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Abstract
Chronic liver disease has become a global health crisis, with increasing incidence 
and mortality rates placing a substantial burden on healthcare systems world-
wide. A key factor in the progression of chronic liver disease is intestinal micro-
biota dysbiosis, which influences liver function via the intricate liver-gut axis. This 
axis plays a central role in various physiological processes, and disruptions in 
microbial composition can exacerbate liver pathology. Fecal microbiota transplan-
tation (FMT) has emerged as a promising therapeutic strategy, with the potential 
to restore the composition and metabolic functions of the intestinal microbiota. 
Supported by encouraging findings from clinical trials and animal studies, FMT 
has demonstrated therapeutic benefits, including improvements in clinical symp-
toms, objective indicators, and long-term prognosis. These benefits encompass 
reductions in hepatic lipid deposition and inflammation, mitigation of compli-
cations in advanced liver disease, promotion of hepatitis B e antigen seroconver-
sion, and enhancement of cognitive function. Although clinical evidence remains 
preliminary, current data underscore the transformative potential of FMT in 
managing chronic liver diseases. Nonetheless, challenges persist, including the 
need for standardized procedures, variability among donors, potential risks, and 
concerns regarding long-term safety. This review provides a comprehensive eva-
luation of the current literature on the efficacy and safety of FMT, while exploring 
future research directions to expand its application in liver disease management.
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Core Tip: Fecal microbiota transplantation shows significant potential in treating chronic liver diseases by improving liver 
inflammation, biomarkers, lipid metabolism, and cognitive function. It works through the liver-gut axis, restoring intestinal 
microbiota balance. Despite promising results, challenges remain in donor selection, standard treatment protocols, and long-
term safety. Ongoing clinical trials and further research are needed to refine protocols and establish standardized approaches 
for optimal efficacy and safety in managing chronic liver diseases.
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INTRODUCTION
Chronic liver disease, one of the most prevalent global conditions, has become a significant burden due to rising inci-
dence and mortality rates. It encompasses disorders such as metabolic dysfunction-associated steatotic liver disease 
[MASLD, formerly known as non-alcoholic fatty liver disease (NAFLD)], alcoholic liver disease (ALD), chronic viral 
hepatitis, drug-related liver disease, and autoimmune liver disease, all of which can progress to cirrhosis and liver cancer. 
In accordance with current nomenclature guidelines, this manuscript adopts the term MASLD. However, in sections 
discussing studies on fecal microbiota transplantation (FMT), original terms such as NAFLD are retained to accurately 
reflect the terminology used by the original authors, thereby maintaining fidelity to the cited sources. The progression of 
chronic liver disease is influenced by a complex interplay of factors. Recent studies have underscored the critical role of 
the intestinal microbiota in both the onset and progression of chronic liver disease[1,2]. This dynamic ecosystem is shaped 
by factors such as delivery method, race, age, sex, diet, comorbidities, and medications[3], and plays a central role in 
nutrient absorption and immune regulation. Dysbiosis-characterized by alterations in the composition, diversity, stability, 
and function of the microbiota-reflects a shift from a healthy to a disease-associated profile. Such imbalances can contri-
bute to disease progression via the liver-gut axis and are correlated with disease severity.

FMT is an innovative and increasingly studied therapeutic approach aimed at restoring microbial balance by trans-
ferring processed fecal material from a healthy donor into the gastrointestinal tract of a recipient. The procedure typically 
involves several key steps: Screening donors to ensure safety and rule out transmissible diseases; processing fecal 
samples into a transplantable form; administering the material via the upper or lower gastrointestinal tract (commonly 
through colonoscopy, nasogastric/nasojejunal tube, enema, or oral capsules); and conducting clinical follow-up to assess 
treatment efficacy, safety, and potential adverse events. FMT has shown the potential to re-establish microbial homeosta-
sis, enhance intestinal barrier integrity, reduce inflammation, and influence liver-related outcomes, demonstrating 
promise in improving the prognosis of various diseases (Figure 1).

This review provides a comprehensive overview of the development and application of FMT in chronic liver disease, 
highlighting its transformative potential in current and future treatment strategies. By examining its role in liver disease 
management, this review emphasizes FMT’s emerging significance as a groundbreaking therapeutic approach, offering 
critical insights into how it could reshape the treatment landscape and pave the way for future innovations in this rapidly 
evolving field.

FMT AND LIVER DISEASE
The therapeutic mechanism of FMT in chronic liver disease was based on the liver-gut axis, an intricate network in-
volving the intestinal microbiota, liver, portal vein, and biliary tract (Figure 2). The intestinal barrier served as the first 
line of defense in maintaining the homeostasis of this axis and comprised the intestinal epithelial barrier, mucus barrier, 
and immune barrier. Intestinal epithelial cells, goblet cells, Paneth cells, and enteroendocrine cells formed the epithelial 
barrier through tight junction proteins that tightly connected adjacent cells. Goblet cells secreted a thick mucus layer rich 
in highly glycosylated mucins, mainly mucin 2, forming the mucus barrier. Immune cells within the intestine contributed 
to the immune barrier. Paneth cells produced various antimicrobial peptides (AMPs), such as defensins and lysozyme, 
which exhibited innate antimicrobial activity and helped prevent the overgrowth of pathogenic bacteria. Due to their 
structural diversity and membrane-targeting mechanisms, most bacteria were unlikely to develop resistance to AMPs. 
Collectively, these barriers separated the intestinal microbiota from host immune cells, preventing excessive inflam-
matory responses and allowing microbiota to interact with the host indirectly through metabolites. Short-chain fatty acids 
(SCFAs) and secondary bile acids (BAs) were two major metabolites produced by the microbiota. SCFAs and BAs 
maintained intestinal barrier integrity and modulated immune responses through multiple pathways, enhancing anti-
inflammatory effects and mitigating liver damage[4,5]. Under physiological conditions, microbe-associated molecular 
patterns (MAMPs)-originating from gut microbiota, such as lipopolysaccharide (LPS), peptidoglycan, and bacterial DNA-
remained concealed within the gut to prevent unnecessary immune activation.

https://www.wjgnet.com/1007-9327/full/v31/i28/105089.htm
https://dx.doi.org/10.3748/wjg.v31.i28.105089
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Figure 1 Applications of fecal microbiota transplantation in infectious and noninfectious diseases. Besides recurrent Clostridium difficile infec-
tion, the applications of fecal microbiota transplantation have been extended to noninfectious diseases, including neuropsychiatric diseases, metabolic diseases, 
digestive diseases, autoimmune diseases, and other diseases such as melanoma, epithelial tumors, graft-versus-host disease, and polycystic ovary syndrome. HIV: 
Human immunodeficiency virus; rCDI: Recurrent Clostridium difficile infection. Created with BioRender (Supplementary material).

