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ejection fraction (HFrEF), it is characterized by distinct 
pathophysiological mechanisms, and transition from 
HFpEF to HFrEF is exceedingly rare [3]. The heteroge-
neous, multisystemic nature of HFpEF pathophysiology 
likely underlies the current absence of consensus guide-
lines for standardized treatment [4]. Consequently, phe-
notyping HFpEF patients on the basis of their clinical 
profiles is critical for guiding personalized therapeutic 
approaches.

According to the World Obesity Atlas 2025 Report, 
the global prevalence of overweight and obesity among 
adults is projected to increase from 36% in 2000 to 50% 
by 2030 [5]. Obesity, one of the most common clinical 
phenotypes of HFpEF, is specifically and independently 
associated with the disease, and it often manifests unique 
clinical and haemodynamic features in individuals [6]. 
Studies have demonstrated that approximately 80% of 
HFpEF patients are overweight or obese and exhibit 

Introduction
Heart failure with preserved ejection fraction (HFpEF) 
accounts for more than 50% of all cases of heart failure 
(HF), and its prevalence is increasing due to popula-
tion ageing and the global epidemic of metabolic disor-
ders. However, mortality rates and clinical outcomes for 
individuals with HFpEF have shown limited improve-
ment over time [1]. Despite advances in cardiovascular 
medicine, the management of HFpEF remains a signifi-
cant therapeutic challenge [2]. Although HFpEF shares 
symptomatic similarities with heart failure with reduced 
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manifestations of metabolic syndrome (MetS), includ-
ing type 2 diabetes mellitus (T2DM), hypertension, and 
dyslipidaemia, collectively defining the cardiometabolic 
phenotype of HFpEF [7, 8]. Novel antidiabetic thera-
pies, including sodium glucose cotransporter 2 inhibi-
tors (SGLT2i), glucagon‒like peptide-1 receptor agonists 
(GLP-1 RA), and glucose‒dependent insulinotropic 
polypeptide (GIP)/glucagon‒like peptide-1 (GLP-1) dual 
receptor agonists, have demonstrated clear efficacy in the 
management of MetS [9–11]. Recent clinical trials fur-
ther suggest that these agents may also have favourable 
effects on clinical outcomes in obese HFpEF patients. 
Moreover, the evidence supporting lifestyle intervention 
has become increasingly robust, and clinical experience 
with bariatric surgery (BSx) continues to accumulate. 
On this basis, the treatment options for obese HFpEF 
patients have transitioned towards metabolism-focused 
therapeutic strategies.

This review synthesizes current evidence on the clinical 
benefits and the pathophysiological mechanisms under-
lying the effects of lifestyle intervention, pharmacologi-
cal therapies, and BSx in obese HFpEF patients and offers 
insights into optimizing the management of this patient 
population.

Relationship between obesity and HFpEF
Challenges related to diagnosing HFpEF in people with 
obesity
Due to the lack of definitive testing for HFpEF diagnosis, 
clinical scoring systems may be useful to aid diagnosis 
[12]. Currently, diagnosis of HFpEF in clinical practicere-
quires objective evidence of congestion, which is typically 
evaluated through clinical examination, echocardiog-
raphy, and testing of natriuretic peptide (NP) levels [13, 
14]. Nonetheless, these diagnostic tools have significant 
limitations in Severe obesity. Clinically, severe obesity 
can manifest with symptoms overlapping with HFpEF, 
such as dyspnea, fatigue, and reduced exercise tolerance. 
Furthermore, It complicates the physical assessment of 
HFpEF indicators: evaluation of jugular venous pressure, 
auscultation for lung rales, and assessment of peripheral 
edema. Additionally, assessment of NP can be challeng-
ing in the context of obesity. NP levels in obese HFpEF 
patients are often attenuated and may fall within the 
“normal” range [15]. Research has found that the cur-
rently recommended N-terminal pro–B-type natriuretic 
peptid (NT-proBNP) threshold of < 125 ng/L demon-
strated only 67% sensitivity in individuals with body 
mass index (BMI) > 35 kg/m² [16]. Notably, even echo-
cardiographic Doppler parameters such as the E/e’ ratio 
may underestimate the severity of systemic congestion 
in this population [17]. Therefore, the American Col-
lege of Cardiology (ACC) guidelines recommends using 
lower NP thresholds for individuals with obesity and 

exertional dyspnea to avoid missed HFpEF diagnoses in 
this population [18]. However, further research is needed 
to establish specific cutoff values. Consequently, in cases 
in which the diagnosis is unclear, invasive haemodynamic 
exercise testing is typically required to confirm the diag-
nosis [13, 14].

Obesity paradox in HF
The ‘obesity paradox’ describes a puzzling phenomenon. 
Although obese patients have a higher risk of develop-
ing HF, they tend to show better short- and interme-
diate-term survival rates than leaner patients after an 
HF diagnosis [19]. This phenomenon has also been 
observed in individuals with other conditions, includ-
ing coronary artery disease, chronic kidney disease, and 
chronic obstructive pulmonary disease. Body composi-
tion analyses also reveal this paradoxical relationship, 
with both higher fat mass and greater lean body mass 
being associated with improved survival outcomes [20]. 
Notably, overweight and Class I obese HF patients tend 
to have better survival rates than HF patients with nor-
mal or underweight BMI, whereas more severe obesity 
(Classes II and III) is correlated with increased mortality 
risk. Consequently, the relationship between body weight 
and mortality due to cardiovascular disease follows a 
U-shaped curve, with the highest mortality observed at 
the extremes of BMI (i.e., underweight and severe obe-
sity) [21, 22]. The reasons for the obesity paradox remain 
incompletely understood. Potential protective effects of 
obesity may stem from several mechanisms. First, indi-
viduals with excess adiposity may possess enhanced 
metabolic reserve capacity. Second, they might exhibit 
greater tolerance to cardioprotective vasoactive medica-
tions, particularly under conditions of elevated vascular 
resistance and blood pressure. Third, other speculative 
pathophysiological mechanisms could also play a role 
[23].

