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Obesity-related conditions are among the leading causes of preventable death
and are increasing in prevalence worldwide. Body size and composition are
complex traits that are challenging to characterize due to environmental and
genetic influences, longitudinal variation, heterogeneity between sexes, and
differing health risks based on adipose distribution. Here, we construct a
4-factor genomic structural equation model using 18 measures, unveiling
shared and distinct genetic architectures underlying birth size, abdominal size,
adipose distribution, and adiposity. Multivariate genome-wide associations
reveal the adiposity factor is enriched specifically in neural tissues and path-
ways, while adipose distribution is enriched more broadly across physiological
systems. In addition, polygenic scores for the adiposity factor predict many
adverse health outcomes, while those for body size and composition predict a
more limited subset. Finally, we characterize the factors’ genetic correlations
with obesity-related traits and examine the druggable genome by constructing

a bipartite drug-gene network to identify potential therapeutic targets.

Human body size and body composition vary throughout an indivi-
dual’s lifecourse and among individuals in a population. The strong
associations linking excess fat stores with a constellation of morbid-
ities have highlighted the importance of understanding how various
anthropometric traits are connected to the broad and multifaceted
biological systems underpinning human health. Obesity prevalence
has increased markedly in the United States between 1999 and 2020
from 30.5% to 41.9%". On a global scale, the increasing rates of obesity
observed among children and adults are a widespread source of
concern’; obesity-related conditions such as heart disease, stroke, type
2 diabetes (T2D), and some cancers are among the leading causes for
preventable death®. Although family-based studies” and genome-wide

association studies (GWASs)* point to substantive genetic influences
on obesity, the broader landscape of what characterizes this genetic
signal across different measures of adiposity remains poorly
understood.

The phenotypic and genetic signal of adiposity traits is remark-
ably difficult to characterize due to heterogeneity between sexes and
longitudinal variation across the lifespan’. The genetic architecture for
adipose distribution is notably different between males and females®,
and women exhibit a greater ratio of subcutaneous-to-visceral adipose
tissue than men’. Moreover, the amount of visceral adipose tissue
tends to increase with age for both males and females, but men tend to
lose relatively more visceral adipose tissue due to calorie restriction
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than women’"’. Body mass index (BMI) - an easily obtainable clinical
measure (diagnosing obesity as BMI>30kg/m?) - falls short when
differentiating between masses of visceral adipose, subcutaneous
adipose, muscle, or bone, leading to its criticism as a misleading metric
of body composition and cardiometabolic health®"2, Waist cir-
cumference adjusted for BMI (WCadjBMI), hip circumference adjusted
for BMI (HCadjBMI), and waist-to-hip circumference ratio adjusted for
BMI (WHRadjBMI)® are proxy measures of body fat distribution.
Notably, the genetic drivers of BMI and WHRadjBMI are distinct:
genetic associations for BMI and obesity are linked to enriched gene
expression in the central nervous system (CNS), implicating a rela-
tionship between obesity and the brain®*"*'*, whereas genes associated
with WHRadjBMI demonstrate less enrichment for tissue-specific
expression in the CNS and more with gene expression in preadipocytes
and adipocytes®”. Similarly, the genetic contributors to metabolic
syndrome (MetSyn) - a cluster of often comorbid risk factors (e.g.,
hypertension, elevated triglycerides, and hyperglycemia) that link
adiposity with cardiovascular disease and T2D - strongly overlap with
the genetic associations for waist circumference (WC)'®. However, the
alleles associated with a higher subcutaneous-to-visceral adipose dis-
tribution (increased capacity for adipose tissue expansion)” are pro-
tective for T2D, heart disease, and high blood pressure®”. These
findings highlight the complexity of body composition and genetic
influences, with sometimes contrasting effects on health outcomes.
Given this complex and intertwined landscape of anthropometric
measurements, we speculated that the genetic associations for human
body size and body composition would be more suitably represented
as latent variables in a genomic structural equation modeling (Geno-
mic SEM) framework®. Genomic SEM estimates how strongly the
genetic associations of various observed traits are related to a number
of underlying and unobserved genetic constructs (latent factors). It
does so by estimating the strengths of the relationships (loadings) of
each trait with the factors, which themselves can be related to one
another (genetic correlations). A primary characteristic of Genomic
SEM is its ability to include different sets of traits from various parti-
cipant samples; this enabled us to incorporate a diverse range of
anthropometric traits from across the lifespan and stratified by
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Fig. 1| Genomic structural equation model of adiposity and anthropometrics
across the lifespan. The standardized measurement model derived using genomic
structural equation modeling (SEM) comprised of 4 latent genetic factors and 18
indicator variables. The 4 genetic factors are shaded yellow, the traits with com-
bined males and females are shaded gray, and the traits stratified by males and
females are shaded in color-matched pairs. The one-directional arrows signify
standardized factor loadings and describe the strength and direction of the
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biological sex into the same statistical model. Through this modeling
process, we balanced model complexity and parsimony to unveil the
shared versus distinct genetic components underlying differences in
birth size, abdominal size, body size/composition, and adiposity. We
found the enrichment of biological pathways and tissue types to be
distinct among the 4 genetic factors in the model, and the factors
showed different associations with adverse health outcomes in an
independent dataset with electronic medical records. In addition, we
contextualized the genome-wide signal for each of the factors by
identifying differing patterns of genetic correlations with behavioral
and obesity-related traits. Together, our results particularly high-
lighted the adiposity genetic factor for its distinct enrichment in ner-
vous systems, substantial genetic correlations with related traits, and
predictive capability for adverse health outcomes across broad phe-
notypic domains. Finally, we examined the druggable genome and
constructed a bipartite drug-gene network to identify possible
mechanistic explanations for weight-related side effects and the
potential for repurposing therapeutics to address adiposity.

Results

A four-factor model of anthropometric and adiposity genetics
We began by bringing together GWAS summary statistics for 18 adip-
osity and anthropometric measures from different points in the life-
span and stratified by sex (Supplementary Table 1). The Genomic SEM
model in Fig. 1 revealed an overall structure with 4 latent genetic fac-
tors referred to as F1-F4 and had adequate model fit*** (comparative fit
index [CFI] = 0.94 and a standardized root mean square residual
[SRMR] =0.11). The genetic covariance and correlation matrices are
shown in Supplementary Figs. 1-2 and Supplementary Data 61-64
along with further description of the modeling techniques and con-
siderations in the methods section. The model estimated differing
strengths of relationships between the 18 genetic indicator variables
and their underlying latent constructs, as represented by their factor
loadings (Fig. 1 one-directional arrows). Flincluded 3 loadings for traits
related to birth size, F2 included 3 loadings for traits relating to
abdominal size, F3 included 7 loadings for traits relating to body size
and adipose distribution, and F4 included 7 loadings for traits relating
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relationships between genetic indicators and their underlying latent constructs.
Standardized covariance relationships (i.e., correlations) between the factors are
represented by two-directional arrows, and the two-directional arrows pointing
from a variable to itself denote the standardized residuals (the unique genetic
variance not reflected through other paths in the model). Uncertainties in stan-
dardized parameter estimates are indicated by standard errors provided in
parentheses.
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to adiposity. These latent genetic variables (F1-F4) represent the
shared genetic effects underlying a cluster of genetically similar traits
(e.g., F1is an unobserved variable that captures the genetic influences
underlying a set of observed traits relating to birth size). The 4 factors
generally exhibited small genetic correlations (Fig. 1; |rg| < 0.15 among
the between-factor standardized covariance relationships indicated by
two-directional arrows above the factors). The only sizable genetic
correlation was for F1 and F3 (rg = 0.44), likely reflecting the shared
genetic effects of birth length and adult height (rg = 0.49). Together,
this emphasized the unique subclusters of genetic signal across traits
relating to anthropometry and adiposity. Our analysis incorporated
direct replication of the genomic structural equation model’s 4-factor
structure through an exploratory factor analysis (EFA) using odd
chromosomes followed by a confirmatory factor analysis (CFA) using
even chromosomes to serve as a hold-out sample and protect from
model overfitting. Within this replicated 4-factor model structure, only
indicator variables with substantial loadings were permitted to load
onto factors (representing considerable non-zero genetic covariances
among indicator variables loading onto the same factor). This ensured
that the associations that we identified in each factor’s multivariate
GWAS were representative of shared effects across the indicator vari-
ables for that factor, even if those shared genetic effects were not large
enough to be detected in the original trait specific GWASs.

