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Obstructive Sleep Apnea and Cardiometabolic 
Disease: Obesity, Hypertension, and Diabetes
Esra Tasali , Sushmita Pamidi , Naima Covassin , Virend K. Somers

ABSTRACT: Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder, characterized by recurrent upper airway 
obstruction during sleep, resulting in intermittent hypoxia, increased sympathetic activation, and sleep deficiency. Over the 
past 2 decades, there has been a robust body of evidence to support a strong link between OSA and cardiometabolic 
diseases. Obesity is an important risk factor for OSA. Observational studies indicate that OSA is a strong risk factor for 
the development of hypertension and diabetes. Moreover, clinical and experimental studies support a causal role of OSA in 
hypertension and impairments in glucose metabolism, beyond excess weight. Notably, OSA is particularly underdiagnosed 
and undertreated in women, which may heighten the cardiometabolic risk. OSA is often overlooked during pregnancy and 
has been linked to adverse cardiometabolic outcomes in observational studies. In randomized clinical trials, treatment of OSA 
with continuous positive airway pressure reduces blood pressure in individuals with hypertension, but the beneficial effects 
of continuous positive airway pressure on glycemic outcomes are less convincing. Inconsistent cardiometabolic response 
to OSA treatment can be partly explained by failure to consider heterogeneity in OSA and variable continuous positive 
airway pressure adherence among diverse populations. In this review, we summarize the relationships between OSA and 
cardiometabolic conditions with a particular focus on obesity, hypertension, and diabetes. We review the current knowledge 
on the heterogeneity in OSA and discuss potential underlying mechanisms for impairments in blood pressure and glucose 
metabolism in OSA. We also provide a clinical perspective for OSA management considering current research gaps and 
emerging approaches for the prevention and treatment of cardiometabolic disease.
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Obstructive sleep apnea (OSA) is a highly common 
sleep disorder leading to sleep deficiency.1,2 OSA is 
recognized as a heterogeneous condition with vary-

ing causes, pathophysiology, and clinical symptomatology 
and presentation.3–5 Cardiometabolic disease broadly 
refers to a cluster of interrelated conditions that nega-
tively impact cardiovascular and metabolic health. Over 
the past 2 decades, there has been a robust body of 
evidence linking OSA to cardiometabolic disease states 
including obesity, diabetes, hypertension, ischemic heart 
disease, arrhythmia, heart failure, renal disease, cere-
brovascular disease, dyslipidemia, and fatty liver disease 
(Figure 1). Moreover, OSA is associated with increased 
all-cause and cardiovascular mortality.4 While nearly 1 bil-
lion adults worldwide are affected by OSA, ≈80% remain 
undiagnosed and untreated, highlighting a serious public 
health concern.6,7 In this article, we will focus on current 
knowledge on how OSA heterogeneity relates to obesity, 

hypertension, and diabetes. We will specifically review 
the underlying mechanisms by which OSA may impair 
glucose metabolism and blood pressure (BP) control. We 
will also provide a clinical perspective on OSA manage-
ment for the prevention and treatment of cardiometa-
bolic diseases.

NORMAL SLEEP AND CARDIOMETABOLIC 
FUNCTION
Normal sleep occurs in alternating cycles of nonrapid eye 
movement and rapid eye movement (REM) sleep with dis-
tinct brain activity and physiological functions (Figure 2A). 
Deep nonrapid eye movement sleep (N3 sleep) or slow 
wave sleep (SWS) accounts for 10% to 25% of total 
sleep time depending on age and sex. REM sleep, first 
discovered by Aserinsky and Kleitman8 in 1953, typically 
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involves dreaming, marked by ​​rapid eye movements and 
loss of muscle tone. While SWS occurs predominantly 
during the early sleep period, REM sleep predominates 
the later part of the night. Sleep stage changes are 
accompanied by modulation of autonomic cardiovas-
cular control (Figure 2B). Heart rate and BP decrease 
during sleep accompanied by a decrease in minute ven-
tilation primarily due to reduced tidal volume.9 The physi-
ological drop in BP during sleep, commonly referred to 
as normal dipping, typically ranges from 10% to 20% 
compared with daytime levels. SWS is characterized by 
high-amplitude, low-frequency (0.5–4 Hz) brain waves, 
the so-called delta waves.10 SWS involves regular breath-
ing and predominantly vagal activation, and reduced sym-
pathetic activity, BP, and heart rate. During REM sleep, 
brain activity resembles wakefulness, and breathing may 
become irregular. Intermittent increases in sympathetic 
activation may result in BP surges and bursts of cardiac 
autonomic activation. Sleep also plays a role in neuroen-
docrine regulation of glucose homeostasis and energy 

metabolism. Glucose utilization is highest during wake, 
lowest in nonrapid eye movement sleep, and intermedi-
ate in REM sleep.11–14 The initiation of SWS is temporally 
associated with transient metabolic, hormonal, and neuro-
physiological changes, including decreased brain glucose 
utilization, stimulation of growth hormone release, inhibi-
tion of corticotropic activity, and increased vagal activity, 
all of which can influence glucose homeostasis and BP 
control.15 During the early sleep period, circulating levels 
of appetite-stimulating hormone ghrelin (produced by the 
stomach) and satiety hormone leptin (produced by adi-
pose tissue) both increase, and they decline in the later 
part of the night.15 Normal sleep induces a decrease in 
energy expenditure, which is absent when wakefulness 
is maintained.16 Taken together, sleep plays a fundamen-
tal role in maintaining physiological homeostasis includ-
ing cardiovascular, respiratory, metabolic, and endocrine 
functions.

OSA PATHOGENESIS AND CLINICAL 
PRESENTATION
OSA is characterized by recurrent complete (apnea) 
and partial (hypopnea) upper airway obstructions during 
sleep, resulting in intermittent hypoxia, sleep fragmenta-
tion, increased sympathetic activity, and poor sleep qual-
ity. OSA is defined as an apnea-hypopnea index (AHI) of 
≥5 events/h accompanied by symptoms such as sleepi-
ness, fatigue, insomnia, or reduced quality of life or an 
AHI ≥15 without symptoms.17 OSA can be diagnosed by 
standard polysomnography or home sleep apnea testing 
in patients with a high pretest probability without complex 

Nonstandard Abbreviations and Acronyms

AHI	 apnea-hypopnea index
BMI	 body mass index
BP	 blood pressure
CPAP	 continuous positive airway pressure
OSA	 obstructive sleep apnea
REM	 rapid eye movement
SWS	 slow wave sleep

Figure 1. Obstructive sleep 
apnea (OSA) and associated 
cardiometabolic conditions.
OSA is associated with cardiometabolic 
disease states including obesity, diabetes, 
hypertension, ischemic heart disease, 
arrhythmia, heart failure, renal disease, 
cerebrovascular disease, dyslipidemia, and 
fatty liver disease. It is noteworthy that a 
bidirectional association exists between 
OSA and these cardiometabolic conditions. 
Illustration credit: Sceyence Studios.
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comorbidities.17,18 Because home testing can underesti-
mate the AHI, patients at high risk for OSA and a negative 
home sleep apnea test should be further evaluated. It is 
noteworthy that home testing typically does not include an 
electroencephalogram signal to accurately capture sleep 
architecture. Thus, underestimation of OSA may occur 
partly due to undetected hypopneas that are associated 
with cortical arousals or sleep fragmentation on the elec-
troencephalogram signal. Underestimated OSA by home 
testing may be especially higher in women or older adults 
who may have sleep fragmentation-predominant OSA. 
In the general population, OSA prevalence is estimated 
to be 9% to 38%.5,19,20 Excess weight is the strongest 
risk factor for OSA.21 Other traditional risk factors include 
male sex, postmenopausal status, older age, craniofa-
cial or upper airway abnormalities, and family history of 