Pathophysiology of obesity and HFpEF
Patients with HFpEF exhibit an increase in overall car-
diac volume, and this is more pronounced in obese indi-
viduals, manifesting as ventricular dilatation, ventricular 
wall thickening, and increases in the amount of epicar-
dial adipose tissue (EAT) [24, 25]. In HFpEF, progressive 
left ventricular (LV) wall thickening drives concentric 
remodelling that is accompanied by impaired myocardial 
diastolic function and increased stiffness and ultimately 
leads to LV diastolic dysfunction. Concentric remodelling 
appears to be closely associated with insulin resistance 
[26], diabetes [26], hyperleptinemia [27], myocardial ste-
atosis [28], and expansion of visceral adipose tissue (VAT) 
[29]. Compared with nonobese patients, obese HFpEF 
patients demonstrate more pronounced LV concen-
tric remodelling and an elevated LV mass‒volume ratio 
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[24]. As is true for the LV, obesity is also linked to right 
ventricular remodelling. Additionally, HFpEF patients 
exhibit mildly impaired LV contractility at rest and 
severely compromised systolic reserve during exercise, 
and these conditions further exacerbate diastolic reserve 
impairment [30, 31]. The expansion of EAT enhances 
pericardial mechanical constraints on the heart, increas-
ing ventricular interdependence and increasing intra-
cavitary pressure under equivalent filling pressures [32]. 
This external constraint explains the lower NP levels and 
echocardiographic filling pressure estimates observed in 
obese HFpEF patients than in nonobese individuals. In 
addition to its mechanical effects, EAT directly damages 
the myocardium through the secretion of proinflamma-
tory cytokines such as interleukin-1β (IL-1β), interleu-
kin-6 (IL-6), and tumour necrosis factor-α (TNF-α) and 
thereby inducing mitochondrial dysfunction and capil-
lary rarefaction [33–36]. Recent studies [25, 37–39] dem-
onstrate that increased epicardial EAT in HFpEF patients 
is closely linked to several adverse conditions: severe hae-
modynamic derangements, right ventricular‒pulmonary 
arterial uncoupling, LV fibrosis, and reduced exercise 
tolerance. Moreover, elevated EAT levels are significantly 
correlated with increased risks of heart failure hospital-
ization and mortality. In obese HFpEF, inflammation and 
oxidative stress are not merely secondary phenomena 
accompanying heart failure progression, but rather con-
stitute core pathological mechanisms driven by obesity 
itself. These mechanisms act on cardiomyocytes and the 
coronary microvascular system, ultimately leading to dia-
stolic dysfunction and ventricular stiffness. This contrasts 
with HFrEF, which primarily originates from myocardial 
injury (resulting from ischemia, infection, or toxicity) 
and neurohormonal activation, triggering cardiomyocyte 
apoptosis, necrosis, fibrosis, and ventricular remodeling, 
dominated by systolic dysfunction [40].

The pathophysiological abnormalities observed in 
obese HFpEF patients include sodium retention, neuro-
hormonal dysregulation, altered energy metabolism, car-
diac lipotoxicity, VAT expansion, and systemic low-grade 
inflammation [41]. In obesity, renal tubular sodium reten-
tion and plasma volume expansion result from aldoste-
rone overproduction and enhanced NP degradation [42]. 
Adipocytes directly synthesize aldosterone and indirectly 
promote adrenal aldosterone secretion via leptin and cat-
echolamine release [43]. Obesity also induces metabolic 
alterations, including hyperleptinemia, hypoadiponec-
tinemia, and insulin resistance, all of which are closely 
implicated in the pathogenesis and progression of HFpEF 
[44–47]. Furthermore, obesity contributes to myocar-
dial dysfunction and apoptotic injury through excessive 
accumulation of metabolites, including triglycerides and 
free fatty acids, a process termed cardiac lipotoxicity [44, 
48, 49]. Weight gain promotes adipocyte hypertrophy or 

hyperplasia, driving visceral fat deposition and shifting 
adipose tissue from an anti-inflammatory, angiogenesis- 
and lipid storage-favourable state to a proinflammatory 
phenotype [50]. Inflammatory VAT, particularly perivas-
cular and pericardial fat, exerts detrimental effects via 
the secretion of proinflammatory adipokines [51, 52].

Therapeutic approaches
Lifestyle intervention for patients with obesity and HFpEF
Lifestyle interventions, including dietary therapy and 
exercise therapy, play pivotal roles in the prevention and 
management of cardiovascular disease. However, no spe-
cific dietary or exercise guidelines have been established 
for obese HFpEF patients.

Dietary management of HFpEF
Emerging evidence suggests that dietary patterns are 
linked to the pathogenesis [53–55], prognosis [56–58], 
and potential reversibility [59] of HFpEF. Clinical stud-
ies are actively investigating the effects of various dietary 
regimens on HFpEF, necessitating careful evaluation 
of their benefits and risks (Table  1). The GOURMET-
HF trial, which included patients with both HFrEF and 
HFpEF, demonstrated that the Dietary Approaches to 
Stop Hypertension (DASH)/sodium-restricted (SDR) 
diet modestly reduced 30-day hospital readmission rates 
[60]. Additional studies have confirmed the efficacy of 
the DASH/SDR diet in managing hypertension, lowering 
24-hour ambulatory systolic and diastolic blood pressure, 
and improving LV diastolic function, arterial elastic-
ity, and ventricular‒arterial coupling in HFpEF patients 
[61, 62]. A low-energy diet (LED) has been shown to 
reduce myocardial steatosis and enhance diastolic fill-
ing in patients with T2DM [63]. Meal replacement plans 
(MRPs) involving LEDs are currently proposed as alter-
native strategies for achieving weight loss and improving 
cardiovascular outcomes. Low-energy MRPs promote 
weight reduction, ameliorate cardiometabolic risks 
associated with diabetes [64], and reverse cardiovascu-
lar remodelling in obese T2DM patients [65]. Follow-
ing a ketogenic diet promotes weight loss via increased 
lipolysis [66]. A recent animal study reported that ketone 
supplementation ameliorated HFpEF phenotypes in mice 
[67]. Beneficial haemodynamic effects were also observed 
in HFrEF patients treated with ketone bodies [68]. How-
ever, evidence suggests that following a ketogenic diet 
may increase circulating free fatty acid levels, exacerbat-
ing cardiac lipotoxicity and altering myocardial energy 
metabolism and thereby posing potential risks to cardio-
vascular health [69]. The Mediterranean diet (MedDiet) 
is recognized for its cardioprotective properties [70]. The 
MEDIT-AHF trial revealed that while stricter adherence 
to the MedDiet correlated with reduced HF rehospital-
ization rates in patients who had been hospitalized for 
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acute HF, it did not improve long-term mortality [71]. 
The PREDIMED trial demonstrated that the MedDiet 
improves systemic inflammatory markers in subjects at 
high cardiovascular risk and contributes to reducing risk 
factors for HF [72, 73]. These findings were corroborated 
in a Greek heart failure cohort comprising 38% HFpEF 
patients, suggesting that this diet may have broader ther-
apeutic potential [74]. Other dietary approaches may also 
confer benefits in HFpEF patients. For example, plant-
based diets—such as vegan, lacto-ovo vegetarian, and 
pesco-vegetarian regimens—have been shown to have 
favourable effects on cardiometabolic health, including 
reductions in blood pressure, glucose, and lipid levels as 
well as anti-inflammatory and weight-modulating prop-
erties [75].