Among the 6 sex-stratified traits, each male-female pair generally
loaded onto the same factor, highlighting the largely shared genetic
associations within males and females. HCadjBMI male and female had
similar loadings on F3, and BMI male and female had similar loadings
on F4 - however, across the other sex-stratified traits there were some
notable differences. More genetic variance of WHRadjBMI was
explained by F2 in females relative to males (see loadings in Fig. 1), and
F4 explained more variance of female than male arm fat ratio (AFR). In
addition, the variance in female trunk fat ratio (TFR) was mostly
explained by F3, but male TFR had modest cross-loadings between F3
and F4, with substantial residual genetic variance (0.83) and generally
low genetic covariance (Supplementary Fig. 1) with other anthropo-
metric traits, suggesting a more divergent genetic influence on male
TFR. WCadjBMI female cross-loaded substantially onto both F2 and F3,
while WCadjBMI male only loaded on F3. One primary advantage of
our SEM is its ability to estimate these sex-specific differences and
relationships within the landscape of anthropometric traits across the
lifespan. The 4 factors in our model provide latent constructs that are
less prone to measurement error and can discern the genetic com-
ponents relating to body size and body composition; as such, this
valuable genetic representation goes beyond any single indicator
variable, such as BML.

We subsequently used our 4-factor Genomic SEM to perform
multivariate GWASs, which leveraged improved power over the con-
stituent indicator GWASs. We identified multiple genome-wide sig-
nificant (GWS; p < 5 x 10°8) variants that were unique to each factor and
were not identified in the underlying GWASs after removing SNPs with
heterogeneous effects (Qsnps; Supplementary Table 2). F1, F2, F3, and
F4 respectively uncovered 103; 1318; 8; and 6206 GWS SNPs within the
7; 35; 1; and 139 independent loci that were not identified by the
individual indicator GWASs for each factor. Manhattan plots for each
multivariate factor-GWAS are shown in Supplementary Figs. 3-6.
Supplementary Table 2 summarizes the number of independent
association signals for each factor and how many were novel relative to
each factor’s indicator traits. The lack of independent datasets for all 18
indicator variables precluded us from performing a formal replication
analysis of the novel loci which would require constructing a com-
parable Genomic SEM using independent data and performing 4 cor-
responding multivariate GWASs. However, within the independent All
of Us dataset™** there were GWASs for 3 traits that were indicator
variables for F2 (WHRadjBMI; N =102,746), F3 (height; N =111,755), and
F4 (BMI; N =111,482). We used these independent GWASs to test for

concordant statistical significance and consistent direction of effect
for the novel identified loci, though we anticipated much reduced
power for a single indicator compared to our multivariate factors®.
See the methods section for further details. Complete summary sta-
tistic information is summarized in Supplementary Data 41-43 for the
lead SNPs of novel loci, and an overview of the loci for each factor is
included in Supplementary Table 2. Both of the 2 novel loci for F2
(relative to WHRadjBMI), showed consistent direction of effect, but
neither had concordant significance. The 2 novel loci for F3 had con-
sistent direction of effect when compared to the All of Us height
GWAS, and 1 of the 2 loci had concordant significance. For F4, there
were 28 novel loci relative to BMI, 25 of which had consistent effect
direction (binomial test p =1.52x107°) and 5 of which had concordant
significance. This comparison between our multi-variate GWASs and
independent univariate GWASs highlighted broadly consistent effect
directions and a couple novel loci had evidence for concordant sig-
nificance in All of Us, providing a confirmatory context for our multi-
variate factor GWASs’ novel associations. In Supplementary Note 1 we
have outlined certain aspects of the modeling process that guard
against false positives to provide additional context for these multi-
variate GWAS associations.

We next characterized these multivariate GWASs in multiple
downstream analyses. First, we implemented DEPICT® to identify sig-
nificantly prioritized genes (false discovery rate [FDR] <0.05) from the
88; 344; 1173; and 675 independent GWS loci for F1, F2, F3, and F4
respectively, and assessed the enrichment of those loci across func-
tional gene sets (p < 4.56 x 107, the Bonferroni-corrected significance
threshold) and tissue-specific expression profiles (FDR < 0.05). Next,
we used FOCUS*® to perform transcription-level analyses (tran-
scriptome wide association studies [TWASs]) for each of the latent
factor GWASs, and we extracted genes that were fine-mapped to non-
null 90% credible sets (CSs) with a posterior inclusion probability
(PIP) > 0.1. Gene set overlap across the GWASs and TWASs is shown in
Supplementary Fig. 7. We then used the factors’ multivariate GWAS
effect estimates and LDpred2” to develop 4 polygenic risk scores
(PGSs) and applied them to an external dataset (Colorado Center for
Personalized Medicine [CCPM] Biobank freeze2; N=25,240). These
PGSs were tested for association with 1514 phecode-based phenotypes
(FDR < 0.10 Bonferroni-corrected significance threshold, due to the
highly correlated structure of the phecodes) in a phenome-wide
association study (pheWAS). Next, we estimated the genetic correla-
tions with comorbidity-related traits to contextualize each factor
within a broader genomic landscape using Linkage Disequilibrium
Score Regression (LDSC)**?. Finally, we constructed drug-gene inter-
action networks for the factors’ DEPICT- and FOCUS-identified genes
to advance existing, proposed, and novel therapeutic targets for
adiposity-related conditions.

F1 - birth size

F1 characterized the genetic signal underlying size at birth with load-
ings from 3 indicator variables (Fig. 2a). The DEPICT analysis high-
lighted 88 independent GWS loci with 24 significantly prioritized genes
and 3 enriched gene sets including ‘incomplete somite formation” and
‘decreased embryo size’ gene sets. The GWS loci for F1 were not enri-
ched for expression profiles across physiological systems, cell types, or
tissue types (Fig. 2b). In a tissue-agnostic TWAS analysis using FOCUS,
however, we identified 158 fine-mapped genes with PIP > 0.1 across 69
non-null CSs (Supplementary Fig. 8). These putatively causal gene-
expression mediated effects consisted of SNP-expression weights from
27 general tissues including the brain (43 genes), adipose (17 genes),
and esophagus (16 genes). The F1 PGSs that were applied in an external
dataset (N=25,240) were negatively associated with acute sinusitis,
insomnia, renal failure, T2D, and hypertension (Fig. 2c). The F1 GWAS,
DEPICT enrichment, TWAS, and pheWAS results are summarized in
Supplementary Datal-3, 16-20, 44-46, and 56.
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Fig. 2 | Characterizing F1 - the genetics of birth size. The 3 indicator variables
relating to birth size and their standardized loadings on F1, the I* latent genetic
factor, are shown in (a). This genetic factor did not have any genetic enrichment
across physiological systems, cell types, or tissue types (FDR < 0.05) in the DEPICT
enrichment analysis (b). The polygenic score (PGS) weights for F1 were applied in an
external sample (CCPM Biobank, N = 25,240) and implemented in a phenome wide
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association study (pheWAS); The significant logistic regression pheWAS associa-
tions between F1 PGS and phenotypes are shown in (c), with phenotype labels for
the points to the right of the vertical dashed red line denoting the FDR < 0.10
Bonferroni-corrected significance threshold, and triangle direction (up/down)
indicating F1 PGS direction of effect (+/-). Source data are provided as a Source
Data file.

F2 - abdominal size

F2 had 3 loadings from indicator variables relating to adult abdominal
size (Fig. 3a) and 319 significant DEPICT-prioritized genes from 344
independent GWS loci. We observed significant physiological system
enrichment across 7 of the 10 categories (Fig. 3b), including adipo-
cytes, subcutaneous adipose tissue, and abdominal adipose tissue.
Beyond those adipose-related tissues, F2’s genetic signal was broadly
enriched throughout the body including the musculoskeletal, uro-
genital, cardiovascular, digestive, and endocrine systems (Supple-
mentary Data 24). Using tissue-agnostic FOCUS TWAS we identified
676 fine-mapped genes with PIP>0.1 across 243 non-null CSs (Sup-
plementary Fig. 9). These prioritized TWAS associations spanned 28
general tissues but primarily consisted of brain (160 genes) and adi-
pose tissue weights (78 genes). F2 PGS-pheWAS showed positive
associations with T2D, peripheral angiopathy, and hypertension
(Fig. 3¢) suggesting a genetic propensity for larger abdominal size was
predictive of these circulatory and metabolic health outcomes. These
phenotypic associations were aligned with the DEPICT gene-set ana-
lysis which identified 185 significantly enriched gene sets relating to
insulin resistance and organ development/morphology (particularly
within the cardiovascular system). The F2 GWAS, DEPICT enrichment,
TWAS, and pheWAS results are summarized in Supplementary Data 4-
6, 21-25, 47-49 and 57.

