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Single-cell DNA methylome and 3D genome 
atlas of human subcutaneous adipose tissue
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Seung Hyuk T. Lee    3, Kevin D. Abuhanna    3, Marcus Alvarez3, 
Mihir G. Sukhatme    3, Zitian Wang3,4, Kyla Z. Gelev    3, Matthew G. Heffel3,4, 
Yi Zhang3, Oren Avram    1,2,5, Elior Rahmani    2, Sriram Sankararaman    1,2,3, 
Markku Laakso    6, Sini Heinonen7, Hilkka Peltoniemi8, Eran Halperin2, 
Kirsi H. Pietiläinen    7,9, Chongyuan Luo    3,4 & Päivi Pajukanta    3,4,10 

The cell-type-level epigenomic landscape of human subcutaneous adipose 
tissue (SAT) is not well characterized. Here, we elucidate the epigenomic 
landscape across SAT cell types using snm3C-seq. We find that SAT CG 
methylation (mCG) displays pronounced hypermethylation in myeloid cells 
and hypomethylation in adipocytes and adipose stem and progenitor cells, 
driving nearly half of the 705,063 differentially methylated regions (DMRs). 
Moreover, TET1 and DNMT3A are identified as plausible regulators of the 
cell-type-level mCG profiles. Both global mCG profiles and chromosomal 
compartmentalization reflect SAT cell-type lineage. Notably, adipocytes 
display more short-range chromosomal interactions, forming complex local 
3D genomic structures that regulate transcriptional functions, including 
adipogenesis. Furthermore, adipocyte DMRs and A compartments are 
enriched for abdominal obesity genome-wide association study (GWAS) 
variants and polygenic risk, while myeloid A compartments are enriched 
for inflammation. Together, we characterize the SAT single-cell-level 
epigenomic landscape and link GWAS variants and partitioned polygenic 
risk of abdominal obesity and inflammation to the SAT epigenome.

The global prevalence of abdominal obesity, defined as an excessive 
accumulation of adipose tissue in the abdominal region, has been 
increasing at an alarming rate over the past few decades1,2. Abdominal 
obesity is a known predictor of all-cause mortality, probably because of 
its increased risk of cardiometabolic disease (CMD) and other adverse 
pathological conditions3. The risks related to abdominal obesity are 
thought to be partly mediated through obesity-induced low-grade 
inflammation at the tissue and cell-type level4. This has stimulated 
research interest in investigating the molecular origin of abdominal 
obesity and related co-morbidities by focusing on SAT, the key fat depot 
in expanding and buffering against obesity.

SAT is highly heterogeneous and comprises an array of cell types5. 
Single-nucleus RNA sequencing (snRNA-seq) enables the discovery 
of cell-type-level gene expression patterns in SAT6,7. However, this 

modality is limited to gene expression, even though SAT function is also 
influenced by epigenomic processes, such as cytosine DNA methylation 
at CpG sites (mCG)8, and chromatin conformation9. Previous studies 
in other tissues have shown that cell-type-level dynamic mCG in gene 
regulatory regions and gene bodies affect the expression of genes10. 
Furthermore, gene regulatory mechanisms need proper chromatin 
conformation, which is organized into compartments, domains and 
loops11. However, the cell-type-level epigenomic landscape underlying 
the extensive heterogeneity in SAT is poorly understood in humans, 
which also hinders genetic risk assessment of abdominal obesity, the 
functional basis of which probably includes specific cell-type-level 
epigenomic sites.

Single-nucleus methyl-3C sequencing (snm3C-seq) has emerged 
as a powerful and innovative platform to study DNA methylation and 
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(Fig. 1 and Supplementary Note 1.1). We used snm3C-seq to simul-
taneously profile single-cell-level DNA methylation and chromatin 
conformation of nuclei isolated from five SAT biopsies (see Methods). 
A total of 6,652 nuclei passed our quality control (Supplementary 
Fig. 1a,b and Supplementary Note 1.2). We independently identified 
seven main cell types, including adipocytes, adipose stem and pro-
genitor cells (ASPCs), perivascular, endothelial, myeloid, lymphoid 
and mast cells, using the global mCG of non-overlapping 5 kb bins and 
the intrachromosomal contacts among non-overlapping 100 kb bins 
(Fig. 2a and Supplementary Figs. 2 and 3). Notably, when analyzing 
the two modalities jointly to derive the de novo snm3C-seq annota-
tion, we discovered a group of nuclei (n = 63 nuclei), present in all five 
samples (constituting the remaining 0.8 ± 0.6%), that demonstrated 
inconsistent cell-type annotations between the two modalities (that is, 
categorized as perivascular cells by mCG and as adipocytes by chroma-
tin conformation) (Fig. 2b). We labeled them as a transitional cell-type 
cluster to highlight their potential developmental stage, observed 
using the two different omic profiles (Fig. 2a,b).

We next investigated whether SAT snm3C-seq data can be inte-
grated with SAT snRNA-seq data. First, we applied snRNA-seq on 
nuclei isolated from the same five SAT samples and three additional 

chromatin conformation at cell-type resolution12. Recent studies identi-
fied cell-type-level epigenomic signatures in various complex tissues 
in humans, such as oocytes13, prefrontal12 and frontal cortex14,15, and 
other diverse brain regions10. Using a similar approach, previous studies 
have also comprehensively assessed the epigenomes of mouse brain 
cell types16–18. However, cell-type-level epigenomic signatures in the 
human key fat depot SAT have been poorly studied. To address this 
important biomedical knowledge gap, we determined cell-type-level 
DNA methylation, chromatin conformation and gene expression sig-
natures in SAT, assessed the involvement of methylation pathway 
genes in SAT cell-type-level dynamic methylation patterns, identified 
cell-type-level hypomethylated region-associated transcription factor 
(TF) binding motifs and investigated the contribution of variants in 
SAT cell-type-level epigenomic sites to polygenic risk of abdominal obe-
sity and a related inflammatory marker, blood C-reactive protein (CRP).

Results
Multimodal profiling of human SAT cell types
To investigate the cell-type-level epigenomic landscape of human 
SAT, we profiled DNA methylation, chromatin conformation and gene 
expression on nuclei isolated from SAT biopsies from Finnish females 
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Fig. 1 | Schematic overview of the study design using snm3C-seq and snRNA-
seq to profile cell-type-level DNA methylation, chromatin conformation and 
gene expression in human SAT and partition the genetic risk of abdominal 
obesity. a, Illustration of snm3C-seq and snRNA-seq on nuclei isolated from 
SAT biopsies from Finnish females. b–g, Comprehensive analyses of DNA 
methylation, chromatin conformation and gene expression profiles across SAT 
cell types to identify cell-type-level differences in DNA methylation patterns (b) 

and chromatin conformation dynamics (c). Subsequently, we used the cell-type-
level SAT expression data (d) to determine whether methylation pathway genes 
contribute to the observed differences in methylation patterns in SAT cell types 
and longitudinally cluster with adipogenesis pathway genes (e), identify cell-
type-level TF binding motifs associated with hypomethylated regions in SAT cell 
types (f) and test the contribution of variants in cell-type-level DMRs and A and B 
compartments to the genetic risk of abdominal obesity (g).
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SAT samples from the Tilkka cohort to obtain 29,423 SAT nuclei (see 
Methods) and annotated them with matching cell-type resolution 
(Supplementary Note 1.3, Extended Data Fig. 1a and Supplementary 
Fig. 1c). Similar to previous brain results15, we observed strong and 
consistent correlations between gene body mCG hypomethylation 
and RNA expression across the identified cell types (Fig. 2c). This cor-
relation enabled us to integrate and co-embed the snm3C-seq and 
snRNA-seq cells in the shared canonical component space19 (Fig. 2d, 
Extended Data Fig. 1b,c and Supplementary Fig. 4). Overall, these inde-
pendently performed modality-specific annotations achieved a ≥0.94 
overlap score across all cell-type pairs, in which a higher score indi-
cates better integrated cells in the co-embedding space (see Methods) 
(Fig. 2e). Comparison between the snm3C-seq de novo annotation and 
its RNA-derived counterpart resulted in an adjusted Rand index of 0.975 
and ≥0.95 confusion fraction (Extended Data Fig. 1d). Unique cell-type 
marker genes by these two modalities are shown in Supplementary 
Tables 1 and 2. Taken together, the observed cell-type epigenome 
profiles, identified using snm3C-seq, exhibit strong concordance 
with those derived from the snRNA-seq transcriptome; however, at 
the same time, they carry distinct modality-specific information. For 
example, the expression of a key adipocyte marker gene, GPAM, coin-
cides with demethylation of the gene in the co-embedding space, which 
may allow for the recruitment of relevant proteins; for example, TFs 
(Fig. 2f and Extended Data Fig. 2a–f). In summary, mCG and chromatin 
conformation profiles generated by snm3C-seq robustly recapitulated 
epigenomic profiles of known major SAT cell types while also uncover-
ing a subtle transition cluster, supporting the differentiation of human 
adipocytes through a previously less well-characterized route from 
the perivascular progenitors to adipocytes (Supplementary Note 1.4, 
Fig. 2, Extended Data Figs. 1 and 2 and Supplementary Figs. 5 and 6).