Physical activity in HFpEF
The ACC guidelines recommends that exercise train-
ing (ET) can improve functional status in individu-
als with HFpEF [18]. Accumulating evidence indicates 
that ET improves diastolic function, cardiorespiratory 
fitness, exercise capacity, and quality of life (QoL) in 
HFpEF patients [76–78]. Several studies further reported 
reduced hospitalization rates and/or fewer cardiac events 
following ET in this population [79, 80]. Although these 
prospective clinical studies were specifically designed 
for HFpEF patients, they were limited by relatively small 
sample sizes and mostly short-term follow-up periods. 
Nevertheless, the available data preliminarily demon-
strate the potential benefits of ET for HFpEF manage-
ment. Furthermore, a recent ACC/American Heart 
Association (AHA) scientific statement systematically 
analysed data from 11 randomized controlled trials 
(RCTs) in which supervised exercise training (SET) in 
chronic HFpEF patients was evaluated; these trials incor-
porated modalities such as walking, stationary cycling, 

high-intensity interval training (HIIT), resistance train-
ing, and dance [81]. Compared with controls, SET sig-
nificantly increased the 6-minute walk distance (6MWD), 
whereas peak oxygen consumption (VO2 peak) increased 
by 14% from baseline, in contrast with a 0.2% decrease 
in the control group. HIIT has emerged as an alterna-
tive to moderate-intensity continuous training in cardiac 
rehabilitation [82]. Over approximately 16 weeks, HIIT 
followed by low-intensity training (LIT) combined with 
LED demonstrated superior efficacy in improving the 
VO2 peak and the participants’ QoL [83]. HIIT protocols 
often achieve ≥ 85% of the VO2 peak [84, 85], whereas LIT 
with LEDs yields the greatest improvement in the 6MWD 
[83]. Importantly, a meta-analysis of six RCTs reported 
no major exercise-related adverse events, reinforcing the 
safety of ET in HFpEF patients [86].

Smaller trials have explored combined LED and ET 
interventions in obese HFpEF patients (Table  2). The 
SECRET trial evaluated 20-week LED and/or ET inter-
ventions and revealed that significant increases in 
the VO2 peak could be achieved using either of these 
approaches, although neither improved the total score 
on the Minnesota Living with Heart Failure (MLHF) 
questionnaire. Notably, changes in the VO2 peak corre-
lated positively with the percentage of lean body mass 
[87]. In a study of 40 patients with MetS and HFpEF, a 
3-month intervention involving dietary control and 3 h of 
moderate-intensity exercise over 3 weeks led to marked 
VO2 peak improvements in the successful weight loss 
group. At the 1-year follow-up, this group also exhibited 
better New York Heart Association functional class out-
comes and lower hospitalization risk [88]. Another trial 
investigating 15 weeks of LED and ET supplemented 
with weekly 30- to 60-minute multidisciplinary ses-
sions (exercise, nutrition, and behavioural counselling) 
and wrist-worn activity monitoring reported significant 

Table 2  Evidence of exercise training in obese HFpEF patients
Interventions Trial population Follow-up 

period
Primary endpoints Refer-

ences
LED and/or ET 100 old obese 

HFpEF patients
20 weeks 1. Increase of VO2 peak

2. No significant change in MLHF total score
3. Changes in VO2 peak correlated positively with the percentage of lean 
body mass

Kitzman 
et al. 
[87]

Dietary control and moder-
ate-intensity exercise

40 MetS and 
obese HFpEF 
patients

1 years 1. VO2 peak improvements in the successful weight loss group after 3 
momths
2. At 1-year follow-up, the successful weight loss group exhibited better 
New York Heart Association functional class outcomes and lower hospital-
ization risk

Ritzel et 
al. [88]

LED and ET (supplemented 
with weekly 30- to 60-min-
ute multidisciplinary sessions 
and wrist-worn activity 
monitoring)

40 obese HFpEF 
patients

26 weeks 1. Improvements in 6MWD and reductions in MLHF scores
2. Changes in 6MWD and MLHF scores moderate correlations with weight 
loss

El et al. 
[89]

HFpEF, Heart failure with preserved ejection fraction; ET, Exercise training; LED, Low-energy diet; VO2 peak, Peak oxygen consumption; MLHF, Minnesota living with 
heart failure; MetS, Metabolic syndrome; 6MWD, 6-minute walk distance
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improvements in the 6MWD and reductions in MLHF 
scores, with moderate correlations with weight loss [89]. 
These findings suggest that the benefits of ET in obese 
HFpEF patients may stem partially from weight reduc-
tion. However, further research designed to elucidate the 
mechanistic pathways underlying these improvements is 
warranted.

New antidiabetic medications for patients with obesity 
and HFpEF
Emerging studies indicated that the new antidiabetic 
medications, including SGLT2i, GLP-1 RA and GIP/
GLP-1 dual receptor agonists, provided the cardiovascu-
lar benefits in obese HFpEF patients. Notably, there were 
several clinical trials that supported this point (Table 3).