However, in chronic liver disease, this homeostasis was disrupted. A key feature was small intestinal bacterial over-
growth (SIBO), particularly common in patients with portal hypertension and spontaneous bacterial peritonitis[6]. SIBO 
involved either an abnormally high bacterial load in the small intestine or a shift in microbiota composition, typically 
marked by overgrowth of colonic bacteria. Several factors contributed to SIBO in liver disease. In cirrhosis, portal hyper-
tension led to intestinal congestion and reduced gut motility, promoting bacterial stasis[7]. Long-term use of proton 
pump inhibitors in these patients reduced gastric acid secretion, weakening the stomach’s natural defense and increasing 
susceptibility to bacterial colonization[8]. Both SIBO and gut dysbiosis elevated levels of LPS, which downregulated tight 
junction proteins and impaired the intestinal barrier. When hepatocyte damage and barrier permeability increased, 
bacteria and MAMPs translocated via the portal vein to the liver, activating Toll-like receptors (TLRs) on Kupffer cells and 
hepatic stellate cells. Activated TLRs triggered downstream signaling cascades, promoted a pro-inflammatory state in the 
liver, and upregulated downstream pro-inflammatory cytokines. This inflammatory cascade contributed to the progre-
ssion of liver fibrosis[9].

Patients with chronic liver disease exhibited a significantly altered intestinal microbiota composition compared to 
healthy controls[10,11]. Moreover, the severity of intestinal microbiota dysbiosis was closely associated with the extent of 
intestinal barrier damage and the progression of liver disease, including hepatic inflammation, fibrosis, cirrhosis, and 
carcinogenesis, regardless of etiology[12]. For example, Klebsiella pneumoniae (K. pneumoniae) was found to be closely 
associated with the development of fatty liver disease. This bacterium produced ethanol, which induced mitochondrial 
dysfunction in hepatocytes, promoted oxidative stress (accumulation of reactive oxygen species), and enhanced lipid 
peroxidation (elevated thiobarbituric acid-reactive substances), ultimately leading to hepatic fat accumulation[13]. 
Additionally, K. pneumoniae disrupted the intestinal barrier by downregulating tight junction proteins [Occludin and 
occlusion band 1 (ZO-1)], further contributing to the progression of NAFLD. Escherichia coli (E. coli) downregulated the 
Wnt/β-catenin signaling pathway, disrupted the gut-vascular barrier, and damaged the intestinal epithelial barrier[14], 

https://f6publishing.blob.core.windows.net/fab041e6-75e0-4562-b2a4-73d27b7cc7f2/105089-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/fab041e6-75e0-4562-b2a4-73d27b7cc7f2/105089-supplementary-material.pdf


Ma L et al. FMT in chronic liver disease

WJG https://www.wjgnet.com 4 July 28, 2025 Volume 31 Issue 28

Figure 2 Bidirectional communication between the intestine and liver. a: Intestinal epithelial cells are tightly connected to adjacent cells through apical 
ligand proteins to seal the intercellular space between them; b: Paneth cells can secrete a range of antimicrobial peptides (AMPs); c: Goblet cells can produce mucin 
2 that is made of the mucus barrier. The mucus barrier comprises two layers: An inner dense layer (in blue) close to the epithelial cells, where the inner mucus is 
almost sterile because of AMPs, and a loose outer layer (in pink) colonized by intestinal microbiota; d: The lamina propria is rich in immune cells. Dendritic cells can 
capture luminal bacteria and antigens by inserting dendrites between tight junctions. Plasma cells can promote the secretion of dimer IgA. Secretory immunoglobulin 
A is transported through epithelial cells to the intestinal lumen, where it can limit the colonization and proliferation of potential pathogens; e: Short-chain fatty acids, a 
major metabolite of intestinal microbiota, can maintain the integrity of the intestinal barrier; f: The liver secretes primary bile acids (BAs) through the biliary duct into 
the intestinal lumen. Then, colonic bacteria partially convert them into secondary BAs; g: BAs can induce the transcription of fibroblast growth factor 19 (FGF19) by 
binding to the farnesoid X receptor of enterocytes in the intestine. Then, FGF19 reaches the liver via the portal vein. It can downregulate the synthesis of new BAs by 
inhibiting cholesterol 7a-hydroxylase in hepatocytes; h: Microbe-associated molecular patterns, the metabolites of intestinal microbiota, enter the liver through the 
portals vein and activate Toll-like receptors (TLRs) on Kupffer and hepatic stellate cells when the cells are damaged. Activated TLRs promote the upregulation of 
downstream pro-inflammatory cytokines. CYP7A1: Cholesterol 7a-hydroxylase; FGF19: Fibroblast growth factor 19; FXR: Farnesoid X receptor; MUC2: Mucin 2; 
REG3α: Recombinant regenerating islet-derived protein 3 alpha; SCFA: Short-chain fatty acids; SIgA: Secretory immunoglobulin A; TLR: Toll-like receptor; ZO-1: 
Occlusion band 1. Created with BioRender (Supplementary material).

thereby promoting bacterial and MAMP translocation and triggering inflammation. Furthermore, through the TLR5/
MYD88/NF-κB pathway, E. coli activated the transcription factor TWIST1, which induced endothelial-to-mesenchymal 
transition in liver sinusoidal endothelial cells. These cells subsequently secreted pro-fibrotic factors, exacerbating hepatic 
stellate cell activation and collagen deposition[15]. In addition, Streptococcus salivarius and Streptococcus vestibularis, both 
urease-producing bacteria, degraded urea to produce ammonia and endotoxins. Hyperammonemia crossed the blood-
brain barrier, led to astrocyte swelling, and triggered hepatic encephalopathy (HE)[16]. Thus, intestinal microbiota dys-
biosis promoted the progression of liver inflammation and fibrosis. As a therapeutic strategy, FMT was successfully 
applied to improve the composition and metabolic function of the intestinal microbiota, offering a promising treatment 
for various liver diseases.

https://f6publishing.blob.core.windows.net/fab041e6-75e0-4562-b2a4-73d27b7cc7f2/105089-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/fab041e6-75e0-4562-b2a4-73d27b7cc7f2/105089-supplementary-material.pdf
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FMT AND NAFLD/MASLD
NAFLD is a major cause of chronic liver disease worldwide and represents the hepatic manifestation of metabolic 
syndrome, primarily characterized by intrahepatocellular triglyceride accumulation. Approximately 20% of patients with 
NAFLD progress to nonalcoholic steatohepatitis (NASH), a more severe phenotype marked by hepatic inflammation and 
hepatocyte death[17]. Le Roy et al[18] demonstrated that FMT from NAFLD model mice to germ-free recipients induced 
hepatic steatosis, increased hepatic triglyceride levels, and promoted de novo lipogenesis, highlighting the pivotal role of 
the intestinal microbiota in NAFLD pathogenesis. Similarly, microbiota derived from obese individuals induced hepatic 
steatosis in germ-free mice by altering the transcriptional profile of lipid metabolism genes[19]. These findings under-
score the role of gut microbiota alterations in driving NAFLD progression. FMT from healthy donors may help correct 
dysbiosis and thereby offer therapeutic benefits in NAFLD.