F3 - body size and adipose distribution

The third genetic factor, F3, captured the shared variance among 7
indicator variables describing body size and adipose distribution
(Fig. 4a), with notable differences between the loadings for male and

female traits, especially for TFR (described above). The DEPICT ana-
lysis for F3 identified 1864 significantly prioritized genes for 1173
independent GWS loci and enrichment in 8 of the 10 physiological
system categories (Fig. 4b; musculoskeletal, urogenital, cardiovas-
cular, endocrine, digestive, respiratory, hemic and immune, integu-
mentary), exemplifying the multifaceted physiology underlying
variation in adult body size and adipose distribution (Supplementary
Data 29). We found 1127 gene sets significantly enriched for F3,
including many gene sets relating to embryonic development and
protein-protein interaction subnetworks. In a tissue-agnostic FOCUS
TWAS, we identified 2266 fine-mapped genes with PIP > 0.1 across 689
non-null CSs (Supplementary Fig. 10), spanning 28 general tissues,
particularly brain (571 genes), esophagus (242 genes), adipose (218
genes), and artery (202 genes). Interestingly, APOE, a gene linked to
Alzheimer’s disease and catabolism of lipoprotein constituents, was
significantly associated via prostate expression weights (Z-score =
-5.35, PIP = 0.61). The PGS-pheWAS analysis revealed that F3 was pre-
dictive of a few health outcomes including negative associations with
abdominal pain, hyperlipidemia, and hypertension, but a positive
association with atrial fibrillation (Fig. 4c). The F3 GWAS, DEPICT
enrichment, TWAS, and pheWAS results are summarized in Supple-
mentary Data 7-9, 26-30, 50-52, and 58.

F4 - adiposity

F4 had 7 adiposity-related indicator variables loading onto it relating to
excess fat tissue and obesity (Fig. 5a). The associated loci were enri-
ched only in one physiological system (nervous; Fig. 5b, Supplemen-
tary Data 34). Broad regions across the CNS were enriched, including
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(FE;H?:GDS) Not Enriched e

, ||||I||||||||....._

FDR=0.10

(c)

muscuoskoletal |

5

)
-logs(p-value)

N =25,240) and implemented in a phenome wide association study (pheWAS); The
significant logistic regression pheWAS associations between F2 PGS and pheno-
types are shown in (c), with phenotype labels for the points to the right of the
vertical dashed red line denoting the FDR < 0.10 Bonferroni-corrected significance
threshold, and triangle direction (up/down) indicating F2 PGS direction of effect
(+/-). Source data are provided as a Source Data file.

the hindbrain (cerebellum) and the forebrain (cerebral cortex, tem-
poral lobe, occipital lobe, frontal lobe, parietal lobe, basal ganglia) -
regions responsible for complex perceptual, cognitive, and behavioral
processes involving learning, emotion, and memory. The F4 DEPICT
analysis identified 437 significantly prioritized genes for the 675
independent GWS loci and 62 enriched gene sets; upon comparing
these gene sets to the other 3 factors, they were much more specific to
the CNS, relating to brain development, neurons, synaptosomes, and
dendrites. In a brain-tissue-prioritized FOCUS TWAS, we identified 850
fine-mapped genes with PIP>0.1 across 335 non-null CSs (Supple-
mentary Fig. 11). These prioritized TWAS associations spanned 28
general tissues but the majority corresponded to brain tissue weights
(498 genes). The PGS-pheWAS analysis for F4 uncovered many more
associations with adverse health outcomes, spanning a wide range of
domains (Fig. 5c): chronic pain, fatigue, asthma, shortness of breath,
sleep apnea, benign skin neoplasm, cancer of kidney and renal pelvis,
osteoarthritis, substance use disorders, anxiety, depression, sepsis,
allergy to medications, skin/nail fungal infections, anemia, renal dis-
ease/failure, obesity, T2D, liver disease/cirrhosis, bariatric surgery,
esophageal diseases, acid reflux, cellulitis, long-term anticoagulants,
and hypertension. The F4 GWAS, DEPICT enrichment, TWAS, and
pheWAS results are summarized in Supplementary Data 10-12, 31-35,
53-55, and 59.

Comparison of F4 and BMI genetic signals

The male and female BMI indicator variables both had large stan-
dardized loadings of 0.95 with F4; therefore, we explored the
shared versus distinct aspects of the genetic signals for F4 (a highly

predictive latent factor) compared to BMI. There were 6578 GWS
SNPs common between the F4 and BMI GWASs, but 6206 SNPs that
were novel to F4 (i.e,, not GWS in any of the indicator GWASs
loading onto F4, including BMI male and BMI female). Overall, the
GWS SNPs for F4 and BMI (combined males and females) resided in
675 and 1035 independent significant loci, respectively, which only
partially overlapped (624 of the 675 F4 loci had genomic positional
overlap with the BMI loci; Supplementary Figs. 6, 12, and 13).
Notably, while 392 DEPICT-prioritized genes were common to BMI
and F4, 45 genes were unique to only F4 (Supplementary Data 13, 15,
and 36-37; Supplementary Fig. 14). In addition, while 339 putatively
causal genes with expression mediated effects (FOCUS-identified
genes; Supplementary Figs. 14-15, Supplementary Data 14, 40) were
common to BMI and F4, 511 genes were unique to F4. Only 21 genes
were common to all 4 analyses (identified by DEPICT and FOCUS for
both F4 and BMI). Beyond these distinguishing overlaps at the gene
level, the DEPICT gene set and tissue enrichment analyses (Fig. 5b,
Supplementary Fig. 16, Supplementary Data 33-34 and 38-39)
pinpointed a key difference between F4 and BMI: the BMI-
associated genetic loci were distinctively enriched for the hypo-
thalamus and the hypothalamo hypophyseal system - the brain’s
control center for hunger and satiety. The BMI-associated loci were
therefore enriched in the canonical energy homeostasis-related
areas of the brain whereas the F4-associated loci were not. Thus, F4
was characterized by a salient partitioning of the genetic archi-
tecture of adiposity; F4 disentangles a neural and behavioral com-
ponent of adiposty that is rooted in sensory processing, learning,
memory, and experience.
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Fig. 4 | Characterizing F3 - the genetics of body size and adipose distribution.
The 7 indicator variables relating to body size and adipose distribution and their
standardized loadings on F3, the 3" latent genetic factor, are shown in (a). This
genetic factor showed gene expression enrichment across a variety of physiological
systems, cell types, and tissue types (FDR < 0.05) in the DEPICT enrichment analysis
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(CCPM Biobank, N =25,240) and implemented in a phenome wide association
study (pheWAS); The significant logistic regression pheWAS associations between
F3 PGS and phenotypes are shown in (c), with phenotype labels for the points to the
right of the vertical dashed red line denoting the FDR < 0.10 Bonferroni-corrected
significance threshold, and triangle direction (up/down) indicating F3 PGS direc-
tion of effect (+/-). Source data are provided as a Source Data file.

The genetic differences between F4 and BMI motivated us to
perform an additional pheWAS controlling for BMI to investigate the
conditionally independent associations of F4’s PGS with heath out-
comes (Supplementary Fig. 17, Supplementary Data 60). We observed
an attenuation of the F4-pheWAS associations, as expected, after
conditioning on BMI (Supplementary Fig. 18); several health outcomes
including chronic pain, sleep apnea, depression, and acid reflux
dropped below the significance threshold, implicating BMI as a
potential mediator for some disease associations®**2, However, F4
clearly captured additional and unique contributions to health out-
comes beyond BMI alone, with F4 still positively and significantly
predicting adverse health outcomes for the vast majority of associa-
tions after adjusting for BMI. These results illustrate the utility of F4 as
a polygenic predictor beyond BMI, and they showcase the added value
of our model for disentangling the genetics of adiposity and anthro-
pometrics across the lifespan.