Clinical evidence regarding the effects of SGLT2i in HFpEF 
patients
SGLT2i, while primarily used to treat T2DM, have dem-
onstrated weight loss effects in both diabetic and non-
diabetic obese populations [90–93]. The 2022 ACC/
AHA/Heart Failure Society of America (HFSA) guide-
lines now recommend the use of SGLT2i for HF manage-
ment across the full ejection fraction spectrum [94]. The 
EMPEROR-Preserved and DELIVER trials established 
foundational evidence that SGLT2is improve outcomes 
in HFpEF patients. The EMPEROR-Preserved trial ran-
domized 5,988 HFpEF patients (with or without T2DM) 
1:1 to empagliflozin or placebo [95]. Compared with 
placebo, empagliflozin significantly reduced the com-
posite endpoint risk of cardiovascular death or HF hos-
pitalization. At 52 weeks, empagliflozin also decreased 
total HF hospitalizations and modestly improved QoL, 
as assessed by the KCCQ-CSS. Similarly, the DELIVER 
trial enrolled 6,263 HFpEF patients (with or without 
T2DM) randomized 1:1 to dapagliflozin or placebo [96]. 
Dapagliflozin demonstrated superiority over placebo in 
improving HF-related outcomes, reducing the composite 
endpoint of worsening HF or cardiovascular death, low-
ering HF hospitalization rates, and alleviating symptom 
burden. A meta-analysis further confirmed that SGLT2i 
reduce the composite of cardiovascular death or first HF 
hospitalization as well as recurrent HF hospitalizations 
in HFpEF patients [97]. Thus, the efficacy of SGLT2i in 
HFpEF patients has been validated. Notably, no dedi-
cated clinical trials have yet evaluated the effectiveness of 
SGLT2i in obese HFpEF populations. Further RCTs are 
warranted to assess their efficacy in this subgroup and to 
explore potential unique mechanistic pathways linking 
weight loss, metabolic modulation, and HFpEF-related 
pathophysiology.

Clinical evidence regarding the benefits of GLP-1 RA in 
HFpEF patients
While GLP-1 RA demonstrate protective effects against 
atherosclerotic cardiovascular disease (ASCVD), their 
role in HF remains uncertain [98]. Although most car-
diovascular outcome trials (CVOTs) of GLP-1 RA have 
shown significant reductions in 3-point major adverse 
cardiovascular events (MACE), findings on hospitaliza-
tion for HF—a key secondary endpoint—exhibit hetero-
geneity across studies. For example, The SELECT trial 
enrolled more than 4,000 HF patients and demonstrated 
that semaglutide reduced the risk of composite HF end-
points by 18%, with a significant decrease in the abso-
lute number of hospitalizations or urgent care visits for 
HF [10]. In the EXSCEL trial including 14,752 T2DM 
patients, exenatide showed no significant effect on the 
composite endpoint of all-cause mortality and HF hos-
pitalization in the HF subgroup. In contrast, exenatide 
significantly reduced the risk of these endpoints in par-
ticipants without HF [99]. In the LEADER trial involving 
9340 T2DM patients, liraglutide significantly reduced 
the risk of 3-point MACE, but no significant difference 
was observed in HF hospitalization [100]. Notably, cur-
rent evidence regarding the impact of GLP-1 RA on HF 
primarily originates from placebo-controlled CVOTs 
conducted in populations with T2DM or obesity char-
acterized by significant cardiovascular risk factors or 
established cardiovascular disease. None of the tri-
als considered HF as the primary composite endpoint. 
Instead, most of them treated it as a secondary endpoint. 
Furthermore, the trials lacked a standardized evaluation 
of HF characteristics and did not differentiate among var-
ious HF phenotypes. Thus, while CVOTs provide critical 
insights into the potential benefits of GLP-1 RA in T2DM 
patients with comorbid HF, dedicated RCTs are war-
ranted to precisely delineate the magnitude and mecha-
nistic characteristics of the therapeutic effects of these 
drugs.

The STEP-HFpEF trial was the first RCT to specifically 
target obese HFpEF patients [101]. This study enrolled 
529 symptomatic, physically limited obese HFpEF 
patients who were randomized 1:1 to receive either pla-
cebo or once-weekly semaglutide 2.4  mg. At 52 weeks, 
semaglutide treatment resulted in a mean improvement 
of 16.6 points in the KCCQ-CSS, significantly surpassing 
the 8.7-point improvement observed with the placebo. 
Additionally, compared with the placebo, semaglutide 
induced a 13.3% reduction in body weight. This study 
demonstrated that obese HFpEF patients who received 
2.4  mg of semaglutide once weekly for one year experi-
enced significant weight reduction and improvement 
in HF-related symptoms, as well as decreased physi-
cal limitations and increased exercise capacity. Explor-
atory analyses further revealed significant reductions in 
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NT-proBNP levels and HF event risk with semaglutide. 
Importantly, this trial positioned obesity-targeted ther-
apy as a disease-specific intervention for HFpEF, with 
treatment benefits exceeding those provided by cur-
rently approved HFpEF therapies [102]. Similarly, in the 
STEP-HFpEF DM trial, which included 616 obese HFpEF 
patients with comorbid T2DM, once-weekly semaglutide 
2.4  mg improved the KCCQ-CSS by 13.7 points versus 
6.4 points with placebo at 52 weeks [103]. Body weight 
was reduced by 9.8% in the semaglutide group compared 
with 3.4% in the placebo group.