OSA.22 Although male sex is a traditional risk factor, the 
sex gap narrows around the age of menopause when 
vulnerability to OSA markedly increases also in women. 
OSA negatively impacts quality of life and is associated 
with neurocognitive impairments and an elevated risk of 
motor vehicle accidents due to excessive daytime sleepi-
ness.23 Continuous positive airway pressure (CPAP) ther-
apy remains the mainstay of OSA treatment. It is highly 
efficacious in reducing AHI and improving quality of life 
and daytime sleepiness.23 However, adherence to CPAP 
treatment is highly variable among patients; using a cutoff 
of 4-hour nightly usage, the nonadherence rate is ≈40% 
to 80% across studies.24 Alternative treatment options 
for OSA include mandibular advancement devices, posi-
tional therapy, hypoglossal nerve stimulation, and upper 
airway surgery. Weight loss interventions are an integral 

Figure 2. Normal sleep and autonomic cardiovascular control.
A, Hypnogram representing alternating cycles of nonrapid eye movement (NREM) and rapid eye movement (REM) sleep. These cycles typically 
last about 90 minutes and recur roughly 4× to 6 times per night. Approximately 75% of sleep time is spent in NREM sleep, which is further 
divided into 3 stages: N1 sleep, a brief transitional stage from wake to sleep; N2 sleep, that is, light NREM sleep accounting for the majority of 
NREM; and N3 sleep, that is, deep NREM sleep or slow wave sleep (SWS), accounting for 10% to 25% of total sleep time depending on age 
and sex. REM sleep, typically involves dreaming and is marked by rapid eye movements and loss of muscle tone. While SWS occurs predominantly 
during the early sleep period, REM sleep predominates the later part of the night. B, Recordings of the electroencephalogram (EEG) on the left 
and of muscle sympathetic nerve activity (SNA) and beat-by-beat blood pressure (BP) on the right during wakefulness (awake), during N2 sleep, 
during N3 or slow wave sleep, and during REM sleep. The high-frequency EEG during wakefulness transitions gradually to the high-amplitude, 
low-frequency slow waves seen during N3 or slow wave sleep and low-amplitude, high-frequency brain activity is evident during REM sleep. 
Rapid eye movements on the electrooculogram are indicated in blue during REM sleep. During N2 sleep, sympathetic activity, heart rate, and 
BP decrease from wakefulness with abrupt increases during K-complexes (indicated on the EEG, as well as the BP and sympathetic response 
indicated by K on the adjacent tracing). The EEG slow waves during N3 sleep are accompanied by marked reductions in sympathetic outflow, BP, 
and heart rate. During REM, sympathetic activity is elevated even higher than during wakefulness with abrupt fluctuations in BP and heart rate. 
The T symbol during the REM sympathetic and BP recording indicates the onset of tonic REM when sympathetic activity is lower than during 
phasic REM that precedes it. Illustration credit: Sceyence Studios.
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component of OSA management in individuals with over-
weight or obesity.25 In addition to lifestyle interventions 
(diet and exercise), bariatric surgery or pharmacotherapy 
may be considered for weight loss.25,26

While the AHI remains the standard metric for defin-
ing OSA severity, it fails to capture OSA heterogeneity 
and its consequences.27–30 Notably, CPAP trials assess-
ing the effect of OSA treatment on cardiovascular out-
comes have yielded neutral findings, partly due to failure 
to consider OSA heterogeneity.4 OSA arises from diverse 
pathophysiological mechanisms, referred to as endo-
types. While impaired pharyngeal anatomy and upper 
airway collapsibility are nearly universal contributors, the 
severity of anatomic compromise varies considerably 
between individuals. Importantly, ≈70% of individuals 
exhibit impairments in >1 nonanatomic endotype, such 
as low arousal threshold, high loop gain (ie, unstable con-
trol of breathing), and poor upper airway muscle com-
pensation.31 Unique clusters of endotypes with distinct 
polysomnographic and clinical symptom characteristics 
have also been identified.32 For example, those with high 
collapsibility and loop gain are more likely to have obe-
sity and experience severe oxygen desaturation. Hypoxic 
burden, a metric that quantifies the duration and depth of 
respiratory event–related oxygen desaturations, may be 
a more robust predictor of cardiovascular risk than AHI 
alone.33 Elevated heart rate response appears to pre-
dict improved cardiovascular risk reduction with CPAP 

treatment.34 Symptom-based phenotypes (eg, excessive 
daytime sleepiness and insomnia) may better identify 
those at greater cardiovascular risk, beyond AHI.35,36

OSA AND OBESITY
Obesity is classically defined using body mass index 
(BMI) ≥30 kg/m2. However, this definition does not pro-
vide adequate information about the degree and distri-
bution of adiposity or cardiometabolic health status at 
an individual level.37 Recent consensus recommenda-
tions highlight the importance of incorporating either 
direct measurement of body fat, if available, or at least 1 
anthropometric criterion (eg, waist-height ratio) in addi-
tion to BMI, using validated thresholds for age, sex, and 
ethnicity.37 About two-thirds of US adults are overweight 
or obese.38 Obesity and related cardiometabolic risks are 
major public health concerns.39,40 Excess weight strongly 
increases OSA risk,19,21 primarily due to its impact on 
upper airway structure and collapsibility (Figure 3). In 
particular, fat accumulation around the neck leads to a 
mechanical load on the pharyngeal structures, narrow-
ing the upper airway.41,42 Moreover, fat deposition in the 
lateral pharyngeal structures contributes to airway col-
lapse, and increased AHI is correlated with worsening 
retroglossal dimensions.42,43 Importantly, classification of 
obesity relying on BMI does not inform about visceral 
adiposity or subcutaneous neck fat, which are more 

Figure 3. Relationship between obstructive sleep apnea (OSA) and obesity.
A, A normal-weight individual. B and C, Both depict individuals classified as obese based on body mass index (BMI) but with different body 
fat distributions. Two individuals with the same BMI can have markedly different levels of visceral and ectopic (eg, liver) fat. Upper airway fat 
deposition, visceral adiposity, and liver fat are more strongly associated with OSA and cardiometabolic risk than subcutaneous fat. Illustration 
credit: Sceyence Studios.
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strongly correlated with OSA severity.44 Ectopic fat accu-
mulation, in particular in the liver, has also been associ-
ated with OSA severity.45 However, not all patients with 
OSA are obese.26 Indeed, a meta-analysis of >12 000 
adults indicated that only one-third of those with OSA 
had obesity, with 44% having overweight and 24% hav-
ing normal weight or underweight.46 Women with OSA 
and those who were younger (ie, <65 years) were 
more likely to have obesity. A bidirectional relationship 
between OSA and obesity has been increasingly recog-
nized.41 In a large prospective population–based cohort, a 
10% increase in body weight was associated with a 32% 
increase in AHI, while a 10% weight loss corresponded to 
a 26% decrease in AHI.21 A recent meta-analysis found 
a dose-response relationship in which weight reduction 
was associated with clinically relevant improvements in 
OSA severity as assessed by AHI, while a proportionally 
smaller effect on AHI was observed with a weight reduc-
tion beyond 20%.47 Whether OSA contributes to weight 
gain, putatively through sleep deficiency2 and dysregula-
tion of appetite-regulating hormones, increased caloric 
intake, and reduced energy expenditure48–51 remains to 
be further investigated. Individuals with OSA and short 
sleep duration appear to have a greater risk for visceral 
adiposity.52 Decreased physical activity in OSA may fur-
ther contribute to weight gain.53 Interestingly, CPAP use 
is associated with modest weight gain, particularly in 
patients who use CPAP ≤5 h/night and those without 
cardiovascular disease,54 but the underlying mechanisms 
remain unclear.