Zhou et al[20] applied FMT to a mouse model of steatohepatitis. FMT corrected high-fat diet-induced intestinal micro-
biota dysbiosis by increasing the abundance of beneficial bacteria such as Christensenellaceae and Lactobacillus. It also 
upregulated the expression of ZO-1, an intestinal tight junction protein, thereby improving intestinal permeability and 
alleviating endotoxemia. Typical histological features of NAFLD, such as intrahepatocellular lipid accumulation, were 
significantly improved, indicating that FMT mitigated high-fat diet-induced metabolic disorders. In a rat model of NASH, 
García-Lezana et al[21] found that heterologous FMT (hFMT) improved intestinal microbiota health-evidenced by 
restored microbial α-diversity, a shift in composition toward that of healthy controls (with decreased Firmicutes and 
increased Bacteroidetes), and elevated levels of Clostridium and Adlercreutzia, which negatively correlated with portal 
pressure-and normalized portal hypertension. These animal studies encouraged further investigation of FMT for ma-
naging liver disease (Table 1). A randomized controlled trial demonstrated that NAFLD patients receiving FMT from 
vegetarian donors exhibited altered intestinal microbiota composition, an increase in beneficial SCFA-producing bacteria 
(Ruminococcus, Eubacterium hallii, and Faecalibacterium), lower histological necroinflammation scores (NAFLD activity 
score), and reduced expression of genes related to liver inflammation and lipid metabolism (ARHGAP18 and serine 
dehydratase) compared to those receiving autologous FMT[22]. These findings suggest that FMT may improve outcomes 
in NASH progression and cirrhosis. Craven et al[23] also confirmed that hFMT significantly reduced small intestinal 
permeability in NAFLD patients, enhancing intestinal barrier function. Recently, Xue et al[24] evaluated oral probiotics 
and FMT in NAFLD patients, showing that FMT improved intestinal dysbiosis by increasing SCFA-producing bacteria 
such as (Eubacterium) coprostanoligenes group, (Eubacterium) ruminantium group, Prevotella 2, and uncultured Roseburia spp., 
while reducing pro-inflammatory taxa including the (Ruminococcus) gnavus group and Escherichia-Shigella. FMT also 
significantly reduced hepatic fat deposition, as evidenced by decreased FibroScan liver fat attenuation values. Notably, 
FMT was more effective in restoring the intestinal microbiota in lean NAFLD patients than in obese ones. In conclusion, 
by restoring microbiota balance, FMT may reduce hepatic lipid deposition and inflammation, and decrease portal 
hypertension and intestinal permeability in NAFLD patients. Currently, six registered clinical trials (Table 2) are invest-
igating the potential benefits of FMT on hepatic steatosis.

FMT AND ALD
Alcohol abuse remains a global health concern, with alcohol-related deaths accounting for nearly 90% of liver disease 
mortality in some countries[25]. ALD involves extensive liver damage and metabolomic alterations caused by excessive 
alcohol consumption, with severe alcoholic hepatitis (SAH) representing its most critical form. SAH carries a high short-
term mortality rate of 13%-30% within 28 days and a one-year mortality or liver transplantation rate approaching 60%. 
Current treatments for SAH are limited. Although glucocorticoids reduce 28-day mortality in some patients, their long-
term benefits remain unclear, and some patients are intolerant to them[26]. Therefore, novel therapeutic options are 
urgently needed. Research suggests that the severity of liver damage in ALD is strongly influenced by alcohol-induced 
intestinal microbiota dysbiosis[27], making FMT a promising strategy for SAH.

In 2016, Llopis et al[11] demonstrated that mice transplanted with feces from a patient with SAH developed liver 
damage after alcohol feeding. In contrast, mice receiving microbiota from a patient with alcoholism but without alcoholic 
hepatitis showed partial improvement in alanine aminotransferase levels, liver steatosis, and inflammation scores despite 
continued alcohol exposure. This indicated that FMT could mitigate alcohol-induced liver injury by restoring intestinal 
microbiota balance, even without alcohol cessation. In 2017, another study confirmed distinct intestinal microbiota pro-
files in alcohol-sensitive vs alcohol-tolerant mice[28]. Transplanting feces from alcohol-tolerant to alcohol-sensitive mice 
three times weekly normalized the latter’s microbiota composition, transaminase levels, and liver inflammatory markers 
to resemble those of the tolerant donors. Furthermore, the number of mucin-producing goblet cells and the expression of 
AMPs increased, suggesting that FMT modified the microbiota and inhibited ALD progression. More recently, FMT was 
found to reduce ethanol acceptance, intake, and preference in a mouse model of alcohol use disorder[29], implying 
potential benefits in early-stage ALD. Overall, FMT has advanced significantly in managing ALD patients in recent years 
(Table 1).

Philips et al[30] conducted extensive clinical research on SAH. The first clinical report of FMT in SAH was published in 
2017. A corticosteroid-resistant SAH patient received daily FMT for 7 days, resulting in changes in intestinal microbiota 
composition and improvements in HE, bilirubin levels, coagulation markers, and model for end-stage liver disease 
(MELD) scores. Notably, these improvements persisted for one month. Later that year, Philips et al[31] conducted a 
prospective clinical trial involving eight steroid-ineligible SAH patients who received FMT via a nasoduodenal tube for 7 
consecutive days. The FMT group showed significant microbiota changes (decreased pathogenic bacteria, such as K. 
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Table 1 Clinical trials and animal studies on fecal microbiota transplantation for chronic liver disease treatment

Disease Ref. Year Type Comparison Frequency Key findings

Zhou et al[20] 2017 Mice Control vs HFD vs 
HFD + FMT

8 consecutive 
weeks

FMT mitigated HFD-induced steatohep-
atitis through its beneficial effects on 
intestinal microbiota

García-Lezana et 
al[21]

2018 Rat Autologous FMT vs 
allogenic FMT

Once Allogeneic FMT led to a significant 
decrease in portal vein pressure

Witjes et al[22] 2020 Human Autologous FMT vs 
lean vegan donor FMT

3 times within 
eight weeks

After allogeneic FMT, the expression of 
hepatic genes related to lipid metabolism 
and inflammation was significantly 
reduced. The observed changes in 
intestinal microbiota composition were 
found to be connected to changes in 
plasma metabolites and markers

Craven et al[23] 2020 Human Autologous FMT vs 
allogenic FMT

Once Patients who received allogeneic FMT 
showed a significant reduction in intestinal 
permeability after 6 weeks

MASLD/NAFLD

Xue et al[24] 2022 Human Oral probiotics vs FMT 
+ three enemas

Once FMT effectively improved the therapeutic 
outcomes in NAFLD patients. It 
demonstrated greater efficacy in lean 
NAFLD patients than those with obesity

Llopis et al[11] 2016 Mice SAH FMT vs 
alcoholism FMT

Once Transplanting intestinal microbiota from 
mice with alcoholism, but without AH, 
alleviated alcohol-induced liver injury

Ferrere et al[28] 2017 Mice Pectin vs FMT One per week Manipulating the intestinal microbiota can 
prevent alcohol-induced liver injury, 
positioning it as a new therapeutic target 
for ALD

Wolstenholme et 
al[29]

2022 Mice Placebo vs FMT Once Mice in the FMT group reduced ethanol 
acceptance, intake, and preference

Philips et al[30] 2017 Human Case report 7 consecutive 
days

After FMT, clinical indicators, biochemical 
markers, and severity scores improved in 
SAH patients, with significant changes in 
intestinal microbiota observed

Philips et al[31] 2017 Human Control vs FMT 7 consecutive 
days

After FMT, there was a improvement in 
liver disease severity, an increase in 
survival rates, and notable changes in the 
composition of the intestinal microbiota