Intriguingly, despite a 40% smaller between-group dif-
ference in weight loss (6.4% vs. 10.7% in STEP-HFpEF), 
the magnitude of HFpEF symptom improvement was 
comparable in the two trials [104]. Further analysis 
revealed that patients with a more severe HFpEF pheno-
type—characterized by high NT-proBNP concentrations, 
a history of atrial fibrillation, or loop diuretic use—dem-
onstrated greater improvements in KCCQ-CSS with 
semaglutide treatment than those with less severe disease 
[104]. This occurred despite similar weight loss between 
groups. These observation suggests that the clinical ben-
efits of semaglutide in HFpEF may extend beyond weight 
loss, potentially involving direct cardioprotective mecha-
nisms [105]. Collectively, the results of the STEP-HFpEF 
trials establish semaglutide as a novel therapeutic option 
for HFpEF and emphasize obesity not only as a comor-
bidity but also as a pivotal contributor to HFpEF patho-
genesis and a viable treatment target [106]. Nevertheless, 
future CVOTs with hard clinical endpoints are essential 
to confirm the cardiovascular benefits of semaglutide in 
HFpEF patients and elucidate its underlying mechanisms 
of action.

Clinical evidence regarding the benefits of tirzepatide in 
HFpEF patients
The GIP/GLP-1 dual receptor agonist tirzepatide has 
been approved for the treatment of obesity and T2DM. 
In the SURMOUNT-1 trial, overweight and obese sub-
jects receiving once-weekly tirzepatide (5–15 mg) for 72 
weeks demonstrated mean body weight reductions rang-
ing from 13.7 kg to 21.2 kg [107]. The recently published 
SUMMIT study enrolled 731 obese HFpEF patients 
with or without concomitant T2DM; these patients 
were randomly assigned in a 1:1 ratio to receive tirz-
epatide or placebo for 52 weeks [108]. Compared with 
the placebo group, the tirzepatide group exhibited sig-
nificantly greater improvement in KCCQ-CSS scores 
(mean improvement of 19.5 vs. 12.7 points, respectively). 
With respect to weight reduction, tirzepatide treatment 
resulted in a decrease of 13.9% in mean body weight, sub-
stantially exceeding the 2.2% reduction observed in the 
placebo group. Additionally, in the tirzepatide group, the 
mean increase in the 6MWD was 26.0  m, significantly 

greater than the 10.1-metre increase observed in the 
placebo group. Most notably, after a median follow-up 
of 104 weeks, significantly fewer patients in the tirzepa-
tide group than in the placebo group experienced wors-
ening HF events or died from cardiovascular causes (36 
patients [9.9%] vs. 56 patients [15.3%], respectively). 
These findings suggest that tirzepatide reduces the risk 
of death from cardiovascular causes or worsening HF 
in obese HFpEF patients while alleviating the severity 
of HF symptoms and enhancing exercise tolerance. Fur-
ther analysis revealed that, in obese HFpEF patients with 
worse baseline health status (KCCQ-CSS < 53.5), tirzepa-
tide significantly improved health status (between-group 
ΔKCCQ-CSS, 9.07; 95% CI, 3.71 to14.43) and reduced 
the composite risk of cardiovascular death or worsen-
ing heart failure by 48% (hazard ratio, 0.52; 95% CI, 0.30 
to 0.90) compared to those with better baseline status 
(KCCQ-CSS ≥ 53.5). These findings indicate that obese 
HFpEF patients with greater symptom burden at baseline 
achieve enhanced prognostic improvement with tirzepa-
tide therapy.

Both the SUMMIT and STEP-HFpEF trials are ran-
domized, double-blind, placebo-controlled studies 
conducted in obese HFpEF populations. However, the 
SUMMIT trial implemented stricter inclusion criteria 
(left ventricular ejection fraction (LVEF) ≥ 50%, age ≥ 40), 
resulting in closer alignment with the specific char-
acteristics of the HFpEF population. In contrast, the 
STEP-HFpEF trial employed broader inclusion crite-
ria (LVEF ≥ 45%, age ≥ 18 ). This may explain SUMMIT’s 
more substantial effect on hard endpoints (38% risk 
reduction in heart-related outcomes).

Potential cardioprotective mechanisms of new antidiabetic 
medications
SGLT2i for HFpEF patients
The effects of SGLT2i on cardiac structure and function 
are mediated primarily through improvements in sys-
temic haemodynamics and metabolic effects (Fig. 1).

In terms of ventricular load, SGLT2i reduce cardiac 
load via osmotic diuresis and enhance urinary sodium 
excretion while also decreasing arterial stiffness and 
improving endothelial function [109]. Additionally, 
SGLT2i lower body weight and blood pressure by inhib-
iting glucose and sodium reabsorption in the proximal 
renal tubules. They also increase plasma erythropoietin 
levels, thereby increasing haematocrit and improving car-
diac output [110, 111]. SGLT2i further enhance diastolic 
function, potentially by reducing sarcoplasmic reticulum 
calcium release during diastole [112]. The mechanisms 
underlying the protective effects of SGLT2i on cardiac 
structure and function are also closely linked to ion chan-
nel regulation. Studies indicate that SGLT2i modulate 
the activity of the myocardial-specific sodium-hydrogen 
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exchanger 1 (NHE1), thereby improving mitochon-
drial respiratory function, maintaining myocardial Ca²⁺ 
homeostasis, and delaying the decline in contractile func-
tion [113–115]. Moreover, in cardiomyocytes, SGLT2i 
inhibit late sodium current and calcium/calmodulin-
dependent protein kinase II activity, promoting the con-
traction‒relaxation cycle [114]. Overall, SGLT2i reduce 
ventricular load through diuresis and afterload reduction, 
enhance output by increasing hemoglobin concentration, 
and directly modulate ion channels to improve cardiac 
function.