OSA AND HYPERTENSION
OSA and hypertension are highly comorbid, with ≥50% 
of patients with OSA having hypertension55–57 and 38% 
to 56% of patients with hypertension having OSA.58–60 
It is estimated that 71% to 83%62,63 of patients with 
resistant hypertension have OSA, and OSA prevalence 
exceeds 95% in those with refractory hypertension.63 
Nocturnal (asleep) hypertension is highly prevalent in 
OSA.64,65 Individuals with OSA are more likely to exhibit a 
nondipping BP pattern (a fall of BP <10% during sleep) 
compared with those without OSA.66 Reverse dipping 
(an increase in BP during sleep) is also more frequent in 
OSA.67 Those with abnormal dipping profiles manifest a 
markedly higher cardiovascular risk than individuals with 
similar overall BP and a normal nocturnal BP profile.68

Observational Evidence
In prospective studies, OSA is a predictor of incident 
hypertension. A landmark study of longitudinal data 
from the Wisconsin Sleep Cohort showed that wors-
ening AHI increases the likelihood of hypertension at 
follow-up69 with AHI ≥15 portending nearly 3× higher 
risk. Moreover, the odds of developing a nondipping 

BP profile were >3- and 4-fold higher in those with 
mild and moderate-to-severe OSA than in individuals 
without OSA, respectively.70 Some,71,72 but not all,73,74 
observations suggested an independent association 
between OSA and new-onset hypertension.71,72 OSA 
severity during REM sleep may be especially prognostic 
for hypertension, possibly due to longer event duration 
coupled with more profound hypoxemia and greater 
sympathetic activation. Studies have found that REM 
AHI predicts prevalent and incident hypertension,75,76 
and incident nondipping,77 independently of confound-
ers. Hypoxic burden has been linked to commensurate 
increases in BP.78 Studies of clinical subtypes of OSA 
based on different clusters of patient characteristics, 
symptoms, and disease severity reported distinct asso-
ciations between OSA clusters and hypertension. For 
example, in one study, hypertension was more prevalent 
in the disturbed sleep cluster than the minimally symp-
tomatic or excessively sleepy clusters, despite similar 
average AHI across clusters.79

Interventional Evidence
In a meta-analysis of 68 randomized controlled tri-
als, OSA treatment by CPAP or mandibular advance-
ment devices resulted in a pooled estimate of overall 
≈2-mm Hg reduction in office or ambulatory BP, with het-
erogeneity in treatment response.80 Albeit modest, this 
degree of BP reduction is considered beneficial, being 
associated with a 7% and 10% reduced risk of coronary 
artery disease and stroke, respectively.81 It is well recog-
nized that patients with OSA with resistant hypertension 
have the most pronounced BP falls following CPAP, with 
6- and 4-mm Hg decreases in 24-hour systolic BP and
diastolic BP during both daytime and nighttime.82 Noc-
turnal hypoxemia also predicts BP response to CPAP,
with greater BP reductions in patients with OSA expe-
riencing more severe hypoxemia.80 In patients with non-
sleepy OSA with hypertension, CPAP does not change83

or marginally decreases 24-hour BP.84 In addition, CPAP
treatment does not protect against new-onset hyperten-
sion in patients without daytime sleepiness.85 Recently,
loop gain has been found to be associated with favor-
able BP changes after CPAP, with patients with OSA
exhibiting higher loop gain showing greater decreases
in BP.86 It is noteworthy that variable CPAP adherence
in OSA likely contributes to the heterogeneity in BP
response to treatment. Although per-protocol analyses
reported greater benefit on BP in OSA with adherent
CPAP usage,84,85 meta-analysis does not support treat-
ment adherence as an effect modifier.80 In a recent ran-
domized controlled trial, OSA treatment by hypoglossal
nerve stimulation did not improve BP compared with
sham therapy.87 Mandibular advancement devices mini-
mally improve BP (averaging 1 mm Hg), while supple-
mental oxygen does not provide benefits.80,88 Behavioral
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weight loss interventions potentiate BP-lowering effects 
of CPAP.89 Emerging evidence from new incretin-based 
drugs for weight loss suggests improvements in both 
OSA severity and BP.90 There is considerable hetero-
geneity in the effects of antihypertensive drugs in 
OSA,91 with beneficial effects from diuretics and renin- 
angiotensin-aldosterone system inhibitors.92 In patients 
with resistant hypertension on multiple antihyperten-
sives, CPAP may have an additive benefit on BP con-
trol. Robust evidence from randomized controlled trials 
is needed to guide optimal antihypertensive regimens 
in OSA.

Mechanisms Linking OSA to Hypertension: 
Experimental Evidence
OSA-induced hypoxia, hypercapnia, arousals, and sleep 
disruption can lead to hypertension through several 
interconnected pathophysiological mechanisms (Fig-
ure 4). Repetitive apneas and hypopneas with oxygen 
desaturations activate carotid body chemoreceptors. 
This chemoreflex response consists of bradycardia due 
to cardiac vagal activation and increased central sympa-
thetic outflow to peripheral blood vessels.93 At obstruc-
tive respiratory event termination, abrupt lung inflation 
and thoracic afferent stretch inhibit cardiac vagal acti-
vation and increase sympathetic activity, resulting in 
tachycardia.94 The increased cardiac output then enters 
a vasoconstricted circulation, eliciting marked increases 
in BP.94 Baroreflex impairment can exacerbate estab-
lished hypertension.95 OSA can result in free radi-
cal formation due to oxidative stress96,97 and systemic 
inflammation,98 further contributing to hypertension. 
Because of repetitive hypoxemia, OSA may also increase 
renin-angiotensin-aldosterone activation, especially 
in resistant hypertension, possibly explaining the high 
co-occurrence of these conditions.99 Collectively, endo-
thelial dysfunction,100 baroreflex impairment,95 and ath-
erosclerotic changes in the peripheral101 and coronary 
vasculature102 likely result in hypertension, often with a 

nondipping or reverse dipping profile. In experimental 
animal models, exposure to intermittent hypoxia raises 
BP103–105 through augmented chemoreceptor sensitivity 
in the carotid body and consequent increases in sym-
pathoadrenal outflow, promoting hypertension.106–108 In 
addition, baroreflex impairment, renin-angiotensin-aldo-
sterone system activation,109,110 endothelial dysfunction, 
increases in endothelin-1 mediated vasoconstriction, 
and vascular remodeling105,111 can manifest following 
hypoxia exposure. In healthy humans, acute hypoxia 
potentiates sympathetic activity, vasoconstriction, and 
BP surges during voluntary apneas.112–114 Prolonged 
exposure of healthy individuals to intermittent hypoxia 
during sleep augments peripheral chemosensitivity,115 
blunts baroreceptor sensitivity,116 exacerbates sympa-
thetic activity,116,117 and increases vascular resistance.117 
Interestingly, daytime BP elevation is evident event after 
a single night of intermittent hypoxia and continues to 
increase after 2 to 4 weeks of exposure.115–117 In sleep 
fragmentation models, mice exposed to 20 weeks of 
sleep fragmentation developed systemic hypertension 
along with endothelial dysfunction and vascular remod-
eling.118 In a canine OSA model of intermittent airway 
occlusion, arousals following apnea termination resulted 
in BP surges.119,120 An earlier animal model comparing 
experimentally induced apneas by tracheal balloon ver-
sus sleep fragmentation has shown that sympathetic 
overactivity to chemoreceptor stimulation was a conse-
quence of arousal from sleep.121 In humans, experimen-
tally induced arousals raise BP to a similar magnitude 
that occurs at apnea termination,122,123 and the hyper-
tensive effects of arousals are comparable during nor-
moxia and hypercapnic hypoxia.124 Collectively, these 
findings suggest that sleep fragmentation also plays an 
important role in OSA-related hypertension.

