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SUMMARY

Despite the evolution of hardwired homeostatic mechanisms to balance food intake with energy needs, 

the obesity epidemic continues to escalate globally. However, recent breakthroughs in delineating the 

molecular signaling pathways by which neural circuits regulate consummatory behaviors, along with 

transformative advances in peptide-based pharmacotherapy, are fueling the development of a new gen

eration of safe and effective treatments for obesity. Here, we outline our current understanding of how the 

central nervous system controls energy homeostasis and examine how emerging insights, including 

those related to neuroplasticity, offer new perspectives for restoring energy balance and achieving dura

ble weight loss. Together, these advances provide promising avenues for treating obesity and managing 

cardiometabolic disease.

INTRODUCTION

Across all kingdoms of life, the ability to sense and acquire nutri

ents has been essential for survival. This ancient fight among or

ganisms to obtain sufficient fuel from the environment has driven 

a range of evolutionary adaptations, including the cross-commu

nication between the brain and peripheral organs that makes 

mammals prefer nutrient-dense energy sources and efficiently 

store excess calories as lipids in fat depots.1,2 Together with 

other advantageous traits,3 the neuroendocrine signals that con

trol energy homeostasis were likely vital for the successful migra

tions of humans out of Africa, a series of daunting journeys 

across other continents in which our ancestors inevitably faced 

periods of harsh weather, starvation, and recurrent episodes of 

anorexia caused by infectious diseases. However, what might 

have been an evolutionary advantage for millions of years has 

now turned into a major health challenge for modern humans. 

Since the 1980s, we have witnessed a dramatic increase in 

obesity rates,4 with rural parts of the world being key areas of 

the accelerating obesity epidemic.5 Around 1 billion individuals 

are now estimated to carry levels of body fat that pose substan

tial risks to health and longevity, with cardiovascular diseases 

being the major driver of obesity-associated deaths.6

The causal drivers underlying the obesity epidemic are likely 

complex and a topic of much debate.7 Yet, decades of research 

in animal models, together with large and unbiased genetic 

studies of body mass index (BMI), point toward a key role of 

the central nervous system (CNS) in body weight regulation 

and the development of obesity.8,9 This growing understanding 

of the neuronal mechanisms underlying energy homeostasis, 

coupled with advances in gut-brain axis physiology10 as well 

as progress in medicinal chemistry,11–16 has paved the way for 

effective weight loss therapies.17 Emerging pharmacotherapies 

that mimic gut peptides, such as glucagon-like peptide-1 

(GLP-1), have shown that targeting specific neurons in the brain

stem and hypothalamus is an effective strategy for inducing 

weight loss and lowering the risk of obesity-associated comor

bidities.18

In this review, we provide a comprehensive overview of the 

role of the CNS in body weight regulation, with a particular focus 

on the neuroendocrine signals and neuronal mechanisms that 

govern energy homeostasis. We explore and discuss recent ad

vances in understanding the neural circuits and molecular path

ways in the brain that regulate appetite, behavioral aspects of 

food intake, and energy metabolism. Lastly, we highlight how 

these insights can inform and inspire the development of next- 

generation brain-targeted therapeutics for obesity management.

OBESITY: A COMPLEX AND CHRONIC CONDITION

For several decades, obesity has been defined narrowly by cut

off values for BMI. Yet, more nuanced ways to diagnose and 

stage obesity are emerging19,20 together with an acceptance of 

obesity as an adiposity-based chronic and relapsing disease 

that is characterized by excessive, ectopic, and dysfunctional 

fat tissue that damages other organs.21 The comorbidities 
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associated with obesity involve both ‘‘mechanical’’ effects that 

promote sleep apnea and osteoarthritis and ‘‘metabolic’’ compli

cations that drive cardiovascular diseases and cancers.22

Since the 20th century, we have witnessed major advances in 

the tools to study body composition, energy balance, and the 

neurobiology of energy homeostasis.23 In the same period, the 

biomedical view of obesity has transformed from being regarded 

as a result of individual overeating to now being considered a 

complex public health challenge. Despite this, many people still 

believe that obesity is exclusively driven by eating too much and 

moving too little and that weight management is therefore simply 

a matter of willpower. Obesity, however, has a strong biological 

basis24 and it seems highly unlikely that the obesity epidemic can 

be explained by a widespread drop in willpower happening in the 

late 1970s.25 Decades of research paint a far more complicated 

picture9,23 with many unanswered questions7 and emerging data 

that challenge some of the widespread assumptions about what 

causes obesity.26 While recent environmental changes are un

doubtedly responsible for the global rise in obesity, inherited dif

ferences between people can largely explain why many are 

prone to becoming overweight, while others are protected 

from excessive weight gain.27 In other words, obesity results 

from an interaction between environmental and (epi)genetic fac

tors,28 as illustratively captured by the quote, ‘‘Genes load the 

gun, but the environment pulls the trigger’’29 (Figure 1).

Environmental drivers of the obesity epidemic

A prevailing explanation attributes the progression of obesity to 

the modern food environment with its global rise in easily avail

able and cheap foods that are ultra-processed, energy-dense, 

highly palatable, and potently trigger reward pathways in the 

brain.30,31 The emergence of this type of food, together with 

reduced physical activity, are the most often cited environmental 

drivers of the obesity epidemic and have therefore been termed 

‘‘the Big Two32’’ (Figure 2).

The notion that physical inactivity has contributed to the 

obesity epidemic is often inferred from the observed decrease 

in occupational activity.33 Yet, studies using doubly labeled wa

ter to assess free-living energy expenditure show not only that 

low energy expenditure from physical activity does not predict 

changes in body weight and adiposity later in life,34,35 but also 

that energy expended by physical activity seems to have 

increased slightly since the 1980s.26 These findings might be ex

plained by an increase in leisure-time activity that has compen

sated for decreased occupational physical activity. Another 

explanation could be the elevated energetic costs of moving a 

heavier body, which could keep physical activity energy expen

diture unchanged during obesity development, despite a decline 

in, e.g., number of daily steps.36 Given this, it is worth consid

ering that lower levels of physical activity could be a conse

quence rather than a cause of obesity.37

Evidence suggests that the rise in obesity is more complex 

than the introduction of Western fast-food culture and conve

nience lifestyles. Intriguingly, both basal metabolic rate and 

core body temperature have decreased slightly since the indus

trial revolution.26,38 Other studies indicate that the obesity 

epidemic might have started many decades before the obeso

genic transition of Western societies.39,40 Given this, it is 

intriguing to speculate on the extent to which obesity is driven 

by other environmental factors, such as pollution, endocrine-dis

rupting chemicals, sleep disruption, microbiome changes, viral 

infections, social stress, and socioeconomic insecurity29,32,41

(Figure 2).

Adiposity: A heritable trait shaped by ancient genetic 

drift

It is often said that obesity development in current generations 

reflects that humans live in an abundance of calorie-dense foods 

and have inherited a ‘‘thrifty’’ ancestral physiology that aimed to 

promote fat accumulation in between periods of famine.42 Yet, 

having too large fat depots can increase body weight to an 

extent that increases the risk of predation.42 It therefore seems 

more likely that the biology of energy homeostasis evolved to 

maintain fat mass within a fairly narrow range, with physiological 

processes preventing adiposity from becoming both too low and 

too high.43

Figure 1. Gene-environment interactions 

shape the obesity epidemic 

Left: Hypothetical scenario where the environment 

becomes more obesogenic and the entire popu

lation is equally affected by these environmental, 

obesogenic changes. In this scenario, the BMI 

distribution curve shifts to the right without 

changing shape, illustrating that the environment 

does not interact with genetic factors. Thus, the 

obesogenic changes to the environment affect all 

individuals to the same extent. 

Right: Actual scenario observed in many 

countries, where the environment becomes more 

obesogenic, but individuals respond differently to 

the environmental, obesogenic changes. In this 

scenario, which illustrates what has happened 

globally over the last decades, the BMI distribution 

curve shifts to the right and changes shape, 

reflecting that the environment interacts differently 

with different genotypes, i.e., some individuals 

gain significantly more weight and adiposity than 

others. In both of these scenarios, it is assumed 

that the environmental changes have occured 

uniformly across the entire population.
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It is evolutionarily plausible that our early hominid ancestors 

tightly regulated their fat mass to mitigate the risks of starvation 

and predation.44 Contemporary humans at the lower end of the 

BMI spectrum seem to display a similarly strong regulation, pre

venting them from developing overweight.45,46 This fits both Ken

nedy’s lipostatic theory from the 1950s47 and the later set point 

model stating that adiposity is regulated tightly by physiological 

forces around a ‘‘set’’ body weight or level of adiposity.43 However, 

these widely accepted concepts fail to explain why most modern 

humans experience large fluctuations in fat mass and, importantly, 

why hundreds of millions of people develop obesity.48 Another line 

of thinking points out that humans have been at the top of the food 

chain for around 2 million years.42 Because this minimizes the risk 

of predation, there has been no selection pressure to limit adiposity 

during this time, leaving the genes encoding the defense against 

obesity to be ‘‘eroded’’ by random mutations (genetic drift). This 

‘‘drifty gene’’ hypothesis,42 together with the dual intervention 

point model,43 provides a more attractive explanation for why hu

mans today differ in their propensity for weight gain. These con

cepts might also explain why there is no positive selection for 

several genetic variants associated with BMI49 and why the ge

netic architecture of BMI is highly polygenic.27,50

Studies of families, twins, and adopted children support these 

evolutionary perspectives by providing solid evidence that ge

netic factors have a profound influence on BMI.51 This can be 

illustrated by the striking similarity between the weight class of 

adoptees and the BMI of the biological parents but not the adop

tive parents.52 Moreover, studies of pairs of monozygotic twins 

who were either reared apart or together have estimated that 

the heritability of BMI is ∼70%.53,54 These findings are in line 

with subsequent analyses showing heritability estimates for 

BMI that range from ∼40%–50% in family studies to ∼60%– 

80% in twin studies.55,56 That adiposity is a highly heritable trait 

also aligns with pioneering research by Bouchard and col

leagues revealing that weight gain in monozygotic twins resulting 

from deliberate overeating was highly similar within twin pairs yet 

varied by at least 3-fold between twin pairs.57 Like the variation in 

weight gain, studies of twin pairs have revealed a significant ge

netic contribution to variation in weight loss induced by exercise 

or calorie-restricted diets.58,59 Together, these studies illustrate 

that some individuals, by nature, are markedly more prone not 

only to gaining weight but also to losing less weight when dieting. 

This notion is further supported by emerging genetic variants 

linked to lower BMI60–63 and studies of ‘‘spendthrifty’’ individuals 

displaying metabolic traits that make them less susceptible to 

weight gain.64–66

The genetics of obesity can be divided into two main types: 

monogenic and polygenic obesity.67 Monogenic forms of 

obesity are caused by single-gene mutations or chromosomal 

alterations and follow a Mendelian inheritance pattern. They 

Figure 2. Brain integration of environmental cues in the regulation of energy balance and adiposity 

Environmental factors (left) are integrated by the brain in the context of an individual’s genetic makeup (illustrated by highlighted SNPs) and epigenetic profile. In 

response, the brain regulates behavioral and physiological outputs, such as energy intake, energy expenditure, and fuel partitioning (middle), which all influence 

energy balance, ultimately shaping interindividual variation in adiposity (right).
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are usually very rare, start early in life, and rapidly progress to se

vere obesity.27 A key physiological feature of monogenic obesity 

is increased appetite, illustrated by the profound hyperphagia 

seen in patients with loss-of-function mutations in genes 

encoding components of hypothalamic leptin-melanocortin 

signaling.68 In addition to this, animal studies suggest that 

increased nutrient partitioning to adipocytes might also play a 

role in the pathogenesis of some forms of monogenic obesity.9,69

Polygenic obesity, on the other hand, is common, progresses 

slowly, and arises from the combined influence of thousands of 

genetic variants interacting with the environment, each with 

small effects on body weight.27 Since 2007, genome-wide asso

ciation studies (GWASs) have identified more than 500 genetic 

loci and around a thousand single-nucleotide polymorphisms 

that are associated with BMI.50,70,71 In silico tools such as 

data-driven expression prioritized integration for complex traits 

(DEPICT)72 have helped translate the numerous BMI-associated 

genetic signals into biological insights, showing that the most 

likely affected genes are preferentially expressed in the brain— 

particularly in regions like the hypothalamus that regulate food 

intake.70 Additionally, it is evident that a subset of the common 

BMI-associated variants is found close to genes where loss-of- 

function mutations cause monogenic obesity, indicating that 

common forms of obesity might also be linked to an increased 

appetitive drive.73 Other lines of research in humans also argue 

that genetic susceptibility to obesity is at least partly driven by 

appetite-related traits.74,75 However, it is important to keep in 

mind that most common disease risk variants, including those 

associated with BMI, have unknown effects and are found in 

non-coding regions of the genome.76 Moreover, higher expres

sion of ‘‘obesity genes’’ has been observed outside of the hypo

thalamus in regions such as the hippocampus and the limbic 

system, suggesting that emotional and cognitive processes, 

including learning and memory, might also influence the variation 

in adiposity.70,71 Pathway-based analyses highlight that genes 

linked to BMI-associated loci are enriched in pathways for neu

rogenesis, synaptic function, and neurotransmitter signaling 

(especially glutamatergic signaling but also signaling mediated 

by noradrenaline, serotonin, dopamine, and γ-aminobutyric 

acid [GABA]).50,70,77 Furthermore, pathways related to, e.g., im

mune function, adipogenesis, glucose and lipid homeostasis, 

circadian rhythm, oxidative stress, and insulin biology have 

also been implicated in the genetics of BMI.70,71,77–79 This indi

cates that the cellular and molecular processes underlying the 

variation in human body weight and adiposity extend beyond 

the CNS, a notion that is supported by the insights from genetic 

studies of body fat distribution80,81 and exome-wide analyses of 

rare and low-frequency single-nucleotide variants associated 

with BMI.60 Overall, this line of research illustrates that obesity 

has a strong basis in the brain and therefore can be considered 

a neurobiological disorder.82 However, ongoing and future ef

forts to uncover the biological impact of BMI-associated variants 

could lead to a deeper and more nuanced understanding of 

obesity pathogenesis.