Metabolically, inflammation and oxidative stress con-
tribute significantly to cardiac structural and diastolic 
dysfunction and play a central role in the initiation and 
progression of HF [116]. Cardiac inflammation is closely 
associated with macrophage infiltration. Lin et al. [117] 
demonstrated that dapagliflozin provides direct cardiac 
protection by suppressing the NHE1/mitogen-activated 
protein kinase/activator protein-1 pathway-mediated 
inflammatory response in cardiomyocytes, reducing 
proinflammatory macrophage infiltration in the cardiac 

tissue of HF mice. Ye et al. [118] confirmed that dapa-
gliflozin decreases activation of nucleotide-binding 
oligomerization domain-like receptor protein 3 inflam-
masomes and reduces the levels of IL-1β, IL-6, TNF-α, 
and caspase-1 in an adenosine monophosphate (AMP)-
activated protein kinase (AMPK)-dependent manner, 
thereby ameliorating myocardial fibrosis and reshaping 
left ventricular function. Another study demonstrated 
that empagliflozin appears to primarily reduce oxida-
tive stress in cardiomyocytes by inhibiting NHE1, con-
sequently enhancing cardiomyocyte stiffness, promoting 
extracellular matrix remodelling, mitigating centrip-
etal hypertrophy of the heart, and alleviating systemic 
inflammation [119]. Other anti-inflammatory effects of 
SGLT2i may involve reduction of the amount of epicar-
dial adipose tissue [120], modification of apolipoprotein 
profiles (e.g., decreasing the levels of low-density lipopro-
tein and triglycerides while increasing the level of high-
density lipoprotein) [121], and improvement of hepatic 
steatosis [122]. SGLT2i exert cardioprotective effects by 
suppressing key inflammatory pathways and oxidative 

Fig. 1  Mechanistic insights into the role of SGLT2i at cardiac, systemic, vascular levels. SGLT2i exert multiple mechanisms independent of their hypogly-
cemic effects, including the improvement of hemodynamics, inhibition of inflammatory responses, reduction of oxidative stress, and enhancement of 
mitochondrial function
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stress, thereby reducing macrophage infiltration, cyto-
kine release, myocardial fibrosis, and adverse remodeling.

SGLT2i also enhance cardiac energy metabolism. By 
restoring the intracellular AMP/adenosine triphosphate 
(ATP) ratio, AMPK is activated, dynamin-related protein 
1 phosphorylation is inhibited, and mitochondrial fission 
is regulated, thereby reducing mitochondrial deoxyribo-
nucleic acid (DNA) damage [123]. Furthermore, SGLT2i 
improve energy metabolism by maintaining respiratory 
chain function, stabilizing the mitochondrial membrane 
potential, decreasing reactive oxygen species (ROS) pro-
duction, and inhibiting mitochondrial permeability tran-
sition pore opening, ultimately promoting cell survival 
[124]. SGLT2i increase the levels of myocardial ketone 
bodies, which serve as alternative fuel sources in HF. 
Although increased ketone oxidation increases total car-
diac energy expenditure, it does not improve cardiac effi-
ciency [125]. Empagliflozin is also capable of improving 
the lipopolysaccharide-induced inflammatory response 
in cardiomyocytes, activating AMPK phosphorylation, 
modulating inflammatory pathways, and maintaining cel-
lular energy homeostasis [126]. Collectively, these actions 
enable SGLT2i to improve cardiac energy metabolism by 
enhancing mitochondrial function, promoting ketone 
oxidation for energy, and regulating cellular energy 
homeostasis.

Coronary microvascular dysfunction also plays a criti-
cal role in the pathogenesis of HFpEF [127]. Multiple 
studies have suggested that SGLT2i significantly improve 
microvascular dysfunction. In an ob/ob−/− mouse 
model, 10 weeks of empagliflozin treatment markedly 
enhanced coronary microvascular function by inhibiting 
SGLT2 activity, thereby improving cardiac contractility 
[128]. Similarly, Juni et al. [129] reported that empa-
gliflozin restored endothelial-derived nitric oxide release 
by suppressing TNF-α-induced ROS accumulation, 
thereby improving myocardial contraction and relax-
ation. These findings collectively suggest that the benefi-
cial effects of SGLT2i on cardiac function may be partly 
mediated through endothelium-dependent mechanisms, 
highlighting the pathophysiological importance of endo-
thelial–myocardial crosstalk.

GLP-1 RA for HFpEF patients
Preclinical and clinical studies indicate that GLP-1 RA 
exert potent cardioprotective effects via multiple mecha-
nisms. Additionally, GLP-1 RA facilitate the mediation 
of biological effects associated with hormones that influ-
ence not only cardiac function but also other organs and 
tissues (Fig. 2).

Emerging evidence indicates that HFpEF patients face 
a significantly elevated risk of ASCVD [130]. Conse-
quently, ASCVD prevention may improve outcomes in 
this population. However, the precise pathophysiological 

interplay between atherosclerotic progression and HFpEF 
remains incompletely understood. Current studies attri-
bute the cardiovascular benefits of GLP-1 RA in reduc-
ing MACE predominantly to their anti-atherosclerotic 
properties [131]. The LEADER trial demonstrated that 
liraglutide significantly decreased 3-point MACE risk 
[100], with divergence in Kaplan-Meier cumulative event 
curves emerging 12–18 months postrandomization, sug-
gesting that its cardiovascular benefits likely stem from 
attenuation of atherosclerotic progression [132]. Simi-
larly, Sun et al. [133] reported that liraglutide treatment 
markedly reduced the levels of inflammatory biomark-
ers and carotid intima–media thickness in individuals 
with impaired glucose tolerance. Another clinical study 
revealed that liraglutide suppressed monocyte chemoat-
tractant protein-1 (MCP-1) secretion in human carotid 
endarterectomy specimens [134]. In ApoE−/−mice, four-
week liraglutide infusion significantly reduced aortic root 
atherosclerotic lesion size and monocyte/macrophage 
accumulation [134]. An ex vivo study of isolated aortic 
rings from high-fat diet-fed ApoE−/−mice revealed that 
liraglutide upregulated endothelial nitric oxide synthase 
expression and reduced intercellular adhesion molecule-1 
levels, indicating GLP-1 receptor-dependent reversal of 
endothelial dysfunction [135]. Chang et al. [136] dem-
onstrated that dulaglutide mitigates the proatherogenic 
effects of oxidized low-density lipoprotein by block-
ing p53-mediated suppression of Kruppel-like factor 2, 
a transcription factor critical for vascular homeostasis. 
Therefore, the aforementioned studies demonstrate that 
GLP-1 RA exert anti-atherosclerotic effects through 
reducing inflammatory responses, improving endothelial 
function, and inhibiting plaque formation.