Genetic correlations with related traits

Following the characterization of each of the 4 factors with regard to
their genome-, transcriptome-, and phenome-wide associations, we
estimated LDSC-based genetic correlations between each factor and
75 related traits (Supplementary Table 3 and Supplementary
Data 65), including metabolism, substance use, psychopathology,
neuroticism, risk tolerance, diet, sleep, exercise, pain, frailty,
dementia, inflammatory disease, autoimmune disease, and cardio-
vascular disease. The full genetic covariance and correlation matrices
are shown in Supplementary Figs. 19-20 and Supplementary
Data 66-69 (with 95% confidence intervals and standard errors), and

pairwise genetic correlations with F1, F2, F3, and F4 are shown in
Supplementary Figs. 21-30. Figure 6 depicts the prominent genetic
correlations (|rg] > 0.15) with each of the factors in our Genomic SEM;
F1 and F3 were the only factors with a notable inter-factor genetic
correlation (rg = 0.44). The genetic link between F3 and atrial fibril-
lation recapitulated the F3 pheWAS result (Fig. 4c) highlighting the
shared genetics underlying an association between taller stature and
increased risk of atrial fibrillation®, In addition, FI's genetic correla-
tions mirrored the pheWAS results (Fig. 2c), exhibiting negative
genetic correlations with cardiovascular traits and T2D. F2 had
positive genetic correlations with the components of MetSyn,
reflecting the F2 pheWAS associations with T2D and hypertension
and emphasizing shared genetic influences on visceral adipose
deposits and metabolic abnormalities*. F2 also had positive genetic
correlations relating to substance use, internalizing behaviors, and
frailty. F4 was again the most central factor in terms of the strength
and quantity of genetic correlations, including positive correlations
with metabolic disorders, pain, internalizing disorders, general risk-
tolerance, attention-deficit hyperactivity disorder, substance use
disorders, frailty, adult-onset asthma, coronary artery disease, and
gout. F4 was negatively correlated with measures of fitness/exercise,
compulsive disorders, high-density lipoprotein (HDL) cholesterol,
alcohol consumption frequency, and sleep efficiency. Interesting and
nuanced relationships emerged between adipose genetic factors and
mental health traits: general neuroticism was more genetically cor-
related with F2 (rg = 0.18) compared to F4 (-0.01), but the depressed
affect and worry subtypes of neuroticism were more genetically
correlated with F4 (0.20 and -0.21, respectively) compared with F2
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relating to adiposity and their standardized loadings on F4, the 4" latent genetic
factor, are shown in (a). This genetic factor showed gene expression enrichment
only in nervous physiological systems and cell types (FDR < 0.05) in the DEPICT
enrichment analysis (b). The polygenic score (PGS) weights for F4 were applied in
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wide association study (pheWAS); The significant logistic regression pheWAS
associations between F4 PGS and phenotypes are shown in (c), with phenotype
labels for the points to the right of the vertical dashed red line denoting the

FDR < 0.10 Bonferroni-corrected significance threshold, and triangle direction (up/
down) indicating F4 PGS direction of effect (+/-). Source data are provided as a
Source Data file.

(0.12 and 0.10, respectively). Thus, we found opposite directionality
of the genetic correlation between F4 and the neuroticism subtypes
and also between F4 and internalizing disorders (e.g., anxiety dis-
orders [rg=0.12] and major depressive disorder [ry=0.14]) versus
compulsive disorders (e.g., obsessive compulsive disorder
[rg=-0.25] and anorexia nervosa [ry=-0.27]). Together, this sug-
gests that the relationship of adiposity and mental health outcomes
depends in part on which aspect of body composition is evaluated,
and in turn, the possible physiological and neurological systems
involved.

Drug-gene network

Our final downstream analysis aimed to identify potential therapeutics
that might ameliorate or prevent adipostiy by querying the sig-
nificantly prioritized GWAS and TWAS genes across two drug-gene
interaction databases (Drug Repurposing Hub [DRH]* and Drug-Gene
Interaction Database [DGIdb]**). We constructed a bipartite drug-gene
network for each of the latent factors to assess the druggable genome
in the context of our 4-factor model (Supplementary Data 70-77).
Given the extensive phenotypic associations we observed for the PGS
trained on the 4™ factor (Fig. 5c), we primarily focused on F4’s 1239
DEPICT- or FOCUS-identified genes (Supplementary Data 1-2: 48 genes
identified by both DEPICT and FOCUS, 389 genes identified by DEPICT
only, and 802 genes identified by FOCUS only). Our bipartite network
for F4 included 733 drug-gene pairs (90 identified by both DRH and
DGIdb, 451 identified by DRH only, 192 identified by DGIdb only),

consisting of 151 genes and 529 drugs with regulatory approval. Of
these 529 drugs, a substantial number (148) had prior descriptions of
weight-related adverse drug events (WADEs) in the OnSIDES
database”. The 381 drugs without wADEs typically interacted with
genes that were connected to drugs with known wADEs (Supplemen-
tary Figs. 31-35).

The drug-gene network (Fig. 7) had groups of drugs clustered
around high-degree genes, and drugs that served as links between
different modules. Upon annotation of these drug clusters, we iden-
tified parts of the network that were specific to psychiatry, neurology,
cardiology, oncology, endocrinology, and gastroenterology illustrat-
ing the diversity of therapeutics with potential wADEs based on
interactions with F4-associated target genes. This analysis identified
drug-gene pairs for serotonergic (e.g., trazodone) and dopaminergic
agents (e.g., quetiapine) - well-known psychiatric medication classes
with wADEs, sulfonylureas - diabetes medications with known wADEs,
and tirzepatide - a potent weight loss and diabetes medication that
interacts with G/PR. In addition, the drug-gene network for F3 recapi-
tulated the function of fenofibrate as a therapeutic for MetSyn
components'® via interactions with two significant genes (SCARBI and
GCKR). These confirmatory results support the utility of our approach
to identify novel and salient drug targets or existing drugs that might
be repurposed to target adiposity. Moreover, genes interacting with
drugs with known wADEs—e.g., antihistamines interacting with HRHI -
frequently interacted with numerous other medications of the same
drug class, suggesting weight-related drug effects may be under-
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Fig. 6 | Network of genetic correlations with the 4 factors. A network with edges
depicting the strength of genetic correlations between the 4 Genomic SEM factors
and an array of genetically related traits. Small pairwise correlations < 0.15 were
pruned from the network highlighting this subset of 33 genetically correlated traits
from a broader set of 75 considered traits (see Supplementary Table 3). The 4
factors had weak between-factor genetic correlations (besides F1 and F3) and their
unique genetic signals are characterized by each factor’s grouping with a distinct,
but not entirely exclusive, set of phenotypes. Trait names and abbreviations in
alphabetical order: Alcohol Consumption Frequency (ACF); Attention-Deficit
Hyperactivity Disorder (ADHD); Age of Smoking Initiation (AgeSI); Anorexia Ner-
vosa (AN); Anxiety Disorders (ANX); Adult-Onset Asthma (AsAO); Atrial Fibrillation
(AtrFib); Coronary Artery Disease (CAD); Cigarettes Per Day (CPD); Cannabis Use

Disorder (CUD); Personality - Extraversion (Extrv); F1 - Birth Size (F1); F2 -
Abdominal Size (F2); F3 - Body Size, Adipose Distribution (F3); F4 - Adiposity (F4);
Fasting Glucose (FastGluc); Cardiorespiratory Fitness - Heart Rate (FitHR); Cardi-
orespiratory Fitness - VO2 Max (FitVO2); Frailty Index (Frail); High-Density Lipo-
protein Cholesterol (HDL); Metabolic Syndrome (MetSyn); Neuroticism (Neur);
Neuroticism - Depressed Affect (NeurD); Neuroticism - Worry (NeurW); Obsessive
Compulsive Disorder (OCD); Pain - General (PainG); Pain - Musculoskeletal (PainM);
Problematic Alcohol Use (PAU); Physical Activity (PhysA); General Risk-Tolerance
(Risk); Systolic Blood Pressure (SBP); Smoking Cessation (SC); Smoking Initiation
(SI); Sleep Efficiency (SleepE); Type 2 Diabetes (T2D); Triglycerides (Triglyc); Serum
Urate - Gout (Urate). Source data are provided as a Source Data file.