Modality-specific and modality-shared molecular mechanisms
Highly expressed SAT cell-type marker genes, revealed by each modal-
ity, may elucidate how epigenomic regulation is involved in biological 
processes and pathways. For both gene body mCG and gene expression, 
we identified modality-specific and modality-shared marker genes 
across all SAT cell types (Supplementary Note 1.5 and Extended Data 
Fig. 3a) and subsequently in shared and non-shared biological processes 
(Extended Data Fig. 3b) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways enriched among adipocyte marker genes (Extended 
Data Fig. 3c). In adipocytes, for instance, although only 77 marker genes 
(21% of mCG and 9% of gene expression markers) are present in both 
modalities, the majority of biological processes (63% of the pathways 
identified from mCG and 65% from gene expression) and KEGG path-
ways (65% of the pathways from both mCG and gene expression) are 
shared (Supplementary Note 1.6). Focusing on genes involved in the 
well-characterized PPAR signaling pathway, we observed that six genes, 
ACSL1, ADIPOQ, LPL, PCK1, PLIN1 and PLIN4, are hypomethylated in 
adipocytes and the transition cell type, while being hypermethylated in 
the rest of the cell types. Correspondingly, their transcriptomic profiles 

reveal that they are predominantly expressed only in adipocytes, with 
minimal expression in other SAT cell types (Fig. 3a). Similarly, fat cell 
differentiation genes ADIPOQ, LPL, LEP, TCF7L2, AKT2 and SREBF1 are 
hypomethylated and predominantly expressed in adipocytes com-
pared to the other SAT cell types (Extended Data Fig. 3d). Additionally, 
modality-shared adipocyte marker genes encode TFs, encompassing 
both known and less-known regulators critical to SAT (Supplementary 
Note 1.7 and Extended Data Fig. 3e,f). Collectively, these findings sug-
gest a coordinated regulation of key pathways, biological processes 
and TFs through both transcriptional and epigenomic mechanisms.

Striking differences between adipocytes and myeloid DMRs
To delineate the patterns of cell-type-level DNA methylation in SAT, 
we identified genome-wide DMRs in eight SAT cell types (adipocytes, 
ASPCs, transition, perivascular, endothelial, myeloid, lymphoid and 
mast cells) using methylpy20,21 (see Methods). Overall, 15.4% of the 
CG sites are differentially methylated across the SAT cell types, with a 
total of 705,063 CG DMRs covering 5.39% of the genome. These DMRs 
have a mean (±s.d.) length of 220 ± 152 bp and consist of an average of 
4.5 ± 5.5 differentially methylated sites (DMSs). The large numbers of 
DMRs we identified in SAT cell types support distinct cell-type-level 
methylation patterns.

We observed striking genome-wide differences in the number and 
abundance of hypomethylated and hypermethylated regions among 
the SAT cell types (Fig. 3b and Supplementary Table 3). In particular, 
of the total DMRs, 56.3% (n = 396,758; −log10P = 129 using one-tailed 
t-test; see Methods) and 50.6% (n = 356,844; −log10P = 104, one-tailed 
t-test) are hypomethylated in adipocytes and ASPCs, contrasting with 
only 14.6% (n = 102,756) in myeloid cells. Conversely, we observed that 
up to 73.0% of the DMRs demonstrate a hypermethylation pattern in 
the myeloid cells (n = 514,434; −log10P = 163, one-tailed t-test) versus 
merely 14.2% in adipocytes and 21.4% in ASPCs. Jointly investigating 
the differential methylation states across all cell types revealed that 
47.3% of the DMRs exhibit opposing profiles between adipocytes, 
ASPCs and those of the myeloid cells. Taken together, our finding sug-
gests that the widespread repression of regulatory activity in myeloid 
cells is typically associated with heightened regulatory activity in 
adipocytes and ASPCs.

Cell-type-level TF binding motifs
To investigate the relevance of cell-type-level hypomethylated regions 
in gene regulation, we performed TF binding motif enrichment analy-
sis using cell-type-level hypomethylated regions. We identified sev-
eral cell-type-level TFs (Supplementary Note 1.8, Fig. 3c, Extended 
Data Fig. 4 and Supplementary Table 4), suggesting that these TFs 
might either bind to the DNA in a cell-type-specific manner or regulate 
cell-type-level differential methylation patterns. We then sought to vali-
date the cell-type-level TFs that we identified using HOMER22 (Fig. 3c) 
by analyzing external chromatin immunoprecipitation sequencing 
(ChIP-seq) data from ENCODE23 (see Methods). As only immune cell 

Fig. 2 | Single-nucleus-level multiomic profiles of SAT by jointly profiling 
methylation and chromatin conformation with snm3C-seq, followed by 
an integrative analysis with transcriptomic profiles, generated using SAT 
snRNA-seq. a, Dimension reduction of cells using 5 kb bin mCG (top left), 
100 kb bin chromatin conformation (top right) and jointly integrating mCG and 
chromatin conformation (bottom), profiled by snm3C-seq and visualized with 
uniform manifold approximation and projection (UMAP). Cells are colored by 
SAT cell type. b, Sankey diagram showcases the high consistency among the SAT 
cell-type annotations derived from the 5 kb bin mCG (left), 100 kb bin chromatin 
conformation (right) and joint profiling of mCG and chromatin conformation 
(middle), with the exception of the transition cell-type cluster that was annotated 
as perivascular cells by mCG and adipocytes by chromatin conformation.  
c–f, Integrative analysis with snRNA-seq, evaluating the concordance of cell-type 
cluster annotations and cell-type marker genes across modalities. c, Comparison 

of gene body mCG and gene expression profiles of cell-type marker genes across 
the matching SAT cell types, independently identified within the respective 
modalities, excluding the expression profiles of the transition cell-type cluster 
that was not identified in the SAT snRNA-seq data. Dashed lines stratify the 
marker genes by cell type. Dot colors represent the average gene body mCG ratio 
normalized per cell (left), and the average log-transformed counts per million 
normalized gene expression (right). d, Co-embedding of cells profiled by snm3C-
seq and snRNA-seq. Cells are colored by annotations as in c (top) and modalities 
(bottom). e, Concordance matrix comparing the snm3C-seq and snRNA-seq 
derived annotations, colored by the overlapping scores between the pairs of the 
SAT cell types evaluated in the co-embedding space. f, UMAP visualization of the 
gene body mCG ratio (left) and gene expression (right) for one adipocyte marker 
gene, GPAM, colored per cell similarly as in c. The dashed line highlights the 
group of cells annotated as adipocytes.
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ChIP-seq data are available among the SAT cell types, we focused on 
validating myeloid-specific TFs (Fig. 3c). As expected, binding peaks for 
the TFs IRF4 and MEF2B in GM12878 demonstrate 3.5-fold and 2.8-fold 
enrichments compared to the matching genomic background (empiri-
cal P < 0.001 for both TFs, −log10P = 1,618 and 1,860 using one-tailed 
hypergeometric test, respectively) (Fig. 3d, Extended Data Fig. 5 
and Supplementary Table 5). For CEBPG binding peaks in K562, we 
observed a 2.2-fold enrichment (empirical P < 0.001, −log10P = 647 
using one-tailed hypergeometric test) (Fig. 3d, Extended Data Fig. 5 
and Supplementary Table 5). Together, these TF enrichments using 
ENCODE ChIP-seq data in a relevant cell line independently validated 
our de novo TF results obtained using HOMER (Fig. 3c).

Enrichment of short-range interactions in SAT adipocytes
Tight packaging of DNA inside the nucleus leads to physical contacts 
between genomic regions, which affects the gene expression machin-
ery24. We observed substantial differences in the distribution of closely 
and distantly located interaction contacts at various genomic distances 
across the cells profiled by snm3C-seq (see Methods). In pairwise com-
parisons with other cell types, adipocytes harbor significantly higher 
proportions of short-range interactions (100 kb to 2 Mb) compared 
to long-range interactions (10–100 Mb), with the exception of the 
transition cell type (−log10P > 91; one-tailed Wilcoxon rank-sum test) 
(Fig. 4a,b and Supplementary Note 1.9). This observation is in line with 
all cell-level clustering analyses using chromatin conformation infor-
mation at various resolutions, which indicate that the transition cell 
type shares more similarity with adipocytes (Figs. 2b and 4c,d and 
Extended Data Fig. 6a,b).

In addition, the observed differences in the ratio of short-range 
to long-range interactions between ASPCs and adipocytes (one-tailed 
Wilcoxon rank-sum −log10P > 197) could suggest a link between the 
contact distances and functionally important genomic regions in 
adipogenesis. Given that ASPCs develop into adipocytes, we speculate 
that this change may reflect the unilocular lipid droplet formation in 
adipocytes that makes them larger than ASPCs.

Chromosomal conformation dynamics reflect  
cell-type lineage
Chromatin compartments, which connect stretches of the genome that 
are tens of megabases apart, reflect how cells arrange their chromosomal 
structures in three-dimensional space at the highest level25. We started 
our investigation of aggregated SAT cell-type-level genome spatial topol-
ogy by calculating the compartment scores on the pseudobulk con-
tact matrices for the five most abundant cell types (adipocytes, ASPCs, 
endothelial, perivascular and myeloid cells) at 100 kb resolution. Based 
on the sign of the compartment scores, we partitioned the genome into 
either the active A compartment regions or the more repressive B com-
partment regions. The correlation matrices derived from the normalized 
interaction contact maps revealed visually distinct cell-type-level plaid 
patterns. For example, on chromosome 6 (Extended Data Fig. 6c) and 
chromosome 12 (Fig. 4e), endothelial and myeloid cells harbor more 
intricate structures, indicated by the frequent compartment switches, 
whereas adipocytes, ASPCs and perivascular cells tend to have longer 
stretches of region being annotated as the same compartment (Sup-
plementary Note 1.10 and Extended Data Fig. 6d).