Philips et al[32] 2018 Human Corticosteroids vs 
nutrition vs pentoxi-
fylline vs FMT

7 consecutive 
days

FMT showed a higher survival rate 
compared to other treatments for SAH, 
potentially serving as a cost-effective 
bridge to liver transplantation or 
improving survival without it

Philips et al[33] 2022 Human Pentoxifylline vs FMT 7 consecutive 
days

FMT improves 6-month survival and 
reduces liver-related complications, related 
to beneficial modulation of the gut 
microbiota

Philips et al[34] 2022 Human SOC vs FMT 7 consecutive 
days

FMT significantly reduces ascites, 
infections, encephalopathy, and alcohol 
relapse, with a trend toward higher 
survival, associated with beneficial 
modulation of the gut microbiota

Sharma et al[35] 2022 Human SOC vs FMT Once FMT is safe and could improve short- and 
medium-term survival rates, and clinical 
severity scores in patients with SAH-ACLF

ALD

Pande et al[36] 2023 Human Prednisolone vs FMT 28 consecutive 
days

FMT is safe, improves 90-day survival, and 
reduces infections by positively 
modulating microbial communities

Ren et al[39] 2017 Human Antiviral therapy vs 
antiviral therapy + 
FMT

Once every 4 
weeks, until 
HBeAg clearance 
was achieved

In patients with sustained positive HBeAg 
after long-term antiviral therapy, FMT can 
reduce or even eliminate HBeAg levels

CHB

Chauhan et al[40] 2021 Human Antiviral therapy vs 
antiviral therapy + 
FMT

Once every 4 
weeks for a total 
of six times

FMT is safe and effective in HBeAg 
clearance in HBeAg-positive CHB patients
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Philips et al[43] 2018 Human Case report Once a week for a 
total of four times

After FMT, significant changes were 
observed in the liver biochemistry, bile 
acids, and the composition of the intestinal 
microbiota in PSC patients

PSC

Allegretti et al[46] 2019 Human Control vs FMT Once The improvement in ALP levels may be 
linked to an increase in the diversity of the 
intestinal microbiota, as well as the 
frequency of FMT

AIH Liang et al[47] 2021 Mice Control vs FMT 28 consecutive 
days

FMT can alleviate liver injury and bacterial 
translocation, partially reverse the 
elevation of serum ALT and AST, restore 
the balance between follicular regulatory T 
and helper T cells in the spleen, and 
effectively correct the intestinal microbiota 
dysbiosis

Wang et al[51] 2017 Rat Control vs probiotics 
vs low-dose FMT vs 
moderate-dose FMT vs 
high-dose FMT

3 consecutive 
weeks

FMT prevents liver necrosis, improves 
behavioral performance, HE scores, and 
spatial learning ability in rats, enhances the 
expression of intestinal tight junction 
proteins, and repairs intestinal mucosal 
barrier damage. It also reduces the 
expression of TLR4 and TLR9 in the liver, 
along with a decrease in circulating pro-
inflammatory factors (IL-1β, IL-6, TNF)

Kao et al[52] 2016 Human Case report Once a week for 5 
times

FMT can reverse intestinal microbiota 
dysbiosis and lead to the obvious 
improvement of cognitive function in 
dominant HE

Bajaj et al[53] 2017 Human SOC vs FMT + SOC Once FMT can reduce the hospitalization rate, 
improve cognitive function, and restore 
intestinal microbiota dysbiosis

Bajaj et al[54] 2019 Human SOC vs FMT + SOC Once Follow-up for more than one year 
demonstrated that the positive effects of 
FMT may be long-lasting

Bajaj et al[55] 2019 Human Placebo capsules vs 
FMT capsules

15 capsules Oral FMT capsules are safe and well-
tolerated. FMT is associated with 
improvements in duodenal mucosal 
diversity, intestinal microbiota dysbiosis, 
and AMP expression, along with a 
decrease in LBP levels and better 
performance in the brain App test

Bajaj et al[56] 2019 Human Placebo capsules vs 
FMT capsules

15 capsules FMT has a beneficial effect on the intestinal 
microbiome function in patients with 
cirrhosis, leading to improvements in 
inflammation and cognitive performance. 
However, recipients with lower levels of 
secondary bile acids may experience 
poorer outcomes

Bloom et al[57] 2022 Human Case report 5 doses of 15 
capsules within 3 
weeks

FMT capsules improved cognitive 
performance in patients with HE, with the 
effect varying based on both donor and 
recipient factors

Mehta et al[59] 2018 Human Case report Once FMT can significantly reduce arterial 
ammonia concentrations, alleviate 
neurological symptoms, and lower CTP 
and MELD scores in patients with HE

Li et al[60] 2022 Human Case report 3 times FMT can improve liver function, relieve 
clinical symptoms, and significantly reduce 
the number of HE episodes in patients

Huang et al[61] 2021 Rat Sham operation vs 
BDL vs BDL + FMT vs 
BDL + GMT

5 consecutive 
days

FMT increased the abundance of Bifidobac-
terium and significantly reduced portal 
vein pressure

Cirrhosis/HE

Bajaj et al[62] 2018 Human SOC vs SOC + 
antibiotic + FMT

Once FMT has also been shown to restore the 
diversity and function of the intestinal 
microbiota altered by antibiotics in patients 
with advanced cirrhosis who are treated 
with lactulose and rifaximin
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ACLF: Acute on chronic liver failure; AH: Alcoholic hepatitis; AIH: Autoimmune hepatitis; ALD: Alcohol liver disease; ALP: Alkaline phosphatase; ALT: 
Alanine aminotransferase; AMPs: Antimicrobial peptides; AST: Aspartate aminotransferase; BDL: Bile duct ligation; CHB: Chronic hepatitis B; CTP: Child-
Turcotte-Pugh; FMT: Fecal microbiota transplantation; GMT: Transplantation of gut content from the terminal ileum; HBeAg: Hepatitis B e antigen; HE: 
Hepatic encephalopathy; HFD: High-fat diet; LBP: Lipopolysaccharide-binding protein; MASLD: Metabolic dysfunction-associate steatotic liver disease; 
MELD: Model for end-stage liver disease; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; PSC: Primary sclerosing 
cholangitis; SAH: Severe alcoholic hepatitis; SOC: Standard of care; TLRs: Toll-like receptors; TNF: Tumor necrosis factor.

pneumoniae, and increased beneficial bacteria, including Enterococcus villorum, Bifidobacterium longum, and Megasphaera 
elsdenii), reduced bilirubin and MELD scores, and improved 1-year survival.