Models of obesity pathogenesis

Weight gain, or more specifically, an increase in body energy 

content, requires a positive energy balance where energy input 

(calorie ingestion) exceeds energy output (energy expenditure 

and energy excretion via, e.g., gastrointestinal [GI] and urinary 

routes).83,84 This is illustrated by the descriptive relationship be

tween the change in body weight (stored energy) and energy 

balance:

ΔBody weight = Energyinput − Energyoutput 

Yet, the fact that energy balance and body weight are linked to 

each other, as required by the law of energy conservation, pro

vides no information on the causal relationship between the 

two and thus the drivers of weight gain and obesity develop

ment.85 A positive energy balance can be envisioned to cause 

obesity, as is often done. This has also been referred to as the 

‘‘push’’ principle, which argues that a high energy intake 

‘‘pushes’’ excess calories into the fat depots, thus leading to 

weight gain.9,86 However, it is also possible to envision a situa

tion where the causal direction is reversed, with ongoing weight 

gain causing a positive energy balance. This scenario is consid

ered similar to other types of growth, like puberty and pregnancy, 

where the positive energy balance is a permissive factor rather 

than a direct driver of weight gain. This is referred to as the 

‘‘pull’’ concept, which argues that fat depots actively pull (take 

up) excessive calories from the circulation into adipocytes, 

thus increasing adiposity.9,86 As a reaction to the decreased 

availability of circulating fuels for other organs, appetite in

creases, and energy expenditure might decrease.86

These two concepts have led to different models for under

standing obesity pathogenesis.87 According to the most wide

spread explanation, obesity is driven primarily by the high avail

ability of hyperpalatable, energy-dense foods, coupled with 

abundant environmental food cues and low incentives for phys

ical activity.88 The energy balance model of obesity promotes 

this environmental ‘‘push’’ concept and highlights the appetitive 

traits and hedonic brain circuits that predispose many humans to 

eat in the absence of ‘‘homeostatic hunger,’’ arguing that this 

leads to excess ingestion of calories and thus weight gain.89

Other models are based on the ‘‘pull’’ concept, arguing that 

the development of obesity is driven by increased partitioning 

and trapping of fuels in fat depots.69 According to these models, 

the global obesity epidemic is primarily driven by environmental 

factors that stimulate the sequestration of circulation substrates 

in adipocytes. Such changes to the milieu could be related to the 

diet90 and/or involve societal transformations that promote psy

chosocial insecurity,91 impair sleep, or increase exposure to 

pollution and endocrine-disrupting chemicals (Figure 2).

Given that push and pull forces might not be mutually exclu

sive, models that combine the two concepts have also been 

put forward.86,92 For explaining the pathogenesis of obesity, 

these unifying ‘‘push-pull’’ models might provide the strongest 

explanatory power. Both appetite and fuel partitioning are largely 

controlled by the brain.93,94 Thus, although the concepts of push 

and pull are fundamentally different in several ways,87 they are 

both consistent with key GWAS findings that BMI-associated 

loci preferentially link to genes that are expressed in the CNS. 

Hence, the physiological differences between people encoded 

by these genetic variants could involve variations in both push 

and pull mechanisms. Exploring these pathophysiological 
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underpinnings of obesity is an important task for future research. 

A key part of this is to map the neuroendocrine signaling path

ways and neuronal circuits that regulate energy homeostasis 

and coordinate substrate metabolism through cross-communi

cation between the brain and peripheral organs.

NEUROENDOCRINE REGULATION OF ENERGY 

HOMEOSTASIS

Brain circuits controlling energy balance must continuously inte

grate a diverse array of signals to maintain long-term stability of 

organismal fuel availability. These signals include information 

about adipose tissue mass, caloric intake, energy expenditure, 

and environmental or physiological changes that influence cur

rent and future energy needs.10 While traditional neuroendocrine 

signaling pathways such as the hypothalamic-pituitary-adrenal 

(HPA) axis, hypothalamic-pituitary-thyroid axis, and hypotha

lamic-pituitary-gonadal axis play important roles in energy regu

lation, endocrine signals from adipose tissue and the GI system, 

including accessory organs such as the pancreas and liver, are 

also recognized as key signaling mechanisms regulating 

adiposity and metabolic homeostasis90,91,95 (Figure 3A).

More recently, signals from other peripheral organs, including 

skeletal muscle and bone, have emerged as potential contribu

tors to homeostatic regulation of body weight and glucose meta

bolism.96,97 Adding to this complexity, the major peripheral 

metabolic organs are densely connected to the CNS, which en

ables rapid and coordinated regulation of metabolic processes. 

Afferent signals provide continuous feedback to the brain, while 

efferent pathways allow the CNS to adjust organ function in real 

time.98,99 Together with slower-acting endocrine pathways, this 

neuronal crosstalk ensures dynamic control over processes 

such as glucose metabolism, digestion, energy storage, and en

ergy utilization/expenditure. In the following subsections, we 

briefly explore the key hormonal signals from adipose tissue, 

the gut, pancreas, and liver that influence energy balance and 

metabolic regulation.

Adipose-brain crosstalk

Adipose tissue is a critical metabolic organ involved in energy 

storage and dissipation,100 and its interactions with the brain 

play a central role in maintaining energy balance.101 This notion 

dates back to 1953, when Kennedy hypothesized that fat depots 

secrete a factor that acts on the hypothalamus to regulate appe

tite.47 The identification of leptin and its receptor in the 1990s 

confirmed this concept.102,103 It later became clear that low 

levels of leptin in the blood act as a powerful starvation signal 

that stimulates food intake and decreases energy expenditure 

via the melanocortin axis to defend the organism against an 

excessive reduction in fat mass104 (Figure 3B). Similar to this, 

overfeeding studies have revealed that physiological mecha

nisms also exist to protect against weight gain.46,105 This in

volves a strong suppression of appetite and possibly also an 

adaptive increase in energy expenditure.106,107 The signals 

mediating these responses are unidentified, but it is evident 

that the defense against overfeeding-induced weight 

can be engaged independently of the leptin-melanocortin 

pathway.108,109 While a potential adipose-derived signal of over

feeding has yet to be discovered,46,105 many secreted factors 

from the adipose tissue have been identified as regulators of 

metabolic homeostasis, including adiponectin, resistin, apelin, 

and several cytokines.110

Gut-brain crosstalk

Each meal demands efficient energy management, illustrated by 

rapid restoration of euglycemia and stabilization of plasma lipid 

levels. In anticipation of meal-induced perturbations in energy 

homeostasis, a cephalic response is triggered even before 

ingestion begins. This preemptive physiological reaction is initi

ated by olfactory, visual, and internal cues related to memory 

and circadian rhythms, prompting responses such as saliva pro

duction, enzyme release, and hormone secretion (including insu

lin, ghrelin, GLP-1, and pancreatic polypeptide [PP])95 (Figure 3). 

During ingestion, orosensory cues drive positive feedback 

related to food reward, while other signals inhibit hunger-pro

moting neurons in the dorsomedial hypothalamus (DMH) to 

regulate intake.111 Following the cephalic phase, the GI tract 

communicates with the brain through subliminal hormonal and 

neural signals that contribute to the regulation of meal size and 

energy intake.111

The gut contains nutrient-absorbing enterocytes and special

ized enteroendocrine cells, which, e.g., release humoral and 

paracrine factors that act either directly on neurons in the brain 

as endocrine signals or indirectly via sensory afferents, respond

ing to apical nutrient availability and trans-epithelial energy flux. 

These factors include secretin, the incretin hormones GLP-1 and 

glucose-dependent insulinotropic polypeptide (GIP), the satia

tion factor cholecystokinin (CCK), peptide YY (PYY), and other 

hormones involved in metabolic regulation (Figure 3C). Together, 

these gut-derived hormones coordinate nutrient absorption, 

digestion, and food intake regulation, ensuring both GI and 

metabolic homeostasis. In contrast to the aforementioned hor

mones, ghrelin from the stomach acts as an orexigenic (food 

intake-promoting) hormone, which stimulates appetite by acting 

on its receptor on hypothalamic agouti-related peptide (AgRP) 

neurons10,95 (Figure 3B).

Aside from gut-secreted hormones affecting energy balance, 

the GI tract is both extrinsically and intrinsically innervated, 

which contributes to sensing both the quantity and composition 

of ingested energy.10 Apart from the extrinsic innervation of the 

GI tract, comprising both sensory afferents that inform the CNS 

about processes in the gut and efferent nerves impacting gut 

motor and secretory function, an intrinsic enteric nervous sys

tem communicates with the CNS and the gut microbiome.112

The enteric nervous system allows the GI tract to intrinsically 

execute basic functions like mechanoception and contraction 

of the smooth muscle surrounding the gut.113 The vagus nerve 

and its primary sensory neurons are part of the extrinsic inner

vation of the GI tract.99 Neurons of the vagus nerve have their 

somata located in the nodose ganglia and are well-established 

as key regulators of feeding behavior. These neurons monitor 

inputs from the GI tract and control feeding indirectly through 

their interactions with neurons in the hindbrain and hypothala

mus114–117 (Figure 3). For example, the vagus nerve 

signals interoceptive mechanosensation from the GI tract to 

neurons in the hindbrain, which allows monitoring of ingestive 
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behavior.118 In addition, as the vagus nerve senses sucrose in 

the gut, it mediates activity of dopaminergic neurons in the 

brain, which supports food seeking in a postingestive state.119

These and other findings have led to the concept that vagal 

communication from the gut may be implicated in food reward 

in the absence of taste receptor signaling. This notion is 

Figure 3. Hormonal, metabolic, and neural inputs to brain circuits regulating energy homeostasis 

(A) Simplified overview of peripheral signals arising from multiple organ systems, along with sensory cues from the external environment. These signals are 

integrated by the central nervous system to regulate energy intake and expenditure, maintaining stable adiposity over time. This regulation involves both long- 

term energy storage signals, such as leptin, and short-term signals related to immediate intake of energy, like gastrointestinal hormones and nutrients. 

(B) The arcuate nucleus of the hypothalamus harbors the melanocortin circuit, which is highly responsive to deviations in circulating hormones (e.g., those from 

the gastrointestinal tract) and the adipose tissue and metabolites. Central to this circuit are hunger-promoting AgRP neurons and satiety-promoting POMC 

neurons. These neuronal populations modulate energy balance via inhibitory and excitatory inputs to downstream MC4R-expressing neurons, respectively. 

(C) Many peripheral inputs influencing brain circuits that regulate energy balance originate in the gut. Enteroendocrine cells release hormones, like secretin, 

GLP-1, GIP, CCK, and others, into the circulation in response to various stimuli, such as the presence of luminal nutrients. Additionally, vagal afferents relay 

mechanical and chemical information—such as gut distension and nutrient content—from the gastrointestinal tract to the brain.

ll
OPEN ACCESS

Cell 188, August 7, 2025 4183 

Review 



supported by work showing that dopamine levels in the dorsal 

striatum are elevated upon fat and sugar sensing by gut-brain 

pathways.120 In addition to vagal communication, afferent 

signaling pathways via spinal sensory neurons also relay infor

mation about macronutrient content in the intestines to hypo

thalamic food-intake-regulating neurons.98,121,122 Finally, a 

special form of enteroendocrine cells, coined neuropods, forms 

glutamatergic excitatory synapses with vagal nodose affer

ents,123 suggesting that synaptic signals from this type of GI 

cell inform the brain about energy availability already at the level 

of the gut.

Pancreas-brain crosstalk

The pancreas is connected to the GI tract via the pyloric sphincter. 