OSA AND DIABETES
Overall, current evidence supports a causal and bidi-
rectional association between OSA and diabetes.125–128 

Figure 4. Potential mechanisms linking obstructive sleep apnea (OSA) to the development of hypertension.
OSA can trigger hypoxia, hypercapnia arousals, and sleep disruption that elicit increases in sympathetic activity, oxidative stress, systemic 
inflammation, and renin-angiotensin-aldosterone activation. These pathways lead to surges in blood pressure, endothelial dysfunction, baroreflex 
impairment, and tonic chemoreflex activation even during normoxic daytime wakefulness, with consequences for established hypertension often 
with a nondipping or even a reverse dipping profile, as well as resistant hypertension. Illustration credit: Sceyence Studios.
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Diabetes is a heterogeneous condition with regard to 
pathophysiological factors contributing to disease risk 
and progression, and response to treatment.129 Type 2 
diabetes, the most common type, is strongly associated 
with overweight and obesity, and OSA is exceedingly 
common among these patients.125,126,128 In addition, OSA 
is prevalent in type 1 diabetes, which is characterized by 
insulin deficiency, particularly in patients with moderate-
to-severe OSA having worse glycemic control.125,130–132 
OSA has been reported in adults with maturity-onset dia-
betes of the young,133 a unique form of diabetes caused 
by genetic mutations that classically presents without 
obesity or insulin resistance, which warrants further 
investigation.

Observational Evidence
In community-based cohorts, OSA was associated with a 
37% increased risk of developing type 2 diabetes after 
adjustment for several confounders.134 In one study with 
a median follow-up of 13 years, OSA was associated with 
a greater risk of developing diabetes after adjustment 
for BMI and waist circumference.135 In a meta-analysis 
of prospective cohort studies involving 64 101 patients, 
OSA was associated with an adjusted pooled relative risk 
of type 2 diabetes of 1.35, comparable to that of tra-
ditional risk factors (eg, physical inactivity).136 A modest 
increased risk of OSA in patients with diabetes has also 
been reported, possibly through diabetes-related inflam-
mation and autonomic neuropathy disrupting upper air-
way stability and breathing.134 Numerous studies found 
associations between OSA severity and insulin resis-
tance and glucose intolerance in individuals with and 
without diabetes after controlling for multiple confound-
ers including obesity.126,128,137–141 For example, in a clinical 
cohort of adults without diabetes, OSA was associated 
with impairments in insulin sensitivity and pancreatic 
β-cell function after controlling for adiposity.137 Notably, 
even in young lean men without other cardiometabolic 
risk factors, the presence of OSA has been associated 
with reduced insulin sensitivity.142 Studies have also 
found strong associations between OSA during REM 
sleep and insulin resistance and glucose intolerance.143 
In one cohort, distinct OSA phenotypes (eg, hypopnea 
and hypoxia) improved the prediction of type 2 diabe-
tes risk beyond AHI.144 In a recent study, OSA severity 
(oxygen desaturation index quartiles) was associated 
with greater postprandial glucose levels in adults with 
type 2 diabetes.145 Glycemic variability, independent of 
glycemic control, has emerged as a prognostic marker 
in individuals with and without type 2 diabetes.146,147 In 
adults with type 2 diabetes, moderate-to-severe OSA 
was associated with greater glycemic variability than mild 
OSA.148 Poor sleep quality was associated with greater 
overnight glycemic variability assessed by continuous 

glucose monitoring in a real-life setting in adults with 
type 1 diabetes.149

Interventional Evidence
Randomized controlled trials have not been convincing 
for a clear benefit of CPAP treatment on glucose-related 
outcomes. In one meta-analysis, CPAP did not improve 
glycemic control as assessed by hemoglobin A1c levels 
in individuals with type 2 diabetes,150 while 2 other meta- 
analyses reported improvements after CPAP.151,152 In 
individuals without diabetes, data from a meta-analysis 
showed that CPAP improves insulin sensitivity.153 In a 
recent meta-analysis, CPAP modestly improved insu-
lin sensitivity, with greater benefits in sleepy patients.154 
In a proof-of-concept randomized controlled study,155 
8-hour nightly supervised CPAP use in the laboratory
for 2 weeks improved insulin sensitivity and glucose
tolerance in individuals with prediabetes, an early stage
characterized by elevated glucose levels, not sufficient
to meet the diagnostic criteria for diabetes. In addition,
the optimal CPAP use reduced norepinephrine levels, a
marker of sympathetic activity, 24-hour BP, and resting
heart rate, which is a strong predictor of adverse cardio-
vascular outcomes, both at night and during the day.156

Notably, the magnitude of reduction in daytime resting
heart rate after treatment correlated with the magnitude
of decrease in norepinephrine levels and OSA severity
indices.156 Post hoc analyses of a randomized crossover
study in individuals with prediabetes found that CPAP
improves insulin sensitivity among those with severe
OSA.157 In a nonrandomized intervention in patients
with type 2 diabetes and OSA, 1 week of optimal in- 
laboratory CPAP treatment for 8 hours per night improved
early morning glycemic control.158 In another study, a
single night of CPAP withdrawal resulted in increased
glucose levels and free fatty acids during sleep.159 In
secondary analyses from the SAVE (Sleep Apnea cardio-
Vascular Endpoints) study among 888 participants with
established cardiovascular disease and OSA, there was
no evidence (median follow-up of 4.3 years) that CPAP
improves glycemic control over usual care160 though
mean CPAP usage was low at 3.5 hours. Interestingly,
there was a signal for a possible protective role of CPAP
in women with type 2 diabetes. In another randomized
clinical trial, CPAP therapy did not improve glycemic con-
trol or variability in patients with moderate-to-severe OSA
and type 2 diabetes, but exploratory analyses suggested
that CPAP may improve glucose variability in women.161

Specifically, the lack of a clear benefit of CPAP treat-
ment on glycemic outcomes may be due to several 
factors. It is possible that metabolic impairments at an 
advanced disease stage are unresponsive to treatment. 
In support of this hypothesis, CPAP trials have shown 
improvements in glucose tolerance and insulin resis-
tance in prediabetes. Future interventions can investigate 
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whether OSA treatment is beneficial for early mark-
ers of diabetes risk, for example, 1-hour glucose levels 
post-oral glucose challenge that predicts progression to 
diabetes and cardiovascular disease even in individuals 
with normal glucose tolerance.162 Varying CPAP adher-
ence may also explain the inconsistent findings.24 It is 
noteworthy that the current CPAP adherence tracking 
systems do not capture night-to-night variability in sleep 
patterns within and between individuals, which may con-
tribute to the heterogeneity in cardiometabolic response 
to treatment. Indeed, a dose-response relationship has 
been shown between hours of CPAP usage and health 
care utilization, with measurable benefits even at low 
usage of 1 to 3 hours per night.163 To address this vari-
ability in sleep patterns, a novel CPAP adherence metric, 
that is, the percentage of CPAP adherence that mea-
sures CPAP use relative to the time spent in bed, has 
been developed.164 Long-term randomized controlled tri-
als with rigorous measures of glycemic control, larger 
sample sizes, and more accurate CPAP adherence met-
rics are needed to identify subgroups of patients who 
are most likely to benefit from OSA treatment. More 
broadly, clinical trials have not provided consistent evi-
dence that CPAP treatment improves cardiovascular 
outcomes, which may be partly explained by low levels 
of adherence to CPAP and the failure to consider OSA 
heterogeneity.4

Mechanisms Linking OSA to Impairment in 
Glucose Metabolism: Experimental Evidence

Glucose intolerance and type 2 diabetes develop when 
pancreatic β cells cannot upregulate insulin secretion 
relative to the degree of insulin resistance as occurs in 
obesity, aging, or pregnancy. Excess weight can cause 
insulin resistance, β-cell dysfunction, and the develop-
ment of type 2 diabetes.165 Research over the past 2 
decades supports a strong link between untreated 
OSA and impairments in glucose metabolism, beyond 
excess weight.128,140,166 A direct link between OSA and 
insulin resistance and glucose intolerance can occur 
through multiple interrelated mechanisms including 
sympathetic overactivity and catecholamine release, 
defects in fatty acid metabolism and ectopic lipid depo-
sition in the skeletal muscle and liver, oxidative stress 
and mitochondrial dysfunction, hypothalamic-pituitary-
adrenal axis activation and cortisol release, systemic 
inflammation, and endothelial dysfunction (Figure 5). 
Sympathetic activation is a potent stimulator of lipoly-
sis, that is, increased release of fatty acids into the cir-
culation.165 Clinical and experimental data indicate that 
OSA stimulates lipolysis.159,167–170 It is conceivable that 
OSA-triggered sympathetic overactivity can stimulate 
excess fatty acid delivery to skeletal muscle and cause 
defects in mitochondrial metabolism with subsequent 