In a subsequent retrospective comparison, the FMT group had a lower mortality risk (1 vs 2.5, 2.8, and 2.82 for corticos-
teroid, pentoxifylline, and nutrition groups) and a higher 3-month survival rate (75% vs 38%, 30%, and 29%)[32]. Pentoxi-
fylline, a non-selective phosphodiesterase inhibitor with anti-inflammatory and hemorheologic properties, is commonly 
used in SAH treatment when corticosteroids are contraindicated. The FMT group also exhibited a reduced incidence of 
HE. Changes in microbiota composition-such as increased Parabacteroides, Porphyromonas, Roseburia, and Micrococcus, 
decreased Klebsiella, Bilophila, Citrobacter, and Enterobacter, and colonization by Lentisphaerae and Roseburia-were associated 
with improvements in metabolic disturbances, infections, inflammation, and oxidative stress, suggesting a direct link 
between FMT and clinical outcomes. Philips et al[33] retrospectively compared FMT and pentoxifylline in SAH patients. 
Administered via a nasoduodenal tube for 7 days, FMT improved 6-month survival and reduced liver disease complic-
ations, including ascites, HE, and severe infections. These benefits correlated with increased Bifidobacterium abundance. 
Subsequently, Philips et al[34] evaluated the long-term effects of FMT in SAH patients over three years. FMT significantly 
reduced ascites, infections, HE, and alcohol relapse while improving survival rates. These benefits were associated with 
gut microbiota changes, including increased Bifidobacterium and reduced Acinetobacter.

Another researcher conducted a randomized controlled trial demonstrating the benefits of FMT in SAH patients with 
acute-on-chronic liver failure[35]. The FMT group exhibited higher survival rates, improved HE remission, and signifi-
cantly reduced IL-1β levels compared to the standard of care (SOC) group at day 28. At day 90, the FMT group showed 
better survival and ascites remission rates. Importantly, the incidence of adverse events, such as gastrointestinal bleeding 
and spontaneous bacterial peritonitis, was similar between groups. Pande et al[36] also found that in SAH patients, FMT 
administered daily via nasoduodenal tube for 7 days resulted in higher 90-day survival and lower infection rates com-
pared to the prednisolone group. This was attributed to beneficial modulation of the gut microbiota, including reductions 
in pathogenic taxa such as Campylobacter and potentially harmful anaerobic taxa (Parcubacteria, Weissella, and 
Leuconostocaceae), alongside increases in taxa such as Alphaproteobacteria and Thaumarchaeota. These findings suggest that 
FMT is a safe and effective treatment for SAH, offering a potentially life-saving option for patients with limited 
therapeutic choices. Ongoing clinical trials are evaluating FMT’s impact on alcohol consumption, microbiota dysbiosis, 
and overall survival in alcohol-dependent patients or those with AH (Table 2).

FMT AND CHRONIC HEPATITIS B
Hepatitis B virus infection remains a significant global public health concern. Patients with chronic hepatitis B (CHB) face 
an increased risk of cirrhosis and hepatocellular carcinoma (HCC), especially those with persistent hepatitis B e antigen 
(HBeAg) positivity and active viral replication[37]. Current antiviral therapies primarily target HBV replication; however, 
their impact on HBeAg seroconversion is limited. Despite prolonged treatment, only a small proportion of patients 
achieve HBeAg clearance or seroconversion.

The intestinal microbiota plays a crucial role in adaptive immunity and pathogen clearance during HBV infection[38]. 
Ren et al[39] conducted a case-control study involving CHB patients on long-term antiviral therapy (> 3 years) who 
remained HBeAg-positive. Patients were divided into two groups: One receiving antiviral therapy alone and the other 
combined with FMT. Sequencing revealed significant microbiota compositional changes post-FMT, including increased 
Bacteroides, Faecalibacterium, Roseburia, and Bifidobacterium; decreased Klebsiella, Escherichia/Shigella, and Fusobacterium; and 
colonization by Dialister, Fusicatenibacter, and Blautia. These changes were accompanied by a progressive reduction in 
HBeAg titers after each FMT, with 80% of patients achieving HBeAg clearance. These findings suggest FMT may acce-
lerate HBV clearance. Similarly, a controlled clinical study by Chauhan et al[40] in CHB patients remaining HBeAg-
positive after more than one year of antiviral therapy reported that FMT combined with antivirals led to higher HBeAg 
seroconversion rates (16.7% vs 0%). Adverse events were mostly mild, including one case of severe abdominal pain 
resolving within 6 hours, indicating FMT was safe and well tolerated. However, no studies reported HBsAg clearance, 
underscoring the need for further investigation into FMT’s role in HBsAg seroconversion. Currently, three ongoing 
clinical trials are assessing FMT’s effects on HBeAg levels, fibrosis, and survival in HBV-related cirrhosis but have yet to 
address HBsAg reduction (Table 2).

FMT AND AUTOIMMUNE LIVER DISEASE
Autoimmune liver diseases, including autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing 
cholangitis (PSC), and overlap syndrome, arise from immune system dysfunction. Treatment options remain limited; 
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Table 2 Ongoing clinical trials of fecal microbiota transplantation in chronic liver diseases from Clinicaltrial.gov

Disease or 
condition Study title Study arms Intervention Primary outcomes 

measures
Clinical trials 
ID, country

NAFLD, NASH Fecal microbiota transplantation 
for the treatment of non-alcoholic 
steatohepatitis

Lean healthy donor 
frozen FMT

Efficacy (histological resolution 
of NASH defined as ballooning 
disappearance with or without 
persistence of minimal 
lobulillar inflammation and no 
progression of fibrosis stage) 
(time frame: 72 weeks)

NCT03803540, 
Spain

NAFLD Effects of fecal microbiota 
transplantation on weight in obese 
patients with non-alcoholic fatty 
liver disease

Diet + exercise + FMT 
vs diet + exercise

3 times IMT with 
15-day intervals

Proportion of patients 
achieving ≤ 5% of the weight 
loss in kg from baseline (time 
frame: 3 months)

NCT04594954, 
India

NAFLD Dietary counseling coupled with 
FMT in the treatment of obesity 
and NAFLD-the DIFTOB study

Healthy diet 
counseling + FMT vs 
healthy diet 
counseling + placebo

A change in HOMA-IR (time 
frame: At week 12 and at week 
52)

NCT05607745, 
Finland

NAFLD with 
history of diabetes 
melitus

A prospective, randomized, 
placebo-controlled pilot study to 
characterize the intestinal 
microbiome and to evaluate the 
safety and fecal microbiome 
changes following administration 
of lyophilized PRIM-DJ2727 or 
placebo given orally for 12 weeks 
in subjects with NAFLD

Oral PRIM-DJ2727 vs 
oral placebo

twice weekly for 12 
weeks

Microbiome diversity in fecal 
samples as indicated by the 
Shannon diversity index (time 
frame: 10 months)

NCT04371653

NASH Evaluate the efficacy, safety and 
tolerability of fecal microbiota 
transfer for the treatment of 
patients with nonalcoholic steato-
hepatitis

Capsules of FMT vs 
capsules of placebo

An initial dose of 24 
oral capsules and a 
maintenance dose 
of 12 oral capsules 
every 3 months for 
12 months

Proportion of patients with 
improvement of fat fraction by 
proton density by MRI and no 
worsening of activity or fibrosis 
(time frame: 72 weeks)

NCT05622526

NASH Fecal microbiota therapy versus 
standard therapy in NASH related 
cirrhosis

FMT vs standard 
treatment care

Once a month for 5 
months

Reduction in hepatic venous 
pressure gradient in the two 
groups from baseline (time 
frame: 1 year)

NCT02721264, 
India

Alcohol-related 
liver disease, 
alcohol use 
disorder, cirrhosis

Intestinal microbiota transplant in 
alcohol-associated chronic liver 
disease and cirrhosis

IMT capsules vs 
placebo capsules

Twice during the 
trial

Change in alcohol consumption 
(time frame: Baseline to 
3 months after treatment)

NCT05548452, 
United States

Liver disease, 
alcohol 
dependence, HE 
and etc.