GLP-1 RA have also been demonstrated to reduce EAT 
thickness, suppress RAAS activation, improve myocar-
dial energy metabolism, and attenuate systemic inflam-
mation and cardiac oxidative stress [137–139]. These 
direct cardioprotective mechanisms may underlie their 
therapeutic potential in obese HFpEF patients. Increased 
EAT thickness is strongly associated with cardiac struc-
tural and functional abnormalities, reduced exercise 
capacity, and elevated risks of hospitalization and mortal-
ity in HFpEF patients. Multiple studies have shown that 
GLP-1 RA reduce EAT thickness. In a 24-week case‒con-
trol study of obese patients with T2DM, the liraglutide 
plus metformin group exhibited reductions in EAT thick-
ness from 9.6 ± 2.0 mm to 6.8 ± 1.5 mm at 12 weeks and 
6.2 ± 1.5 mm at 24 weeks, whereas no significant reduc-
tion was observed in the metformin-only group [140]. 
Similarly, Iacobellis et al. reported significant reductions 
in EAT thickness in obese T2DM patients after 12 weeks 
of treatment with semaglutide or dulaglutide, with the 
extent of reduction showing dose dependency [141]. 
Notably, human EAT expresses GLP-1R, and GLP-1R 
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expression is positively correlated with the expression of 
genes involved in fatty acid β-oxidation and browning of 
white adipose tissue but negatively correlated with the 
expression of adipogenesis-related genes. This molecular 
interplay may explain the preferential benefits of GLP-1 
RA in obese HFpEF patients [142]. However, whether 
the EAT-reducing effects of GLP-1 RA are independent 
of their weight loss-inducing properties continues to be 
debated.

Chronic activation of the RAAS can cause significant 
structural alterations in multiple components of the 
cardiovascular system [143]. Angiotensin II (Ang II), 
the primary bioactive peptide in the RAAS, plays a piv-
otal role in cardiac remodelling and in the development 
of hypertension [144]. The study demonstrated that in 
spontaneously hypertensive rats, liraglutide reduced cir-
culating Ang II levels, upregulated cardiac angiotensin 
II type 2 receptor (AT2R) and angiotensin-converting 
enzyme-2 (ACE2) expression, and attenuated myocardial 

hypertrophy [145]. In a murine model of cardiometa-
bolic HFpEF, liraglutide alleviated myocardial hypertro-
phy, fibrosis, and inflammation; reduced NP levels; and 
mitigated pulmonary congestion [146]. A clinical trial 
involving 12 healthy young males demonstrated that a 
2-hour infusion of synthetic human GLP-1 decreased 
circulating Ang II by 19% and induced diuresis [147]. 
Furthermore, GLP-1 inhibits ACE activity while stimu-
lating ACE2, thereby promoting the conversion of Ang 
II to angiotensin (1–7), a hormone that exerts vasodila-
tory and antifibrotic effects [148]. Ang II also enhances 
sodium-hydrogen exchanger isoform 3 activity, thereby 
increasing proximal tubular sodium and water reabsorp-
tion [149]. Thereby, these evidence suggests that GLP-1 
RA counteract the action of Ang II through multiple 
pathways.

In HF, metabolic derangements in cardiac substrates—
including fatty acids, glucose, ketones, lactate, and amino 
acids—contribute to myocardial metabolic remodelling 

Fig. 2  The effects of cardiac protection mediated by GLP-1 RA include multiple physiological mechanisms. GLP-1 RA enhance glucose homeostasis by 
acting on pancreatic islet cells, while their action on the central nervous system and gastrointestinal tract reduces appetite and body weight; decreases 
hepatic gluconeogenesis and steatosis, indirectly contributing to improved glycemic control and lipid profiles; inhibit the activation of the RAAS; delay 
the progression of atherosclerosis; GLP-1 RA exert both direct and indirect protective effects on the heart, reduced epicardial fat thickness, optimized 
myocardial energy metabolism, diminished cardiac oxidative stress, and ultimately improved prognosis in HFpEF
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and ultimately lead to structural and functional impair-
ments [150]. Importantly, GLP-1 RA can exert beneficial 
effects on myocardial energy metabolism. Aoi et al. [151] 
demonstrated that exenatide enhances glucose uptake, 
activates phosphofructokinase-1, and suppresses carni-
tine palmitoyltransferase 1 activity in H9c2 cells, thereby 
optimizing energy substrate utilization. The shift towards 
increased myocardial glucose oxidation and reduced fatty 
acid oxidation mediated by GLP-1 RA improves cardiac 
metabolic efficiency and function [152]. In a hypoxia/
reoxygenation model, exenatide preserved mitochondrial 
function by reducing reactive ROS generation, mitigat-
ing calcium overload, and stabilizing the mitochondrial 
membrane potential [153]. Similarly, exenatide restored 
mitochondrial morphology in db/db mice by reduc-
ing ROS accumulation and enhancing mitophagy [154]. 
GLP-1 also upregulates the expression of adiponectin, 
a hormone that modulates mitochondrial dynamics via 
AMPK and sirtuin 1 phosphorylation [155]. These evi-
dence indicates that GLP-1 RA protect cardiomyocytes 
from metabolic dysfunction by optimizing energy metab-
olism and enhancing mitochondrial function.

Recent animal and human studies highlight the critical 
role of systemic inflammation—driven by comorbidities 
such as obesity, T2DM, hypertension, and ageing—in 
the pathogenesis of HFpEF, with obesity recognized as a 
key driver of this proinflammatory state [156]. The anti-
inflammatory properties of GLP-1 RA are well docu-
mented. Compared with insulin monotherapy, liraglutide 
combined with insulin significantly reduced MCP-1 and 
nuclear factor-κB (NF-κB) levels in T2DM patients [157]. 
Another clinical trial reported that liraglutide combined 
with moderate exercise effectively lowered high-sensi-
tivity C-reactive protein levels [158]. In rodent studies, 
semaglutide attenuated exercise-induced myocardial 
injury by suppressing inflammation and oxidative stress 
[159], whereas dulaglutide reduced the levels of proin-
flammatory cytokines (e.g., IL-1β, IL-6, and MCP-1) in 
human fibroblast-like synoviocytes via inhibition of c-Jun 
N-terminal kinase/NF-κB signalling [160]. Liraglutide 
increases superoxide dismutase activity while reduc-
ing plasma malondialdehyde and oxidized low-density 
lipoprotein levels [161–163]. Exenatide pretreatment of 
H9c2 cardiomyocytes diminishes H2O2-induced ROS 
production and upregulates the expression of antioxi-
dant enzymes such as glutathione peroxidase-1 and man-
ganese superoxide dismutase [164]. Collectively, these 
findings demonstrate that GLP-1 RA mitigate systemic 
inflammation through multi-targeted suppression of pro-
inflammatory cytokines and enhancement of endogenous 
antioxidant defenses.