In addition to its exocrine functions that assist digestion, the 

pancreas also regulates energy homeostasis through neural 

communication and secretion of hormones like insulin, glucagon, 

amylin, and PP124 (Figure 3A). Both insulin and glucagon act on 

the brain to suppress food intake and promote energy expendi

ture, although the full extent of their central actions on energy ho

meostasis is poorly understood.124 Amylin is co-secreted with in

sulin and serves as an important satiation signal, contributing to 

the regulation of food intake.124,125 PP, depending on the route 

of administration, can exert both inhibitory and stimulatory effects 

on food intake.126 Peripherally administered PP suppresses food 

intake and gastric emptying, whereas central administration of PP 

elicits feeding. The brain also modulates pancreatic function 

through descending neural signals, with parasympathetic activa

tion promoting insulin secretion and sympathetic activation inhib

iting it while stimulating glucagon release.127,128 This bidirectional 

communication ensures proper responses to changes in energy 

balance, maintaining glucose homeostasis during periods of 

feeding, fasting, and stress.

Liver-brain crosstalk

The liver is a central organ in metabolic regulation and is impor

tant for maintaining, e.g., glucose and lipid homeostasis. Key 

liver-derived hormones controlling energy metabolism include 

fibroblast growth factor 21 (FGF21) and insulin-like growth factor 

1 (IGF-1), both of which modulate neural circuits that regulate en

ergy expenditure and feeding behavior.129 For example, FGF21 

acts on the CNS to suppress sugar and alcohol intake while 

also regulating lipid oxidation.130 The liver also produces other 

appetite-regulating hormones, including liver-expressed antimi

crobial peptide 2 (LEAP2), a ghrelin receptor inverse agonist,131

and growth differentiation factor 15 (GDF15)132, which is not 

exclusively produced by the liver. In addition to classical peptide 

and protein hormones, the liver and several other organs also 

produce, metabolize, and secrete small molecule metabolites 

such as ketone bodies, lactate, and succinate, which are 

increasingly recognized as signaling molecules influencing 

metabolic regulation.133 Bile acids have also emerged as impor

tant modulators of energy homeostasis and can reach the brain 

in the postprandial state.134 Administration of bile acids reduces 

food intake in lean134 and obese135 mice. These various metab

olites convey critical information about the organism’s energy 

status to the brain, adding another layer of brain-periphery 

crosstalk in energy balance regulation.

CNS CONTROL OF ENERGY HOMEOSTASIS

Hypothalamic control of energy balance

The hypothalamus lies in the ventral diencephalon. This brain re

gion contains several nuclei and regions that integrate peripheral 

signals of metabolic status, like hormones and nutrients, to regu

late energy balance.136 The arcuate nucleus (ARC) is at the core 

of this system. This small nucleus is located at the most ventro

medial part of the hypothalamus, adjacent to the third ventricle 

and close to the median eminence, a circumventricular organ 

(CVO) with highly fenestrated capillaries and interspersed tany

cytes. These features and cells allow some substances to be 

shuttled between peripheral blood and the brain.137–141 Due to 

this anatomical and cellular organization, neurons of the ARC 

have privileged access to circulating signals, such as metabo

lites and peripheral hormones, whose blood level fluctuations 

reflect changes in substrate availability and energy status 

(Figure 4A). ARC neurons are strongly regulated by hormones, 

as reflected by the high expression level of the associated recep

tors, including those for leptin,142 ghrelin,143 and insulin.144 Dele

tion of these hormone receptors, specifically from ARC neurons, 

causes significant alterations in food intake and body 

weight,145–150 highlighting the importance of this ARC-based 

neuroendocrine axis in energy balance regulation.

In addition to circulating signals, ARC neurons are also modu

lated by neuronal inputs from numerous brain regions, including 

the nearby paraventricular hypothalamus (PVH),151 ventromedial 

hypothalamus (VMH), and DMH,152 as well as extrahypothalamic 

regions, such as the bed nucleus of the stria terminalis (BNST)153

and the nucleus of the solitary tract (NTS)154 (Figure 4A). These 

afferent synaptic inputs have been associated with transmission 

of, e.g., environmental signals that predict future food consump

tion, which rapidly reach the ARC even before nutrient uptake, 

as well as mechanical and chemical signals from the GI tract 

that arise within seconds to minutes following food inges

tion.114,150,155–159 Thus, ARC neurons receive multiple and wide

spread hormonal and neuronal signals communicating systemic 

energy status across different timescales. These inputs are inte

grated and then relayed through extensive projections to other 

hypothalamic and extrahypothalamic regions, where they coor

dinate the activity of downstream neural pathways. All this is 

achieved through complex afferent and efferent connectivity 

networks of fast-acting neurotransmitters and neuropeptides, 

enabling behavioral, neuroendocrine, and autonomic adapta

tions that align with the organism’s energy state.

AgRP neurons

The most studied ARC-based pathway controlling energy bal

ance is the melanocortin pathway with the AgRP and pro-opio

melanocortin (POMC) neurons, whose activation promotes pos

itive and negative energy balance, respectively. These two types 

of ARC neurons modulate the second-order melanocortin 4 re

ceptor (MC4R)-expressing neurons in the PVH, whose pharma

cological antagonism or genetic deletion promotes feeding and 

obesity.160–163 This is consistent with the activation of AgRP neu

rons and the inhibition of POMC neurons by energy depriva

tion164–169 and low levels or absence of leptin, respectively.148

POMC neurons produce and release the MC4R agonist α-mela

nocyte-stimulating hormone (α-MSH), which enhances satiety. 
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Conversely, AgRP neurons co-release GABA, neuropeptide Y 

(NPY), and AgRP, each acting on PVH neurons and promoting 

food intake with distinct temporal effects.170 While AgRP’s 

antagonistic action on MC4R triggers a prolonged feeding 

response, GABA and NPY induce more rapid feeding 

behavior.162,163,171 In addition to PVH-MC4R neurons, extrahy

pothalamic cholinergic MC4R neurons also control energy bal

ance by regulating energy expenditure.172 Notably, the 

Figure 4. Hypothalamic, brainstem, and reward circuitries governing energy balance 

(A) Endocrine and neural inputs from the periphery are integrated in the arcuate nucleus (ARC) of the hypothalamus (bottom). From here, both intrahypothalamic 

projections—connecting to other hypothalamic nuclei—and widespread extrahypothalamic projections to additional brain regions coordinate energy balance in 

accordance with peripheral metabolism (top). 

(B) Circulatory and sensory signals reach brainstem nuclei, including nucleus of the solitary tract (NTS) and the area postrema (AP), to modulate energy intake and 

expenditure through local circuits and projections to more rostral brain regions. Notably, distinct brainstem neurocircuits can mediate aversive and non-aversive 

suppression of food intake. 

(C) Reward-related neurocircuitries involved in motivated behavior contribute to the regulation of energy balance through distinct and overlapping pathways, 

including the mesocorticolimbic, nigrostriatal, and serotonergic pathways.
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melanocortin circuitry has been proposed to be biased toward 

homeostatic protection against a negative energy balance 

compared with a positive energy balance.173

AgRP neurons also communicate feeding-promoting informa

tion to neurons beyond those carrying MC4Rs in the PVH. Specif

ically, prodynorphin (PDYN)-expressing PVH neurons receive 

GABAergic synaptic input from AgRP neurons, and this circuit 

promotes food intake in a way that is distinct from that of 

PVH-MC4R neurons.163 The PVH-MC4R and PVH-PDYN neu

rons, in turn, engage more caudally located neurons in the 

brainstem, through which they relay feeding signals to the fore

brain.160,161,163 In addition to the PVH, AgRP neurons send projec

tions to other brain regions, such as the BNST, the lateral hypo

thalamus (LH), and the paraventricular thalamus, and stimulation 

of these inhibitory projections has been shown to induce feeding 

and additional behavioral effects associated with energy depriva

tion174–176 (Figure 4A). As such, AgRP neurons and the neurocir

cuits within which they operate during states of energy deprivation 

can be viewed as the neural correlate of hunger. Consistent with 

the aversive nature of hunger, mice avoid the stimulation of 

AgRP neurons after conditioning, suggesting that the activity of 

AgRP neurons possesses negative valence.177 Similarly, in behav

ioral experiments examining environment and flavor preferences, 

mice prefer the contexts that are associated with the inhibition of 

AgRP neurons.177 However, during feeding, AgRP neurons have 

been shown to promote positive valence to reinforce feeding 

behavior,178 suggesting that AgRP neurons transmit valence to 

optimize behavior in a context-dependent manner.

Ingestion of energy decreases AgRP neuron activity across 

different timescales. Exteroceptive stimuli, such as the smell of 

food, rapidly but transiently return AgRP neuron activity toward 

its baseline.156,157,177 By contrast, the sensing of nutrients in 

the gut causes a slower decrease in AgRP neuron activity that 

persists for a longer duration.113,158 Lastly, AgRP neuron activity 

decreases even slower, but enduringly, upon restoration of en

ergy homeostasis.113 Interestingly, it has been shown that the 

rapid decrease in AgRP neuron activity177 by cues anticipating 

future food consumption156,157,177 increases the incentive 

salience of food cues and facilitates learning.179 Noteworthy, 

although AgRP neurons are often viewed as canonical hunger 

neurons, their activation also drives other metabolic aspects of 

the energy-deprived state, including activation of the HPA 

axis,180 increased insulin sensitivity,181 and activation of hepatic 

autophagy and ketogenesis.182

POMC neurons

Research suggests that food intake is stimulated by an additive ef

fect of AgRP neuron activation and POMC neuron inhibition.171,183

Beyond the well-established role of POMC neurons in promoting 

satiety and energy expenditure upon activation in states of posi

tive energy balance,184,185 POMC neurons also fine-tune meta

bolic adaptations in peripheral tissues.186 In the classical melano

cortin pathway, activated POMC neurons release α-MSH, which 

binds and activates MC4R to suppress food intake and thus con

trol energy homeostasis187 (Figure 4A). This role of POMC neurons 

is supported by mouse188–190 and human191 genetic studies, 

where loss-of-function mutations of the POMC gene result in 

monogenic obesity. However, acute activation of POMC neurons 

has only minor effects on feeding,166,187,192 indicating that other 

orexigenic neurons drive acute feeding behavior. In addition to 

releasing the excitatory neuropeptide α-MSH, POMC neurons 

also produce the inhibitory opioid neuropeptide β-endorphin, 

which has been found to acutely increase feeding.193 The orexi

genic action of β-endorphin from POMC neurons is consistent 

with the heterogeneity of POMC neurons and their functions 

beyond the melanocortin system.194 In addition, this orexigenic 

effect of β-endorphin was shown to underlie the selective increase 

of sugar appetite after meals and in states of caloric surplus,195

unfolding a mechanism that drives the overconsumption of sugar 

beyond energy needs.

ARC neurons beyond AgRP and POMC in energy balance

While AgRP and POMC neurons are well-known neuronal popu

lations regulating energy balance, more recent work, largely 

driven by the use of single-cell sequencing technology,196–199

has revealed additional ARC neurons involved in the regulation 

of energy balance. Beyond AgRP neurons, other orexigenic 

ARC neurons also release inhibitory GABA onto PVH satiety neu

rons, thereby promoting feeding. These types of neurons include 

dopaminergic,200 somatostatin (SST)-positive,198 and preprono

ceptin (PNOC)-expressing ARC neurons201,202 (Figure 4A). ARC- 

PNOC neurons are rapidly activated by high-fat-diet (HFD) 

feeding202 and were shown to increase their inhibitory tone 

onto POMC neurons when mice are shifted to a HFD, which is 

dependent on disinhibition from PNOC-expressing neurons of 

the BNST induced by the HFD.159 These observations are inter

esting in light of carbohydrates being capable of selectively de

sensitizing AgRP neurons to intragastric nutrient infusion,203

suggesting that macronutrient composition modulates neuronal 

excitability of feeding circuits, which may exacerbate obesity. 

Further, AgRP-negative NPY-positive ARC neurons have been 

implicated in promoting feeding in the context of HFD feeding.204

While α-MSH released from POMC neurons regulates long-term 

energy balance, oxytocin receptor (OXTR)-expressing ARC neu

rons release glutamate onto anorexigenic PVH neurons,187

including those expressing MC4R, to rapidly induce satiety. 

The glutamatergic synaptic connections between ARC-OXTR 

and PVH-MC4R neurons are strengthened by α-MSH from 

POMC neurons,187 suggesting energy state-dependent synaptic 

adaptations in the melanocortin circuit.