Figure 5. Potential mechanisms linking obstructive sleep apnea (OSA) to the development of prediabetes and type 2 diabetes.
OSA is characterized by intermittent hypoxia, sleep fragmentation, and sleep deficiency. Collectively, these may lead to insulin resistance, 
pancreatic β-cell dysfunction and glucose intolerance, and progression to prediabetes and type 2 diabetes through multiple interrelated biological 
mechanisms: sympathetic overactivity, catecholamine release, disrupted fatty acid metabolism and ectopic fat deposition in liver and skeletal 
muscle, oxidative stress and mitochondrial dysfunction, hypothalamic-pituitary-adrenal (HPA) axis activation and cortisol release, systemic 
inflammation, and endothelial function. SWS indicates slow wave sleep. Illustration credit: Sceyence Studios.
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ectopic fat accumulation of lipid metabolites, leading to 
insulin resistance and glucose intolerance165 (Figure 6). 
In support of this hypothesis, pharmacological sup-
pression of lipolysis in animals prevented intermittent 
hypoxia-induced impairments in glucose tolerance and 

insulin sensitivity.167 OSA can also directly impair mito-
chondrial function (eg, accumulation of reactive oxy-
gen species). Future studies can explore these cellular 
bioenergetic pathways to elucidate how OSA contrib-
utes to peripheral insulin resistance. In a clinical study 
using isotope-tracer–based methods to assess glucose 
metabolism, OSA was a key determinant of peripheral 
insulin resistance in individuals with obesity.171 Experi-
mental evidence also strongly supports biological plau-
sibility for impairments and glucose metabolism in OSA. 
Exposure to intermittent hypoxia or sleep fragmentation 
in animals or healthy humans results in insulin resis-
tance and glucose intolerance.172–176 In animal models, 
intermittent hypoxia (few hours to several weeks) has 
led to impaired glucose tolerance, insulin resistance, 
increased hepatic glucose production, and decreased 
muscle glucose uptake.177–186 Animal models of sleep 
fragmentation have produced glucose intolerance and 
insulin resistance.187–189 In healthy humans, short-term 
exposure to intermittent hypoxia (3–6 hours) caused 
higher glucose levels and insulin resistance.190–192 Simi-
larly, healthy human studies have shown that short-term 
(2–3 days) exposure to sleep fragmentation results in 
glucose intolerance and insulin resistance.175,176 In a 
recent study, healthy humans exposed to 2 weeks of 
chronic intermittent hypoxia showed high sympathetic 
activity along with increased lipolysis and free fatty acid 
levels.193 In addition, sleep deficiency with insufficient 
sleep duration and reduced SWS in the context of OSA 
may further compound perturbations in glucose metab-
olism and increase cardiometabolic risk.

OSA IN WOMEN
Prevalence and Clinical Presentation
OSA diagnosis is higher in men than in women with a 
male-to-female ratio of 8:1 in sleep clinics and 2:1 in 
community-based cohorts,194 but this gap narrows with 
aging, particularly after menopause.195,196 OSA preva-
lence is high (≈40%) among women with polycystic 
ovary syndrome,197 the most common endocrine disorder 
in premenopausal women, characterized by hyperandro-
genemia, insulin resistance, and a substantially increased 
risk for cardiometabolic disease. Observational evidence 
suggests that OSA may worsen insulin resistance and 
glucose intolerance in this high-risk population.197 While 
men with OSA often present with classic symptoms of 
snoring and excessive daytime sleepiness, women are 
more likely to present with insomnia and nonspecific 
symptoms such as fatigue and depression.194 Although 
OSA tends to manifest with shorter event duration and 
lower overall AHI in women, they frequently report poorer 
sleep quality than men.198 The differences in prevalence 
estimates and clinical presentation of OSA in women 
may stem from a combination of biological and hormonal 

Figure 6. Hypothetical mechanisms by which mitochondrial 
dysfunction in obstructive sleep apnea (OSA) can lead to 
insulin resistance and glucose intolerance.
OSA can increase adipose tissue lipolysis, likely through sympathetic 
activation, resulting in excess fatty acid delivery to skeletal muscle, 
which, in turn, might cause mitochondrial dysfunction, incomplete 
fat oxidation, and subsequent ectopic lipid accumulation, which, in 
turn, might further impair mitochondrial function, ultimately leading 
to insulin resistance and glucose intolerance. OSA can also directly 
impair mitochondrial function through the accumulation of reactive 
oxygen species. Illustration credit: Sceyence Studios.
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factors or differences in upper airway anatomy or how 
OSA symptoms (eg, snoring) are reported by individu-
als or their bed partners. Common screening tools (eg, 
STOP-BANG [Snoring, Tiredness, Observed apnea, high 
blood Pressure, BMI, Age, Neck circumference, and 
Gender] survey) developed with male-centric symptom-
atology may contribute to underdiagnosis in women.199 
With regard to endotypes, women tend to exhibit lower 
loop gain, less airway collapsibility, and a lower arousal 
threshold.200 OSA definitions relying on 4% desaturation 
criteria may underestimate OSA in women, who gen-
erally show greater propensity for sleep fragmentation 
rather than desaturation.200 OSA severity is greater dur-
ing REM sleep in women, while men seem to have more 
severe OSA in nonrapid eye movement sleep.201 REM- 
predominant OSA may be a subtype especially vulner-
able to hypertension.

Sex Differences in OSA and Cardiometabolic 
Disease
Higher prevalence of REM-predominant OSA in 
women202,203 may partially account for the findings that 
women with OSA are at higher risk of hypertension than 
men with OSA202,204 despite lower AHI and milder hypox-
emia. Severe OSA was independently associated with 
incident hypertension in women but not in men in the 
Sleep Heart Health Study,73 while contrasting associa-
tions were found in the Vitoria Sleep Cohort.205

Similarly, OSA severity predicted refractory hyperten-
sion in men but not in women.206 Sex differences also 
reveal that insulin resistance and metabolic syndrome 
are more prevalent among women compared with men. 
In a prospective cohort with a 16-year follow-up, OSA 
was strongly associated with incident diabetes in women 
but not in men.207 In a large population–based study with 
a 25-year follow-up, OSA was associated with type 2 
diabetes, even after adjusting for multiple confounders, 
with an effect more pronounced in women.208 A clinical 
study indicated that the negative impact of OSA on glu-
cose metabolism was larger in men than in women.209 
While there was no overall benefit of CPAP on glyce-
mic indices in secondary analysis of data from the SAVE 
study, women with type 2 diabetes assigned to CPAP 
showed improved glucose.160 A randomized controlled 
trial among patients with moderate-to-severe OSA and 
type 2 diabetes suggested that CPAP may improve post-
prandial glycemic variability in women.161 Given these 
mixed observations, future research is needed to inves-
tigate whether and how sex modifies cardiometabolic 
outcomes in OSA. Notably, women are underrepresented 
in OSA research, particularly in interventional studies.210 
A multicenter randomized controlled trial in women with 
OSA found marginal BP reduction following CPAP.211 
Despite comparable BP decreases with CPAP treatment 

in randomized controlled trials that included <80% versus 
>80% male participants,80 it remains uncertain whether
sex-specific effects of CPAP on BP are adequately cap-
tured in these trials. Overall, OSA is underdiagnosed and
undertreated in women212 likely due to multiple factors,
and thus, they may face a greater cardiometabolic risk.213

The current data highlight the need for future research
to identify sex-specific vulnerabilities in OSA-related car-
diometabolic outcomes.214