Upon a closer inspection, a total of 11,571 100 kb bins, spanning 
44.3% of the genome, are statistically differentially conformed among 
the five cell types at a false discovery rate (FDR) < 0.1 cutoff. The empiri-
cal FDR is estimated to be ≤0.02 (see Methods). Although each cell type 
has its own distinct pattern of chromosomal compartments, differential 
100 kb bins consistently demonstrate at least a 1.36-fold enrichment 
landing in the active A compartments compared to the genome-wide 
background (Fig. 4f, Extended Data Fig. 6e and Supplementary Table 6). 
Interestingly, across all investigated SAT cell types, the two leading 
predominant compartment combinations are the homogeneous A and 
B. These combinations account for 18.8% and 9.7% of the total differen-
tially conformed regions (8.3% and 4.3% of the genome), suggesting 
significant heterogeneity within each compartment stratification (that 
is, A and B). These are followed by combinations driven by myeloid and 
endothelial cells, either through cell-type-level compartment flips (A→B 
or B→A) or coordinated flips involving both cell types (Supplementary 
Note 1.10 and Extended Data Fig. 6e–g). Given that we observed similar 

Fig. 4 | Analysis of chromatin conformation profiles in SAT reveals cell-type-level 
diversity in compartments, domains and loops. a,b, Frequency of contacts per 
cell against genomic distance (y axis in log scale), grouped by cell types (a) and 
ordered by the median short-range to long-range interaction ratios (b). Dashed lines 
in a mark short-range and long-range contacts. The center of the box in b represents 
the median; the bounds of the box indicate the 25th and 75th percentiles and the 
whiskers show the minimum and maximum values within 1.5 times the interquartile 
range. Statistical significance was evaluated based on pairwise one-tailed Wilcoxon 
rank-sum tests for a higher short-range interaction ratio in adipocytes. Asterisks 
(***) indicate unadjusted −log10P > 50. Specifically, unadjusted −log10P = 197, 116, 
221, 258, 128 and 91 for ASPCs, perivascular, endothelial, myeloid, lymphoid 
and mast cells; n = 63, 1,212, 1,814, 482, 1,206, 1,387, 316 and 172 for transition, 
adipocytes, ASPCs, perivascular, endothelial, myeloid, lymphoid and mast cells, 

respectively. c,d, UMAP visualization of low-dimensional embeddings of cells 
using domains (c) and loops (d) as features, colored by the snm3C-seq annotation; 
adjusted Rand index (ARI) evaluates the clustering concordance against snm3C-
seq annotation. e, Heatmap visualization of the normalized interaction contact 
map on chromosome 12 and its corresponding compartment scores. f, Upset plot 
(left) visualizing a subset of the differential 100 kb bins and their corresponding 
percentages; horizontal stacked bar plot (right) showing the marginal A 
compartment enrichment of differential 100 kb bins. The vertical dotted line 
separates cell-type-level A compartment flips, B compartment flips and differential 
bins detected within homogeneous A or B compartments. g, Dendrogram of the five 
most abundant SAT cell types constructed with compartment scores on differential 
100 kb bins. h, Similar to g, except on all annotated SAT cell types, constructed with 
mCG fractions across DMRs.

Fig. 3 | Functional pathways and gene regulatory potential of cell-type-level 
gene body mCG markers and DMRs. a, Dot plots of PPAR signaling pathway 
genes (ACSL1, ADIPOQ, LPL, PCK1, PLIN1 and PLIN4) that are shared adipocyte 
marker genes between the gene body mCG and gene expression modalities, 
showing their gene body mCG (left) and gene expression profiles (right) across 
SAT cell types. The color of the dot represents the mean percentage of mCG (left) 
and average expression of genes (right), while the size of the dot represents the 
percentage of cells in which the gene is expressed (right). b, Horizontal stacked 
bar plot (left) showing the marginal proportions of assigned methylation states 
across DMRs for each SAT cell type (n.s., non-significant) and upset plot (right) 
displaying the top 20 most prevalent methylation state combinations across all 
detected DMRs, ordered by decreasing frequency, along with their respective 
percentages. c, Circular plot summarizing the cell-type-level TF binding motifs 
associated with hypomethylated regions in SAT cell types. Statistical significance 

was determined using HOMER (binomial test) on each cell type separately. 
The false-positive rate was calibrated by a stringent cutoff on the unadjusted 
P values (that is, P < 1 × 10−12). Track 1 shows the negative log P values (green 
lollipops) and track 2 shows the enrichment scores (yellow lollipops). d, Violin 
plots reflecting the empirical null distribution (n = 1,000) of the percentages of 
DMRs overlapping ChIP-seq peaks for three TFs highlighted in c (see Methods). 
Diamonds mark the observed overlapping proportion of the hypomethylated 
regions in myeloid cells in the corresponding ChIP-seq experiment. Asterisks (*) 
indicate statistical significance, evaluated based on a one-tailed hypergeometric 
test for overrepresentation of peaks in the corresponding cell-type-level 
hypomethylated regions (−log10P = 646, 1,860 and 1,618 for IRF4, MEF2B 
and CEBPG, respectively). GM12878, lymphoblastoid cell line; K562, chronic 
myelogenous leukemia cell line.
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distinct mCG patterns for endothelial and myeloid cells, we aimed to 
confirm whether the lineage dendrogram constructed from differential 
100 kb bins would mirror the developmental trajectory inferred from 
DMRs. Indeed, hierarchical clustering consistently grouped endothe-
lial and myeloid cells, characterized by pronounced hypomethyla-
tion and frequent compartmental switches, into a distinct branch in 

both modalities (Fig. 4g,h), in line with a previous report showing that 
myeloid progenitors also give rise to vascular endothelial cells26.

Cell-type specificity in regional 3D genome structures
In addition to compartmentalization, the genome maintains 
its finer spatial structure by forming interaction domains and 
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cohesion-mediated chromatin loops. Analyzing snapshots of the 3D 
genome at 25 kb and 10 kb resolution allowed us to delineate these 
regional features at both cell and aggregated cell-type resolution. In 
addition to the transition cell type, adipocytes showcase an accumula-
tion of significantly denser interaction domains (an average of 4,120 per 
cell, compared to 3,574 in others; −log10P > 45, pairwise one-tailed Wil-
coxon rank-sum test), while spanning a much shorter distance (median 
of 679,121 bp per cell, compared to 783,213 bp in others; Extended Data 
Fig. 7a–c). Interestingly, the number of detected domains is highly 
correlated with the ratio of short-range to long-range interactions 
(Pearson’s correlation coefficient, 0.76; Extended Data Fig. 7d). This 
observation reinforces the idea that regional contacts are necessary to 
support the more intricate local 3D structures. Both features correlate 
with the general transcriptomic activity in the matching snRNA-seq 
data, in which adipocytes show a 1.5-fold increase in the total number 
of unique molecular identifiers (Extended Data Fig. 7e,f). Overlapping 
cell-type pseudobulk insulation scores with boundary probability, cal-
culated as the fraction of cells with a boundary detected in a given cell 
type, identified a total of 1,791 differential boundaries (see Methods). 
Regarding chromatin loops, we detected a median of 47,837 and 5,797 

cell-type-level loop pixels and merged loop summits, respectively. 
Adipocytes demonstrate a similar trend of having more loop summits 
(n = 8,852) and a relatively shorter median loop length (230,000 bp, 
compared to others 290,000 bp; Extended Data Fig. 7g,h). Along with 
the clustering results derived from regional interaction features (for 
example, insulation scores, domains and loops), which show highly 
concordant annotations (Fig. 4c,d and Extended Data Fig. 6a,b), we 
conclude that granular 3D genomic features also exhibit significant 
heterogeneity across SAT cell types.

Influence of 3D topology on gene regulatory landscapes
The 3D topology of a cell also influences its transcriptomic dynamics 
with cell-type specificity. As expected, genes expressed in a cell tend to 
localize in its active A compartment, exhibiting ≥2.24-fold enrichment 
relative to the B compartments across the five most abundant cell 
types. These ratios increase when restricted to the set of cell-type-level 
unique marker genes. Perivascular cells, in particular, exhibit a stag-
gering 13-fold A/B ratio, leading to 92.8% of the unique marker genes 
landing in the A compartments (Supplementary Table 7). We next 
focused on ASPCs, a cell type that undergoes active differentiation into 
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adipocytes, and systematically evaluated how compartment flipping 
affects the downstream expression. On a global scale, 23.4% of the dif-
ferentially conformed regions change from the ASPC A compartments 
to adipocyte B, while 27.5% convert from the B compartments to A. 
Residing within these topologically interesting regions are some key 
cell-type marker genes crucial for adipogenesis (Supplementary Note 
1.11). For example, ADIPOQ is located in an interaction domain unique 
to adipocytes with a pronounced demethylation pattern around its 
gene body, probably facilitating additional TFs to bind and activate it 
functionally. The adjacent differential boundary marks a stretch of the 
genome, encapsulating 1 Mb upstream and downstream of ADIPOQ, 
that transitions from the inactive B compartments in ASPCs to the 
active A compartments in adipocytes (Extended Data Fig. 8a). Other 
strong gene expression de novo adipocyte marker genes, including 
TENM3, CSMD1 and PCDH9, also land within differential domains spe-
cific to adipocytes; additionally, CSMD1 and PCDH9 have cell-type-level 
loop domains near the transcription start sites (Extended Data Fig. 8b 
and Supplementary Fig. 7a,b). Together, our findings suggest that 
chromosome conformation, ranging from mega-base compartmen-
talization to kilo-base loop formation, reflects a higher level of care-
fully balanced coordination among the SAT cell types, influencing 
both their epigenetic regulation profiles and trickling down to their 
transcriptional activities.