recognized among medications with a common mechanism of action.
Our bipartite network results can also be used to explore direct
mechanisms for the drug-induced bodyweight changes that are com-
monly listed as adverse side effects of treatment and are observed in
routine clinical care. For example, olanzapine (a psychiatric drug for
schizophrenia and bipolar disorder), interacts with the same gene
target as tirzepatide - G/IPR - and this could explain the adverse weight
gain often associated with olanzapine administration®**. In addition,
the DEPICT GWAS identified muscarinic cholinergic receptor gene
CHRM4 and the FOCUS TWAS identified histamine receptor gene HRH1
for F4 - these genes provide potential explanations for the wADEs of
drugs that are used to treat mental disorders*’ and antihistamine
medications*. Similarly, the identification of several receptor tyrosine
kinases as having potentially causal effects on adiposity from the
DEPICT and FOCUS analyses provides a mechanistic explanation for
the wADEs of tyrosine kinase inhibitors**. We also uncovered poten-
tially high-impact drug-gene pairs that may inform studies of drug
repurposing. One of the 45 genes that was identified by our DEPICT
analyses for F4 but not for BMI was PDESA on chromosome 12; this
gene is targeted by dipyridamole (a medication used to prevent blood
clots), which has been implicated as a potential therapeutic for weight
loss via stimulating brown fat energy expenditure®.

Discussion

Our 4-factor structural equation model serves as an informative and
parsimonious representation of the genetic relationships among
anthropometrics and adiposity across the lifespan. While many dif-
ferent measurements aim to quantify aspects of body size and body
composition, our approach using correlated latent factors is less prone
to the measurement error introduced by a singular phenotype defi-
nition, such as BMI. Furthermore, our modeling approach leveraged
the combined power across indicator GWASs to identify novel geno-
mic associations and provided a comprehensive mapping of the
genetic architecture underlying birth size, abdominal size, body size/
composition, and adiposity. Our model highlighted differing genetic
effects and loadings between males and females, and we characterized
the distinct polygenic signals underlying each of the 4 genetic factors
through various downstream analyses: multivariate GWASs, SNP-to-
gene mapping, gene set enrichment, tissue enrichment, fine-mapped
TWASs, PGS-based pheWASs, genetic correlations, and drug-gene
interaction networks.

All of these analyses recapitulated the importance of F4, the
adiposity factor, as the primary genetic culprit predisposing indivi-
duals to adverse health outcomes. Compared to the other 3 factors, F4
showed distinct enrichment for neuronal tissues and gene sets,
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Fig. 7 | Drug-gene network for F4 with indications. The bipartite approved drug-
gene network for significant genes in the GWAS DEPICT gene prioritization analysis
or the TWAS FOCUS fine mapping analysis for F4 (the latent genetic factor relating
to adiposity). For visualization of this network we removed drugs that did not have
‘launched’ clinical phase in the Drug Repurposing Hub (DRH) or ‘approved’ status in
the Drug-Gene Interaction Database (DGIdb), for a total of 733 drug-gene pairs (451
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identified in the DRH [purple edges], 192 identified in the DGIdb [orange edges],
and 90 identified by both [red edges]) between 529 drugs and 151 genes significant
for F4. The gene vertices are colored grey, and the drug vertices are colored by their
most frequent indication category in the MEDI-C database. Drugs vertices with
weight-related adverse drug events (WADEs) listed in the OnSIDES database have a
black border. Source data are provided as a Source Data file.

stronger genetic correlations with related traits, broad health asso-
ciations across numerous phenotypic domains, and relevant drug-
gene pairings across diverse fields of medicine. Furthermore,
F4 showed distinct genetic signal compared to BMI. The link between
F4 and substance use traits is further accentuated by our identification
of GIPR and tirzepatide in the drug-gene network because of the
growing evidence for GIP and GLP-1 receptor agonists as potential anti-
addiction treatments (beyond their primary indication for diabetes
and weight loss)***". In the context of our ongoing search for more
effective treatments, F4 provided possible mechanistic explanations

for weight-related side effects across many medications and identified
the potential for repurposed therapeurics to address adiposity (e.g.,
dipyridamole, an antiplatelet medication, which has been shown to
target inosine as a stimulant of energy expenditure in brown
adipocytes)***. The findings from our downstream analyses triangu-
lated F4’s close relationship with behavioral traits through disen-
tangling the genetic architecture of adiposity; the neuronal and
behavioral context of F4 emphasized that the genetic loci associated
with increased adiposity are underlain by complex relationships with
environmental and lifestyle influences. F4 implicated a broad and
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cascading network of adiposity-mediated diseases' and the under-
lying physiology of excess fat storage®, adipokines (e.g., leptin and
adiponectin)®*?, chronic inflammation from adipocyte apoptosis®,
MetSyn'®, and diabetes subtypes***.

Anthropometrics and adiposity across the lifespan have impor-
tant health implications amidst a complex landscape of various pat-
terns of inheritance (e.g., rare-vs-common genetic variants, high-vs-
low penetrance, large-vs-small effect sizes)* and diverse environmental
contexts (e.g., food availability, physical activity, exposure to
pollutants)®*%, The present analyses were limited to individuals of
European ancestry, and future work will aim to characterize anthro-
pometrics for additional ancestry groupings. In addition, our analyses
share the strengths, assumptions, and limitations of the underlying
methods including Genomic SEM?°, LDSC*?’, DEPICT®, and FOCUS?*.
Another limitation to our study is the potential for collider bias among
some of the indicator variables. Waist and hip measurements are often
adjusted for BMI to be used as proxies for abdominal adipose
deposition across the strata of overall body mass. However, the
adjustment for BMI can result in biased genetic effects®, and this
adjustment could have contributed to the low negative genetic cor-
relations observed between F2 and F4 and between F3 and F4. In
addition, uneven sample sizes and/or precision of effect sizes among
indicator GWASs present an important consideration when interpret-
ing Genomic SEMs. Indicator GWASs with large sample sizes tend to
have more precise estimates of SNP heritability and genetic covar-
iances, thereby influencing model structure, factor loading estimates,
and power when estimating SNP effects in the multivariate GWASs?.
The inclusion of multiple well-powered indicator GWASs in combina-
tion with precise phenotyping (bioelectrical impedance measure-
ments) may explain why F4 produced a notable number of novel
associations relative to its indicator variables. Our model broadly dis-
entangled the genetic associations for size at birth (F1) from size in
adulthood (F2, F3, and F4), however, it did not provide the same
granularity as longitudinal growth trait analyses regarding genomic
associations with anthropometrics across the lifespan. The observa-
tion that childhood BMI loaded onto F4 rather than F1 was consistent
with a prior longitudinal study’ which identified strong overlap
between the genetics of child and adult BMI, but differing genetic
factors that control infant and child BMI. Extending these genetic
insights into multi-omics®® frameworks will enable the identification of
biological markers beyond the genome and further disentangle the
etiology of adipose-related diseases. While F4 had the strongest and
most widespread health implications, the other three genetic factors
characterized important aspects of body size and adipose distribution,
reflecting unique influences on additional health outcomes, including
respiratory illness”, renal failure®’, hypertension®®, kidney stones®,
T2D, and hyperlipidemia® . Future directions might involve further
exploration of the negative pheWAS association for F3 with hyperli-
pidemia, especially in the context of F3’s evidence for sex differences
regarding depot-specific genetic architectures of adipose
distribution®®,

Our model describing the genetic associations for variation in
human body size and body composition across the lifespan recapitu-
lates the notion that food intake is not merely an unconditioned
response to an energy deficiency, nor is it restricted to the canonical
energy homeostasis areas in the brain (e.g., the hypothalamus)®’.
Instead, the involvement of brain areas performing the functions of
sensory processing, learning, emotion, and memory indicates a
broader neuro-centric genetic relationship with obesity. In this con-
text, this neural component carries significant influence on diverse
health outcomes; and from a personalized medicine perspective, F4
has the promising capability to improve the prediction, diagnosis,
treatment, and prevention of morbidities such as obesity, diabetes,

Methods

Ethics

The Ethics Board at the University of Colorado Boulder deemed that
institutional review board approval was not necessary for our analyses
as GWAS summary data do not include individual-level results; the
studies that published the incorporated summary statistics obtained
written informed consent from participants and were approved by
local ethics committees. Our study design and conduct complied with
all relevant regulations regarding the use of human study participants
and was conducted in accordance with the criteria set by the
Declaration of Helsinki.

