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Current and emerging strategies to therapeutically tar-
get weight management include pairing agonism of the
glucagon-like peptide 1 receptor (GLP-1R) with either
agonism or antagonism of the glucose-dependent insu-
linotropic polypeptide receptor (GIPR). On the surface,
these two approaches seem contradictory, yet they
have produced similar effects for weight loss in clinical
studies. Arguments that support the rationale for both
approaches are made in these point-counterpoint ar-
ticles, founded on preclinical studies, human genetics,
and clinical outcomes. Here, we attempt to reconcile
how two opposing approaches can produce similar ef-
fects on body weight by evaluating the leading hypothe-
ses derived from the available evidence.

The point-counterpoint articles published in this issue
of Diabetes deliberate the rationale for agonizing the
glucose-dependent insulinotropic polypeptide receptor
(GIPR) (1) or antagonizing the GIPR (2) in consider-
ation of therapeutic approaches to treating obesity. The
case for agonism is founded on substantial preclinical and
clinical data, bolstered by the clinical efficacy of tirzepa-
tide (3,4), a co-agonist for both the GIPR and glucagon-
like peptide 1 receptor (GLP-1R) (5). The authors point to
the actions of GIPR agonism to enhance insulin secretion,
improve insulin sensitivity, and reduce inflammation in
adipose tissue, as well as independent and combined ef-
fects with GLP-1R agonism in the brain to reduce food
intake and decrease aversive responses, as supporting evi-
dence for GIPR agonism.

On the other side, support for GIPR antagonism comes
from loss-of-function genetics in mice and human studies
of GIPR variants with impaired activity that associate

with reduced body mass, along with preclinical studies
and emerging human data demonstrating that chronic
GIPR antagonism resists weight gain and enhances the
weight-lowering effects of GLP-1R agonism. The conun-
drum that we attempt to resolve is how two diametrically
opposing pharmacological approaches can produce the
same outcome of reducing body weight. Layered into this
discussion are the factors beyond weight loss that should
be considered in deciding the relative merits of these two
approaches. Resolving some of these unanswered ques-
tions will require additional experimentation, as well as
the results of forthcoming clinical trials. Herein, we dis-
cuss GIPR agonism versus antagonism in the context of
metabolic disease therapeutics.

The current major focus for comparing the results of
GIPR agonism versus antagonism is weight loss. GIPR
monoagonism reduces food intake and body weight in
preclinical models (6) and in humans (7). Studies in mice
reveal that GIPR agonism requires engagement with GIP
receptors within the central nervous system (CNS) to
lower body weight (8). Interestingly, deletion of GIPR
alone in the mouse CNS also provides protection against
diet-induced obesity (8), recapitulating the phenotype
exhibited by the high-fat diet–fed whole-body–Gipr
knockout mouse (9). Collectively, these observations
capture the confusion in directional targeting of the
GIPR, with both gain- and loss-of-function strategies
decreasing body weight.

To establish precisely where the key GIPR-dependent
signaling cascades occur within the CNS that are coupled
with reduction of food intake, further resolution is re-
quired, with potential targets including neurons in the hy-
pothalamus, hindbrain, and nonneuronal populations that
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potentially govern activity in these areas (10–14). Whether
GIPR agonism and antagonism in each of these areas dif-
ferentially suppress food intake through overlapping or dis-
tinct pathways remains unclear. One focus of particular
interest is the collection of GABAergic neurons in the hind-
brain. Here, GIPR agonism elicits antiaversive effects in the
context of a range of noxious or aversive stimuli, including
GLP-1R agonism (Fig. 1A) (12,15,16). These antiaversive
effects target populations of neurons different from those
transducing anorectic signals and appear to translate to
healthy human participants treated with a single dose of a
long-acting GIP analog together with liraglutide (17). This
points to an inhibitory tone originating from GIPR1 neu-
rons to dampen the activity of GLP-1R neurons responsible
for transducing aversive signals. Alternatively, GIPR agonism
may attenuate aversive responses downstream of GLP-1R
neurons. Interestingly, deletion of Gipr in GABAergic neu-
rons enhances the activity of GLP-1R agonism to reduce

food intake and body weight and these GABAergic neurons
are also critical for the enhanced weight loss activity of
dual incretin agonists in comparison with GLP-1R monoa-
gonism (14). In these same studies loss of the antiaversive
properties of GIPR agonism in GABAergic neurons was also
reported. Hence, we can surmise that one potential mecha-
nism of basal GIPR activity in the hindbrain is to inhibit
the satiating effects of GLP-1R agonism. Reducing this in-
hibitory tone, potentially through naturally occurring hu-
man GIPR variants with reduced signaling properties, or
via pharmacological GIPR antagonism, could enhance the
activity of anorectic GLP-1R signaling pathways, thereby in-
creasing the sensitivity to and effectiveness of endogenous
GLP-1 or pharmacological GLP-1R agonism (Fig. 1B and C).
This hypothesis aligns with reports of effective weight loss
with bispecific molecules that simultaneously block GIPR
while activating the GLP-1R (18–20). Theoretically, this
approach of using GIPR antagonism might reduce the