Contribution of DNMT3A and TET1 to DMR patterns
DNA methylation involves the covalent addition of a methyl group 
to DNA, a process facilitated by DNA methyltransferase enzymes, 
such as DNA methyltransferase 3 alpha (DNMT3A) and DNA meth-
yltransferase 3 beta (DNMT3B)27. Conversely, DNA demethylation 
comprises the removal of this methyl group from the DNA by the 
ten-eleven translocation (TET) family proteins, specifically, TET1, 

TET2 and TET3 (Fig. 5a). Among the demethylase genes, TET1 is pref-
erentially expressed in adipocytes (−log10P > 300; two-sided Wilcoxon 
rank-sum test) (Fig. 5b), in line with our observation that adipocytes 
have significantly more hypomethylated (56.3%) than hypermethyl-
ated regions (14.2%) (Fig. 5c,d). Among the DNA methyltransferases, 
our cell-type-level SAT snRNA-seq data show that DNMT3A is pre-
dominantly expressed in myeloid cells, with minimal or no expres-
sion in adipocytes (−log10P = 136; two-sided Wilcoxon rank-sum test) 
(Fig. 5b). Consistent with our DNMT3A expression results, 73.0% of 
DMRs are hypermethylated in the myeloid cells while only 14.2% are 
hypermethylated in adipocytes (Fig. 5c). In addition, the expression of 
a methylation maintenance gene, DNMT1, is significantly lower in adi-
pocytes than other SAT cell types (−log10P = 170; two-sided Wilcoxon 
rank-sum test) (Extended Data Fig. 9a). Expression of other meth-
ylation (DNMT3B and UHRF1) and demethylation genes (TET2, TET3 
and TDG), shown in Extended Data Fig. 9a,b, suggest that TET1 and 
DNMT3A are the most important genes that contribute to the observed 
adipocyte hypomethylation and myeloid hypermethylation patterns, 
indicating their potential mechanistic role in cell-type-level DNA 
methylation signatures in SAT. The SAT bulk RNA-seq dataset further 
revealed that bulk expression of DNMT3A is negatively associated with 
insulin sensitivity using the Matsuda Index, whereas bulk expression 
of TET1 is positively correlated with the Matsuda Index (Supplemen-
tary Note 1.12 and Supplementary Table 8). In addition, we observed 
that TET1 is temporally co-expressed with known adipogenesis genes 
across human primary preadipocyte differentiation (Supplementary 
Note 1.13, Fig. 5e,f and Supplementary Table 9). Taken together, the 
cell-type-level expression patterns of DNMT3A in myeloid cells and 
TET1 in adipocytes suggest that their association signals with CMD 
traits we observed in the SAT bulk expression may largely originate 
from their high expression in these two specific cell types.
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cardiometabolic traits, stratified by cell-type-level DMRs and compartments. 
a,b, Lollipop plots depict the incremental variance explained of each cell-type-
level PRS for abdominal obesity (using WHRadjBMI as a proxy) from the (a) A 
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Each lollipop represents a WHRadjBMI PRS, in which dot size corresponds 
to the incremental variance explained of the PRS. Significant enrichment of 
incremental variance explained was determined empirically by comparing 
to n = 10,000 permutated PRSs (see Methods). The gray vertical dashed line 
indicates the significance cutoff based on unadjusted one-tailed permutation 

P values (that is, Pperm10,000 < 0.05). Bars and lollipops corresponding to cell 
types with significantly enriched PRSs are colored by cell type, whereas those 
without are outlined in gray without a filling. c, Summary table visualizing the 
overall PRS and GWAS enrichment results across four key cardiometabolic 
traits (that is, WHRadjBMI, MASLD, BMI and CRP), stratified by cell-type-level 
hypomethylated regions and A compartments. Orange indicates nominal 
significance (P < 0.05) on the one-tailed permutation P values for PRSs and 
the one-tailed hypergeometric P values for GWAS enrichment. The bolded 
black border highlights the following consistently significant cell-type-
cardiometabolic trait pair: adipocyte–WHRadjBMI.
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Variants in DMRs and compartments are enriched  
for CMD risk
We next explored the genetic contributions to key CMDs relevant 
to SAT from variants residing in the cell-type-level compartments 
and DMRs. Specifically, we assessed abdominal obesity using 
waist-hip-ratio adjusted for body mass index (WHRadjBMI) as its 
well-established proxy28,29, body mass index (BMI), CRP and meta-
bolic dysfunction-associated steatotic liver disease (MASLD) in the 
UK Biobank (UKB)30,31.

We first evaluated the partitioned polygenic risk of variants land-
ing in cell-type-level compartments and DMRs (see Methods). Among 
the four traits, we highlight WHRadjBMI. All WHRadjBMI polygenic risk 
scores (PRSs) built from variants in the cell-type-level A compartments 
are significant (PR

2 < 0.05) and enriched predictors (Pperm10,000 < 0.05), 
explaining ≥80% of variance in WHRadjBMI captured by the full genome 
(Fig. 6a, Extended Data Fig. 10a,b and Supplementary Table 10). Con-
versely, we observed no PRS enrichment from the B compartments. 
We also observed enrichment of the WHRadjBMI polygenic risk from 
variants in cell-type-level DMRs and strong genetic contributions 
to CMDs from the target eGenes of the SAT cis-expression quantita-
tive trait locus variants, residing in these cell-type-level DMRs using 
HuGE scoring32 (Supplementary Note 1.14, Fig. 6b and Supplementary 
Tables 11 and 12). Additionally, we found that PRSs constructed from 
the A compartments and the hypomethylated regions of myeloid cells 
are enriched predictors of CRP, suggesting a low-grade inflammatory 
role for this immune cell type (Supplementary Note 1.14, Fig. 6c and 
Supplementary Tables 10 and 11).

Next, we examined the cell-type-level compartments and DMRs 
for overrepresentation of independent GWAS variants for the four 
outcomes. We observed that all five cell-type-level A compartments 
are enriched for both WHRadjBMI and CRP GWAS variants (Fig. 6c, 
Extended Data Fig. 10c and Supplementary Table 13). Adipocyte A com-
partments are additionally enriched for BMI and MASLD GWAS variants. 
For DMRs, we observed enrichment of WHRadjBMI GWAS variants in 
adipocyte and myeloid hypomethylated and in ASPC and perivascular 
hypermethylated regions, as well as strong genetic contributions to 
obesity-related outcomes from their adjacent genes using HuGE scor-
ing (Supplementary Note 1.14, Fig. 6c and Supplementary Table 14).

Overall, our results highlight the SAT cell-type-level methylation 
and spatial conformation profiles as important contexts underlying 
the genetic risk of CMDs, with the hypomethylated regions and the 
active A compartments of adipocytes giving the strongest signal for 
abdominal obesity risk and the A compartments of myeloid cells more 
indicative of inflammation risk.

Discussion
Delineating the cell-type-level epigenomic landscape in human SAT is 
crucial for understanding its regulatory mechanisms and impact on 
obesity risk. Our data revealed a highly dynamic reciprocal interplay 
between the SAT cell-type-level epigenomes, particularly between 
adipocytes and myeloid cells. We further integrated the differential epi-
genomic sites with variant-level data in the UKB, thus uncovering their 
significant contributions to the genetic risks of CMDs, most notably 
abdominal obesity. Finally, we elucidated the potential role of specific 
methylation and demethylation pathway genes in the cell-type-level 
differential methylation of human SAT.

Focusing on bulk methylome profiles, previous studies have 
reported differential DNA methylation patterns at the tissue level 
in SAT and their association with obesity33,34. However, underlying 
non-captured cell-type-level methylation patterns and composition 
often confound tissue-level analyses35. Our SAT cell-type-level meth-
ylation profiles and DMRs could serve as reference panels and provide 
informative features for computationally decomposing the heteroge-
neous SAT mixtures36–38, a critical step for reducing false discoveries 
in tissue-level studies and facilitating cell-type-specific biomarker 

identification36,39–42. The cell-type composition itself could also hold 
substantial clinical implications. For example, previous research using 
transcriptome profiling of perigonadal adipose tissue in mice and 
immunohistochemistry of human SAT has suggested that the accu-
mulation of myeloid cells, particularly macrophages, correlates with 
increased adiposity43.

Among the identified cell-type-level 3D genome structures in 
SAT, adipocytes showcase a distinct regional topology, with a 1.51-fold 
enrichment in relative short-range interactions, a 1.15-fold increase in 
the number of domains and a 1.72-fold increase in overall transcriptomic 
activity. Similar patterns have been observed in other human solid tis-
sues, and notably, these types of differences in the non-neuronal cells 
in the brain have been linked to larger nuclear size10,44,45. The presence 
of the key adipocyte marker gene and adipokine ADIPOQ in a genomic 
region differentially conformed between ASPCs and adipocytes while 
heavily demethylated in adipocytes further supports the idea that epi-
genomic structures reorganize during cell differentiation46, ultimately 
regulating downstream, regional and cell-type-level gene expression.