Safety and efficacy of fecal 
microbiota transplantation

FMT The efficacy of FMT in treating 
dysbiosis-associated disorder 
will be assessed by number of 
patients who have 
improvement in clinical 
symptoms (depends on each 
disease as stated in outcome) 
(time frame: 1 year)

NCT04014413, 
HongKong, 
China

SAH A comparison of fecal microbiota 
transplantation and steroid 
therapy in patients with severe 
alcoholic hepatitis

FMT vs steroids 7 days Proportion of participants with 
overall survival at 3 months 
(time frame: 3 months)

NCT03091010, 
India

SAH Fecal microbiota transplantation 
in severe alcoholic hepatitis- 
assessment of impact on prognosis 
and short-term outcome

FMT vs standard of 
care treatment

1 time Survival (time frame: 3 months) NCT03827772, 
India

AH Fecal microbiota therapy in 
steroid ineligible alcoholic 
hepatitis

FMT vs standard 
medical treatment

7 times Mortality at 3 months (time 
frame: 3 months), liver 
transplant free survival (time 
frame: 3 months)

NCT05285592, 
India

AH Safety evaluation of fecal 
microbiota transplantation in 
severe alcoholic hepatitis

Standard of care + 
oral PRIM-DJ2727 vs 
oral placebo

Every day for a 
week followed by 
once weekly for 3 
weeks

To assess survival in patients 
with severe alcoholic hepatitis 
receiving PRIM-DJ2727 
capsules in comparison to 
standard of care (time frame: 
Day 1 to 12 months)

NCT05006430, 
United States

Study on effect of intestinal IMT + antiviral 6 times IMT with 2- Change of serum HBeAg level NCT03429439, CHB
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microbiota transplantation in 
chronic hepatitis B

therapy vs antiviral 
therapy

week intervals (Time Frame: 1 month, 
3 months, 6 months)

China

HBV induced 
cirrhosis

Study on effect of intestinal 
microbiota transplantation in 
hepatitis B virus induced cirrhosis

Intestinal microbiota 
transplantation

4 times IMT with 2-
week intervals

Change of liver Fibroscan score 
(time frame: 3 months, 6 
months, 12 months)

NCT03437876, 
China

Acute-on-chronic 
liver failure, 
hepatitis B

Efficacy of addition of FMT and 
plasma exchange to tenofovir in 
comparison to monotherapy with 
tenofovir in ACLF-HBV

Plasma exchange + 
tenofovir + FMT vs 
tenofovir

7 days Overall survival in both groups 
(time frame: Day 28)

NCT04431375, 
India

Decompensated 
cirrhosis

Fecal microbiota transplantation 
for decompensated cirrhosis

FMT + traditional 
treatment vs 
traditional treatment

Number of adverse events 
complication rate in all patients 
in both groups (time frame: 
3 months)

NCT03014505, 
Chian

Cirrhosis, liver Fecal microbiota transplantation 
in cirrhosis

FMT vs control Blood ammonia, ALT, AST, gut 
microbiome, albumin, blood 
glucose, serum creatinine, 
direct bilirubin, indirect 
bilirubin, prothrombin time 
activity percentage and liver 
stiffness (time frame: Change 
from baseline, at 12 months)

NCT04591522

Cirrhosis of the 
liver

Trial of faecal microbiota 
transplantation in cirrhosis

FMT vs placebo Assessment of the feasibility of 
FMT (time frame: 18 months)

NCT02862249, 
United 
Kingdom

Liver cirrhosis Faecal microbiota transplantation 
for liver cirrhosis

FMT vs placebo 3 times Time to death or readmission 
due to episode of acute 
decompensation in FMT treated 
vs placebo treated patients 
(Time Frame: 1 year)

NCT04932577, 
Denmark

Cirrhosis, HE FMT in cirrhosis and hepatic 
encephalopathy

Dual oral and rectal 
FMT vs oral FMT and 
rectal placebo vs oral 
placebo and rectal 
FMT vs oral and rectal 
placebo

Adverse events related to FMT 
(time frame: 6 months), change 
in microbial diversity in stool 
(time frame: 6 months)

NCT03796598, 
United States

HE Fecal microbiota transplant as 
treatment of hepatic enceph-
alopathy

FMT oral capsules vs 
placebo oral capsule

days 1, 2, 7, 14, and 
21

PHES [time frame: Before the 
first administration of FMT 
(day 0) and one week after the 
last administration of FMT (day 
28)]

NCT03420482, 
United States

HE Efficacy and safety of fecal 
microbiota transplant for 
secondary prophylaxis of hepatic 
encephalopathy

FMT + standard 
medical therapy vs 
standard medical 
therapy

3 times Proportion of patients 
developing an episode of 
hepatic encephalopathy within 
6 months (time frame: 
6 months)

NCT05229289, 
India

ACLF: Acute on chronic liver failure; AH: Alcoholic hepatitis; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; CHB: Chronic hepatitis B; 
FMT: Fecal microbiota transplantation; HBeAg: Hepatitis B e antigen; HBV: Hepatitis B virus; HE: Hepatic encephalopathy; HOMA-IR: Homeostasis model 
assessment of Insulin Resistance; MRI: Magnetic resonance imaging; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; 
PHES: Psychometric Hepatic Encephalopathy Score; SAH: Severe alcoholic hepatitis.

however, given the BA metabolism abnormalities and gut microbiota dysbiosis observed in these patients[41,42], FMT 
presents a potential therapeutic approach (Table 1).

In 2018, a case report described FMT in a PSC patient with recurrent bacterial cholangitis[43]. Following four weekly 
endoscopic FMT procedures without antibiotics, the patient experienced significant and sustained improvements in liver 
function and circulating BAs, which remained stable for one year. Microbiota analysis revealed a decrease in Proteo-
bacteria-a phylum containing many pathogenic taxa-and an increase in Firmicutes, which includes taxa believed to have 
beneficial effects on immune regulation. The study demonstrated a strong correlation between improvements in liver 
function and BAs and the compositional and functional changes of the intestinal microbiota. Interestingly, Veillonella spp., 
commonly associated with inflammation and fibrosis[44,45], increased after FMT, indicating a need for further invest-
igation. In 2019, Allegretti et al[46] conducted a prospective clinical trial involving ten PSC patients with inflammatory 
bowel disease, administering single-donor FMT. Over 24 weeks, microbial diversity and the abundance of engrafting 
taxa, including SCFA-producing operational taxonomic units, increased. Notably, 30% of patients exhibited a > 50% 
reduction in alkaline phosphatase levels, which correlated with microbiota diversity. No adverse events were reported. 
Data regarding FMT in AIH and PBC remain limited. In an AIH mouse model, FMT reduced liver injury, bacterial trans-
location, and serum liver enzymes, while restoring gut microbiota disrupted by antibiotics[47]. These findings suggest 
that FMT is safe and potentially effective in autoimmune liver diseases, but further clinical trials are necessary to clarify 
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its role in immune-mediated liver conditions.