OSA in Pregnancy
During pregnancy, OSA prevalence generally exceeds 
that of premenopausal women,20 with estimates ranging 
from ≈17% to 45% using in-laboratory polysomnogra-
phy.215 This wide range reflects variations in the timing 
of assessment and comorbid risk factors (eg, obesity, 
hypertension, and diabetes). Notably, OSA in pregnancy 
is much more common in women who are obese and 
older. Increased maternal age and first-trimester BMI are 
predictive of OSA later in pregnancy.216 The prevalence 
is lower (≈4%–8%)217 by home sleep apnea testing likely 
due to its reduced sensitivity in pregnancy, where OSA 
often manifests as milder respiratory events such as flow 
limitation that is a subtle form of partial upper airway 
obstruction not meeting criteria for apneas or hypop-
neas,218 snoring, and hypopneas with arousals.216,219

Pregnancy is a state of heightened vulnerability to 
cardiometabolic risk and physiological changes includ-
ing weight gain and hormonal fluctuations. The latter may 
amplify upper airway collapsibility and risk for OSA, which 
may further exacerbate cardiometabolic-related compli-
cations in pregnancy. During normal pregnancy, insulin 
sensitivity is reduced to ensure an adequate glucose 
supply to the fetus. However, an inability to compensate 
for this physiological state with upregulation of insulin 
secretion can lead to hyperglycemia and gestational dia-
betes.220–222 OSA during pregnancy is associated with 
an increased risk of gestational diabetes.217,223 Greater 
severity of OSA was associated with worse nocturnal 
glucose levels217 as measured by continuous glucose 
monitoring.224 Similarly, observational evidence indicates 
that OSA is associated with hypertensive disorders of 
pregnancy.225 In the largest pregnancy cohort study with 
objective testing for OSA, exposure-response was dem-
onstrated with increasing severity of OSA (ie, AHI) and 
hypertensive disorders of pregnancy.217 Mechanisms link-
ing OSA during pregnancy to gestational hypertension or 
diabetes have primarily been based on studies in animal 
models, indicating that oxidative stress and inflammation, 
increased sympathetic activity, and endothelial dysfunc-
tion could be implicated.

There are fewer studies examining the link between 
OSA during pregnancy and adverse fetal outcomes.219 
A few studies have shown associations with low birth 
weight or small for gestational age infants and premature 
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birth.218,219,226 Unlike in other adult populations, subtle 
forms of upper airway obstruction have been associated 
with adverse cardiometabolic outcomes in pregnancy. 
Recent findings highlight that flow limitation is linked 
with a higher risk of preeclampsia, hypertensive disorders 
of pregnancy, and infants with low birthweight.218,219,227 
As such, flow limitation may represent an early inter-
vention target to reduce the adverse health outcomes 
associated with OSA during pregnancy. In postpartum, 
over half of women have persistent OSA, but its over-
all severity generally improves.228 In a large prospective 
study, persistent elevations in AHI and oxygen desatura-
tion index in the years following delivery were associ-
ated with a significantly higher risk of hypertension and 
metabolic syndrome later in life.229 The impact of treat-
ment of OSA on cardiometabolic outcomes in pregnancy 
is largely limited to small, nonrandomized pilot studies.215 
While some studies suggested that CPAP may reduce 
nocturnal BP and cardiac output, others have been neu-
tral.215 Notably, poor CPAP treatment adherence dur-
ing pregnancy is an important limitation.230–232 Evidence 
is scarce on the effects of CPAP on glucose regula-
tion in pregnancy,232,233 with one randomized controlled 
trial showing improvements in nocturnal glucose levels 
among women with gestational diabetes.233 One pilot 
study reported that mandibular advancement devices are 
well-tolerated in pregnancy but seem less efficacious in 
reducing the AHI compared with CPAP.234 Larger, rigor-
ous, and well-designed trials are needed to evaluate the 
impact of OSA treatment during pregnancy on maternal 
and fetal cardiometabolic health. In sum, OSA is often 
underdiagnosed in pregnancy due to a lack of aware-
ness and variable symptom presentation.235 Emerging 
evidence suggests that OSA during pregnancy may pose 
risks to both maternal and fetal health, underscoring the 
need for further research and evidence-based guidelines 
for diagnosis and management.215

RACIAL/ETHNIC DIFFERENCES IN OSA 
AND CARDIOMETABOLIC DISEASE
Racial and ethnic minorities are disproportionately bur-
dened by OSA and cardiometabolic diseases including 
obesity, hypertension, and diabetes.214,236–238 Moreover, 
minority groups experience significant disparities in 
sleep health because optimal sleep is strongly influ-
enced by social determinants of health.239 More specifi-
cally, several factors including home and environmental 
social and physical conditions, cultural and low socio-
economic status–related stress, and work status (eg, 
shift work) can all influence sleep patterns. In minority 
groups, OSA is disproportionately underdiagnosed (only 
<10% with clinically significant OSA reporting an OSA 
diagnosis) and undertreated.240,241 The prevalence and 
severity of OSA are higher in Black populations than 
in White populations, particularly for symptomatic 

OSA.241,242 Asians have a higher susceptibility to upper 
airway collapse with increasing adiposity compared 
with other minority groups.241 Black adults with OSA 
are twice more likely to have resistant hypertension 
than those without OSA.243 The Hispanic/Latino back-
ground modifies the association between OSA and 
hypertension.244 Evidence from CPAP trials in diverse 
populations is lacking, and it is unknown whether race/
ethnicity modifies BP response to treatment. Minority 
groups also have an increased prevalence of diabe-
tes and cardiometabolic disease related to OSA.245,246 
These disparities could be explained by several societal 
and institutional factors that constrain access to health 
care and timely management of OSA (eg, limited avail-
ability of sleep specialists and preventive care), which 
may exacerbate cardiometabolic diseases. Also, CPAP 
adherence is lower in minorities and low socioeconomic 
status groups,247 which may partially explain the higher 
rates of hypertension and diabetes. Multiple social 
stressors (eg, housing instability and lack of access 
to behavioral support for optimizing CPAP use) can 
influence CPAP adherence. It is also noteworthy that 
currently used fixed CPAP adherence targets may not 
adequately capture the known racial/ethnic and socio-
economic differences in sleep patterns, particularly 
sleep duration.164,248 Revisions to current CPAP adher-
ence metrics and policies for insurance coverage can 
reduce inequalities in OSA care. Future research using 
interventions to treat OSA can further examine how 
racial/ethnic differences modify cardiometabolic out-
comes including obesity, diabetes, and hypertension.249

OTHER SLEEP CONDITIONS AND 
CARDIOMETABOLIC DISEASE IN OSA
Insomnia and Narcolepsy
Insomnia symptoms including difficulty initiating, main-
taining sleep, or early morning awakenings have been 
reported in OSA. Comorbid insomnia and sleep apnea, 
commonly referred to as comorbid insomnia and sleep 
apnea, are highly prevalent with 30% to 50% of patients 
with OSA reporting insomnia symptoms and 30% to 
40% of those with insomnia having OSA.250,251 Female 
sex, advanced age, and poor mental health are potential 
risk factors for comorbid insomnia and sleep apnea.252,253 
Compared with OSA or insomnia alone, comorbid insom-
nia and sleep apnea are generally associated with 
greater morbidity252,254 including a higher risk of cardio-
metabolic disease.253,255,256 Cognitive-behavioral therapy 
for insomnia improves sleep in patients with co-morbid 
insomnia and sleep apnea,257 but its potential effect on 
BP control is yet to be determined. A bidirectionality 
between OSA and insomnia has also been postulated.258 
Patients with OSA with a low arousal threshold may 
exhibit more frequent OSA-induced sleep fragmentation 
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and awakenings, promoting insomnia.259 OSA may also 
perpetuate the hyperarousal state of insomnia through 
cortical arousals and sympathetic activation elicited by 
respiratory events.260 On the other hand, sleep instability 
from insomnia may alter the respiratory arousal threshold 
and exacerbate OSA. Insomnia-related sleep loss may 
also worsen OSA severity, possibly by increasing upper 
airway collapsibility.261 OSA can also co-occur with nar-
colepsy, a sleep disorder characterized by hypocretin 
deficiency, cataplexy (sudden loss of muscle tone trig-
gered by strong emotions), disrupted nighttime sleep, 
and severe daytime sleepiness. Patients with narcolepsy 
consistently show increased prevalence of obesity, hyper-
tension, hyperlipidemia, and diabetes.262 The prevalence 
of undiagnosed narcolepsy in patients with OSA remains 
uncertain. Longitudinal large population–based data indi-
cated that narcolepsy is associated with increased car-
diovascular disease risk,263,264 which can exacerbate the 
cardiovascular morbidity and mortality in individuals with 
comorbid OSA.