In our cell-type-level investigations of methylation pathway genes, 
we found notably high expression of TET1 in adipocytes and DNMT3A 
in myeloid cells, supporting a tissue and cell-type-level reciprocal 
coordination and cross-talk between TET1 expression and hypometh-
ylation in adipocytes and DNMT3A expression and hypermethylation in 
myeloid cells. A previous study showed that TET1 is an important DNA 
demethylase in adipose bulk tissue47. An earlier study reported the 
involvement of TET1 in adipocytokine promoter hypomethylation in 
adipocytes48. Furthermore, prior studies have also demonstrated that 
both TET1 and DNMT3A compete to regulate epigenetic mechanisms49. 
Although previous studies have investigated TET1 (refs. 47,50,51) and 
DNMT3A52,53 in adipose bulk tissue level or some of the SAT cell types, we 
investigated their expression at the single-cell level in all main SAT cell 
types from the human SAT biopsies, thus providing more granular 
information about these key methylation genes.

Abdominal obesity is highly polygenic54. Previous studies have suc-
cessfully built predictive genome-wide PRSs for abdominal obesity55,56 
and shown that a high genetic predisposition to abdominal obesity pre-
dicts the regain of abdominal obesity following weight loss54. However, 
less is known about the characteristics of specific genomic regions that 
contribute most to the polygenic risk of abdominal obesity, which could 
ultimately improve individual disease risk assessment. By constructing 
the partitioned PRSs and examining the presence of the independent 
strongest GWAS variants for abdominal obesity based on the two epi-
genomic modalities, we discovered that the GWAS variants landing in 
both the hypomethylated regions and those in the active A compart-
ments of adipocytes show robust associations for abdominal obesity.

Our study has some limitations. First, even though snm3C-seq 
reveals both intrachromosomal and inter-chromosomal interactions, 
we have only presented extensive analyses of the former. Although we 
recognize the potential interest in inter-chromosomal interactions, 
single-cell 3D genome data currently remains relatively sparse and does 
not yet support robust and reliable identification of inter-chromosomal 
interactions10,12,16,17. Second, generating snm3C-seq data in frozen 
human solid tissues remains time-consuming and expensive, requiring 
relatively large biopsies compared to other single-cell omics platforms. 
As a result, this study only includes Finnish females without obesity. 
Inclusion of males and individuals with obesity would help elucidate 
potential sex-specific epigenomic landscapes and differences across 
the various BMI categories. Similarly, larger sets of samples from addi-
tional populations are also warranted. Third, inclusion of visceral 
adipose tissue data into future studies would uncover cell-type-level 
methylation and chromatin conformation patterns in this other meta-
bolically important adipose depot as well as their differences compared 
to SAT. Nevertheless, taken together, our study provides a valuable 
insight into the cell-type-level epigenomes in human SAT to be followed 
up in future studies.
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Methods
Ethics
The Tilkka study was approved by the Helsinki University Hospital 
Ethics Committee (approval no. HUS/1039/2019). The UKB study was 
approved by the North West Multi-centre Research Ethics Commit-
tee (approval no. 21/NW/0157). The Finnish METabolic Syndrome In 
Men (METSIM) study was approved by the Ethics Committee of the 
Northern Savo Hospital District (approval no. 171/2004). All partici-
pants provided written informed consent. All research conformed to 
the principles of the Declaration of Helsinki. No compensation was 
provided to the participants.

Tilkka cohort
Eight Finnish females without obesity underwent abdominal SAT lipo-
suction at Tilkka Hospital, Helsinki, Finland. We performed snRNA-seq 
on all eight SAT biopsies and snm3C-seq on five SAT biopsies. The mean 
age (±s.d.) for the snRNA-seq cohort was 44.5 ± 6.03 years, and for the 
snm3C-seq cohort, the mean age was 44.4 ± 4.78 years.

UKB cohort
For our GWAS enrichment and PRS analyses, we used genotype and 
phenotype data from 391,701 unrelated individuals (54.0% female; 
mean age, 56.9 ± 8.0 years) of European origin from the UKB30,31. Data 
for UKB were collected across 22 assessment centers30,31. Genotype data 
were obtained using either the Applied Biosystems UK BiLEVE Axiom 
Array or Applied Biosystems UKB Axiom Array and imputed with the 
Haplotype Reference Consortium and the merged UK10K and 1000 
Genomes phase 3 reference panels30,31. Data from UKB were accessed 
under application 33934.

METSIM cohort
Unrelated men (n = 335; mean age, 54.1 ± 4.9 years) from the METSIM 
cohort57 underwent SAT biopsies for bulk RNA-seq. These METSIM 
participants were recruited from the University of Eastern Finland and 
Kuopio University Hospital, Kuopio, Finland.

In situ chromatin conformation capture and 
fluorescence-activated nuclei sorting
We performed in situ chromatin conformation capture using an Arima 
Genomics Arima-HiC Kit45 with the following modification: the amount 
of Triton-X 100 in the NIBT buffer was increased to 1% to account for 
the large amount of fat in adipose tissue. Fluorescence-activated nuclei 
sorting and library preparation were performed using the snmC-seq3 
workflow (https://www.protocols.io/view/snm3c-seq3-kqdg3x-
6ezg25). The snmC-seq3 libraries of human SAT were sequenced 
using an Illumina NovaSeq 6000 instrument with S4 flow cells, gen-
erating 150 bp paired-end reads. The sequencing reads of snm3C-seq 
were mapped using Taurus-MH12 (https://github.com/luogenomics/
Taurus-MH).

Snm3C-seq quality control and preprocessing
We filtered the cells profiled by snm3C-seq based on the following 
metrics10,12: (1) estimated non-conversion rate of mCCC% < 0.015; 
(2) global mCG% > 0.5; (3) global mCH% < 0.15; (4) total number of 
interaction contacts >100,000 and < 500,000; and (5) at least one 
intra-chromosome contact present in each autosome after filtering 
out reads with either end mapped to the ENCODE blacklist regions58 
(Supplementary Fig. 1a).

Genotype quality control and imputation in the Tilkka cohort
We genotyped the DNAs from the Tilkka participants using the 
Infinium Global Screening Array-24 (v.1) (Illumina). In our quality 
control, we used PLINK (v.1.9)59 to remove individuals with missing-
ness of >2%; unmapped, strand-ambiguous and monomorphic single 
nucleotide polymorphisms; and variants with missingness of >2% and 

Hardy–Weinberg equilibrium P < 10−6. In addition, we imputed biologi-
cal sex using the ‘–sex-check’ function in PLINK (v.1.9)59 and confirmed 
that they matched the reported sex for all individuals.

We used the HRC reference panel (v.r1.1 2016)60 to perform geno-
type imputation on the Michigan imputation server. Before imputation, 
we removed duplicate variants as well as variants with allele mismatch 
with the HRC reference panel, and we matched strand flips and allele 
switches to the panel before haplotype phasing using Eagle (v.2.4)61. 
To perform the genotype imputation, we used minimac4 (ref. 62) and 
performed quality control on the data by removing single nucleotide 
polymorphisms with an imputation score R2 < 0.3 and Hardy–Weinberg 
equilibrium P < 10−6.

SnRNA-seq of human SAT in the Tilkka cohort
We performed SAT snRNA-seq experiments (Supplementary Note 2.1)  
on the snap-frozen SAT biopsies from the Tilkka participants. We 
measured the concentration and quality of nuclei, separately for each 
sample, using a Countess II FL Automated Cell Counter after staining 
with trypan blue and Hoechst dyes. To construct the libraries, we used 
the Single Cell 3′ Reagent Kit (v.3.1) (10× Genomics) and analyzed the 
quality of cDNA and gene expression using an Agilent Bioanalyzer. We 
sequenced the libraries from each participant together on an Illumina  
NovaSeq S4 with a target sequencing depth of 600 million read 
pairs. Processing of the SAT snRNA-seq data from the Tilkka cohort is 
described in Supplementary Note 2.2.

Snm3C-seq data integration, clustering and annotation
We aligned the raw snm3C-seq reads against the GRCh38 human 
genome reference and represented the mCG profiles of each cell by 
5 kb bins across autosomal chromosomes. In brief, per cell and for each 
5 kb bin, we calculated a hypomethylation score. Bins that overlapped 
with the ENCODE blacklist regions were excluded from the clustering 
analysis. Next, we performed latent semantic indexing to obtain the 
mCG profile embedding (Supplementary Note 2.3). For the chromo-
some conformation modality, we imputed the contact matrix of each 
cell at 100 kb resolution using scHicluster63 (v.1.3.5) with pad = 1 and 
used singular value decomposition to project all intra-chromosome 
contacts between 100 kb and 10 Mb that land in autosomal chromo-
somes to a low-dimensional space (Supplementary Note 2.3).

We annotated the clusters de novo by leveraging the negative cor-
relation between mCG and transcriptional activity10,15,16 and the known 
SAT marker genes, reported previously64. Specifically, we aligned the 
snm3C-seq data to GENCODE (v.33) annotations and calculated the 
average mCG fractions of the gene body (Supplementary Note 2.4).

We then tested for de novo gene body hypomethylation patterns 
across all protein-coding genes for each snm3C-seq cluster, defined 
using both the global mCG and chromatin conformation embeddings. 
To identify top cluster markers, we adapted criteria similar to those 
used for CH methylation in the brain16, applying them to mCG in SAT. 
In more detail, we required a hypomethylation difference of ≥0.15  
in the average normalized fraction compared to other clusters,  
a Benjamini–Hochberg-adjusted Wilcoxon rank-sum test P value of 
≤0.01 and an area under the receiver operating characteristic curve 
of ≥0.75 for distinguishing cells within the cluster from those outside 
it. Next, we leveraged the existing snRNA atlas of SAT cells for annota-
tion64 (Supplementary Note 2.4).