FMT AND CIRRHOSIS OR HE
Cirrhosis, a consequence of chronic liver diseases, causes extensive liver damage. HE is a serious complication of cirr-
hosis, for which the current SOC includes oral lactulose and rifaximin. However, over 50% of patients with decompen-
sated cirrhosis experience recurrent or persistent HE despite SOC[48]. Intestinal microbiota disturbances are closely 
associated with the pathogenesis of both cirrhosis and HE[49,50], positioning FMT as a promising therapeutic option.

In a rat model of HE, FMT reduced intestinal ammonia production, improved liver function, decreased HE severity, 
and enhanced cognitive functions including behavior, learning, and memory[51]. Moreover, FMT prevented hepatic 
necrosis and reinforced the intestinal mucus barrier. It also attenuated systemic inflammation by downregulating 
hepatocyte expression of TLR4 and TLR9 and significantly reducing pro-inflammatory cytokines such as IL-1β, IL-6, and 
TNF-α. These results support the potential role of FMT in treating cirrhosis and HE (Table 1).

As early as 2016, a case report described FMT for treating HE, demonstrating improvements in cognitive function, 
reaction time, blood ammonia levels, and quality of life in a patient with mild HE after five weeks of weekly FMT[52]. 
Although the benefits were temporary after cessation of FMT, it was considered a viable treatment option. Subsequently, 
Bajaj et al[53] conducted several studies on the efficacy and safety of FMT in HE patients. In a 2017 randomized clinical 
trial, FMT retention enemas combined with SOC outperformed SOC alone, using a single donor enriched in Lachnos-
piraceae and Ruminococcaceae. The FMT group exhibited significantly lower rehospitalization rates (0% vs 60%), fewer 
serious adverse events (20% vs 80%), improved cognitive function, and increased abundance of beneficial bacteria such as 
Ruminococcaceae. Remarkably, these benefits persisted for over one year during follow-up[54].

In a Phase I trial, Bajaj et al[55] administered oral FMT capsules from the same donor. The FMT group showed 
increased microbial diversity in the duodenum, with higher levels of beneficial bacteria (Ruminococcaceae and 
Bifidobacteriaceae) and reduced pathogenic bacteria (Streptococcaceae and Veillonellaceae) in both the sigmoid colon and 
feces. Patients also demonstrated improved cognitive performance, elevated expression of duodenal AMPs (E-cadherin 
and defensin A5), and reduced inflammatory markers such as IL-6 and LPS-binding protein. These effects were 
confirmed as attributable to FMT rather than placebo in a subsequent study[56]. Compared to baseline, patients exhibited 
higher levels of deconjugated and secondary BAs, with beneficial microbiota linked to improved cognition and reduced 
inflammation, including Ruminococcaceae, Verrucomicrobiaceae, and Lachnospiraceae. FMT was well tolerated with few 
serious adverse events reported. These findings indicate that FMT can enhance cognitive function and intestinal barrier 
integrity while reducing systemic inflammation in HE patients, with minimal adverse effects.

Unlike Bajaj et al[56], who used a single donor, Bloom et al[57] administered FMT from five donors to 10 patients to 
assess its safety and efficacy in HE. Results showed that although HE recurrence rates decreased and cognitive function 
improved, outcomes varied depending on donor and recipient. Responders had baseline and sustained enrichment of 
Bifidobacterium and other beneficial microbiota, while donors with the lowest SCFA levels were linked to poorer cognitive 
outcomes in recipients. This suggests that FMT effectiveness may depend on the relative abundance of beneficial bacteria 
in donors. One patient developed extended-spectrum β-lactamase (ESBL)-producing E. coli bacteremia 17 days after the 
last FMT, presenting with fever, cough, and infiltrative shadow on chest radiograph[58]. Gram-negative rod bacteria 
(later confirmed as ESBL-producing E. coli) were detected in blood culture. Despite initial levofloxacin treatment, infec-
tion was controlled only after a 14-day carbapenem course, and the patient stabilized. This infection was later traced back 
to the FMT donor capsules, as detailed further in the manuscript.

Mehta et al[59] studied FMT in 10 HE patients and reported significant reductions in arterial ammonia, neurological 
symptoms, and Child-Turcotte-Pugh and MELD scores after FMT. Li et al[60] also evaluated FMT effectiveness in two 
hepatitis B cirrhosis patients with recurrent HE following transjugular intrahepatic portosystemic shunt. After three FMT 
sessions via gastroscopy, both patients demonstrated improved liver function, relieved clinical symptoms, reduced Child-
Pugh scores, fewer HE episodes, and improved gut microbiota composition. No FMT-related adverse events occurred, 
except for temporary constipation in one patient. In addition, Huang et al[61] induced a cirrhosis-related portal hyperten-
sion model using bile duct ligation and showed that FMT increased Bifidobacterium abundance and significantly reduced 
portal vein pressure. This effect was attributed to improvements in mesenteric hyperdynamic circulation and vasodi-
lation, decreased mesenteric angiogenesis, and alleviated splenorenal shunting. These findings suggested that the 
therapeutic benefits of FMT were not mediated by reducing hepatic fibrosis or intrahepatic vascular resistance but by 
modulating extrahepatic hemodynamics-specifically by improving systemic hyperdynamic circulation, inhibiting 
pathological vasodilation and angiogenesis, and reducing portosystemic collateral formation. Antibiotic use is common in 
cirrhosis patients and reduces microbiota diversity and native taxa abundance. FMT restored this diversity (increased 
Chao1 index, higher abundance of Lachnospiraceae and Ruminococcaceae), enhanced SCFA secretion, regulated BAs 
(restored secondary BA levels), improved cognitive function, and lowered readmission rates for recurrent HE[62].

Clinical data suggested that FMT targeted intestinal dysbiosis in cirrhosis and HE by restoring intestinal barrier 
integrity and reducing ammonia absorption, which significantly lowered relapse and readmission rates while improving 
cognitive function. These encouraging results showed that most recipients experienced no severe FMT-related adverse 
effects. Seven ongoing clinical trials (Table 2) were evaluating the impact of FMT on blood ammonia, liver function, HE 
relapse, and readmission rates in cirrhosis and HE patients.
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POTENTIAL APPLICATIONS OF FMT
Given FMT’s capacity to restore gut microbiota balance, repair intestinal barrier function, enhance the abundance of 
SCFA-producing bacteria, upregulate AMP expression, and downregulate hepatic TLR expression, it may help alleviate 
systemic inflammation and restore immune homeostasis. These mechanisms, along with encouraging results in decom-
pensated cirrhosis and acute-on-chronic liver failure, suggested that FMT could be a promising therapeutic strategy to 
improve outcomes in patients with acute decompensation of cirrhosis.

Additionally, HCC, the terminal stage of various liver diseases, is characterized by intestinal microbiota dysbiosis that 
compromises antitumor immune surveillance and promotes HCC development[63]. Although FMT has not yet been 
applied in HCC patients, it has been studied in patients and animal models with other malignancies[64-67]. These studies 
indicated that FMT enhanced the antitumor effects of anti-programmed cell death protein 1 therapy, accompanied by 
changes in intestinal microbiota, suggesting that FMT could serve as an important adjunctive treatment for HCC.