Sleep Depth: Role of SWS
SWS, a key marker of sleep depth, is temporally associated 
with transient autonomic and neuroendocrine changes 
that can affect BP and glucose regulation.10,265,266 SWS 
declines with aging, and women generally have more 
SWS.266 In OSA, transient improvement in respiratory 
events occurs during SWS, likely due to a less collaps-
ible upper airway and higher arousal threshold.259,267–269 
Low levels of SWS and slow wave activity are reported in 
OSA, which can be restored with effective treatment.270,271 
Observational data from large population cohorts indi-
cate that reduced SWS is prospectively associated with 
increased hypertension and type 2 diabetes risk in indi-
viduals with or without OSA.272–276 A clinic-based study 
found an inverse relationship between OSA severity and 
slow wave activity in men but not in women,277 whereas a 
population-based study reported an association between 
reduced SWS and elevated BP only in women.278 In 
experimental studies in healthy young adults (93% men), 
on average, a ≥50% reduction in SWS (selective or non-
specific acoustic sleep fragmentation) over the course 
of 1 to 3 nights resulted in impairments in insulin sen-
sitivity and glucose tolerance, increased sympathetic 
activity and cortisol levels, and attenuation of BP dip-
ping.175,176,279–283 Recent mechanistic data support a recip-
rocal interaction between SWS and heart health through 
immune pathways.284 Emerging data on SWS enhance-
ment using different approaches (eg, acoustic, hypnotic, 
and pharmacological) combined with recent advances in 
technology are encouraging for a potential cardiometa-
bolic benefit.285–290 Interestingly, exercise interventions in 
individuals with or without OSA may increase SWS and 
reduce OSA severity markers.291–294 In sum, sleep depth 
or SWS is emerging as a potential modifiable factor in 

diabetes and hypertension risk. Future research could 
explore underlying mechanisms and sex-specific effects 
linking SWS to diabetes and hypertension and pave the 
way for novel clinical interventions for cardiometabolic 
disease prevention and treatment.295

Sleep Duration
Sleep deficiency or short sleep duration has been reported 
in individuals with OSA, which can potentially exacerbate 
cardiometabolic risk such as obesity, diabetes, and hyper-
tension.52,296–298 According to the recent national surveys, 
about one-third of the US general population reported 
not getting the recommended 7 to 9 hours of sleep.299,300 
Over the past several decades, substantial evidence 
has demonstrated that short sleep duration is strongly 
associated with increased cardiovascular and metabolic  
risk.301–305 Experimental sleep restriction in healthy indi-
viduals has consistently demonstrated perturbations in 
glucose metabolism,306 increased energy intake with 
minimal change in energy expenditure,301,307,308 weight 
gain, and preferential fat accumulation.309–311 In a meta-
analysis of prospective cohorts, short sleep duration 
was associated with a 38% likelihood of obesity312 and 
increased risk of developing diabetes and hyperten-
sion.313,314 Potential mechanisms for overeating and 
weight gain with sleep loss include alterations in appetite-
regulating hormones (eg, increased ghrelin) and changes 
in brain regions related to reward-seeking behavior, that 
is, increased hedonic eating.301,315 Experimental sleep 
restriction has also shown increased sympathetic activ-
ity and BP,316–318 impaired endothelial function,317 and 
inflammation.319 Given the strong link between short 
sleep and cardiometabolic risk, optimizing sleep duration, 
that is, sleep extension, has emerged as a potential inter-
vention for cardiometabolic risk reduction.320–326 A recent 
randomized controlled study has found that short-term 
sleep extension reduced objectively measured energy 
intake by a clinically meaningful amount (on average 270 
kcal/d) in real-life settings in adults with overweight who 
habitually curtail their sleep duration.327 Overall, the cur-
rent evidence supports the notion that adequate sleep 
duration could be a public health target for preventing 
obesity and associated cardiometabolic dieases.301,328 
Future research can explore whether optimizing sleep 
duration added to standard OSA treatments could be an 
effective strategy for the management of cardiometa-
bolic disease in this population.

CLINICAL PERSPECTIVES
Screening and Diagnosis of OSA in 
Hypertension and Diabetes Management
Current guidelines recommend testing for OSA in patients 
with hypertension, especially those with uncontrolled or 
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resistant hypertension, and for secondary causes of hyper-
tension.329,330 In a meta-analysis of 48 randomized trials with 
a total of 344 716 patients, a 5-mm Hg reduction of systolic 
BP reduced the risk of major cardiovascular events by about 
10%, irrespective of preexisting cardiovascular disease or 
baseline BP.331 These findings highlight the importance of 
broader screening and treatment of OSA to improve cardio-
vascular risk reduction.331 Given the large evidence linking 
insufficient sleep to impairments in glucose control, the Pre-
cision Medicine in Diabetes Initiative included screening for 
sleep health,332 but these recommendations are yet to be 
widely implemented in clinical practice.333 Similarly, the high 
prevalence of OSA in cardiovascular disease strongly high-
lights the need for careful screening for OSA in clinical car-
diology practices. This can be accomplished by screening 
questionnaires (eg, STOP-BANG) and home sleep apnea 
testing. Further guidance can be obtained from an outline on 
whom to screen and how to screen for OSA in a cardiology 
practice.334 Sleep evaluation in a cardiology practice can be 
further facilitated by an innovative cardiology-based Ameri-
can Academy of Sleep Medicine specialty accreditation 
pathway, whereby cardiologists in certified clinics are able 
to order home sleep apnea tests, provide relevant kits and 
instructions, and review study results with their patients.334 
Nevertheless, specialized sleep medicine services are lim-
ited, especially among underserved populations, contribut-
ing to underdiagnosis and inadequate treatment of OSA, 
and unfavorable cardiometabolic outcomes. Advances 
in health care technology including wearable technology 
with the capability of long-term monitoring, telehealth plat-
forms, and artificial intelligence-powered data analytics may 
expand OSA care and potentially mitigate associated car-
diometabolic disease burden.335 As night-to-night OSA vari-
ability may lead to misclassification of disease severity and 
missed diagnosis,336 multinight evaluation leveraging new 
technology has the premise of better capturing OSA. Mul-
timodal telemonitoring can promote continuity of care and 
facilitate treatment adherence tracking and troubleshoot-
ing, ultimately improving the patient-centered care and car-
diometabolic outcomes.337

Prevention and Treatment of Cardiometabolic 
Disease in OSA
Strategies focused on cardiometabolic disease preven-
tion using proven traditional dietary interventions (eg, 
Mediterranean-style or DASH [Dietary Approaches to 
Stop Hypertension] diets) and exercise regimens (eg, 
resistance training) are often neglected in OSA manage-
ment.338,339 A meta-analysis of controlled interventional 
studies indicated that exercise training in individuals with 
OSA reduces disease severity along with body fat and 
neck circumference.294 Specific interventions to reduce 
cardiometabolic risk can also be guided by following the 
American Heart Associations’ Life’s Essential 8, which 
recently added sleep health as its eighth essential metric 

for promoting cardiovascular health alongside other met-
rics including maintaining a healthy weight through diet 
and exercise, quitting tobacco, managing cholesterol, 
and glucose and BP control.340 Improved psychological 
well-being with stress management (eg, meditation and 
mindfulness) may contribute to improvements in sleep 
and BP.341 CPAP therapy is underscored for lowering BP 
in patients with comorbid OSA and hypertension, espe-
cially those with resistant hypertension. Mineralocorticoid 
receptor antagonists such as spironolactone are recom-
mended for comorbid OSA and resistant hypertension.