For modality-specific analysis of snm3C-seq cells (that is, those 
independently identified within the global mCG or chromatin confor-
mation profiles), we performed separate clustering, visualization and 
annotation similarly. The final annotations for each modality-specific 
cluster were determined by identifying the most common snm3C-seq 
cell-type labels among its constituent cells (Fig. 2b). We categorized the 
group of cells that clustered with adipocytes if using only the chromo-
some conformation information and with perivascular cells if using 
only the mCG profiles as the ‘transition’ cluster.
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SnRNA-seq data integration, clustering and annotation
We integrated all remaining high-quality droplets from all snRNA-seq 
data with reciprocal principal components analysis (rPCA) imple-
mented in Seurat (v.4.3.0)65 and clustered integrated data with a 
standard Louvain algorithm, using parameters of the first 30 princi-
pal components and a resolution of 0.5. We annotated each cluster 
with its cell type using SingleR (v.1.8.1)66, using a previously published 
single-cell atlas of human SAT as a ref. 64.

Co-embedding of snm3C-seq and snRNA-seq data
We aligned the snm3C-seq cells as the query and snRNA-seq cells as 
the refs. 18,67 under the canonical correlation analysis framework 
in Seurat (v.4.1.0)19. To capture the shared variance between modali-
ties, we started by reversing the sign of the normalized gene body 
mCG fractions. In more detail, given that a decrease in gene body 
methylation is typically associated with increased transcriptional 
activity, we began by reversing the sign of the normalized gene 
body mCG fractions for all snm3C-seq nuclei to correct for the 
mismatch in directionality between the two modalities. As a result, 
in the adjusted mCG fraction matrix, cell-type marker genes show 
higher gene body methylation values in their respective cell types 
than other cell types, aligning with the patterns observed in the 
snRNA-seq data. These adjusted gene body methylation values 
serve as a proxy for the transcriptional activity of the snm3C-seq 
nuclei, which we then co-embedded with those from the snRNA-seq 
nuclei (Supplementary Note 2.5). Cells profiled by both technolo-
gies were merged on their imputed expression profiles, projected to 
low-dimensional space with PCA and visualized by uniform manifold 
approximation and projection (constructed on the top ten principal 
components). We evaluated the concordance score and the confu-
sion matrix between each de novo snm3C-seq and the snRNA-seq 
cell-type cluster pair in the shared canonical correlation analysis 
co-embedding space (Supplementary Note 2.6). We also performed 
adipogenesis trajectory analysis using SAT snRNA-seq data (Sup-
plementary Note 2.7).

Cell-type-level SAT marker gene identification
We excluded the following genes from differential testing of the 
cell-type marker genes: genes that overlap with the ENCODE black-
listed regions; smaller genes (≤200 bp) mostly covered by other genes 
(overlap region of ≥90% of the gene length)16; and genes with a shal-
low coverage, constantly methylated or un-methylated, defined as 
those without ≥10 methylated or un-methylated counts in ≥10 cells 
belonging to the cell type under investigation. Cell-type-level differ-
entially methylated genes were determined de novo by performing a 
Wilcoxon rank-sum test on the normalized gene body mCG fractions 
of the snm3C-seq cells in a one-vs-rest way. We retained genes that had 
a Benjamini–Hochberg adjusted P value of <0.05 and at the same time 
exhibited a hypomethylation difference of ≥0.1 in terms of the average 
normalized fraction compared to the other cell types16. For transcrip-
tomics, we first filtered for the set of expressed genes in SAT, defined 
as those with ≥3 counts in ≥3 cells68. We used the ‘FindAllMarkers’ func-
tion in Seurat under default parameters except restricting to positive 
marker genes with ≥25% non-zero expression in either the tested cell 
type or the other ones69–71. Subsequently, we filtered out genes with 
Bonferroni-adjusted P ≥ 0.05. To obtain unique marker genes from both 
snm3C-seq and snRNA-seq, we removed genes identified as marker 
genes for more than one cell type.

Pathway enrichment analyses for SAT cell-type marker genes
To identify cell-type-level biological processes and functional path-
ways enriched among the cell-type marker genes in mCG and gene 
expression modalities, we used the web-based tool WebGestalt 2024 
(ref. 72), which identifies the overrepresentation of gene sets in Gene 
Ontology biological processes and KEGG pathways. For each SAT cell 

type, we used the unique cell-type marker genes as the input, with 
only the genes expressed within that cell type as the reference for the 
enrichment analysis. Biological processes and KEGG pathways with 
FDR < 0.05 were considered statistically significant.

Cell-type-level methylation profile analysis
To obtain the cell-type-level mCG profiles, we aggregated the 
single-cell-level number of CG methylated counts and total coverage 
based on the snm3C-seq joint annotation and further merged reads 
mapped to adjacent CpGs in +/− strands. We then used MethylPy20,21, 
implemented in the ALLCools package, to detect genomic regions 
that display distinct mCG patterns across various cell types. DMSs 
on autosomes were tested across all eight annotated cell types using 
default parameters. For all DMSs, we assigned one of the three states 
per cell type—hypomethylated, neutral or hypermethylated—based 
on whether the fitted residual (that is, the normalized deviation away 
from the mean methylation level) fell below the 0.4, between the 0.4 
and 0.6 or above the 0.6 quantile of its chromosome-wide background, 
respectively16. Nearby DMSs (within 250 bp) with Pearson correlations 
of >0.8 for the methylation fractions across the cell types were merged 
into DMRs. Differential methylation states were assigned to each DMR 
based on the average of those of the DMSs it encompasses. DMRs 
containing only one DMS or without any hypermethylation or hypo-
methylation state assignment, along with DMRs or DMSs overlapping 
ENCODE blacklist regions, were excluded from downstream analyses. 
We further evaluated cell-type preferential DMR patterns, adjusting for 
variability in statistical power owing to differences in coverage across 
cell types (Supplementary Note 2.8).

Prediction of cell-type-level TF binding motifs
We performed TF binding motif enrichment analysis using the motif 
discovery tool HOMER (Hypergeometric Optimization of Motif EnRich-
ment) (v.4.11.1)22. For each SAT main cell type, we used the hypometh-
ylated regions as input data for motif enrichment analysis with the 
HOMER function ‘findMotifsGenome.pl’. TF binding motifs with 
P < 1 × 10−12 were considered statistically significant. Circular visuali-
zation of cell-type-level TF binding motif enrichment results was pre-
pared using the circlize package (v.0.4.16)73 in R. We further validated 
cell-type-level TFs by confirming the overrepresentation of ChIP-seq 
peaks overlapping DMRs (Supplementary Note 2.9), using external 
data from ENCODE23.

Cell-type-level compartment analysis
Based on the snm3C-seq joint annotation, we merged scHicluster 
imputed single-cell-level contact matrices at 100 kb resolution per 
chromosome to form the cell-type-level pseudobulk conformation 
profiles for the five most abundant cell types (adipocytes, ASPCs, 
endothelial, perivascular and myeloid cells) as well as a cell-type 
aggregated version (Supplementary Note 2.10). Cell-type-level pseu-
dobulk conformation profiles were then normalized by the distance 
between the contacts and converted to correlation matrices by dcHiC 
(v.2.1)46. For all five cell types, we fitted PCA on the resulting matrices 
per chromosome and selected the appropriate leading principal 
component as the compartment scores (Supplementary Note 2.11). 
Finally, we tested for genomic bins that demonstrated large deviations 
from the cell-type average under a multivariate normal distribution 
measured by the Mahalanobis distance using the covariance matrix 
learned with outlier bins removed. Bins with FDR-corrected P < 0.1 
were labeled as differentially conformed regions46. Empirically, we 
observed FDR < 0.02 when repeating the same analysis but only on 
a null set of cell-type-level contact maps, obtained by arbitrarily 
shuffling the annotation of the cells before merging to the pseudob-
ulk level (that is, a scenario in which any differential compartment 
detected is false-positive by construction), indicating a conservative 
calibration of the testing result by dcHiC.
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Characterizing domains and chromatin loops in SAT
For interaction domains, we used scHiCluster (v.1.3.5)63 with pad =2 to 
impute the contact matrix of each cell per autosomal chromosome at 
a 25 kb resolution, restricted to contacts within 10 Mb. We detected 
domains for each cell using TopDom (v.0.0.2)74, calculated the insu-
lation scores across all 25 kb genomic bins with a window size of ten 
bins using the imputed contact profiles and visualized with uniform 
manifold approximation and projection (Supplementary Note 2.12). 
Cell-type-level domain boundary probabilities were calculated as the 
fraction of cells with a detected domain boundary in a given 25 kb bin 
across all cells belonging to the specified cell type. Differential domain 
boundaries were evaluated per bin based on the following criteria45: a 
z-score-transformed chi-squared statistic of >1.960 (97.5th percentile 
of standard normal distribution); differences between the maximum 
and minimum cell-type boundary probabilities of >0.05; detection as 
a local boundary peak (maximum); simultaneous detection as a local 
insulation score valley (minimum); and FDR < 0.001.

