As such, the importance of the GIPR activity of
tirzepatide in relation to these treatment outcomes prompted
new interest in understanding how activation of the GIPR
provides therapeutic benefits (22).

GIPR AGONISM IN THE PANCREATIC b-CELL
ENHANCES INSULIN SECRETION

Studies performed >40 years ago showed how incretin
hormones enhance insulin secretion to manage the post-
absorptive state (23–26). The pancreatic b-cell is among
the few cell types that express receptors for GIP and GLP-1
(27,28). Notably, the severe glucose intolerance manifested
in mice lacking both receptors (Gipr�/�:Glp1r�/�) empha-
sized the crucial role of the incretin system (29). In hu-
mans, the incretin effect is impaired in T2D (30), owing to
decreases in incretin concentrations, reduced b-cell respon-
siveness, or a combination of both (11,31,32). The impaired
incretin system is believed to be a consequence of the dis-
ease pathology (33), and thus as originally hypothesized
(34), treatment with GLP-1R agonists has proven effective
at improving glycemic control.

Emerging evidence points to GIP as the predominant
incretin (35,36), emphasizing the physiologic relevance of
incorporating GIPR agonist pharmacology into therapeu-
tic approaches. From a mechanistic perspective, a lack of
tachyphylaxis in GIP-induced insulin secretion underlies
the potential of GIPR agonism to sustain glycemic control
(37). Further support for GIPR agonism comes from a clin-
ical study where participants with T2D were administered
either the selective GLP-1R agonist semaglutide or tirzepa-
tide (Fig. 1). Tirzepatide treatment led to 27%–46% of

Figure 1—The case for GIPR agonism is founded on the natural incretin actions of native GIP and bolstered by new findings showing
agonist-driven effects in the brain and adipose tissue. A: Key clinical studies and preclinical mechanistic findings are indicated, highlight-
ing discoveries since the initial report of the GIP and GLP-1 receptor agonist tirzepatide in 2018. B: Patent publications describing the dis-
covery of compounds containing GIPR activity. GIP, glucose-dependent insulinotropic polypeptide; GIPRA, GIP receptor agonist; IR,
insulin resistance; LAGIP, long-acting GIP; TZP, tirzepatide; WL, weight loss.
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patients achieving normoglycemia (HbA1c <5.7%), com-
pared with 19% for patients treated with semaglutide (38).
For tirzepatide, the benefit of GIPR agonism may be due to
an “additive” pharmacological effect of targeting both recep-
tors, prompting a more robust insulinotropic response. Al-
ternatively, the impact of GIPR agonism could also result
from heterogeneity in incretin receptor activity across pa-
tients, where having both GLP-1R and GIPR agonist pharma-
cology can accommodate a spectrum of incretin sensitivity.
Precedence for the latter is supported by studies in humans
where variable sensitivity to GLP-1 for insulin secretion was
reported (39), and ex vivo experiments of human islets that
show variation in the insulinotropic responses of GIPR
versus GLP-1R agonism across donor samples (40) (Figs. 1
and 2). The phenomenon of heterogeneity in the incretin
axis needs to be broadly investigated across different groups
of patients, but from the perspective of looking at agents
that offer the potential to enhance the insulinotropic func-
tion of pancreatic b-cells, the pharmacological choice of ago-
nism of the GIPR seems strong.

GIPR AGONISM IN THE BRAIN MODULATES
APPETITE SUPPRESSION

Similar to improvement in glycemic control, dual agonism
of the incretin receptors delivers greater weight loss than
GLP-1R monoagonism (41), highlighting the benefit of
GIPR activation on weight loss. This has sparked major in-
terest in understanding how next-generation medicines
with GIPR pharmacology for excess adiposity mediate their
efficacy (22). In comparison with the established actions

of GLP-1R agonists to suppress appetite (42,43), there
was little understanding of how activation of the GIPR in
the central nervous system (CNS) contributes to weight
loss (44). Consequently, ideas were inspired on how mod-
ulation of the GIPR in the brain potentiates the anorectic
activity of GLP-1R agonism. Below, we highlight key find-
ings that fuel new hypotheses (Fig. 2), together support-
ing the case for GIPR agonism in the brain.