Weight loss is an essential component of OSA manage-
ment in people with overweight and obesity.47,51 Meta-analy-
ses indicate that lifestyle interventions aimed at weight loss 
(ie, diet and exercise) reduce OSA severity (eg, 10% weight 
loss predicting a decrease in AHI by 26%) and improve 
daytime sleepiness and cardiometabolic outcomes.47,342,343 
In a randomized trial in individuals with OSA and obesity, 
weight loss through lifestyle intervention provided an incre-
mental improvement in insulin sensitivity when combined 
with CPAP.344 Importantly, sustained weight loss and long-
term cardiometabolic benefits remain a challenge.51,345,346 
Bariatric surgery for weight loss can successfully improve 
OSA severity with a potential for long-term benefit.347,348 
Patients who attain OSA remission after bariatric surgery 
(65% in meta-analysis) are more likely to improve their car-
diometabolic profile and reduce the risk for major adverse 
cardiovascular events and all-cause mortality.347 In a recent 
retrospective study of patients undergoing metabolic sur-
gery for obesity, those with moderate-to-severe OSA had 
marked improvements in OSA severity and a lower risk of 
incident major adverse cardiovascular outcomes and death 
compared with usual nonsurgical care.349

Recently, incretin-based therapies (eg, glucagon-like 
peptide 1 receptor agonists), originally approved for the 
treatment of type 2 diabetes in 2005, have emerged as a 
new alternative for weight management and cardiometa-
bolic risk reduction in OSA.90,350–352 A meta-analysis of 6 
studies in individuals with OSA who have been on incretin-
based therapy with a follow-up duration ranging from 4 to 
52 weeks indicated that these drugs reduce OSA severity, 
particularly in those with severe OSA and obesity, promote 
weight loss, and reduce BP.90 The primary effect of these 
drugs is attributed to weight loss, mainly through appetite 
suppression. Notably, weight regain occurs when patients 
stop taking these drugs. Tirzepatide, a combined agonist 
for glucagon-like peptide 1 and glucose-dependent insuli-
notropic polypeptide receptors, was recently approved for 
use in individuals with moderate-to-severe OSA and obe-
sity.351 One proof-of-concept randomized controlled study 
of patients with moderate-to-severe OSA and obesity sug-
gested that CPAP therapy improves vascular inflammation 
independent of glucagon-like peptide 1 receptor agonist 
(liraglutide)–mediated weight loss353; however, the degree 
of weight loss was considerably low compared with the 
SURMOUNT-OSA trial.351 that showed reductions in AHI 
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and systolic BP across both CPAP users and nonusers. In 
a recent study, tirzepatide, compared with liraglutide and 
semaglutide, was associated with a lower incidence of 
major adverse cardiovascular events in patients with OSA 
and type 2 diabetes.354 Other than weight loss, the puta-
tive mechanisms underlying the cardiometabolic benefits 
of glucagon-like peptide 1 receptor agonists may involve 
improved insulin sensitivity,355 reduced inflammation, and 
direct cardioprotective effects.356 Taken together, recent 
advances in incretin-based pharmacotherapies added a 
new avenue to the cardiometabolic disease prevention 
and treatment in OSA.350,357 How these novel agents fit in 
with other therapeutic options in OSA is an ongoing area 
of research, and the precise guidelines for their use in the 
management of OSA remain to be determined.350 It is also 
noteworthy that there is still a lot of uncertainty about the 
long-term biological effects of these medications, and 
how they will ultimately change people’s eating habits and 
lifestyle behaviors remains an open question. For exam-
ple, whether individuals will develop a tolerance to their 
appetite-suppressing effects over the long term is unclear. 
Further rigorous research is needed in various patient 
populations to determine the role of incretin-based phar-
macotherapies in OSA management350 to address specific 
research gaps on long-term adherence, patient-reported 
outcomes, cost and accessibility, and use of CPAP or other 
therapies (eg, mandibular advancement devices and hypo-
glossal nerve stimulation) in combination with these drugs.

SUMMARY AND FUTURE RESEARCH 
AGENDA
Current evidence supports a strong association between 
OSA and cardiometabolic disease. Mechanistic evidence 
provides biological plausibility and supports OSA as a 
modifiable risk factor for the development of hyperten-
sion and type 2 diabetes. Randomized controlled trials 
have been less convincing for the benefit of CPAP treat-
ment of OSA on glycemic outcomes, but they demon-
strated a BP-lowering effect, especially in patients with 
severe OSA, those with excessive daytime sleepiness, 
and those with resistant hypertension. Notably, current 
CPAP adherence tracking systems do not capture night-
to-night variability in sleep patterns, which may contrib-
ute to variable cardiometabolic response to treatment. In 
addition, evidence suggests an important role of reduced 
SWS in the development of diabetes and hypertension, 
which warrants further research in OSA. Several open 
questions related to the interplay between OSA and 
cardiometabolic disease remain to be answered (Table). 
A better understanding of how distinct OSA endophe-
notypic traits influence cardiometabolic disease risk, 
particularly identification of subgroups of patients with 
OSA who are at greatest risk for hypertension and dia-
betes, can help to develop more personalized treatment 

approaches. Most research on cardiometabolic disease 
in OSA was conducted in men, and thus, further inves-
tigation is needed in women. Elucidating systemic and 
cellular pathways that contribute to disruptions in BP 
and glucose control in OSA may ultimately help develop 
novel approaches to prevent and treat cardiometabolic 
disease. Long-term rigorous randomized controlled tri-
als are needed to identify subgroups of patients who are 
most likely to benefit from OSA treatment for the preven-
tion and treatment of cardiometabolic disease. For exam-
ple, pathway-specific polygenic risk scores suggest an 
interaction between OSA and genetic risk, highlighting a 
premise for personalization of OSA treatment to reduce 
cardiometabolic risk guided by genetic risk profiles.358 
Future research can leverage new technology, telehealth, 
and advanced analytical approaches using multilevel data 
to improve the diagnostic and prognostic information. In 
summary, the future of clinical management for OSA may 
involve personalized approaches, technology-supported 
remote monitoring of treatment, and incorporation of 
novel therapies while emphasizing the key importance of 
risk factor modification and multidisciplinary care.
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Table.  Research Agenda of Key Open Questions and 
Considerations for Future Research.

Whether and how OSA endophenotypes modify the association between 
OSA and cardiometabolic diseases?

What are the key OSA metrics (eg, hypoxic burden) driving each specific 
hypertensive and metabolic condition?

Elucidate novel mechanistic pathways linking OSA to hypertension and 
diabetes to inform the development of novel treatments.

Are there biomarkers predictive of blood pressure and metabolic benefit 
from OSA treatment?

Conduct randomized controlled trials investigating the effects of OSA 
treatment on cardiometabolic outcomes in diverse populations, particularly 
women.

Who are the subgroups of patients most likely to benefit from OSA 
treatment to improve cardiometabolic outcomes, particularly glucose 
control?

Identify optimal timing of OSA screening during pregnancy and effective 
treatment approaches to improve cardiometabolic outcomes.

Does optimizing sleep duration as a behavioral strategy improve 
cardiometabolic outcomes in individuals with and without OSA?

Investigate whether enhancement of SWS can be protective against the 
development of hypertension and diabetes in individuals with and without 
OSA?

How to better leverage sleep technologies (eg, wearables) and advanced 
data algorithms for improved OSA diagnosis and long-term monitoring of 
treatment effects on cardiometabolic outcomes.

OSA indicates obstructive sleep apnea; and SWS, slow wave sleep.
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