To analyze chromosomal looping, we used scHiCluster (v.1.3.5)63 
with pad = 2, window_size = 30,000,000 and step_size = 10,000,000 to 
impute a contact matrix of each cell per autosomal chromosome at a 
10 kb resolution, restricted to contacts within 10 Mb. Loop pixels were 
detected from cell-type pseudobulk imputed contact profiles based 
on enrichment relative to both its global and local backgrounds. We 
aggregated nearby loop pixels passing an empirical FDR of 0.1 to loop 
summits (Supplementary Note 2.12).

Further analyses of methylation pathway genes
We assessed associations between DNMT3A and TET1 SAT bulk expres-
sion and key CMD traits, including WHRadjBMI, BMI, serum triglyceride 
levels, Matsuda Index and fat mass (Supplementary Note 2.13). Using 
six-time-point preadipocyte differentiation data (Supplementary 
Note 2.14), we also analyzed longitudinal co-expression patterns of 
adipogenesis genes and their methylation regulators (Supplementary 
Notes 2.15 and 2.16).

Partitioned cardiometabolic PRSs for DMRs and 
compartments
To assess the contributions of the SAT cell-type-level DMRs and 
cell-type-level compartments on the genetic risk for cardiometabolic 
traits, we constructed partitioned PRSs from variants landing in each 
set of cell-type-level DMRs and compartments for BMI, WHRadjBMI, 
CRP and MASLD in the UKB30,31, using a previously published imputed 
MASLD status75.

We first generated GWAS summary statistics for each trait with a 
50% base group (n = 195,863) by applying a rank-based inverse-normal 
transform to each trait and used the linear-mixed model approach 
of BOLT-LMM (v.2.3.6)76, including age, age2, sex, the top 20 genetic 
principal components, testing center and genotyping array as covari-
ates. Variants with a minor allele frequency of <1% and INFO < 0.8 were 
removed from the summary statistics. We then partitioned the remain-
ing 50% into a 30% target and 20% validation groups for developing 
and applying the PRS model, respectively. Variants with a minor allele 
frequency of <1% and INFO < 0.8 were removed from the GWAS sum-
mary statistics, and the variants missing in >1% of subjects, with a minor 
allele frequency of <1% or violating Hardy–Weinberg equilibrium, as 
well as individuals with >1% missing genotypes or extreme heterozy-
gosity, were removed from the target and validation genotype data77.

To compute the PRS for each outcome, we first generated inde-
pendent marker sets by performing linkage disequilibrium clump-
ing on all variants passing quality control in the genome using PLINK 
(v.1.9)78, with a linkage disequilibrium R2 threshold of 0.2 and a window 
size of 250 kb. We then used the 30% test set (n = 115,120) to empirically 
identify the optimal P value cut point at the genome-wide level. In brief, 
we applied the PLINK78 ‘–score’ functionality to separately compute 
aggregated scores from subsets of the genome-wide clumped variants 

passing a P value threshold from 5 × 10−8 to 0.5, using effect sizes and 
P values from the GWAS summary statistics. After identifying the best 
thresholding cutoff in the 30% test set (0.05 for WHRadjBMI and CRP, 
0.3 for BMI and 0.2 for MASLD), we computed regional PRSs in the 20% 
validation set (n = 76,758), consisting of the clumped and thresholded 
variants landing within the DMRs or compartments. Variance explained 
(R2) by each PRS was calculated by adjusting each trait for age, age2, 
the top 20 genetic principal components, testing center, genotyping 
array and sex, applying a rank-based inverse-normal transform and 
then regressing the PRS on the adjusted trait. We assessed the statis-
tical significance of the variance explained by each PRS by compar-
ing it to those of 10,000 permuted PRSs constructed from randomly 
selected variant sets with matching size and genomic background 
(that is, genome-wide clumped and thresholded). We also assessed 
overrepresentation of GWAS variants (Supplementary Note 2.17), their 
cis-expression quantitative trait locus effects and relevance to CMDs 
(Supplementary Note 2.18).

Statistics and reproducibility
No statistical method was used to predetermine the sample size of 
the snm3C-seq cohort; however, our sample sizes and number of cells 
profiled are similar to those reported in previous snm3C-seq publica-
tions12. No samples were excluded from the Tilkka cohort. In the UKB 
and METSIM cohorts, related individuals were excluded. As this is 
an observational study, no randomization was performed. Data col-
lection and analysis were performed blind to the conditions of the 
experiments. Results obtained from SAT snm3C-seq and snRNA-seq 
were not replicated owing to the unique nature of these datasets. 
Results reported from the UKB GWAS analyses were not replicated 
because of the unprecedentedly large sample size of the cohort. 
Correlations observed with the METSIM bulk RNA-seq data were not 
replicated because of the unique refined phenotype profiles of the 
METSIM cohort. Statistical significance was assessed using empirical 
permutation or non-parametric tests when possible. Assumed data 
distributions for other analyses (binomial, hypergeometric, multivari-
ate normal) were not formally tested. Owing to the large sample size 
(for example, genomic bins, ChIP-seq peaks), individual data points 
were not visualized.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings in this manuscript are avail-
able from the UKB. However, restrictions apply to the availability 
of these data, which were used in this study under UKB application 
number 33934. UKB data are available for bona fide researchers 
through the application process at https://www.ukbiobank.ac.uk/
learn-more-about-uk-biobank/contact-us. The snm3C-seq and 
snRNA-seq data from the Tilkka cohort are available in the Gene Expres-
sion Omnibus (GEO) under accession number GSE297267, along with 
the epigenomic annotations of SAT DMRs, compartments, domains 
and loops characterized in this study. The GRCh38 reference genome is 
available through the UCSC genome browser (https://hgdownload.soe.
ucsc.edu/goldenPath/hg38/bigZips)79. The bulk RNA-seq data from the 
primary human preadipocyte differentiation experiment were previ-
ously made available in GEO under accession number GSE249195. The 
METSIM SAT bulk RNA-seq data55 are available in GEO under accession 
number GSE135134. Bulk SAT cis-expression quantitative trait locus 
variants are available from the GTEx v10 cohort80. ChIP-seq datasets are 
publicly available on the ENCODE portal with the following accession 
numbers: ENCSR000BGY (https://www.encodeproject.org/experi-
ments/ENCSR000BGY), ENCSR177VFS (https://www.encodeproject.
org/experiments/ENCSR177VFS) and ENCSR490LWA (https://www.
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encodeproject.org/experiments/ENCSR490LWA). Source data files 
and GWAS summary statistics from this study are available on Zenodo 
(https://zenodo.org/records/15318595)81.

Code availability
All packages and software used in this study were from their publicly 
available sources, as outlined in the Methods. No custom code was 
generated.
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Extended Data Fig. 1 | Integrative analysis between subcutaneous adipose 
tissue (SAT) cells profiled by single-nucleus methyl-3C sequencing (snm3C-
seq) and single-nucleus RNA sequencing (snRNA-seq). a, Dimension reduction 
of cells (n = 29,423) profiled by snRNA-seq and visualized with uniform manifold 
approximation and projection (UMAP). b, The total number of cells profiled by 
snm3C-seq and snRNA-seq stratified by the SAT cell-types. c, Co-embedding 

of snm3C-seq gene body mCG and snRNA-seq gene expression, visualized with 
UMAP, highlighting the transition cell-type in red and other SAT cell-types in grey. 
d, Confusion matrix comparing the concordance between the de novo snm3C-
seq annotations (row) and the snRNA-seq-derived annotations (column). The 
confusion fraction is calculated as the multi-class confusion matrix normalized 
by the cell counts per row. ASPC, adipose stem and progenitor cell.
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Extended Data Fig. 2 | Gene body mCG and RNA expression profiles across 
SAT cell-type marker genes and clustering analysis of the transition cell-type. 
a-f, Uniform manifold approximation and projection (UMAP) visualization of 
the gene body mCG ratio, normalized per cell (left) and log-transformed counts 
per million normalized gene expression (right) for perivascular marker gene 
NOTCH3 (a), ASPC marker gene COL5A1 (b), endothelial cell marker gene EGFL7 
(c), lymphoid cell marker gene CD2 (d), mast cell marker gene SLC18A2 (e), and 
myeloid cell marker gene CSF1R (f). The dashed line highlights the group of cells 

annotated as the corresponding cell-type. g, Gene body hypo-methylation of 
adipocyte marker genes (left 10 columns) and perivascular cell marker genes 
(right 10 columns) across adipocytes, perivascular cells, and the transition 
cell-type. Dot colors represent the average gene body mCG ratio normalized 
per cell. h, Dimension reduction of cells profiled by snm3C-seq and restricted 
to adipocytes, perivascular cells, and the transition cell-type, using exclusively 
the 5-kb bin mCG profiles and visualized with UMAP. ASPC, adipose stem and 
progenitor cell.
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Extended Data Fig. 3 | Comparisons of unique cell-type marker genes in SAT 
cell-types, and biological processes and functional pathways enriched among 
the adipocyte marker genes between the gene body mCG and gene expression 
modalities, as well as both known and less-known transcription factors (TFs) 
in SAT. a, Venn diagrams showing the number of shared and modality-specific 
unique SAT cell-type marker genes between the gene body mCG and gene 
expression modalities. b-c, Dot plots showing significantly enriched biological 
processes (b) and KEGG functional pathways (c) using unique adipocyte marker 
genes in gene body mCG and gene expression modalities, evaluated using 
WebGestalt (see Methods). P values were adjusted for multiple hypothesis 
testing by the Benjamini-Hochberg procedure. Statistical significance was 
determined as FDR < 0.05. The size of the dot represents the enrichment ratio for 
biological processes (b) and KEGG functional pathways (c), while the color of the 

dot indicates FDR. d, Dot plots of fat cell differentiation biological process genes 
that are shared adipocyte marker genes between the mCG and gene expression 
modalities, showing their average gene body mCG (left) and average gene 
expression profiles (right) across the SAT cell-types. Dot size (right) represents 
the percentage of cells where the gene is expressed.  
e-f, Dot plots of (e) adipocyte marker genes encoding both known and less known 
TFs that are shared between the gene body mCG and gene expression modalities 
and (f) adipocyte marker genes encoding both known and less known SAT TFs 
that are unique to gene body mCG, showing their gene body mCG (left) and gene 
expression profiles (right). The color of the dot represents the mean percentage 
of mCG (red is high) and the average expression of a gene. ASPC, adipose stem 
and progenitor cell; and FDR, false discovery rate.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-025-02300-4