Figure 1—Hypotheses on how GIPR agonism or antagonism regulates body weight. A: GIPR agonism increases the activity of GABAergic
inhibitory neurons in the hindbrain regions of the CNS. The increase in inhibitory tone may decrease food intake, independently adding to
the actions of GLP-1R agonism. GIPR1 neurons have also been shown to project onto, and inhibit, GLP-1R1 GLUTamatergic neurons
that produce the aversive effects in response to GLP-1R agonism. B: GIPR antagonism may decrease the activity of GABAergic inhibitory
neurons, leading to disinhibition of the GLP-1R1 neurons in the hindbrain that decrease food intake. As a result, GIPR antagonism
increases the effectiveness of GLP-1R agonism to decrease food intake. C: Chronic loss of GIPR activity, potentially achieved by either
genetic or pharmacological loss of function, produces an increase in GLP-1R sensitivity. In b-cells, which express both GIPR and
GLP-1R, this may theoretically occur in a cell-autonomous manner. As very few neuronal populations express both receptors, this mecha-
nism is more likely explained by a decrease in the interaction between distinct GIPR1 and GLP-1R1 neurons in the CNS. Loss of GIPR
neuronal activity disinhibits GLP-1R1 neurons, increasing their activity. D: Chronic agonism of the GIPR drives desensitization to result in
loss of function that resembles antagonism. Although this hypothesis would provide a harmonious explanation to reconcile the effects of
GIPR agonism and antagonism, there is currently no evidence to suggest that tirzepatide attenuates activity in GIPR1 neurons that regu-
late food intake. GLP-1RA, GLP-1 receptor agonist.
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tolerability of simultaneous GLP-1R agonism (Fig. 1B), a
hypothesis currently being examined in clinical trials with
maritide, a GIPR antagonist antibody conjugated to two
peptide GLP-1R agonists.

Two complementary studies provide further evidence
linking attenuation of GIPR signaling to augmentation of
GLP-1R pathways in the CNS. Gutgesell et al. (21) demon-
strate a requirement for GLP-1R signaling to achieve the
maximal effects of GIPR antagonism for reduction of
food intake and body weight in mice. Furthermore, the
anorectic actions of GIPR antagonism were preserved in
mice with selective deletion of the Gipr in CNS GABAergic
neurons or deletion of Gipr in the peripheral nervous sys-
tem within peripherin-expressing neurons. Interestingly,
gene expression profiles in hindbrain CNS neurons, nota-
bly, pathways linked to regulation of synaptic plasticity,
exhibited similar patterns of modulation after acute GIPR
antagonism versus GLP-1R agonism. Collectively, these
findings, together with data from Wean et al. (14), high-
light roles for the GLP-1R in the transduction of CNS
signals emanating from genetic loss of GIPR signaling
or pharmacological GIPR antagonism.

Liu et al. (22) studied the actions of bispecific antibodies
that blocked the GIPR, while simultaneously activating the
GLP-1R, in mice with CNS neuronal deletion of the Gipr us-
ing synapsin-Cre, or reduction of neuronal Glp1r expression
using Wnt1-Cre2. Remarkably, the anorectic and weight loss
effects of the bispecific GIPR-Ab/GLP-1 antibody were par-
tially diminished in both lines of mice, implicating an impor-
tant role for both CNS GLP-1R and GIPR for transducing
the full weight loss effects of molecules such as maritide,
the investigational human GIPR-Ab/GLP-1 antibody now
under assessment in phase 3 clinical trials. Further-
more, greater weight loss was achieved with the GLP-1
medicine dulaglutide in mice with inactivation of the
CNS GIPR, whereas the extent of weight loss in mice
treated with dulaglutide plus GIPR-Ab was attenuated
in CNS GIPR knockout mice. Collectively, these studies
highlight critical roles for both the CNS GIPR and GLP-
1R in transducing the maximal weight loss effects of
medicines like maritide and suggest that loss of CNS
GIPR signaling sensitizes CNS circuits to both endoge-
nous and pharmacological GLP-1R agonism.

Interestingly, there are no data for addressing whether
selective agonism of these GIPR1 GABAergic neurons
suppresses the ability of GLP-1R agonists to reduce food
intake. Clearly, more resolution of relevant GIPR signaling
pathways, and their interactions with GLP-1R1 circuits, is
needed to identify the specific cellular sites and actions of
GIPR in the various CNS regions that express the recep-
tor. Moreover, studies are needed to determine which of
these regions are accessible to or indirectly activated or
inhibited by structurally distinct GIP-based therapeutics
including peptides, antibodies, and eventually small mole-
cules that may have different levels of brain penetration.
Finally, it is important to mechanistically refine our

understanding of the relative contribution(s) of GIPR ac-
tivity in different regions of the CNS for weight control,
which may be difficult to accomplish in humans. Studies
in mice reveal important roles for CNS circuits as targets
for GIPR agonism/antagonism in the control of body weight;
however, whether mechanisms outside of the brain partially
contribute to modulation of anorectic GIPR-regulated CNS
pathways in humans is not established.