Genomic structural equation modeling

Structural equation modeling is a widely used methodology for
understanding the correlation and covariance patterns of inter-
connected variables. The resulting models are useful for explaining the
variance of measurable variables, latent variables, and the relation-
ships between those latent variables”®. We constructed an SEM
describing the genetic associations of body size and body composition
using a set of publicly available GWASs for various anthropometric
traits. The measurement model that we constructed consisted of 18
individual GWAS summary statistics for 12 different phenotypes
(described in Supplementary Table 1)7"7°, Given our interest in
investigating the sex-specific genetic architecture of body size and
body composition, we included male and female GWASs indepen-
dently for 6 of the 12 traits. The GWAS summary statistics were for-
matted using the munge function in the GenomicSEM R package after
specifying the effect alleles, effect sizes, standard errors, and sample
sizes for each dataset. All 18 GWASs passed heritability-based quality
control (QC) with heritability Z-statistics > 4, signifying they were well
powered and had measurable effects across 954,086 overlapping
genetic variants. These GWASs were comprised of European ancestry
populations and the corresponding SNP reference file and linkage
disequilibrium (LD) scores and were downloaded from the Genomic
SEM data repository (https://github.com/GenomicSEM/GenomicSEM).

The only binary trait included in the analysis was childhood obe-
sity, which consisted of 9116 cases and 13,292 controls; because this
GWAS was a meta-analysis of multiple cohorts, the sum of effective
sample sizes was used along with a sample prevalence of 0.5 (per the
Genomic SEM multivariable LDSC function guidelines) and a popula-
tion prevalence of 0.20 for liability scale conversion’. We imple-
mented the standard parameters for Genomic SEM, and QC criteria
ensured the included SNPs were common (maf.filter = 0.01) and that
the SNPs with lower imputation quality were removed from the ana-
lysis (info.filter = 0.9). When initially attempting to include all 3 bio-
electrical impedance fat distribution GWASs (arm-fat-ratio [AFR], leg-
fat-ratio [LFR], and trunk-fat-ratio [TFR]), the model showed poor fit
and spurious standardized loadings greater than 1. This was due to the
linear dependency among these 3 traits (the ratios of AFR, LFR, and
TFR sum to 1, and therefore one ratio is predictable by the other two)
which was problematic when inverting the sample covariance matrix in
the process of computing the model estimates. LFR and TFR are
inversely genetically correlated (rg <-0.9) and are largely representa-
tive of the same trait (i.e., the distribution of adipose between those
two compartments)”’. Given the well-established relationship between
visceral adipose tissue and adverse health outcomes™, we retained TFR
in the analysis, thereby omitting LFR.

We implemented Genomic SEM in a 2-stage modeling process to
fit an SEM to the genetic association estimates®®. We used multivariate
LDSC?* to construct the genetic covariance (S;psc) and sampling
covariance (Vs ) matrices for the 18 GWAS summary statistics. Then,
we fit an SEM using diagonally weighted least squares (DWLS) esti-
mation. An important feature of Genomic SEM is that it is designed to

adult persistent asthma, heart disease, chronic pain, substance use, handle varying degrees of sample overlap among the
and mental disorders. incorporated GWASs.
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We first performed an exploratory factor analysis (EFA) by using
odd chromosomes then a confirmatory factor analysis (CFA) using the
even chromosomes to serve as a hold-out sample and protect from
model overfitting. We used the Kaiser rule®®, the acceleration factor,
and optimal coordinates criteria® to assess the EFA and determine
which eigenvalues of the genetic covariance matrix were most pro-
nounced; all 3 criteria indicated that specifying 4 latent factors was a
judicious choice for the SEM. The factanal R package was used to
perform a promax (i.e., correlated factor) rotation preceding the
estimation of the unstandardized and standardized loadings from the
nearest positive definite genetic covariance matrix via the nearPD
function from the matrix R package. Variables with standardized
loadings greater than 0.3 were specified to load onto each of the 4
latent factors, and the model structure was notably consistent for any
threshold choice between 0.3 and 0.5. Heywood cases were handled
for indicator variables with loadings close to 1 by constraining the
residuals to be greater than 0.0001. The resulting fit of the SEM was
evaluated using the comparative fit index (CFI) and the standardized
root mean square residual (SRMR). Generally, CF1>0.9 and SRMR < 0.1
are indicative of acceptable model fit for Genomic SEM models™?.
WCadjBMI females and TFR males showed notable genetic correla-
tions with indicator variables loading onto the 3™ and 4 factors,
respectively; including these cross-loadings improved model fit and
resolved warnings regarding the covariance matrix of the residuals of
the observed variables being non-positive definite. Ultimately, the CFA
showed consistent factor structure with the EFA, and the overall
measurement model achieved a reasonable balance between model fit
and model parsimony. The resulting Genomic SEM model contained 4
factors and 127 degrees of freedom with a CFI=0.94 and an SRMR =
0.11. After observing the generally distinct signals exhibited by these 4
factors and the poor model fit from a common factor model, we
refrained from fitting a hierarchical factor model to the data.

Genetic factors: multivariate genome wide association study
After defining the measurement model, we estimated SNP effects for
the 4 genetic factors. This analysis was run in parallel for 954,086 SNPs
that were common across the indicator GWASs and passed QC criteria.
For each factor, we fit an independent pathways model for each SNP to
test for heterogeneity of effect sizes among the indicator variables
loading onto the same factor. The Genomic SEM Qsnp methods
included a fix_. measurement parameter which was used to specify that
the measurement model should be fixed across all SNPs, and we used
the differences in the two models’ x* test statistics and degrees of
freedom to identify SNPs with evidence for significant differences in
model fit (Qsnp p <5 x1078)?°. While these Qsnps are of interest because
their indicator-specific effects might explain phenotypic divergence,
for the purposes of constructing latent genetic factors that represent
shared variance we removed these Qsnps along with nearby SNPs in LD.
A European ancestry LD reference panel from the thousand genomes
project (1IKGP)®? consisting of 503 unrelated individuals and 13.6 mil-
lion genetic variants was implemented with PLINK**** to identify and
filter variants within 1 mega-base and LD r?> 0.2 with the Qsnps. F1, F2,
F3, and F4 respectively had 23; 335; 1525; and 969 significant Qsnps, and
after considering LD structure 79; 1284; 6909; and 4183 SNPs were
removed. The allele frequencies and the standard errors of the effect
estimates were used to estimate the effective sample size for each of
the 4 latent factors via the method described in the supplement of
Mallard et al.*>. F1, F2, F3, and F4 had estimated effective sample sizes
of 52,404; 176,820; 690,110; and 393,268 respectively.

We used DEPICT® v1.194 (https://github.com/perslab/depict) to
identify independent, associated genomic loci using default para-
meters of p<5x1078, LD pairwise r’ < 0.1, and physical distance <1 Mb
(Supplementary Data 16, 21, 26, and 31). These significantly associated
independent loci were used as input for the following analyses inclu-
ded in the DEPICT framework. First, we performed DEPICT SNP-to-

gene mapping to identify likely causal genes based on the assumption
that genes within an associated locus have functional similarity to
genes from other associated loci. This consisted of a scoring step (to
quantify the similarity of gene set membership of genes near asso-
ciated loci), a bias adjustment step (to control for gene length and data
structure), and an FDR estimation step. Significantly prioritized genes
with FDR <0.05 were retained as likely causal genes for our down-
stream analyses and are listed in Supplementary Data 1, 4, 7, and 10 for
each factor GWAS. Next, DEPICT was used to identify functional or
phenotypic gene sets that were enriched for genes within associated
loci. This was performed using DEPICT’s 10,968 reconstituted gene
sets with membership Z-scores representing the likelihood of mem-
bership of a gene in a gene set based on similarities (i.e., co-regulation)
across gene expression data. These reconstituted gene sets were
representative of a broad spectrum of biological annotations (Kyoto
encyclopedia of genes and genomes [KEGG] pathways®®, Gene Ontol-
ogy [GO] terms®”, Mammalian Phenotype [MP] ontology®®, Reactome
gene sets®, and protein-protein interaction [PPI] subnetworks®).
DEPICT quantified enrichment (via the gene set scoring step, bias
correction step, and FDR estimation step) was considered significant
for gene sets with nominal p-values less than the Bonferroni-corrected
significance threshold (p <4.56x10°) for each factor GWAS (Supple-
mentary Data 18, 23, 28, and 33). Finally, DEPICT was implemented to
test for enrichment (FDR<0.05) of the associated loci across 210
annotations of relative gene expression in physiological systems, tis-
sues, or cell types. Thus, the DEPICT gene set scoring step, bias cor-
rection step, and FDR estimation step were used to assess if genes in
associated loci were highly expressed in certain tissues or cell types
(Supplementary Data 19, 24, 29, and 34).