In addition to satiety-inducing ARC-OXTR neurons, work from 

2024 has identified basonuclin 2 (BNC2)-positive and thyro

tropin-releasing hormone (TRH) neurons of the ARC, whose acti

vation acutely suppresses feeding by inhibiting AgRP neurons 

through GABAergic synaptic connections.150,205 The activity of 

these inhibitory neurons is regulated by sensory food cues, the 

energy state, GLP-1 receptors (GLP-1Rs), and, importantly, lep

tin, and thus fills an important gap in the temporal aspects of 

food intake regulation and the action of leptin and GLP-1R ago

nists.150,205 Moreover, the high degree of neuronal subpopula

tions within the ARC adds to the complexity of the neural circuit 

that maintains energy balance. This is exemplified by subtypes 

of POMC neurons,194 which exhibit distinct responses to hor

monal fuel communicators206,207 due to specific expression pat

terns of receptors and neurotransmitters.196,197,207

Hypothalamic regulation of feeding beyond the ARC

In addition to the heterogeneous organization of the ARC, addi

tional hypothalamic nuclei serve as important integrators of 
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hormonal and neuronal inputs that signal energy availability and 

regulate energy balance. For example, orexigenic SST neurons 

in the tuberal nucleus of the hypothalamus have been identified 

as feeding-promoting neurons that integrate metabolic and 

environmental cues.208,209 An additional example is the LH, 

which is a well-established node of the neurocircuitry governing 

energy balance. Like the ARC, the LH is particularly heteroge

neous,196,210,211 though less neuroanatomically defined,212 and 

integrates peripheral information, like circulating hormone 

levels, with inputs from other brain regions to orchestrate as

pects of feeding and motivated behavior212,213 (Figure 4A). 

Upon selective activation of GABAergic LH neurons, appetitive 

and consummatory behaviors are enhanced in mice214 and 

non-human primates,215 and activation of GABAergic projec

tions from the LH to the ventral tegmental area (VTA) increases 

compulsive feeding behaviors.216 These data suggest that the 

LH establishes a link between homeostatic feeding and food 

reward pathways, a notion that is consistent with other find

ings.217,218 Conversely, ablating GABAergic LH neurons reduces 

energy intake and body weight in mice,214,218 and genetic dele

tion of the vesicular GABA transporter, vesicular inhibitory amino 

acid transporter (Vgat), in GABAergic LH neurons causes lean

ness.219 The LH also contains glutamatergic neurons, which 

reduce feeding when activated.210,211 Therefore, it has been pro

posed that certain glutamatergic LH neurons deliver a ‘‘stop’’ 

message to terminate ongoing feeding,210 which is consistent 

with the observations that these neurons are aversive, mediate 

avoidance,220,221 and are highly active during feeding.210,211

Finally, more than 30 distinct neuronal subpopulations in the 

LH have been characterized,210 some of which are described 

to have important implications for energy balance, such as the 

orexin neurons involved in arousal and motivation222 and ghre

lin’s orexigenic action,223 melanin-concentrating hormone 

(MCH) neurons,210,224 and leptin receptor and neurotensin 

neurons.225–230

Since the middle of the 20th century, the hypothalamus has 

been pivotal to research on the regulation of energy balance 

and body weight. However, as we shall explore in the following 

discussion, additional parts of the brain, such as the brainstem 

and mesocorticolimbic systems, also play critical roles in inte

grating homeostatic, hedonic, and environmental signals, influ

encing energy homeostasis and feeding behavior.

Hindbrain control of energy balance

The hindbrain is composed of the brainstem and cerebellum 

and harbors key nuclei involved in regulating feeding. Specif

ically, the dorsal vagal complex (DVC) is located in the caudal 

part of the brainstem and supports the integration of neuronal 

inputs from the hypothalamus with peripheral cues traveling 

via the bloodstream or by afferent neuronal signals. Core hind

brain nuclei of the DVC include the NTS, area postrema (AP), 

and the dorsal motor nucleus of the vagus (DMV) (Figure 4B). 

Circulating signals, like hormones, enter via the AP, which is a 

CVO and thus localized outside the blood-brain barrier. This 

structural organization enables AP neurons to effectively sense 

and integrate blood-borne information. In addition, a subset of 

cues from the GI tract informing about gut distension and 

nutrient availability are rapidly relayed to the brain via vagal sen

sory neurons. These vagal afferents have their cell bodies 

located in the nodose ganglion situated just below the skull 

within the neck region, whereas their peripheral endings inner

vate the organs of the GI tract to detect mechanical and chem

ical signals and convey this information via synaptic connec

tions onto AP and NTS neurons231 (Figure 4B). For example, 

distension signals from vagal afferents originating in the stom

ach or small intestine coincide with extensive expression of 

the neuronal activity marker, Fos, within feeding-regulatory 

NTS and AP neurons.114,232

Nucleus of the solitary tract regulation of energy 

balance

The NTS is a hub for neurons that mediate both satiation and 

illness responses, which can lead to similar behavioral out

comes—such as suppressing food intake and slowing gastric 

emptying—though these effects are thought to be driven by 

distinct circuits. In general, NTS neurons have been associated 

with suppressing consummatory behavior via projections to 

the parabrachial nucleus (PBN) of the hindbrain and more rostral 

brain regions, including the hypothalamus233,234 (Figure 4B). 

Specifically, CCK-expressing NTS neurons were found to 

mediate the termination of feeding when activated by artificial 

stimulation235–237 or by GLP-1R agonists.238 Projections from 

NTS-CCK neurons to the lateral PBN (lPBN) have been sug

gested to mediate the pronounced aversion associated with 

suppressed food intake,236 likely by activating calcitonin gene- 

related peptide (CGRP)-expressing lPBN neurons.239–241 In 

addition, other lPBN neurons, such as those marked by PDYN 

expression, have been found to receive vagal input from the GI 

tract, likely via the NTS, to induce an aversion-associated appe

tite suppression.118 In striking contrast, activation of projections 

from NTS-CCK neurons to the PVH, which also decreases food 

intake, has no aversive effects.242 Further research is required to 

determine whether these distinct circuits underlie specific sub

populations of NTS-CCK neurons.

Of interest, other studies suggest that suppression of food 

intake by individual subpopulations of NTS neurons can manifest 

distinctly, with some not linked to aversion and others targeting 

hypothalamic neurons to affect feeding in the long term. Upon 

long-term chemogenetic activation, NTS neurons expressing 

the calcitonin receptor (CALCR) induce a non-aversive suppres

sion of food intake via PBN neurons other than those expressing 

CGRP.235 Thus, the PBN must harbor CGRP-negative neurons 

that are targeted by the NTS and promote appetite suppression 

without causing aversion. A subset of the NTS-CALCR neurons, 

which are marked by prolactin-releasing peptide (PRLH) expres

sion, were found to control long-term energy balance by target

ing AgRP neurons.243 The suppression of AgRP-mediated food 

intake by these NTS-PRLH neurons is likely to occur via indirect, 

polysynaptic pathways, e.g., involving functional convergence of 

the projections from these neurons via areas like the PBN, BNST, 

and/or PVH.243 These PRLH neurons also integrate orosensory 

inputs to control feeding bursts and restrain ingestion pace.244

Interestingly, genetic data highlight a role of these non-aversive 

NTS-PRLH neurons in obesity development.245 Other distinct 

subpopulations of NTS neurons have been shown to regulate 

food intake, including those expressing leptin and the GLP- 

1R.246,247 Finally, some NTS neurons were also found to be 
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activated when animals were exposed to surgical implantation of 

capsules weighing 15% of the body weight,248 indicating that the 

NTS may be involved in sensing body weight per se.

Area postrema regulation of energy balance

Like the NTS, the AP exerts control over food intake, yet it has 

been primarily associated with promoting aversive reactions, 

including nausea249 (Figure 4B). An example is the administration 

of exogenous GDF15 that both suppresses appetite and induces 

aversion through AP neurons expressing the GDF15 receptor, 

glial cell line-derived neurotrophic factor (GDNF) family receptor 

α like (GFRAL).250,251 These AP-GFRAL neurons project to lPBN- 

CGRP neurons.252 Transcriptomic analyses have defined addi

tional molecularly distinct populations of AP neurons.245,249 AP 

neurons that express the CALCR also suppress feeding when 

stimulated,245 without collateral stimulation of aversive lPBN- 

CGRP neurons.249 This observation supports the idea that 

amylin-based obesity pharmacotherapies, which act through 

the CALCR, may be associated with fewer aversive effects. In 

2024, brain-region-specific manipulations uncovered that GLP- 

1R engagement in the AP drives aversion, while GLP-1 action 

in the NTS promotes satiety.253 The group of glutamatergic AP 

neurons that is defined by the expression of the GLP-1R245

can be further divided into distinct subpopulations, including 

one marked by GFRAL expression.249,254 Whether this group 

of AP GLP-1R neurons represents a node mediating aversive re

sponses remains to be elucidated. Importantly, lesioning exper

iments have shown that the AP is indispensable for the effect of a 

GLP-1R agonist on feeding.255 GABAergic AP neurons are less 

studied, although transcriptionally described,245,249,254 and 

may modulate the activity of glutamatergic neurons within the 

AP, given that these neurons show local projections in a manner 

largely restricted to the AP.249 Because at least some GABAergic 

AP neurons are positive for the GIP receptor (GIPR),249,256,257 it is 

tempting to speculate whether GIP agonism at GABAergic AP 

neurons results in increased inhibitory tone onto other glutama

tergic AP neurons, thus mitigating some aversive and anorectic 

responses originating from the AP. This idea is supported by 

work showing that indeed GIP engages AP-GIPR neurons, which 

inhibit nausea-inducing neurons locally,258 and that GIPR ago

nism alleviates aversive responses of GLP-1R agonism.259

These findings are particularly interesting in the context of the 

greater weight loss achieved by dual engagement of GLP-1R 

and GIPR systems,260 and that avoidance of adverse side effects 

may limit discontinuation of obesity treatment.

Crosstalk between the hypothalamus and brainstem in 

energy balance

Emerging findings have expanded our understanding of the 

interactions between the hypothalamus and hindbrain. For 

example, an afferent pathway conveying inputs from nodose 

mechanoreceptors to AgRP neurons has been implicated in in

hibiting feeding.114 While it is still unknown how this information 

reaches the ARC, it may involve NTS neurons projecting there 

directly237,242 or being relayed through the PBN.114,236 Recently, 

a hindbrain-ARC circuit has been described to inhibit feeding 

when animals were subjected to heat,261 in this case implicating 

the PBN in this circuitry.261 Similarly, activation of catecholamin

ergic inhibitory projections from the NTS to PVH-MC4R neurons 

was reported to elicit strong motivational drives to feed, primarily 

through potentiating GABA release from AgRP neuron termi

nals.262 AgRP neurons also send projections to the lPBN and 

can inhibit anorexigenic lPBN-CGRP neuron activity to increase 

feeding and overcome the appetite-suppressing effects of CCK 

and amylin but not inflammatory-related lipopolysaccharide 

treatment.263 Further, GABAergic DVC neurons were found to 

project to the ARC and suppress appetite without causing aver

sion.264 GABA release from these DVC neurons in the ARC re

sulted in the inhibition of orexigenic ARC neurons positive for 

NPY.264 Some data also show that the LH receives ascending 

glutamatergic265 and serotonergic266 projections from the dorsal 

raphe nuclei (DRN) of the brainstem, and stimulation of both of 

these DRN neuronal populations suppresses feeding.265,266 On 

the other hand, in some cases, hypothalamic and DVC neurons 

utilize distinct mechanisms to affect appetite, as demonstrated 

with central GIPR engagement.267

Together, the hindbrain is increasingly recognized not only for 

its role in meal termination, nausea, and illness but also for its 

crucial contribution to the long-term regulation of energy bal

ance. However, important questions remain regarding the 

cellular organization of the DVC: how is neuronal communication 

between distinct DVC neuron types and downstream brain re

gions organized? How do peripheral inputs reach the specific 

subparts of the DVC, and how are the signals processed and in

tegrated? Additionally, understanding how NTS neuronal sub

populations could drive non-aversive suppression of feeding 

may help guide drug discovery efforts toward generating non- 

aversive appetite-suppressing therapeutics. Finally, since vagal 

gut-to-brain communication has been identified as a crucial 

component of the brain’s reward circuitry and motivational 

behavior,268 future research may focus on investigating the mo

lecular mechanisms by which hindbrain neurons affect reward- 

driven processes related to energy balance.

Motivational and hedonic circuits in energy balance

The rewarding aspects of food are partly linked to its capacity to 

reinforce behavior, thereby enhancing its appetitive motivational 

value. Often described in contrast to ‘‘reward,’’ ‘‘palatability’’ re

fers to the hedonic (pleasurable) value of food. The motivation to 

eat and the enjoyable properties of food strongly modulate the 

neurobiology that governs energy balance. The neuroscientific 

concept of separating ‘‘wanting’’ from ‘‘liking’’ is supported by 

the fact that motivational and hedonic elements of food reward 

can be independent of one another.269,270 In some cases, both 

motivational and hedonic values of food are referred to as the 

‘‘food reward’’ component in the regulation of ingestive behavior, 

likely because they often appear in conjunction.270 However, 

they can be experimentally dissociated,269 implying distinct un

derlying neurocircuitry. Regardless of the definition, reward neu

rocircuitry tunes the incentive salience associated with food and 

dictates its hedonic value while also consolidating food stimuli 

with palatability in neural learning and memory networks. This 

suggests an evolutionary wiring for hedonic eating.271

The mesocorticolimbic system, with dopamine as a core 

neurotransmitter, is crucial to reinforce motivated behavior. 