Tirzepatide for HFpEF patients
Current evidence regarding the cardioprotective mecha-
nisms of tirzepatide remains limited. Mechanistic analy-
ses from the SUMMIT trial [165] demonstrated that, 
compared with placebo, tirzepatide reduced blood pres-
sure and attenuated circulatory volume expansion in 
obese HFpEF patients. Tirzepatide also alleviated sys-
temic inflammation, improved the estimated glomerular 
filtration rate, and reduced microalbuminuria. Further-
more, tirzepatide significantly lowered cardiac tropo-
nin T levels compared with placebo, indicating reduced 
myocardial injury, along with a concurrent decline in 
NT-proBNP levels. Tirzepatide reduced estimated blood 
volume, and this reduction was linked to: lower sys-
tolic blood pressure, an improved urinary albumin-to-
creatinine ratio, higher KCCQ-CSS scores, and greater 
6MWD distances. Together, these associations suggest 
that alleviating circulatory volume overload (or remov-
ing volume-related stressors) is a key mechanism for 
tirzepatide’s clinical benefits. Furthermore, tirzepatide-
mediated attenuation of systemic inflammation was 
significantly associated with reductions in myocardial 
injury biomarkers and modestly correlated with improve-
ments in the 6MWD. Additionally, the cardiac magnetic 
resonance substudy of the SUMMIT trial revealed that 
compared with placebo, tirzepatide treatment of obese 
HFpEF patients reduced the LV mass and paracardial 
adipose tissue volume, with the changes in the LV mass 
paralleling the degree of weight loss [166]. These physi-
ological adaptations likely underlie the observed reduc-
tion in heart failure events in the main SUMMIT study. 
Collectively, these findings provide novel insights into the 
mechanisms by which tirzepatide improves clinical out-
comes in obese HFpEF patients. However, whether the 
benefits of tirzepatide in this population are independent 
of its weight-reducing effects requires further validation 
through clinical and preclinical studies.

BSx for patients with obesity and HFpEF
BSx, primarily laparoscopic Roux-en-Y gastric bypass 
and sleeve gastrectomy, delivers effective and sustained 
weight loss for patients with BMI ≥ 35 kg/m² or ≥ 30 kg/
m² with metabolic comorbidities [167, 168]. Although 
RCTs evaluating BSx in patients with confirmed HF are 
currently lacking, the ACC guidelines recommend that 
for individuals with HF and obesity, BSx appears effec-
tive for intentional weight loss and potentially reduces 
the risk of HF events, including hospitalization for HF 
and death [18]. A self-controlled case study of 524 HF 
patients demonstrated significantly lower rates of emer-
gency visits and hospitalizations for acute HF exacerba-
tions during postoperative months 13–24 than during 
the preoperative 13-24-month period [169]. Additional 
evidence derives from retrospective cohort studies 
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reporting intermediate-term mortality outcomes in 
patients with baseline HF (without detailed phenotyp-
ing). Two U.S. administrative database analyses revealed 
lower in-hospital mortality among obese HF patients 
with prior BSx than among their nonsurgical counter-
parts [170, 171]. Swedish registry data indicated a 77% 
reduction in mortality risk in the BSx subgroup with pre-
operative HF versus the nonsurgical control group [172]. 
A Canadian study of 274 patients with baseline HF simi-
larly reported significantly reduced cardiovascular and 
all-cause mortality at a median follow-up of 4.6 years, 
along with decreased subsequent HF hospitalization risk 
in the BSx group [173]. Data on preoperative patients 
with HFpEF remain substantially limited. This gap pri-
marily stems from the inadequate sensitivity of current 
HFpEF diagnostic criteria in severely obese populations. 
Future efforts should focus on developing dedicated diag-
nostic scoring systems for HFpEF tailored to individuals 
with severe obesity. Subsequently, randomized trials in 
obese HFpEF population will be essential to establish the 
efficacy and safety of BSx, thereby providing an evidence-
based foundation for BSx in HFpEF management.

Conclusion and future directions
The increasing prevalence of obesity is closely linked 
to the increasing incidence of HFpEF. The association 
between obesity and HFpEF is largely independent of 
traditional risk factors, underscoring the importance 
of elucidating the nontraditional mechanistic pathways 
that connect these conditions and in that way to iden-
tify novel targets for HFpEF prevention and treatment. 
Current evidence indicates that lifestyle interventions 
significantly improve clinical outcomes in obese HFpEF 
patients. Emerging therapies, including SGLT2i, GLP-1 
RA, and tirzepatide, offer promising options for amelio-
rating metabolic derangements, alleviating symptoms, 
and improving prognosis in this population. Additionally, 
accumulating experience with BSx further supports the 
substantial benefits of metabolism-targeted therapeutic 
strategies in obese HFpEF patients.

It remains unclear whether the benefits of pharmaco-
logical or non-pharmacological therapies in obese HFpEF 
patients are attributable solely to weight loss or are also 
directly mediated by weight loss-independent effects on 
cardiovascular structure, function, and hemodynam-
ics. Therefore, future studies are needed to elucidate the 
weight loss-dependent and -independent mechanisms of 
benefit in obese HFpEF treatment, utilizing both preclini-
cal and clinical investigations. Furthermore, RCTs should 
explore optimal combination strategies—including life-
style interventions, pharmacotherapy, and surgical proce-
dures—tailored to patients stratified by BMI. The goal is 
to comprehensively improve patients’ clinical symptoms, 

functional status, metabolic parameters, heart failure 
hospitalization rates, and long-term survival.
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