We tested for concordance of associated GWAS loci in an
external sample to reduce the risk of false positives and increase the
reliability of our results. In the absence of publicly available replica-
tion summary statistics for each trait included as an indicator vari-
able, it was unfeasible to perform a complete replication analysis for
each factor (i.e., construct a comparable Genomic SEM using inde-
pendent data and perform a corresponding multivariate GWASs). In
order to provide some confirmatory context, however, we evaluated
the concordance of F2, F3, and F4 novel loci using primary indicator
variables for each factor and the All of Us database”** as an inde-
pendent dataset. We used the All by All (All-x-All) GWAS tables
available through the Researcher Workbench. In this context, and
throughout the manuscript, we defined novel loci as independent
associated loci with no genomic positional overlap for the GWASs
being compared. WHRadjBMI male and female indicators had strong
loadings on F2 (0.90 and 0.71), and the All of Us database provided an
independent dataset (European WHRadjBMI GWAS N =102,746) to
test for concordance of the lead SNPs of the 2 loci that were novel
relative to the WHRadjBMI GWAS (combined males and females from
the GIANT consortium)”. Similarly, we compared F3 to height, which
had a strong loading of 0.88, to assess concordance in the All of Us
European height GWAS (N =111,755) for the lead SNPs of the 2 loci
that were novel relative to the indicator height GWAS (combined
males and females from the GIANT consortium)””’%, BMI male and
female indicators both had strong loadings of 0.95 on F4, and we
used BMI (All of Us European BMI GWAS N=111,482) to evaluate
concordance of the lead SNPs of the 28 loci that were novel relative to
BMI (combined males and females from the GIANT consortium)’®. All
of Us did not have a large enough GWAS sample size for birth or
infant anthropometrics to evaluate the concordance of Fl1 loci. To
assess the concordance of statistical significance for each lead SNP
we applied Bonferroni correction criteria (p <0.025 for F2 and F3,
and p <1.79 x 107 for F4). We also evaluated concordance of effect
direction after matching effect versus non-effect alleles for each lead
SNP. Specifically, we used the pbinom function in R to test whether
the observed concordance of effect directions was significantly
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greater than expected by chance under the null hypothesis of ran-
dom effect direction (i.e., probability = 0.5).

Genetic factors: transcriptome wide association study

TWAS methods provided a natural extension of the multivariate
GWASs to highlight genes with predicted expression that are puta-
tively causal for the latent factors. We implemented TSEM® and
FOCUS?**** softwares to perform transcription-level analyses of the
previously discussed latent factor GWASs. Briefly, FOCUS uses a
Bayesian framework to fine-map gene-trait TWAS associations by
accounting for the induced correlation structure of predicted gene
expression that is due to LD between SNPs and shared expression
quantitative trait loci (eQTLs; i.e., pleiotropic effects). TWAS fine-
mapping aims to prioritize genes with heritable variation in gene
expression that causally impact the trait by assigning each gene a PIP.
Within a region, genes are rank ordered by their PIPs to compute
minimal 90%-credible gene sets that contain the causal gene with 90%
probability; concentrating on the 90% CSs that do not contain the null
model enables the identification of regions with stronger evidence for
gene expression driving trait variation (as opposed to regions where
the association between expression and trait variation is due to
chance). Ultimately, we prioritized the FOCUS results over the TSEM
results in our TWAS analysis because the software’s fine-mapping
approach handled the underlying correlation structure for predicted
gene expression and provided credible sets of putatively causal genes
with PIPs. Although we do not discuss the TSEM associations here, they
are included in Supplementary Data 44-55.

We ran FOCUS v0.9 (https://github.com/mancusolab/ma-focus/)
with data for SNP LD structure, prediction eQTL weights, and the
factor GWAS summary statistics, and FOCUS provided 90%-credible
gene sets that excluded the null model (Supplementary Data 20, 25,
30, 35). We used the FOCUS repository’s recommended European
ancestry reference LD plink-formatted files from LDSC and the FOCUS
repository’s multiple tissue, multiple eQTL reference panel weight
database. First, the FOCUS munge functionality was used to format the
factors’ GWAS summary statistics, and then each chromosome was run
in parallel using independent genomic regions across European
ancestry identified by LDetect’ and the prior probability for a gene to
be causal as 0.001. The tissue-enrichment results from our prior
DEPICT analysis revealed that the 4™ factor was the only factor with
enrichment in a singular physiological system (enriched only for ner-
vous tissues and cell types); thus, FOCUS was run tissue-agnostic for
the first 3 factors (F1, F2, and F3) and was run tissue-prioritized for the
‘brain’ for F4. F1, F2, F3, and F4 respectively had 86, 290, 737, and 562
LD blocks with identified 90%-credible gene sets, and 69, 243, 690, and
335 of those did not contain the null model. Among those gene sets
that did not contain the null model, we retained genes with PIP > 0.1to
filter out low probability genes from our downstream analyses. Given
the polygenic architecture of these latent traits (many genes with small
effect sizes at the level of transcription) and that our aims were largely
exploratory, a PIP threshold of 0.1 allowed genes with moderate sta-
tistical support to be considered. This thresholding step resulted in
158; 676; 2266; and 850 respective genes with putatively causal pre-
dicted gene expression effects for each of the 4 factors (Supplemen-
tary Data 2, 5, 8, and 11).

Genetic factors: genetic correlations

We evaluated the genetic correlations of the four factors with a broad
range of obesity-related traits, using multivariate LDSC. Given the far-
reaching spectrum of obesity-related health outcomes, we compiled a
list of traits relating to psychopathology, risky behavior, neuroticism,
diet, sleep, exercise, substance use, pain, frailty, dementia, inflamma-
tory disease, autoimmune disease, cardiovascular disease, and meta-
bolism. The full set of considered traits is described in Supplementary
Table 3 and Supplementary Data 65 along with LDSC parameters for

sample sizes, population prevalence, and heritability Z-statistics. The
multivariate LDSC function in the Genomic SEM R package (https://
github.com/GenomicSEM/GenomicSEM) was used to estimate genetic
covariances and correlations. Prior to visualizing the prominent cor-
relations (Fig. 6) we filtered out 10 traits with heritability Z-statistics <4
to avoid misinterpretation due to small sample size or minimal genetic
effects.

Genetic factors: phenome wide association study of

polygenic scores

PGSs estimate an individual’s genetic predisposition to a trait, based
on the weighted sum of genetic variant effects across the genome. We
derived PGS SNP weights for the 4 factor GWASs using LDpred2
(https://privefl.github.io/bigsnpr/articles/LDpred2.html)*. Briefly,
LDpred2 estimates model hyperparameters (SNP-based heritability
and the fraction of causal variants) from GWAS data and uses an
iterative Bayesian Gibbs sampler to adjust for LD between SNPs and
update effect size estimates. We used a random subset of 5000
unrelated individuals of European ancestry from the UK Biobank for
the LD reference panel. This LD reference panel was sufficiently large
(>1000 individuals per the LDpred2 guidelines), and we defined
unrelated individuals using gctaé4 --grm-singleton 0.05°*. Standard
QC processes™ involved filtering SNPs based on Hardy-Weinberg
equilibrium p >1x 107, genotyping rate >0.99, non-ambiguous alleles,
minor allele frequency (MAF) >1%, and filtering individuals based on
heterozygosity within 3 standard deviations of the mean and sample
missingness <0.02. The ancestry matched remarkably well between
the LD panel and the multivariate GWAS summary statistics, and nearly
all SNPs were retained when applying the LDpred2 standard deviation
filter (Supplementary Fig. 36). The snp_ldpred2_auto function in the
bigsnpr package (v.1.12.15) was used to generate LD-adjusted PGS
weights for a sequence of causal variant thresholds (30 evenly spaced
values on a logarithmic scale ranging from 1x10™* to 0.9). The average
of the betas for the models that converged were used for the PGSs
resulting in 710,801; 710,489; 709,195; and 709,830 SNP weights for F1,
F2, F3, and F4 respectively. Visualization of the raw GWAS effect sizes
compared to the attenuated LDpred2-adjusted PGS weights is shown
in Supplementary Fig. 37.