Here, rewarding stimuli, including food, get encoded in VTA neu

rons of the basal ganglia in the midbrain to release dopamine 

in the nucleus accumbens (NAc) of the ventral striatum 
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(mesolimbic/mesoaccumbal pathway) or the prefrontal cortex 

(mesocortical pathway)272 (Figure 4C). Dopaminergic VTA neu

rons encode reward prediction error (discrepancy between 

actual and expected rewards), whereas GABAergic VTA neurons 

signal expected reward, allowing dopaminergic VTA neurons to 

estimate reward prediction error and facilitate reinforcement 

learning.273–275 Together, the mesocorticolimbic projections 

modulate brain regions involved in motivation, learning and 

memory, valence, and executive and emotional control, which 

are dissociable276 processes that guide feeding behavior.272,277

Dopamine from VTA neurons is classically viewed as a neuro

modulator that conveys information about the salience, context, 

and value associated with a rewarding stimulus.272 Glutamater

gic basal forebrain neurons project to the VTA to decrease dopa

mine release in the NAc.278 Functional connectivity between the 

NAc and prefrontal cortex associates with the degree of appetite 

in humans.279 Interestingly, AgRP neurons have been reported to 

control the structure and function of parts of the prefrontal cor

tex.280 A human study also found that responsive deep brain 

stimulation of the NAc in patients with loss-of-control eating 

and severe obesity improved their eating control, which was 

associated with weight loss.281 Finally, in addition to the meso

corticolimbic pathways, dopaminergic nigrostriatal and seroto

nergic pathways regulate reward processing282 (Figure 4C).

Studies in rodents have suggested that the dopamine system 

links addictive-like behavior and deficits in mesolimbic dopamine 

neurotransmission to diet-induced obesity.283–285 In humans, neu

roimaging studies have linked obesity and weight gain to blunted 

striatal dopamine responses in response to food.277,286–289 Some 

observations have resulted in the idea that reward hyposensitivity, 

arising from deficits in reward processing, drives compensatory 

compulsive consumption of palatable foods.283 Importantly, it re

mains unclear what the causal direction in this putative relation

ship is and whether compulsive consumption of highly palatable 

and energy-dense food can itself cause dysfunction of reward 

neurocircuitry and thereby drive diet-induced obesity. However, 

a growing body of evidence suggests that intake of high-fat foods 

induces neuroplastic changes in the NAc, increasing reward- 

induced impulsivity by altering striatal dopamine transmission 

independently of an obese phenotype in rodents.290–294 This con

sumption of a high-fat diet in rodents appears to affect reward neu

rocircuitries in an input- and cell-type-dependent manner.295

Moreover, it has been reported that an obesogenic diet promotes 

proinflammatory signatures in the NAc and increases food crav

ings.296 Interestingly, selective inhibition of upstream components 

of the nuclear factor-κB pathway in the NAc blunted compulsive 

sucrose-seeking in these high-fat diet-fed mice.296 Notably, 

devaluation of a standard chow diet following high-fat diet expo

sure was shown to alter AgRP and dopaminergic neuron re

sponses, where standard chow after a high-fat diet could not 

completely suppress the negative affective state of hunger at the 

level of the ARC,297 suggesting links between mesolimbic dopa

mine signaling and the hypothalamus in food devaluation and pref

erence.

The hypothalamus and reward pathways

The hypothalamus is extensively coupled with the mesocorti

colimbic dopamine reward and motivation neurocircuitries. 

For example, modulation of either neurons in the hypothalamus 

or midbrain dopaminergic neurons affects changes in reward- 

induced activity in the other population.122 As a specific 

example, POMC neurons have been shown to provide an inhib

itory tone onto dopaminergic VTA neurons, regulating stress- 

induced hypophagia and anhedonia,298 again exemplifying 

POMC functional and neuroanatomical diversity.194 In addition 

to POMC neurons, an iterative neural processing sequence has 

been identified in which AgRP neurons, GABAergic LH neu

rons, and DRN neurons facilitate the preparation, initiation, 

and maintenance of segments in the feeding process, respec

tively. This is achieved by resolving motivational competi

tion,299 a general, yet remarkably complex, phenomenon 

observed during hunger and feeding processes.300–303 These 

findings highlight how the hypothalamus and other brain re

gions interact with the dopamine system in a manner depen

dent on the ingestion phase. The different stages of the inges

tion process might be represented at distinct times, possibly 

because midbrain dopamine systems track each stage sepa

rately.304 In sum, the hypothalamus integrates oscillating 

networks of feeding and partakes in reward neurocircuitry, 

dynamically adjusting motivated behavior based on internal 

state and external environment to optimize survival and energy 

balance.300–302,305

At least two well-described LH cell populations, MCH- and 

orexin-expressing neurons, are involved in modulating classical 

reward neurocircuitry. Some glutamatergic LH neurons project 

to the VTA, whereas others project to the lateral habenula, which 

is another brain area integrating and processing emotional and 

sensory states.211,306 LH-MCH neurons, driving both food- 

motivated appetitive and intake-promoting consummatory 

events,224 also project to the NAc to regulate motivated behavior 

like feeding.307 Further, LH-orexin neurons send projections to 

the VTA and NAc, and their activation is significantly associated 

with preferences for cues linked to food reward.308 Additionally, 

activation of GABAergic LH neurons results in goal-directed be

haviors and feeding motivation, particularly for palatable food, 

coinciding with LH-frontal functional connectivity.215

Importantly, while some peptide hormone signals may be 

transported across the blood-brain barrier to directly impact 

the connectivity of brain regions within the reward neurocircuitry, 

in most cases, these effects are likely mediated indirectly through 

polysynaptic circuits from CVOs to reward pathway areas.311–314

There are many examples of peripheral GI and adipose hormones 

that engage the mesolimbic neurocircuitry to regulate food 

reward. These include ghrelin, CCK, GIP, GLP-1, PYY, and leptin. 

However, the evidence often relies on rodent studies using brain- 

region-specific infusion of gut peptides or genetic ablation of their 

cognate receptors in certain regions and rarely traces the actual 

arrival of endogenous or exogenous hormones to the studied 

neuronal populations. Since ghrelin, GLP-1, CCK, and PYY are 

also produced and secreted as neuropeptides by neurons within 

the CNS itself, it can be challenging to distinguish peripheral ef

fects from central effects. As an example, there is evidence that 

hindbrain preproglucagon (PPG) neurons, which produce 

GLP-1, project to mesolimbic reward areas.315

The gut and reward pathways

Extensive evidence points to the role of the gut in diet-induced 

regulation of dopamine neurocircuitry and food reinforcement. 
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For example, feeding mice a high-fat diet has been shown 

to diminish gut-stimulated dopamine release.290 Similarly, 

exposing mice to a high-fat diet reduces the appreciation of other 

dietary sources.297,316,317 The actual absorption of lipids from a 

high-fat diet appears critical in this devaluation of standard 

chow diet.318 The vagal gut-brain axis is a critical component of 

reward neurocircuitry where the gut conveys valence signals in 

response to ingested macronutrients,268 while spinal afferents 

also transmit gut signals to drive food-related learning.117 Inter

estingly, distinct vagal afferents sense fat and sugar in the gut 

and facilitate nutrient-specific reinforcement, while the combina

tion of fat and sugar increases nigrostriatal dopamine release and 

promotes overeating.120,319 However, not all ingested compo

nents engaging reward neurocircuitry rely on vagal transmission 

like macronutrients do.122 Importantly, adjusting decision-mak

ing by updating reward prediction errors helps adapt to uncer

tainty.320 Thus, it remains possible that mismatches in the intero

ceptive state of the GI tract from nutrient signals and the 

predicted state by the organism contribute to diet-induced 

obesity. Compulsive overeating may therefore present itself 

when systems for correcting reward prediction errors and 

consolidating interoceptive memories are aggravated. The 

mechanisms that may underlie these processes remain unclear.

In sum, the regulation of energy homeostasis involves a 

network of CNS regions and peripheral signals that collectively 

regulate food intake, body weight, and energy expenditure, 

involving complex interplays between canonical feeding centers, 

like the hypothalamus and hindbrain, and neurocircuitry of 

reward and motivation. Together, these regions integrate homeo

static and hedonic signals, highlighting the interconnectedness 

of motivational, reward-driven, and executive control pathways. 

Other brain regions not covered in the present review contribute 

to the regulation of energy balance, including the preoptic 

area,321 lateral septum,322,323 parasubthalamic nucleus,324 cere

bellum,325 central extended amygdala,326,327 and hippocam

pus.328,329 Lastly, brain regions like the paraventricular nucleus 

of the thalamus309 or the xiphoid nucleus of the midline thal

amus310 participate in tracking motivational states to shape 

instrumental behavior, which is guided by internal drives, like 

hunger or cold, represented in distant brain areas. Notably, the 

overlap and interaction between homeostatic and hedonic regu

lation underscore the need to move beyond reductionistic 

models. The traditional dichotomy of ‘‘homeostatic’’ versus ‘‘he

donic’’ pathways oversimplifies their interwoven roles. The inter

connectedness and adaptability of these systems during energy 

balance deviations remain pivotal areas of ongoing research, 

with implications for understanding and treating metabolic dis

orders.

MOLECULAR AND NEUROSTRUCTURAL ADAPTATIONS 

IN NEUROCIRCUITS CONTROLLING ENERGY 

HOMEOSTASIS

Structural and molecular remodeling, along with dynamic 

changes in functional connectivity within brain regions and cir

cuits involved in regulating energy balance, play an essential 

role in adjusting and optimizing complex behaviors like 

feeding. As such, synaptic adaptations are influenced by 

neuroendocrine feedback and the integration of hunger, 

satiety, and body fatness signals, as discussed above. 

Notably, these circuit adaptations are considered essential 

for maintaining energy homeostasis, whereas maladaptive ad

aptations may contribute to the pathogenesis of obesity 

(Figure 5A).

Some reports suggest that obesogenic diets can reorganize 

the synaptic architecture of hypothalamic neurons governing en

ergy balance.330,331 Interestingly, synaptic organization of the 

ARC has been found to predict the vulnerability of outbred rats 

to develop diet-induced obesity.332 A mechanistic example by 

which this synaptic remodeling occurs is how diet-induced 

obesity uncouples the effect of leptin on the intrinsic excitability 

of AgRP neurons, which is needed to modulate the spontaneous 

activity and integration of synaptic input onto AgRP neurons333

(Figure 5B). It has also been reported that sucrose consumption 

alters excitatory synaptic inputs to AgRP neurons.334 Similarly, 

chronic high-fat diet exposure alters the firing frequency and 

postsynaptic currents of POMC neurons.335 Synaptic plasticity 

outside of the ARC upon high-fat diet exposure has also been re

ported. For example, synaptic properties of the LH change 

dynamically and cell-type-dependently upon high-fat diet con

sumption.336 Specifically, excitatory synaptic inputs to LH- 

orexin neurons increase transiently within the first week of a 

high-fat diet, while the density of excitatory synapses of LH- 

MCH neurons increases with a delay that still precedes signifi

cant weight gain.336 These findings show that obesity-promoting 

diets can, in rodents, alter synaptic transmission in neurons that 

regulate energy balance. However, it is still unclear which spe

cific circuits are affected, how these changes causally contribute 

to obesity, and what role they play in maintaining long-term diet- 

induced obesity.

Given the dynamic nature of organismal energy fluxes, it is not 

surprising that feeding neurocircuitries maintain properties of 

plasticity into adulthood, such as changes in synaptic connectiv

ity, neurotransmitter dynamics, and postsynaptic actions 

(Figure 5A). For example, the density of excitatory synaptic inputs 

onto AgRP and POMC neurons are increased and decreased, 

respectively, in the fasted state in mice, and the opposite is 

observed in a fed state.337–339 Specifically, fasting has been 

shown to elicit a reduction in the strength of excitatory inputs 

from the VMH to POMC neurons of the ARC.338 This adaptive 

response was shown to be at least partially mediated by dynamic 

levels of the hormones ghrelin and leptin.337 Adult mice deficient in 

leptin even present with increased synaptic densities of inhibitory 

and excitatory inputs onto POMC and NPY neurons in the ARC, 

respectively, compared with control mice.337 This altered synaptic 

architecture is ameliorated upon a single leptin treatment.337 By 

contrast, ghrelin administration in the fed state was found to in

crease excitatory inputs onto AgRP neurons.340 Similarly, energy 

deficiency increases excitatory synaptic transmission between 

PVH and AgRP neurons,341 a circuit whose activity is necessary 

and sufficient for driving hunger. The excitatory input to AgRP neu

rons is notable for its high degree of synaptic plasticity, which is 

energy state dependent151 (Figure 5B) and is even observed 

following exercise.342 Further, reorganization of the synaptic 

connections of LH-orexin neurons343–345 and oxytocin-PVN 

neurons346 is elicited contingent upon energy status. Synaptic 
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plasticity was also shown to be a crucial mechanism for energy 

state-dependent tuning of behavioral responses like feeding in a 

manner dependent on AgRP neurons and NPY action.176 Other 

factors, like those having neurotrophic effects, have been shown 

to affect plasticity of feeding neurocircuitries. As an example, 

vascular endothelial growth factor A (VEGFA) has also been shown 

to increase the spike threshold of an AgRP neuron subpopulation, 

which primes a net anorexigenic output.261

There are abundant examples of adaptations in presynaptic 

neurotransmitter release that are influenced by energy state. 