Extended Data Fig. 4 | Cell-type level hypo-methylated regions are enriched 
for specific transcription factor (TF) binding motifs. We show the top five 
cell-type level TF binding motifs (sorted by P) that are enriched among the hypo-
methylated regions of the SAT cell-types. Statistical significance was determined 

using HOMER (binomial test) on each cell-type separately (see Methods). False 
positive rate was calibrated by a stringent cutoff on the unadjusted P values (that 
is, P < 1×10−12). ASPC, adipose stem and progenitor cell.
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Extended Data Fig. 5 | Validation of myeloid-specific transcription factors 
(TFs), IRF4, MEF2B, and CEBPG, using external ENCODE ChIP-seq data. 
a-c, Violin plots reflecting the empirical null distribution (n = 1,000) of the 
percentages of DMRs overlapping ChIP-seq peaks in each experiment, stratified 
by the SAT cell-types. Diamonds mark the observed overlapping proportions 
of the corresponding cell-type level hypo-methylated regions. *Indicates the 
statistical significance after multiple hypothesis correction (Bonferroni) on  
the empirical one-tailed P values for the over-representation of TF peaks.  

IRF4 in GM12878 cell line (empirical unadjusted P=0.001 for myeloid, mast, and 
lymphoid cells) (a); MEF2B in GM12878 cell line (empirical unadjusted P=0.001 
for perivascular, myeloid, mast, and lymphoid cells) (b); and CEBPG in K562 cell 
line (empirical unadjusted P=0.001 for adipocytes, myeloid, and mast cells) 
(c). ChIP-seq, Chromatin immunoprecipitation sequencing; ASPC, adipose 
stem and progenitor cell; GM12878, lymphoblastoid cell line; and K562, chronic 
myelogenous leukemia cell line.
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Extended Data Fig. 6 | Cell-type level differences in chromatin conformation of 
subcutaneous adipose tissue (SAT). a-b, Uniform manifold approximation and 
projection (UMAP) visualization of low dimensional embeddings of cells using 
compartments (a) and insulation scores (d) as features, colored by the snm3C-
seq annotation. Adjusted rand index (ARI) evaluates the clustering concordance 
against the snm3C-seq annotation. c, Heatmap visualization of the normalized 
interaction contact map on chromosome 6 and its corresponding compartment 
scores across the SAT cell-types. d, Box plots visualizing the distributions of the 
number of consecutive 100-kb bins within segments that exhibit consistent A or 
B compartment annotations, stratified by the SAT cell-types. Lone compartments 
(that is, singular bins, the annotation of which differs from the ones of both 
neighbors) are excluded. The center of the box represents the median; the 
bounds of the box indicate the 25% and 75% percentiles, while the whiskers show 
the minimum and maximum values within 1.5 times the interquartile range. 
*Indicates unadjusted –log10P=25, one-tailed Wilcoxon rank-sum test between 

the two groups marked by the horizontal line: consistent compartment segments 
in adipocytes, ASPCs, and perivascular cells (n = 2,890) versus those in myeloid 
and endothelial cells (n = 2,891). e, Horizontal stacked bar plot (left) showing the 
marginal proportions of differential 100-kb bins stratified by their annotated 
A and B compartments in the 5 most abundant SAT cell-types and upset plot 
(right) showing all compartment combinations across differential 100-kb 
bins in decreasing order with their corresponding percentages. The vertical 
dotted line separates the following three major categories: ‘Homogeneous’, 
‘Cell-type Enriched’, and ‘Heterogeneous’, which correspond to unique A or B 
compartments in 0, 1, or more than 1 cell-type, respectively. f, Sankey diagram 
breaking down the numbers of differential 100-kb bins annotated as A (red) 
and B (blue) compartments belonging to ASPCs (left), adipocytes (middle), 
and myeloid cells (right). g, Similar to (f), except on perivascular cells (left), 
adipocytes (middle), and endothelial cells (right). ASPC, adipose stem and 
progenitor cell.
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Extended Data Fig. 7 | Cell-type specificity in interaction domains and loops. a-
c, Box plots visualizing the distribution of the number of interaction domains (a), 
the total number (b), and the average span (c) of interaction domains detected 
in each cell, stratified by cell-types. The center of the box represents the median; 
the bounds of the box indicate the 25% and 75% percentiles, while the whiskers 
show the minimum and maximum values within 1.5 times the interquartile 
range. Statistical significance was evaluated using pairwise one-tailed Wilcoxon 
rank-sum tests against adipocytes. *** Indicates Bonferroni multiple hypothesis 
adjusted P < 0.05 and n.s. denotes non-significant. Specifically, the unadjusted 
-log10P=133, 45, 92, 132, 70, and 50 for ASPCs, perivascular, endothelial, myeloid, 
lymphoid, and mast cells, respectively in (a); the unadjusted -log10P=5, 7, 
and 4 for ASPCs, myeloid, and lymphoid cells, respectively in (b), and the 
unadjusted -log10P=132, 45, 90, 132, 71, 50 for ASPCs, perivascular, endothelial, 

myeloid, lymphoid, and mast cells, respectively in (c). Each cell is treated as an 
independent replicate; thus n = 1,212, 1,814, 63, 1206, 482, 1,387, 172, and 316 for 
adipocytes, ASPCs, transition, endothelial, perivascular, myeloid, mast, and 
lymphoid cells, respectively. d, Scatter plot showing the short to long-range 
interaction ratio per cell against the number of interaction domains detected. 
Cells are colored by their snm3C-seq annotation. e-f, Scatter plots showing 
the aggregated cell-type level median number of unique molecular identifiers 
(UMIs) from snRNA-seq against the median number of interaction domains (e) 
and the ratio of short to long-range interaction contacts (f) from snm3C-seq, 
colored similarly as in d. g-h, Bar plots showing the median distance (g) and the 
total number (h) of loop summits detected across the SAT cell-types (x-axis is 
ordered by the abundance of each cell-type in snm3C-seq). ASPC, adipose stem 
and progenitor cell.
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Extended Data Fig. 8 | Browser-based stacked views of multimodal data for 
adipocyte marker genes in five major SAT cell-types. a-b, From top to bottom: 
chromatin conformation contact heatmap, imputed at a 10-kb resolution 
and colored at log-normalized scale; boundary probabilities calculated at a 
25-kb resolution; and chromosome compartment scores evaluated at a 100-kb 
resolution, where the A compartments are colored red and the B compartments 
blue. The shaded trapezoid connects the top panels to a zoomed-in view of the 

CG methylation patterns surrounding the gene body, extending 5-kb up- and 
downstream. Vertical dashed lines mark the gene start and end positions. Black 
dots represent the detected chromatin loop summits. The black dashed triangles 
in the contact heatmap highlight differential domains that are present only in 
adipocytes: one encapsulates the ADIPOQ gene (a), and two reside within the 
TENM3 gene body (b). SAT, subcutaneous adipose tissue; and ASPC, adipose stem 
and progenitor cell.
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Extended Data Fig. 9 | Mean gene expression of DNA methylation- and 
demethylation-related genes across the cell-types in subcutaneous adipose 
tissue (SAT). a-b, Dot plot showing expression of (a) DNA methylation genes 
(DNMT1, DNMT3B, and UHRF1) and (b) DNA demethylation genes (TET2, TET3, 

and TDG) across SAT cell-types. The size of the dot represents the percentage of 
cells in which a gene is expressed within a cell-type, while the color represents the 
average expression of each gene across all cells within a cell-type (blue indicates a 
higher expression). ASPC, adipose stem and progenitor cell.
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Extended Data Fig. 10 | Abdominal obesity -associated variants are enriched 
for the adipocyte A compartment. a, The clumped and thresholded variants 
(R2 < 0.2, unadjusted P < 0.05) used for constructing the adipocyte compartment 
PRSs for abdominal obesity (employing WHRadjBMI as a proxy) are plotted 
by genomic position against the unadjusted -log10P from the UK Biobank 
WHRadjBMI GWAS (n = 195,863 unrelated Europeans). SNPs landing in the 
adipocyte A compartments are colored red, while SNPs landing in the adipocyte 

B compartments are colored blue. The horizontal dashed line indicates genome-
wide significance (unadjusted P < 5 × 10−8). b, Bar plot showing the number of 
WHRadjBMI-associated variants in (a), stratified by the adipocyte compartment 
assignment. c, Similar to (b) except showing the number of independent 
(R2 < 0.2) WHRadjBMI GWAS variants, passing genome-wide significance 
(unadjusted P < 5 × 10−8). PRS, polygenic risk score; WHRadjBMI, waist-hip-ratio 
adjusted for body mass index; and SNP, single nucleotide polymorphism.
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