During the past 6 years, several laboratories have investi-
gated whether GIPR activity in the brain is required for the
full weight loss efficacy of multifunctional agents (Fig. 1).
The GIPR is expressed by several cell types (e.g., neurons,
oligodendrocytes, endothelial, mural, and vascular smooth
muscle cells), in hypothalamic (e.g., the arcuate nucleus)
and brainstem (e.g., area postrema [AP]) nuclei (45–47). A
major observation was the finding that the GIPR has a sep-
arate and distinct expression profile in comparison with the
GLP-1R (46), with only a subset of cells expressing both of
the incretin receptors in the hypothalamus and hindbrain
(48). The GLP-1R is predominantly found in glutamatergic
neurons (49), while the majority of GIPR-expressing neu-
rons in the hypothalamus and brainstem are GABAergic
(48,50,51).

Consistent with their central mode of action, peripherally
administered GIPR-based therapeutics can be detected in
the hypothalamus (e.g., median eminence [ME] and arcuate
nucleus) and brainstem (AP and nucleus of the solitary
tract) (45,48,52) and stimulate neuronal activity (cFOS) in
these areas (45,53). Further, chemogenetic activation of
GIPR1 neurons in the hypothalamus and brainstem sup-
presses food intake in mice (46,48). In addition, central and

Figure 2—Potential mechanisms by which GIPR agonism may contribute to the efficacy of multireceptor agonism in weight management.
In the CNS, GIPR agonism is implicated in the attenuation of nausea and the suppression of appetite, promoting a negative energy bal-
ance for sustaining weight loss. In adipose tissue, GIPR agonism improves lipid handling and augments BCAA catabolism, both of which
are insulin sensitizing. Further, recent data from transgenic mice point to potential GIPR-mediated effects on energy expenditure via futile
calcium cycling. GIPR, glucose-dependent insulinotropic polypeptide receptor; GLP-1R, glucagon-like peptide 1 receptor.
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peripheral administration of a GIPR agonist alone reduces
food intake via enhanced satiation (e.g., reduced meal size),
and works in combination with an array of satiety agents
(e.g., GLP-1R agonists and PYY mimetics) to provide syner-
gistic weight loss (45,53–55). Deletion of the GIPR in the
CNS attenuates the weight loss efficacy of GIPR monoagon-
ism and dual incretin receptor agonism (45), highlighting
that activation of the GIPR is required for the full weight
loss efficacy of multireceptor agonism. Notably, hypotha-
lamic GIPR signaling is not required for the additive effects
of GIPR and GLP-1R agonism in inducing weight loss (48)—
whereas other knockout studies have shown that GIPR ac-
tivity is necessary in GABAergic neurons (52) but not glu-
tamatergic neurons (56), to inhibit food intake and reduce
body weight. Collectively, the GIPR is expressed by several
cells found in the hypothalamus and brainstem that can
extinguish appetite. Also, weight loss from GIPR agonism
may be driven by the recruitment of unique neuronal pop-
ulations and/or downstream neuronal circuitry, in compar-
ison with the activation of the GLP-1R.

A barrier to realizing the benefits of GLP-1R agonist
therapy is the occurrence of nausea and emesis that can
be induced by these medicines (57,58). Thus, leveraging
mechanisms that offset the tolerability issues associated
with incretin therapy, without negatively impacting their
anorectic activity, can offer therapeutic value (57,59). Re-
ports from studies in ferrets, dogs, and shrews that GIPR
agonism prevents emesis (60) have led to the hypothesis
that GIPR agonism alleviates the nauseating activity of
GLP-1R agonists (22,59). Indeed, GIPR agonist therapies
have been shown to potentiate the suppression of appe-
tite induced by various anorexigenic agents (e.g., GLP-1R
agonists and PYY), while attenuating nausea and emesis,
across multiple species (e.g., mice, rats, ferrets, shrews,
and dogs) (50,51,53). These effects do not require vagal
signaling (60) but are lost in the absence of GIPR activity
in GABAergic neurons (56) and following ablation of
GIPR-expressing neurons in the AP (61). The translational
relevance of these findings is highlighted by studies in
people with obesity and T2D showing that GIPR agonism
reduces body weight and attenuates nausea and emesis
induced by a GLP-1R agonist (62,63). From a mechanistic
perspective, the simultaneous anorectic and antiemetic ac-
tions of GIPR agonism align with the neuroanatomy of
the GIPR, where it is expressed by GABAergic inhibitory
neurons that project locally to inhibit glutamatergic excit-
atory neurons in the AP, thereby reducing activation of a
neural circuit that progresses through from the AP to the
nucleus of the solitary tract, lateral parabrachial nucleus,
and central nucleus of the amygdala. We note, however,
that further exploration is required to fully elucidate the
specific neuronal substrates facilitating the suppression of
caloric intake/prevention of nausea.