Seminal work includes how ghrelin was shown to increase 

the frequency of spontaneous synaptic GABA release from 

NPY neurons onto POMC neurons.347 In addition, ghrelin 

was shown to potentiate glutamate release from excitatory 

synaptic terminals engaging AgRP neurons340 (Figure 5B). 

Ghrelin also adapts the synaptic input of dopaminergic 

Figure 5. Neuroplasticity and molecular remodeling in energy balance neurocircuitries 

(A) Simplified overview of neurostructural and molecular changes within energy balance neurocircuitries in response to either a pathologic obesogenic envi

ronment or physiological perturbations. Although exposure to an obesogenic environment can lead to maladaptive remodeling and contributes to obesity 

pathogenesis, certain neurostructural adaptations are essential for promoting behaviors that restore energy homeostasis. 

(B) Simplified depiction of specific mechanisms driving molecular and structural plasticity in AgRP neurons, which influence hunger, body weight, and glucose 

metabolism.
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neurons in the VTA to control appetite348 and promotes syn

apse formation in the hippocampus.349 Associated with syn

aptic changes in the VTA, ghrelin causes dopamine release 

in the NAc,348 while it enhances learning and memory consol

idation in the hippocampus by propagating long-term potenti

ation.349 In vitro work suggests that ghrelin-mediated synaptic 

plasticity occurs via a calcium/calmodulin-dependent protein 

kinase kinase (CAMKK)-dependent adenosine monophos

phate kinase (AMPK) activation.340

Postsynaptically mediated plasticity is well exemplified by 

research demonstrating how postsynaptic N-methyl-D- 

aspartate receptors (NMDARs) are essential for synaptic plas

ticity of AgRP neurons in an energy state-dependent manner.164

AgRP-specific glutamatergic NMDAR ablation weakens fasting- 

dependent increases in excitatory drive, density of dendritic 

spines, synaptogenesis, and eventually activity of these hunger 

neurons164 (Figure 5B). That glutamate receptors are key in facil

itating the plasticity of feeding neurocircuitry is supported by the 

fact that fasting triggers translocation of the calcium-imperme

able subunits into α-amino-3-hydroxy-5-methyl-4-isoxazolepro

pionic acid (AMPA) receptors (AMPARs) on POMC neurons and 

reduces rectification of AMPAR-mediated excitatory postsyn

aptic currents.350

In addition to obesogenic diets, obesity-associated neuroin

flammation may also result in maladaptive reorganization of neu

rocircuits orchestrating feeding behavior, implicating many cells 

beyond neurons, such as microglia, tanycytes, and astro

cytes.330,351 In context, gene expression of microglia-specific 

and astrocyte-specific markers is significantly upregulated in 

rats fed HFD for 4 weeks compared with chow-fed rats.330

Although microglia activation is often associated with neuroin

flammation, these glial cells may exert neuroprotective effects 

by producing and secreting neurotrophic factors, such as 

brain-derived neurotrophic factor (BDNF), to support neuropro

tection during obesity-associated neuroinflammation.351 The 

absence of rigid blood-brain-barrier protection of some ARC 

neurons may even expose them to signals of obesity-associated 

systemic inflammation,352 potentially impacting synaptic and 

hormonal integration by hunger and satiety neurons, thereby 

affecting energy balance.

Maladaptive plasticity has been firmly established as a 

concept in research on drugs of abuse, where these profoundly 

alter the mesocorticolimbic dopamine system, driving synaptic 

and circuit reorganization that underpins the development of 

addictive behaviors.353,354 Notably, aspects related to feeding 

and motivated behaviors seem to converge on similar adaptive 

mechanisms. For example, food craving episodes are associ

ated with remodeling of brain connectivity in the NAc,355 and 

striatal plasticity has been suggested as a key feature in 

obesity.356 This striatal plasticity may involve shifts in dopamine 

receptor subtypes and the reorganization of the interaction be

tween dopaminergic and serotonergic neurons.357 The adaptive 

response consequential to overconsumption of palatable food is 

proposed to have long-term effects on dopamine signaling, such 

as reducing dopamine receptors.283,358 During conditioning, 

changes to synaptic plasticity are proposed to underpin the abil

ity of palatable food to drive hedonic feeding.209 Short-term con

sumption of highly palatable food has also been found to prime 

future foraging and feeding behavior, which is mediated by 

increased excitatory synaptic density onto VTA dopaminergic 

neurons.359 Interestingly, deleting NMDARs in VTA neurons de

creases lever pressing for postingestive sucrose reward.119

In summary, synaptic plasticity appears inherent to the neuro

circuitry that controls energy balance. Structural and molecular 

adaptations in feeding neurocircuits facilitate energy homeosta

sis by mounting appropriate neuronal responses, which are inte

grated and translated into behavior (Figure 5A). Important funda

mental questions remain to be addressed. For example, which 

synaptic connections are changed by alterations in energy bal

ance, and how do such discrete circuit adaptations causally 

relate to energy balance control, particularly in the long term? 

What are the primary drivers underlying feeding and obesity- 

related changes in synaptic plasticity: deviations in peripheral 

hormones, changes in neuronal activity, or yet-to-be-identified 

molecular events? Do these inspire novel drug targets to rewire 

the brain? We predict that investigating the molecular alterations 

and cellular mechanisms underlying energy homeostasis in neu

rons, but also glial cells, is important for better understanding 

evolutionarily conserved adaptations in feeding behavior. 

Further, this may guide drug discovery in obesity and related dis

orders to minimize comorbidities by identifying viable molecular 

and cellular targets for cardiometabolic health. Whether specif

ically targeting synaptic plasticity holds potential for future 

anti-obesity medications remains to be tested.

BRAIN-TARGETING WEIGHT LOSS 

PHARMACOTHERAPIES

Efforts to develop effective weight loss therapies have largely 

concentrated on targeting brain pathways to suppress appetite. 

Early drugs for obesity achieved this by influencing monoamin

ergic neurotransmitters, such as dopamine, norepinephrine, 

and serotonin. Some of these drugs are still used today, 

including the combination of phentermine (a norepinephrine 

transporter inhibitor) and topiramate (a glutamatergic modu

lator).16 Another example is bupropion, a dual reuptake inhibitor 

of dopamine and norepinephrine, paired with the opioid receptor 

antagonist, naltrexone. These combinations of small molecules 

typically result in 8%–10% weight loss, but they are also linked 

to a broad range of adverse events, including hypertension, 

increased heart rate, insomnia, and GI issues, in addition to psy

chiatric side effects, including mood changes and depression. In 

the 21st century, however, the focus of anti-obesity drug discov

ery has shifted from targeting classical neurotransmitter systems 

to leveraging the metabolic benefits of gut hormones.17,360

Clinical progression and success of incretin-based 

pharmacotherapies

The anorectic effects of GLP-1 were first observed in response to 

intracerebroventricular infusion of the hormone in rodents.361

Intravenous infusions of GLP-1 subsequently demonstrated 

that this gut peptide also lowers food intake and enhances 

satiety in humans.362 However, rapid enzymatic degradation 

and renal elimination of intestinally secreted incretins limit the 

exposure of native GLP-1, with ∼10% entering circulation and 

minimal amounts reaching the brain.363 Hence, the therapeutic 
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utility of native GLP-1 is hampered by its short half-life in plasma. 

However, innovative biochemical solutions have been engi

neered to improve the pharmacokinetic profile of peptide thera

peutics through fatty acid-mediated reversible binding to serum 

albumin.11 This strategy enabled the development of liraglu

tide,14 the first GLP-1-based drug amenable to daily dosing 

and to gaining regulatory approval for the treatment of obesity. 

In nondiabetic subjects with obesity, 56-week treatment with lir

aglutide resulted in a placebo-corrected average weight loss of 

5.4%, with one-third of participants achieving >10% body 

weight reduction.364 Using liraglutide as a starting point, chemi

cal optimization of the peptide backbone along with additional 

half-life extension technologies enabled the creation of semaglu

tide, a once-weekly GLP-1 analog.13 Semaglutide consistently 

provides superior improvements in glycemic control and body 

weight management relative to both placebo and other treat

ment options.365 Notably, patients living with obesity and without 

type 2 diabetes (T2D) achieved an average 14.9% body weight 

reduction over 68 weeks of treatment with semaglutide.366 For 

reasons that remain unclear, the weight loss efficacy of semaglu

tide is substantially reduced in patients with T2D, in addition to 

obesity, as this group of patients only achieves a 6.2% pla

cebo-corrected average weight loss after 68 weeks of treat

ment.367 Continued semaglutide treatment sustains the weight 

loss at its maximal level for up to 221 weeks, contingent on 

adherence to the drug regimen,368,369 resulting in long-term im

provements in cardiovascular health and reduced likelihood of 

developing T2D.368,370,371

Dual GLP-1 and amylin receptor agonism for obesity 

treatment

Given the heterogeneity and complex pathogenesis of obesity, 

combination therapies that target distinct central mechanisms 

controlling energy balance may enhance weight loss efficacy.15

Because amylin receptors (AMYRs) and GLP-1Rs exhibit distinct 

expression patterns in the brain, it was hypothesized that amylin 

could synergize with GLP-1-based drugs to enhance weight 

loss. Accordingly, cagrilintide, a long-acting amylin analog, 

was developed to create a suitable combination partner for sem

aglutide.372,373 In a phase 3 clinical trial, co-treatment with a 

fixed dose of cagrilintide and semaglutide (CagriSema374) re

sulted in an average 20.4% body weight reduction relative to pla

cebo after 68 weeks. However, the combination of two drugs 

complicates the regulatory pathway due to the risk of drug- 

drug interactions and potential differences in pharmacokinetic 

and pharmacodynamic properties. To address this, a head-to- 

tail fusion of the two analogs was achieved using a small peptide 

linker, successfully creating a single-molecule GLP-1R/AMYR 

co-agonist, known as amycretin. In a phase 1a/2b clinical trial, 

subcutaneous amycretin demonstrated significant efficacy, 

reducing body weight by an average of 24.0% over 36 weeks 

in otherwise healthy patients with obesity.375,376

Incretin hormone-based unimolecular multi-receptor 

agonists

The insulinotropic effects of GIP suggest that combining it with 

GLP-1 could provide superior glycemic control in patients with 

T2D. The first generation of a GLP-1-R/GIPR co-agonist was re

ported in 2013.377 This dual-incretin approach improves glyce

mic control and enhances weight loss in rodents and non-human 

primates. However, the compound only showed modest superi

ority to liraglutide in a phase 2b clinical trial,378 and the program 

was shelved in favor of advancing the parallel clinical develop

ment of semaglutide.379 Instead, another long-acting unimolec

ular GLP-1R/GIPR co-agonist, tirzepatide, was approved for 

obesity treatment in 2023. At the highest dose tested, tirzepatide 

elicits a placebo-corrected average weight loss of 17.8% in 

nondiabetic patients with obesity over 72 weeks.380 Extended 

treatment with tirzepatide for up to 3 years sustained this weight 

loss and nearly eliminated the progression of T2D in individuals 

with prediabetes.381 In patients with obesity and T2D, tirzepatide 

induced an average 11.6% placebo-corrected weight loss over 

72 weeks, nearly double the weight loss observed with semaglu

tide in the same patient population.382 In extension, evidence 

from an open-label phase 3b clinical trial highlights that tirzepa

tide outperforms semaglutide in terms of weight loss efficacy, 

seemingly without compromising safety and tolerability.383 This 

superiority of tirzepatide may stem from multiple mechanisms, 

including engagement of GIPR-mediated satiety signaling, futile 

calcium cycling in white adipose tissue,384 biased GLP-1R ago

nism,385,386 reduced emetic response to GLP-1,221 or a combi

nation of these factors.