These PGS weights were applied in an external dataset with no
sample overlap with the included GWASs. We conducted 4 phenome-
wide association studies (pheWASs) to investigate the associations
between each of the 4 PGSs and all 1514 phecode-based phenotypes in
a cohort of unrelated Europeans from the Colorado Center for Per-
sonalized Medicine (CCPM) Biobank freeze2 (N=25,240). Ancestry
information was inferred based on the grouping of individuals’ genetic
proximity to reference populations via PCA-UMAP (Principal Compo-
nent Analysis-Uniform Manifold Approximation and Projection) pro-
jection as input for k-nearest neighbors clustering (using the UMAP
coordinates of reference panel individuals to train the clusters). We
excluded individuals with second-degree or closer relatedness identi-
fied through KING-robust kinship estimates greater than 2x107%,
using the bigsnpr package in R*°. Details regarding the recruitment of
CCPM Biobank participants, data processing, and the inference of
population structures are described in Wiley et al.””.

Our pheWAS association model corrected for age, sex, batch, and
the first 10 genetic principal components. Participant age, sex, and
batch were standard covariates delivered in freeze2 from the CCPM
Biobank institutional data warehouse which harmonized health infor-
mation from the Epic-based electronic health record (EHR)”. To
achieve unbiased estimates in the presence of case-control imbalance,
we utilized the Saddlepoint approximation method from the SPAtest
package in R%. Due to the highly correlated structure of phecodes in
the CCPM Biobank EHR®’, we considered associations with p-values
below the FDR<0.10 Bonferroni-corrected significance threshold
(6.61 x107) significant when characterizing the predictive signal of the
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factor PGSs. To evaluate the predictive utility of the F4 PGS condi-
tioned on BMI, we ran an auxiliary pheWAS with BMI included as an
additional covariate. To estimate BMI for each participant, we used the
median of BMI measurements across the EHR. The median BMI was
used over the most recent or mean BMI, as it provided greater
robustness to outlier events such as pregnancy or bariatric surgery.
However, while the median mitigates the influence of extreme values,
it may not fully eliminate the impact of outlier events. For each
encounter with documented height (measured in inches) and weight
(measured in ounces) we performed unit conversions and calculated
the BMI as height/weight’. BMI values less than 13 kg/m?* or greater
than 60 kg/m” were removed before finding the median. These outlier
thresholds were based on the empirical BMI distribution for the CCPM
Biobank and were similar to outlier thresholds applied to other large-
scale biobanks (15 kg/m? and 60 kg/m?)%.

Genetic factors: drug-gene network

We queried two large drug repurposing databases (Drug Repurposing
Hub [DRH; 3/24/2020 version]* and the Drug-Gene Interaction Data-
base [DGIdb; 12/2023 version])*® for the genes that were either sig-
nificantly prioritized by DEPICT (independent GWAS loci; FDR < 0.05)
or FOCUS (fine-mapped TWAS 90% credible sets without the null
model; PIP>0.1). There were 24; 319; 1864; and 437 significantly
prioritized DEPICT genes and 215; 862; 2944; and 864 FOCUS fine-
mapped genes for F1, F2, F3, and F4, respectively. The DGIdb contained
drug-gene interaction scores reflecting strength of supporting pub-
lications and the relative drug-gene specificity. We filtered out drug-
gene pairs with low interaction scores (<0.50) based on the QC pro-
cedures described in similar studies'®'®’. To map gene identifiers
between datasets, we used the custom download feature from https://
www.genenames.org/ to map the official gene symbol approved by the
HGNC to the Ensembl Gene IDs. There were 14,472 drug-gene pairs for
6798 drugs in the DRH and 19,819 drug-gene pairs for 8037 drugs in
the DGIdb. For visualization'” of the drug-gene network for F4 we
removed drugs that did not have ‘launched’ clinical phase in the DRH
or ‘approved’ status in the DGIdb. Drug indications were extracted
from the ensemble MEDication Indication resource (MEDI-C)'**> con-
taining 38,378 high precision drug-indication pairs. The PheWAS R
package'® was used to map the indication ICDIOCM codes to phe-
codes and their corresponding phenotype domains. The ON-label SIDE
effectS resource (OnSIDES, v2.0.0 20231113)” was used to identify
wADEs for the drugs in the network. This database contained 2020
ingredients and 4302 unique adverse reactions that were assigned
using natural language processing models of drug labels. We con-
sidered drug-ADE pairs for which the adverse reaction was extracted
from at least 75% of labels, and defined wADEs based on the following
list of drug events: ‘Obesity’, ‘Central obesity’, ‘Weight increased’,
‘Weight decreased’, ‘Weight fluctuation’, ‘Abnormal loss of weight’,
‘Abnormal weight gain’, ‘Weight loss poor’, ‘Decreased appetite’,
‘Increased appetite’, ‘Appetite disorder’, ‘Hunger’, ‘Early satiety’, ‘Binge
eating’, ‘Sleep-related eating disorder’, ‘Eating disorder’. Of these 16
terms, ‘Decreased appetite’, ‘Weight increased’, ‘Weight decreased’,
and ‘Increased appetite’ were the most prominent and frequently
observed (comprising 98% of wADE instances). The annotations pro-
vided by MEDI-C and OnSIDES aided the interpretation of the bipartite
drug-gene networks through providing context regarding the drugs’
indicated medical domains and wADEs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The multivariate GWAS summary statistics generated in this study
have been deposited in the GWAS Catalog database under accession

codes GCST90624101 (F1), GCST90624103 (F2), GCST90624105 (F3),
and GCST90624107 (F4). The LDpred2-derived PGS weights generated
in this study have been deposited in the PGS Catalog database under
under publication ID PGP0O00739 and score IDs PGS005232 (F1),
PGS005233 (F2), PGS005234 (F3), and PGS005235 (F4). The CCPM
genetic and EHR datasets are available under restricted access due to
the sensitive nature of these datasets and HIPAA compliance, and
access can be obtained through an Access to Biobank Committee
(ABC) study proposal request (https://medschool.cuanschutz.edu/
cobiobank/contact); consult with Health Data Compass and the
CCPM biobank team to understand team regarding logistical require-
ments and the timeframe for data access after an initial request. All
GWAS summary statistics included in this study were publicly available
and citations linking downloads for the GWAS summary statistic files
are included in the Supplementary Information. Data on birth weight
traits were contributed by the EGG Consortium and were downloaded
from www.egg-consortium.org. Data on anthropometric traits were
contributed by the GIANT Consortium and were downloaded from
https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT consortium_data_files. Data on BMI trajectory were down-
loaded from https://ucla.app.box.com/v/trajgwassummary. Data on
bio-electrical impedance were downloaded from https://myfiles.uu.se/
ssf/s/readFile/share/3993/1270878243748486898/publicLink/GWAS_
summary_stats_ratios.zip. The DGIdb and DRH datasets were publicly
available and were downloaded from https://www.dgidb.org/
downloads and https://repo-hub.broadinstitute.org/repurposing#
download-data. The MEDI-C and OnSIDES datasets were publicly
available and were downloaded from https://www.vumc.org/wei-lab/
medi and https://github.com/tatonetti-lab/onsides/releases. Source
Data are provided as a Source Data file. Source data are provided with
this paper.

Code availability

The code used to perform the analyses in this study is available at
https://github.com/char4816/AdiposityGSEM and at Zenodo [https://
doi.org/10.5281/zenod0.15733864]'%.
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