ADVERSE EVENTS, CURRENT CHALLENGES, AND PRACTICAL FUTURE
Intestinal microbiota dysbiosis plays a crucial role in the pathogenesis of various liver diseases. FMT, an emerging 
strategy to restore healthy intestinal microbiota, has demonstrated promising benefits in managing chronic liver diseases. 
These benefits included amelioration of liver inflammation, induction of HBeAg clearance, reduction in biochemical 
markers and disease severity scores, and improvements in lipid metabolism, cognitive function, and overall clinical 
prognosis. Currently, 22 FMT studies related to liver diseases are registered on ClinicalTrials.gov, focusing on evaluating 
the effectiveness and safety of FMT. Further research on the role of FMT in liver diseases is anticipated in the coming 
years.

Safety is a critical consideration, as patients with severe liver disease are often the primary recipients of FMT. Nume-
rous studies reported the safety of FMT across diverse populations, including children, the elderly, cancer patients, im-
munosuppressed individuals, and critically ill patients[68-71]. In recent studies of FMT for liver diseases, most recipients 
did not experience serious adverse effects, although some reported transient symptoms such as bloating, diarrhea, or 
constipation following the procedure[30,60]. Notably, one patient with HE developed ESBL-producing E. coli bacteremia 
after FMT[57], traced to the donor capsules[58].

Alarmingly, FMT capsules from the same donor were administered to a patient undergoing allogeneic hematopoietic-
cell transplantation for therapy-related myelodysplastic syndrome, resulting in fever and chills. Blood cultures revealed 
ESBL-producing E. coli, and despite escalation of antibiotic treatment (from cefepime to meropenem), the patient 
succumbed to severe sepsis. These cases underscore the importance of rigorous donor screening to prevent transmission 
of potentially infectious pathogens, including ESBL-producing bacteria, which are prevalent in fecal microbiota[72]. 
Furthermore, one study raised concerns about increased abundance of Veillonella, a potentially pathogenic genus with 
significant implications for infection and immunity, following FMT[43]. Whether this increase is common and if it poses 
long-term risks requires further investigation. Given the compromised intestinal barrier and immune function in liver 
disease patients, they are more susceptible to pathogenic microorganisms that may escape routine screening. Besides 
patients with chronic liver diseases, many FMT candidates are immunocompromised, and safety in this population 
remains debated. The 2024 American Gastroenterological Association guidelines[73] suggest that traditional FMT may be 
considered selectively in patients with mild to moderate immunosuppression but is not recommended in cases of severe 
immunosuppression-such as active chemotherapy, profound neutropenia post-hematopoietic stem cell transplantation, or 
advanced HIV infection with CD4 counts < 200/mm3. However, a meta-analysis of 303 immunocompromised patients 
with Clostridioides difficile infection (CDI) showed that serious adverse event rates following FMT were comparable to 
those in immunocompetent individuals, without increased infection risk, and clinical remission rates were similar[74]. 
Additionally, Benech et al[75] reported no higher incidence of adverse events in certain immunosuppressed subgroups. 
The potential benefits of FMT, including reducing prolonged antibiotic use, may outweigh risks. Therefore, they 
recommended individualized, case-by-case assessments when considering FMT in immunocompromised patients. 
Current guidelines and consensus in multiple countries emphasize strict donor screening and advocate close monitoring 
of both short- and long-term adverse events in FMT recipients.

Most previous studies focused on a single donor, while Bloom’s analysis examined cognitive improvements in HE 
patients using five distinct FMT donors. Bloom et al[57] confirmed that FMT effectiveness varied depending on both 
donor and recipient factors. This prompted investigation into whether donor fecal microbiota heterogeneity impacts 
patient outcomes, whether a “super-donor” exists, and the relative influence of donor vs recipient on FMT efficacy. A 
comprehensive study comparing fecal quantitative metagenomics from 316 patients before and after FMT concluded that 
recipient factors consistently outweighed donor factors in determining FMT outcomes[76]. Notably, the study identified 
complementarity between donor and recipient intestinal microbiota as the strongest determinant of FMT success. These 
findings suggest that, in addition to donor health screening, the recipient’s intestinal microbiota should be routinely 
assessed and matched with the donor’s microbiota prior to FMT. Furthermore, predictive models have been developed to 
forecast recipient gut microbiota composition post-FMT[77], guiding donor selection to establish specific, desired 
microbiota profiles in recipients. This approach could enhance FMT success rates while minimizing adverse effects.

Clinical researchers have recognized the potential of FMT in liver diseases; however, consensus on the most effective 
implementation strategy has not yet been reached. First, the efficacy of a single FMT was limited in patients with chronic 
liver disease due to the prolonged duration of liver injury. Studies on FMT in chronic liver disease varied in the number 
and frequency of administrations, as shown in Tables 1 and 2, and current guidelines lacked standardized recommend-
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ations on these parameters. Second, various delivery routes-including enema, colonoscopy, nasogastric tube, nasojejunal 
tube, and oral capsule-have been used in clinical studies. Among these, colonoscopy was generally considered more 
effective[78]. However, a recent meta-analysis concluded that combined administration routes (using both upper and 
lower gastrointestinal approaches) might provide greater efficacy[77]. Third, studies applied differing single and total 
doses depending on delivery routes and preparation methods. Guidelines recommended no less than 12.5 g of stool for 
upper gastrointestinal FMT and 25 g for lower gastrointestinal FMT[79]. The study also demonstrated that clinical success 
closely correlated with microbial engraftment, with a higher microbial load in the stool increasing the likelihood of 
success[80]. Fourth, consensus has not been reached on whether antibiotic pretreatment of recipients is necessary before 
FMT. While several recommendations suggested that patients with recurrent CDI (rCDI) receive vancomycin or fidaxo-
micin for at least 3 days before FMT, with antibiotics discontinued 12-48 hours prior to the procedure[78,81,82], the 
necessity of antibiotic pretreatment in non-rCDI conditions remained controversial. According to the European FMT 
Clinical Practice Consensus, insufficient high-quality evidence supported antibiotic pretreatment for conditions other 
than rCDI[78]. In contrast, based on low-level evidence, a consensus from Nanjing, China suggested that antibiotic 
pretreatment might benefit patients without bacterial infections before FMT[81]. Currently, clinical researchers explore 
antibiotic pretreatment based on individual experience and patient conditions, anticipating future studies to confirm 
whether this approach enhances FMT efficacy. In conclusion, no unified, standardized protocol exists for FMT regarding 
delivery routes, dosages, interventions, or antibiotic pretreatment in chronic liver disease. Well-powered follow-up 
studies are needed to establish the optimal FMT protocol.

CONCLUSION
FMT demonstrated significant therapeutic potential in chronic liver diseases by improving liver inflammation, biomar-
kers, lipid metabolism, cognitive function, and overall clinical prognosis. However, given the severe liver damage and 
impaired intestinal barrier function in these patients, rigorous donor screening was essential to ensure safety and efficacy. 
The optimal FMT protocol remains under refinement, with critical factors-including donor-recipient microbiota com-
patibility, delivery routes, stool doses, and antibiotic pretreatment-requiring careful consideration. Further research is 
needed to establish a standardized and effective treatment protocol.
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