Although mounting clinical evidence supports the additive 

metabolic benefits of combining GIPR and GLP-1R agonism, 

similar clinical outcomes have been observed from pairing 

GIPR antagonism with GLP-1R agonism.387 For instance, 1 

year of once-monthly treatment with maritide, a bispecific 

GIPR antagonist antibody derivatized with two GLP-1 analogs, 

delivered a 17.3% average weight loss in subjects with obesity 

but without diabetes and a 15.6% average weight loss in sub

jects suffering from both obesity and T2D.388 The paradoxical 

observation that both GIPR agonism and antagonism enhance 

the efficacy of GLP-1R agonists presents an intriguing avenue 

for future research in both academia and industry.389

The structural similarity of GLP-1 and GIP with glucagon has 

further motivated the engineering of chimeric peptide triple re

ceptor agonists.390,391 The rationale for targeting all three recep

tors is rooted in the complementary functions of GLP-1 and GIP 

in counteracting glucagon’s hyperglycemic effects while simul

taneously harnessing glucagon’s lipolytic and thermogenic 

properties to achieve improved metabolic outcomes. Clinical tri

als with retatrutide, the most advanced GLP-1R/GIPR/glucagon 

receptor (GCGR) triple agonist, have demonstrated unprece

dented weight loss efficacy in individuals with obesity but 

without T2D, with a safety profile similar to other incretin-based 

therapies. Findings from a phase 2 study revealed an average of 

22.1% placebo-corrected weight loss over 48 weeks at the high

est dose, with no plateau observed. Notably, 26% of participants 

in this group achieved a weight reduction exceeding 30%.392

Neural pathways mediating weight loss by GLP-1 

receptor agonists

Over the past decade, research has linked the effects of GLP-1R 

agonists on food intake, reward, and aversion to the activation of 

distinct GLP-1R populations across several brain regions. How

ever, clinically available GLP-1R agonists are unlikely to directly 
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reach regions beyond the CVOs and neighboring areas, such as 

the ARC and NTS.255,393,394 As a result, areas like the hippocam

pus, PFC, and VTA likely remain out of reach, meaning that the 

influence of GLP-1R agonists on motivational circuits, memory, 

and cognition are indirectly mediated through the CVOs and 

adjacent regions (Figure 6).

The weight-lowering benefits of GLP-1R agonists are primarily 

driven by a reduction in food intake (Figure 6). Early studies using 

loss-of-function mouse models suggested that the hypothala

mus plays a key role in mediating the appetite-suppressing ef

fects of GLP-1R agonists.255,395 Recent research continues to 

support the involvement of the hypothalamus,205,396–398 but the 

bulk of evidence points to GLP-1Rs on glutamatergic neurons 

in the DVC as one of the primary mediators of the appetite- 

and body weight-lowering effects of long-acting GLP-1R ago

nists245,399 (Figure 6). While there is consensus that GLP-1Rs 

in the AP mediate the aversive effects of these drugs,400 there 

is dissent about whether GLP-1Rs in the NTS are critical for their 

Figure 6. Brain-targeting anti-obesity pep

tide drugs 

Schematic illustration of current and emerging 

peptide-based anti-obesity medications and their 

proposed central mechanisms of action. These 

drugs are thought to act via access to circum

ventricular organs and adjacent regions, such as 

the area postreama (AP) and arcuate nucleus 

(ARC), where they engage neurons that project 

broadly to brain regions regulating both energy 

homeostasis, aversion and reward processing, 

and complex behavior.

long-term weight-lowering benefits. 

Some studies suggest that selectively 

targeting NTS GLP-1Rs, as opposed to 

AP GLP-1Rs, could potentially improve 

drug tolerability without compromising 

efficacy.253 However, other work empha

sizes that AP GLP-1Rs drive both the 

satiating and aversive effects, making it 

difficult to separate the anorectic and 

aversive responses by targeting GLP- 

1Rs in distinct brainstem areas or cell 

types, at least with our current under

standing.400

The potential of gut hormone mimetics 

in regulating motivation, reward, and 

addiction has gained increasing research 

interest. In preclinical models, GLP-1R ag

onists have been shown to influence 

macronutrient preference, reduce interest 

in palatable foods, and diminish the appeal 

of drugs of abuse.393,401–403 These effects 

have been linked to the ability of GLP-1R 

agonists to suppress dopamine activity in 

the NAc, which is triggered by drugs or 

palatable foods.404–406 The incretin- 

induced suppression of dopamine activity 

is likely indirect, as GLP-1R agonists are 

unlikely to access brain regions within the mesolimbic reward 

pathway following peripheral administration. Instead, GLP-1R 

activation in regions such as the NTS,407 lateral septum,322,403

and central amygdala408,409 has been proposed as critical hubs 

through which these drug-induced actions are propagated to 

mesolimbic sites. Real-world data suggest that semaglutide and 

tirzepatide prescriptions are linked to a lower risk of opioid and 

alcohol use disorders,402,410 supporting ongoing trials investi

gating GLP-1R agonists for treatment of addiction. For example, 

findings from a phase 2 trial showed that weekly injections with 

low-dose semaglutide reduce alcohol cravings and consumption, 

as well as the frequency of heavy drinking days in adults with 

alcohol use disorder symptoms.411

Neural pathways mediating weight loss by GIP receptor 

targeting

Emerging evidence indicates that long-acting GIPR agonists 

reduce food intake and body weight by directly modulating 
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central GABAergic neurons.257,412 Chemogenetic activation of 

GIPR-expressing cells in the hypothalamus or DVC reduces 

feeding. However, local genetic ablation of GIPRs in hypotha

lamic nuclei does not completely diminish the weight-lowering 

efficacy of incretin mimetics.267,413 While both GLP-1R and 

GIPR agonism indirectly inhibit AgRP neuron activity, recent 

findings indicate that GIP, but not GLP-1, is essential for 

nutrient-mediated inhibition of AgRP neurons, suggesting 

distinct physiological mechanisms of action of these two gut hor

mones in the CNS.414 Supporting this notion, single-cell RNA 

sequencing of hypothalami from both mice and humans has re

vealed that while GLP-1R-expressing cells in the hypothalamus 

are distributed between neurons and non-neuronal cells, a large 

part of GIPR-expressing cells are pericytes, oligodendrocytes, 

and vascular smooth muscle cells.196,197,415,416 This distinct 

cellular expression pattern of the receptor, combined with the 

emerging evidence of diverging mechanisms of action in the 

brain, suggests that molecular synergy may drive the superior 

weight loss efficacy of GLP-1R and GIPR co-agonists. Interest

ingly, GIPR agonism has been shown to alleviate some of the 

aversion associated with GLP-1R agonism in mice259 and hu

mans.417 This may be explained by the fact that GIPRs are ex

pressed on GABAergic AP neurons, raising the possibility that 

GIPR agonism may enhance the inhibitory input onto glutamater

gic AP GLP-1R neurons.234 Notably, GIPR antagonism does not 

seem to worsen GI adverse events in clinical trials with 

maritide.410

Emerging evidence shows that GIPR antagonism potentiates 

GLP-1R agonist-induced weight loss through differential 

neuronal mechanisms than GIPR agonism.418,419 While both 

whole-body and CNS deletion of GIPRs disrupts the body weight 

and food intake lowering effects of GIPR-blocking antibodies, 

deletion in the peripheral nervous system or specifically in 

GABAergic neurons does not impair its efficacy.418,419 Further

more, single-nucleus RNA sequencing of the DVC found that 

GIPR antagonism, but not agonism, induces transcriptional 

changes closely resembling GLP-1R agonism.419 In line with 

this observation, the weight-lowering effects of GIPR-blocking 

antibodies vanish in both global GLP-1R and GIPR knockout 

mice, indicating that GIPR antagonism not only depends on 

functional GIPR signaling but also on functional GLP-1R 

signaling.419 Supporting this idea, GIPR antagonists appear to 

primarily reduce food intake when used alongside GLP-1R 

therapy.420,421

Neural pathways mediating weight loss by amylin 

receptor agonism

AMYR agonists suppress food intake by engaging AMYRs in the 

CNS. AMYRs are heterodimeric complexes formed by the 

CALCR combined with a RAMP1, RAMP2, or RAMP3 protein. 

Fluorescently tagged amylin accumulates in the AP and ARC 

of mice after systemic administration,422 and administration of 

amylin directly into these brain regions lowers food intake in 

rats.423,424 CALCR neurons in the AP are glutamatergic, and che

mogenetic activation of these neurons robustly lowers food 

intake in rats,234,245 pointing to an importance of the AP in medi

ating the anorectic effects of amylin.125 As already introduced 

earlier, the AP is implicated in nausea-associated behaviors, 

including those elicited by GLP-1R agonists, yet chemogenetic 

activation of AP CALCR neurons fails to evoke conditioned taste 

aversion in mice.249 However, in clinical trials, the amylin analog, 

cagrilintide, did not improve the tolerability of semaglutide but 

instead dose-dependently increased GI adverse effects.397

Amylin also plays a role in the ARC. For example, in vivo moni

toring of calcium dynamics showed that high systemic doses of 

amylin inhibit AgRP neurons,158 while the effects of amylin on 

POMC neuron excitability remain unconfirmed. Electrophysio

logical studies further showed that amylin directly suppresses 

the activity induced by ghrelin in the hypothalamus,425 and opto

genetic stimulation of AgRP neurons can override the anorectic 

effects of amylin.263 Notably, amylin was one of the first hor

mones reported to restore leptin actions in obesity, supported 

by both preclinical and clinical data.426 In extension, exogenous 

amylin is reported to exert neurotrophic effects on early post

natal brain development, promoting axonal outgrowth of 

POMC and AgRP neurons to the PVN.427 The current literature 

on the actions of amylin in the brainstem and hypothalamus sug

gests that the weight loss effects of AMYR agonists may largely 

implicate satiation via AP neurons.

Targeting neuroplasticity for sustained weight loss

The advancement of incretin-based therapies for weight loss has 

revolutionized the treatment of obesity. However, it has become 

increasingly evident that this drug class lacks durable effects on 

body weight after treatment cessation, underscoring the distinct 

challenges of achieving initial weight loss versus maintaining it. 

Addressing this gap and developing treatments to sustain 

long-term weight loss represents a growing unmet medi

cal need.

In this context, ciliary neurotrophic factor (CNTF) serves as an 

early example of a molecule with sustained weight-lowering 

properties.428 Interestingly, both rodents429,430 and humans431

were observed to maintain reduced body weight for weeks to 

months after treatment cessation. Follow-up studies revealed 

that rat CNTF acts in the hypothalamus to promote neurogenesis, 

a mitogenic effect essential for its long-term weight-reducing ef

fect.430 However, this mechanism remains uncertain, as another 

study observed only limited neurogenesis in the hypothalamus 

3 weeks after 1 week of central administration of a human 

CNTF analog.432 Instead, CNTF has been linked to hypothalamic 

microglial activation and astrogliosis in the ARC433—changes 

that may reflect neuroinflammatory processes but could also 

indicate neurostructural remodeling. Several studies have 

emphasized an overlap between CNTF and leptin signaling, yet 

the sustained weight-lowering effects of CNTF appear to operate 

independently of the leptin-melanocortin pathway.428,429,434

While attempts to harness CNTF for obesity treatment were hin

dered by the development of neutralizing antibodies, investi

gating the mechanisms underlying CNTF’s durable weight- 

lowering effects offers a promising avenue for gaining inspiration 

to develop new therapies for maintaining weight loss.

In addition to CNTF, several other neurotrophic factors have 

been linked to obesity, including BDNF, nerve growth factor 

(NGF), vascular endothelial growth factor (VEGF), IGF-1, and glial 

cell-derived neurotrophic factor (GDNF). Among these, BDNF is 

arguably the most extensively studied in the context of energy 
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homeostasis and obesity. However, in contrast to CNTF, which 

has primarily gained attention for its pharmacological potential, 

human genetic studies have found that mutations in BDNF and 

its receptor, tropomyosin receptor kinase B (TRKB), predispose 

to obesity,435–437 attesting that this pathway may be crucial for 

the physiological regulation of energy homeostasis. Brain 

administration of recombinant BDNF suppresses appetite and 

increases energy expenditure to lower body weight in preclinical 

models of obesity and diabetes, emphasizing a therapeutic po

tential for BDNF mimetics. However, diverging pharmacological 

results have been observed in non-human primates, i.e., central 

administration leads to anorexia while peripheral administration 

stimulates food intake.438 Nonetheless, as a neurotrophic factor 

recognized to promote hippocampal neuroplasticity, it is plau

sible that BDNF influences energy balance by modulating synap

tic plasticity in feeding regions, such as the hypothalamus and 

brainstem.

Canonical metabolic hormones, such as ghrelin and leptin, are 

also known to influence synaptic activity and organization within 

hypothalamic neurocircuits that regulate feeding behavior.358

For example, leptin replacement therapy in leptin-deficient 

mice normalizes synaptic density, highlighting synaptic plasticity 

as a potential regulatory mechanism through which hormones 

modulate energy homeostasis.358 Incretin-based drugs have 

also been reported to influence synaptic plasticity, in association 

with changes in BDNF levels and synaptic markers, including 

postsynaptic density protein 95 (PSD-95).439,440

A key unresolved challenge is uncovering the mechanisms 

that enable sustained weight loss and appropriately counteract 

the neuroendocrine signaling and brain circuits that increase 

appetite or decrease energy expenditure to drive weight regain. 

CNTF presents one of the most promising frameworks for 

achieving this, underscoring the potential of further investigating 

hypothalamic neuroplasticity as a pathway for innovative and 

durable weight normalization strategies.