Since GLP-1R agonists target the GLP-1R in the brain via
circumventricular organs (e.g., the ME and AP) (64), it is
notable that expression of the GIPR is enriched in

oligodendrocytes of the ME and in tanycytes lining the third
ventricle that function to regulate the access of circulating
factors to the medial basal hypothalamus (46,65). Treatment
of mice with a GIPR agonist has been shown to augment
the uptake of selective GLP-1R agonists to anorexigenic neu-
ronal populations that express the GLP-1R (66). Consistent
with this, negating GIPR signaling in oligodendrocytes pre-
vented a GIPR agonist from delivering synergistic weight
loss that is normally observed in combination with GLP-1R
agonism in obese mice (66). These findings suggest that, in
addition to directly potentiating the anorectic action of
GLP-1R agonism, stimulation of the GIPR in nonneuronal
cells (e.g., oligodendrocytes and tanycytes) in the CNS may
increase the uptake and access of multifunctional agents
targeting the incretin receptors, thereby facilitating greater
suppression of appetite (66).

GIPR AGONISM IN ADIPOSE TISSUE IMPROVES
INSULIN SENSITIVITY

Recent human genetic analyses and clinical findings show-
ing that blockade of the GIPR may promote weight loss
(67,68) have fueled the hypothesis that GIP is an obeso-
genic factor (69). However, it is important to recognize that
GIP does not increase food intake or reduce metabolic rate
to promote a positive energy balance (44). By contrast,
treatment of preclinical models and humans with GIP-
based mimetics suppresses appetite to stimulate weight
loss and augment lipid clearance to improve systemic in-
sulin sensitivity (70), effects that are metabolically favor-
able in the management of excess adiposity.

As noted above, treatment with tirzepatide delivers bet-
ter glycemic control in patients with T2D versus GLP-1R
agonist monotherapy (38). Whereas this improvement is
associated with enhanced insulin secretion and reduced in-
sulin resistance secondary to weight loss (71), there is also
evidence suggesting that a component of the insulin-
sensitizing efficacy of tirzepatide treatment is weight inde-
pendent (72), and it has been hypothesized that activation
of the GIPR in adipose tissue is responsible for this (22).
Subcutaneous white adipose tissue (WAT) plays a key phys-
iological role in maintaining whole-body insulin sensitivity
by functioning as a daily buffer of dietary lipid, storing ex-
cess lipids in the fed state, and releasing stored energy in
the fasted state (73,74). Hence, exceeding the energy stor-
age capacity of the adipocyte is at the forefront of the links
of excess adiposity, systemic insulin resistance, and the devel-
opment of T2D (75–78). The GIPR is expressed by multiple
cell types in adipose tissue (e.g., endothelial cells, mesothelial
cells, pericytes, and a subset of adipocytes) (79,80–82). In ad-
dition to its insulinotropic effects, GIP is a nutrient-induced
factor that coordinates the storage of dietary fat in adipose
tissue (83–85), with infusion studies in humans showing
that GIP reduces plasma triglycerides by promoting their dis-
posal in WAT (69,86–88). By contrast, pharmacology stud-
ies have demonstrated that blockade of GIP signaling in
the fed state increases circulating triglycerides in rodents
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and humans (83,85), along with ectopically increasing he-
patic lipid content in obese rodents (85). Recent clinical
studies have shown that tirzepatide improves postprandial
lipid clearance in patients with T2D (70). Mechanistically,
GIP facilitates the healthy storage of dietary lipids by en-
hancing adipocyte-specific insulin sensitivity (89), increas-
ing the activity of lipoprotein lipase (LPL), augmenting
WAT perfusion, and promoting glucose uptake in WAT
(55,79,90–92). Notably, the role of GIP as a regulator of
postprandial lipid homeostasis has fueled the hypothesis
that therapeutic activation of the GIPR in the fat cell may
improve adipose tissue health and function to safely
store excess energy, prevent lipid “spillover,” and curb
the development of systemic insulin resistance (22)
(Figs. 1 and 2).

In obesity, several factors are postulated to underlie the
link of excess weight gain, adipose tissue dysfunction, and
systemic insulin resistance: hyperlipidemia/lipotoxicity, im-
paired branched chain amino acid (BCAA) catabolism, inflam-
mation, endoplasmic reticulum stress, and mitochondrial
dysfunction (76,93–95). In clinical studies of tirzepatide for
the treatment of T2D, patients have shown an improvement
in insulin sensitivity that is accompanied by reductions in cir-
culating lipids and BCAAs/branched chain keto acids, along
with elevated biomarkers that are indicative of improved adi-
pose tissue health (72,96). Consistent with these findings,
peripherally dosed tirzepatide or a GIPR agonist to rodents
can be detected in adipose tissue (55), and both have been
shown to stimulate cAMP-dependent modulation of carbohy-
drate, lipid, and amino acid metabolism in murine and hu-
man adipocytes (55,79,85). Furthermore, chronic treatment
of obese, insulin-resistant mice with GIPR agonist–containing
ligands has been shown to reduce circulating lipids/BCAAs/
branched chain keto acids, increase the catabolism of BCAAs
and oxidation of lipids in WAT and brown adipose tissue,
and increase plasma levels of the insulin-sensitizing adipo-
kine adiponectin (55,94,97). From the perspective of looking
at therapeutic end points, GIPR agonism ameliorates hepatic
steatosis, augments glucose disposal in peripheral tissues,
and improves systemic insulin sensitivity alone and in combi-
nation with known insulin sensitizers (e.g., the thiazolidine-
dione rosiglitazone) in obese rodents without changes in
body weight (55,94,98). Knockout mouse studies indicated
that GIPR-based pharmacotherapies require engagement of
the GIPR to deliver the weight-independent insulin sensiti-
zation in obese mice (97). Overexpression of the GIPR in
adipocytes activates futile calcium cycling to promote the
combustion of excess calories, helping to promote weight
loss (79). Furthermore, this method of adipocyte GIPR acti-
vation triggers a metabolic memory effect, which maintains
weight loss after the transgene has been switched off (79).
Together, there are several pathways engaged by GIPR ago-
nism in adipose tissue that can potentially drive improved
metabolism and protection against insulin resistance; future
studies are required to further disentangle how GIPR ago-
nism regulates adipose tissue health and function.

DISCUSSION

Conceptually, the design of therapies that restore incretin
action, help reduce caloric intake, and properly partition
lipid storage would be beneficial for treating metabolic
disease, especially since obesity increases the risk of devel-
oping diabetes (99). As described above, in recent years,
there has been a surge of evidence indicating that each of
these attributes can be realized with use of ligands activat-
ing the GIPR. However, as sometimes occurs in intensely
studied areas of science, there is not unanimity on the
pharmacological approach for targeting the GIPR. Whereas
there is little argument about whether satiety-promoting
effects in the CNS are desirable, debate surrounds the
most advantageous pharmacological strategy for the GIPR
in the periphery. In our view, therapeutic mechanisms
that improve the insulinotropic response and also enhance
insulin sensitivity are most compelling because such treat-
ments target the major disease impairments. Likewise, op-
posing approaches such as GIPR antagonism could run the
risk of exacerbating one or both of these pathologies, espe-
cially in large, heterogeneous populations such as those
with obesity where two-thirds of individuals may have pre-
diabetes (100). Therefore, we advocate the case for agonism
of the GIPR, where such an approach enhances insulin secre-
tion while also warding against ectopic fat distribution. Fur-
thermore, the central effects of GIPR agonism uniquely
complement the anorexigenic actions of GLP-1R agonists,
thereby synergistically facilitating weight loss. In short,
the choice of agonism of the GIPR is appealing, since it
improves glycemic control and reduces adiposity—both
beneficial in combating metabolic disease.
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