NMDA receptor targeting for treatment of obesity

The rise of GWAS and advancements in human genetics have 

uncovered key insights into obesity biology and thus brought 

about anticipation for leveraging this to develop novel therapeu

tics.441 Notably, several genes involved in glutamatergic 

signaling and NMDAR-mediated neuroplasticity have been 

linked to variations in BMI.70 A functional role for NMDAR-medi

ated synaptic plasticity in hypothalamic feeding control has been 

demonstrated in rodent models, where inhibition of glutamater

gic signaling in hunger-promoting AgRP neurons suppresses 

counter-regulatory hyperphagia in response to fasting.164 Also, 

attempts to pharmacologically leverage NMDAR antagonism 

for obesity treatment have shown signs of promise, indicated 

by addressing binge eating and antipsychotic-induced weight 

gain in humans.442,443 However, the ubiquitous expression of 

NMDARs in the CNS has made it difficult to achieve therapeutic 

efficacy that does not produce adverse effects.444,445

As an alternative, pharmacological modulation of NMDAR 

scaffolding proteins, such as PSD-95 and protein interacting 

with C kinase 1 (PICK1), provides a novel way to modify postsyn

aptic signaling beyond traditional receptor-targeting drugs. 

These proteins regulate glutamate receptor function, synaptic 

plasticity, and receptor trafficking within the postsynaptic den

sity and are genetically linked to human obesity.446 Peptide 

inhibitors targeting PSD-95 and PICK1 have demonstrated effi

cacy in preclinical models by reducing body weight and delaying 

weight regain compared with GLP-1R agonists or caloric restric

tion after treatment cessation.446

While the prolonged weight loss from NMDAR modulation is 

promising, its weight-lowering effects are far less prominent 

compared with incretin-based therapies. To overcome this, 

combining NMDAR antagonism with GLP-1R agonism in a pep

tide-drug conjugate has emerged as a promising strategy.445

This approach seeks to enhance weight loss by targeting both 

neuroplasticity and appetite-regulating pathways, specifically 

in GLP-1R-positive cells, while minimizing the adverse effects 

associated with broad NMDAR antagonism across the entire 

CNS. GLP-1-directed delivery of the NMDAR antagonist dizocil

pine (MK-801) to cells harboring the GLP-1R has been shown to 

effectively reverse obesity in preclinical models, with significant 

changes in the hypothalamic transcriptome and proteome, 

particularly in pathways linked to neuroplasticity and glutamater

gic signaling. However, further research is required to better un

derstand the interaction between NMDAR modulation and 

GLP-1R signaling, as well as to assess the long-term metabolic 

effects and safety. Finally, the implications of targeting modula

tors of synaptic plasticity to specific neuronal populations 

extend beyond obesity and could unveil new treatment avenues 

for a wide range of brain disorders.

CONCLUSIONS AND FUTURE PERSPECTIVES

The brain is a master regulator of energy homeostasis, seam

lessly integrating physiological and environmental signals to 

ensure optimal fuel availability for the body. Evolutionarily 

conserved neurocircuitry not only safeguard against starvation 

but also dynamically adapt to the ever-changing energy de

mands of growth, reproduction, and immune challenges. 

Furthermore, the inherently rewarding nature of food introduces 

a layer of complexity, intertwining homeostatic energy needs 

with motivational drives. Yet, despite significant advances in 

mapping neuroendocrine communication pathways and brain 

circuits that govern energy balance, the escalating global obesity 

epidemic—shaped by genetic predispositions and modern 

environmental factors—underscores the pressing need for 

continued research into the neurobiological control of energy ho

meostasis and the pathological hallmarks underlying obesity 

pathogenesis.

Recent advances in neurobiology, powered by transformative 

technologies such as functional circuit mapping, single-cell 

sequencing, and real-time imaging, have begun to unveil intri

cate networks spanning the hypothalamus, brainstem, and 

higher-order regions that orchestrate feeding behavior, energy 

expenditure, and fuel distribution. Together these findings have 

highlighted the brain’s remarkable plasticity in adapting to meta

bolic demands, continuously reshaping the strength and efficacy 

of neurocircuits to regulate energy homeostasis. However, the 

precise temporal and spatial dynamics of these plastic changes 

remain only poorly understood. Future research should aim 

to further elucidate these dynamics, with an emphasis on 
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identifying the nodes and mechanisms most amenable to thera

peutic intervention.

While we are still grappling to understand the pathogenesis of 

obesity, breakthroughs in medicinal chemistry have transformed 

the pharmacological treatment of obesity. The development of 

long-acting incretin-based drugs, notably GLP-1R agonists 

and next-generation combination therapies, has not only 

improved weight management but also demonstrated broader 

cardiometabolic benefits. Nonetheless, challenges persist in 

ensuring long-term efficacy and in overcoming adaptive, 

counter-regulatory mechanisms that may diminish treatment ef

fects over time.

Moving forward, a synergistic approach that integrates 

mechanistic insights into the physiological regulation of body 

weight and neurobiology of feeding with innovative pharmaco

logical strategies is essential. As we deepen our understanding 

of the neural circuits governing energy homeostasis—including 

their plasticity, spatial organization, and integration of periph

eral signals—we move closer to identifying precise nodes for 

therapeutic intervention. Translating these discoveries into tar

geted therapies will be key to achieving more effective and du

rable weight loss strategies. However, given the complexity of 

obesity pathogenesis, no single sector is likely to address this 

challenge alone. Meaningful progress will require interdisci

plinary collaboration between academia and the pharmaceu

tical industry to accelerate the translation of basic research dis

coveries into clinical solutions. The integration of neuroscience, 

biotechnology and drug development has the potential to 

deliver more targeted, durable, and individualized treatments 

for obesity and its cardiometabolic comorbidities.
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E., Mägi, R., Strawbridge, R.J., Pers, T.H., Fischer, K., Justice, A.E., et al. 

ll
OPEN ACCESS

Cell 188, August 7, 2025 4199 

Review 

https://doi.org/10.1093/hmg/ddy271
https://doi.org/10.1023/a:1025635913927
https://doi.org/10.1056/NEJM198601233140401
https://doi.org/10.1056/NEJM198601233140401
https://doi.org/10.1056/NEJM199005243222102
http://refhub.elsevier.com/S0092-8674(25)00677-4/sref54
http://refhub.elsevier.com/S0092-8674(25)00677-4/sref54
http://refhub.elsevier.com/S0092-8674(25)00677-4/sref54
http://refhub.elsevier.com/S0092-8674(25)00677-4/sref54
https://doi.org/10.3389/fendo.2012.00029
https://doi.org/10.3945/ajcn.117.153643
https://doi.org/10.3945/ajcn.117.153643
https://doi.org/10.1056/NEJM199005243222101
https://doi.org/10.1002/j.1550-8528.1994.tb00087.x
https://doi.org/10.1002/j.1550-8528.1994.tb00087.x
https://doi.org/10.1038/sj.ijo.0801358
https://doi.org/10.1038/s41588-017-0011-x
https://doi.org/10.1016/j.cell.2019.03.044
https://doi.org/10.1016/j.cell.2019.03.044
https://doi.org/10.1371/journal.pgen.1007603
https://doi.org/10.1126/science.abf8683
https://doi.org/10.1126/science.abf8683
https://doi.org/10.1038/sj.ijo.0801610
https://doi.org/10.1007/s40618-017-0732-9
https://doi.org/10.1038/s41574-023-00862-z
https://doi.org/10.1038/s41574-023-00862-z
https://doi.org/10.1038/nrg1556
https://doi.org/10.1210/er.2006-0040
https://doi.org/10.1111/obr.13795
https://doi.org/10.1111/obr.13795
https://doi.org/10.1038/nature14177
https://doi.org/10.1038/ng.3951
https://doi.org/10.1038/ng.3951
https://doi.org/10.1038/ncomms6890
https://doi.org/10.1038/ncomms6890
https://doi.org/10.7861/clinmedicine.16-6-551
https://doi.org/10.1038/srep14726
https://doi.org/10.1098/rstb.2022.0223
https://doi.org/10.1098/rstb.2022.0223
https://doi.org/10.1038/s41586-019-1879-7
https://doi.org/10.1038/ng.686
https://doi.org/10.1038/ncomms14977
https://doi.org/10.1038/ncomms14977
https://doi.org/10.1016/j.ajhg.2024.04.016
https://doi.org/10.1016/j.ajhg.2024.04.016


(2015). New genetic loci link adipose and insulin biology to body fat dis

tribution. Nature 518, 187–196. https://doi.org/10.1038/nature14132.

81. Justice, A.E., Karaderi, T., Highland, H.M., Young, K.L., Graff, M., Lu, Y., 

Turcot, V., Auer, P.L., Fine, R.S., Guo, X., et al. (2019). Protein-coding 

variants implicate novel genes related to lipid homeostasis contributing 

to body-fat distribution. Nat. Genet. 51, 452–469. https://doi.org/10. 

1038/s41588-018-0334-2.

82. Saeed, S., Bonnefond, A., and Froguel, P. (2025). Obesity: exploring its 

connection to brain function through genetic and genomic perspectives. 

Mol. Psychiatry 30, 651–658. https://doi.org/10.1038/s41380-024- 

02737-9.

83. Hall, K.D., Heymsfield, S.B., Kemnitz, J.W., Klein, S., Schoeller, D.A., and 

Speakman, J.R. (2012). Energy balance and its components: implications 

for body weight regulation. Am. J. Clin. Nutr. 95, 989–994. https://doi.org/ 

10.3945/ajcn.112.036350.

84. Lund, J., Gerhart-Hines, Z., and Clemmensen, C. (2020). Role of Energy 

Excretion in Human Body Weight Regulation. Trends Endocrinol. Metab. 

31, 705–708. https://doi.org/10.1016/j.tem.2020.06.002.

85. Sørensen, T.I.A. (2009). Challenges in the study of causation of obesity. 

Conference on ‘Multidisciplinary approaches to nutritional problems’. 

Symposium on ‘Diabetes and health’. Proc Nutr Soc 68, 43–54. https:// 

doi.org/10.1017/S0029665108008847.

86. Ludwig, D.S., and Sørensen, T.I.A. (2022). An integrated model of obesity 

pathogenesis that revisits causal direction. Nat. Rev. Endocrinol. 18, 

261–262. https://doi.org/10.1038/s41574-022-00635-0.

87. Magkos, F., Sørensen, T.I.A., Raubenheimer, D., Dhurandhar, N.V., Loos, 

R.J.F., Bosy-Westphal, A., Clemmensen, C., Hjorth, M.F., Allison, D.B., 

Taubes, G., et al. (2024). On the pathogenesis of obesity: causal models 

and missing pieces of the puzzle. Nat. Metab. 6, 1856–1865. https://doi. 

org/10.1038/s42255-024-01106-8.

88. Hill, J.O., and Peters, J.C. (1998). Environmental contributions to the 

obesity epidemic. Science 280, 1371–1374. https://doi.org/10.1126/sci

ence.280.5368.1371.

89. Hall, K.D., Farooqi, I.S., Friedman, J.M., Klein, S., Loos, R.J.F., Mangels

dorf, D.J., O’Rahilly, S., Ravussin, E., Redman, L.M., Ryan, D.H., et al. 

(2022). The energy balance model of obesity: beyond calories in, calories 

out. Am. J. Clin. Nutr. 115, 1243–1254. https://doi.org/10.1093/ajcn/ 

nqac031.

90. Ludwig, D.S., Aronne, L.J., Astrup, A., de Cabo, R., Cantley, L.C., Fried

man, M.I., Heymsfield, S.B., Johnson, J.D., King, J.C., Krauss, R.M., 

et al. (2021). The carbohydrate-insulin model: a physiological perspective 

on the obesity pandemic. Am. J. Clin. Nutr. 114, 1873–1885. https://doi. 

org/10.1093/ajcn/nqab270.

91. Sørensen, T.I.A. (2023). An adiposity force induces obesity in humans 

independently of a normal energy balance system—a thought experi

ment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 378, 20220203. https:// 

doi.org/10.1098/rstb.2022.0203.

92. Heindel, J.J., Lustig, R.H., Howard, S., and Corkey, B.E. (2024). Obeso

gens: a unifying theory for the global rise in obesity. Int. J. Obes. (Lond.) 

48, 449–460. https://doi.org/10.1038/s41366-024-01460-3.

93. Watts, A.G., Kanoski, S.E., Sanchez-Watts, G., and Langhans, W. (2022). 

The physiological control of eating: signals, neurons, and networks. Phys

iol. Rev. 102, 689–813. https://doi.org/10.1152/physrev.00028.2020.

94. Manceau, R., Majeur, D., and Alquier, T. (2020). Neuronal control of pe

ripheral nutrient partitioning. Diabetologia 63, 673–682. https://doi.org/ 

10.1007/s00125-020-05104-9.

95. Begg, D.P., and Woods, S.C. (2013). The endocrinology of food intake. 

Nat. Rev. Endocrinol. 9, 584–597. https://doi.org/10.1038/nrendo. 

2013.136.

96. Pedersen, B.K. (2019). Physical activity and muscle-brain crosstalk. Nat. 

Rev. Endocrinol. 15, 383–392. https://doi.org/10.1038/s41574-019- 

0174-x.
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Miquel-Rio, L., Pozo, M., Chivite, I., Altirriba, J., Obri, A., Gómez-Valadés, 
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