As the debate between agonism and antagonism con-
tinues, it is important to extend this conversation beyond
the control of body weight to include important consider-
ations of the biological actions of GIPR and interaction
with GLP-1R circuits beyond the CNS. We must be careful
not to fall into the trap of extending observations gained
from studies where GIPR agonism was used to infer that
the opposite biology will occur with GIPR antagonism, or
vice versa. For instance, as mentioned above, loss of GIPR
in GABAergic neurons relieves the inhibitory tone on
GLP-1R1 neurons and increases the effectiveness of
GLP-1R agonism to reduce food intake. On one hand,
this aligns with the data supporting that GIPR agonism
in GABAergic neurons inhibits the aversive effects of GLP-1R
agonism. However, whether GIPR agonism in GABAergic
neurons also inhibits the effectiveness of GLP-1R neurons to
reduce food intake remains unclear and doubtful. This phe-
nomenon can be potentially explained by the reports of two
distinct populations of GLP-1R1 neurons within the hind-
brain, one driving satiety and one driving aversion (14,23).
On the other hand, loss-of-function outcomes in studies of
incretin receptor biology do not always translate to the oppo-
site effect with gain-of-function approaches, as genetic dele-
tion or pharmacological blockade of the GLP-1R is also
associated with resistance to weight gain in mice (24–26).

GIPR agonism exerts multiple important actions be-
yond the CNS, including enhancement of insulin and
glucagon secretion to control postprandial metabolism
(27,28), positive effects on adipose tissue (29,30) and
bone metabolism (31–33), reductions in the activity of
inflammatory pathways (34–37), and increases in insu-
lin sensitivity (38,39). How many of these beneficial ac-
tions are negatively impacted by GIPR antagonism in
humans with type 2 diabetes and/or obesity, if any at
all? Importantly, are the putative negative metabolic
consequences of GIPR antagonism in peripheral organs
dwarfed by the beneficial actions of simultaneous and
robust GLP-1R agonism? Use of careful approaches to
identify the specific effects of GIPR agonism in each of
these areas, including the cellular localization of the
GIPR that is technically challenging to ascertain (40), can set
expectations for outcomes that may be impacted by pharma-
cological antagonism. It is possible that none of these are
meaningfully impacted by GIPR antagonism, especially since
this approach will usually be paired with GLP-1R monoagon-
ism and potentially other mechanisms. Nevertheless, GIPR
antagonism alone is also being explored in the clinic. Hence, it
is essential to consider and explore all clinically relevant
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outcomes, including and beyond weight control, in consider-
ing targeting GIPR with either agonism or antagonism.

There are several additional factors that can potentially
contribute to the debate of agonism versus antagonism.
First, there is an increasing appreciation for the impor-
tance of biased agonism at G-protein–coupled receptors,
including the incretin receptors. Mounting evidence that
G-protein–biased GLP-1R agonists are superior to full ag-
onists that recruit b-arrestin proteins (41,42) has fostered
interest in understanding the implications of biased sig-
naling at the GIPR (43). Whether the outcomes of this
pursuit can meaningfully impact the directional biology
and effect size pursuant to GIPR agonism remains to be
seen. However, it is interesting to consider whether the
same degree of tunability, evident in using a biased ago-
nist, might be possible in pursuing GIPR antagonism.

Second, it has been postulated that chronic agonism of
the GIPR drives a level of desensitization that results in
loss of function that mimics functional antagonism (44),
with either adipocytes (45) or b-cells (46) used as exam-
ples. This hypothesis (Fig. 1D) would be unifying to ex-
plain how both agonism and antagonism support weight
loss, but it is not yet bolstered by substantial evidence for
desensitization of CNS GIPR activity in one or more neu-
ronal populations.

Although GIPR desensitization has been demonstrated
for adipocytes (45), analyses of GIPR expression, com-
bined with genetic targeting experiments, suggest that
adipocytes do not appear to be the predominant GIPR1

cell type within adipose tissue in vivo. In much of the
literature investigators use induced 3T3-L1 adipocytes
(47,48), induced preadipocytes from human tissue (29),
or genetic overexpression of GIPR to study adipocyte
GIPR activity (30). These adipocyte-focused models con-
trast with reports that most of the GIPR signal in adipose
tissue in vivo originates from nonadipocytes (49), illus-
trating that inducible or cell culture models may not
faithfully capture the landscape of primary adipocytes
in vivo. Similarly, the lack of tachyphylaxis in quantifying
the insulinotropic actions of GIP in humans without dia-
betes would argue against meaningful desensitization in
b-cells (50). It is likely that the use of different GIPR ago-
nists, with varied receptor pharmacology, may underlie
some of these divergent results. Furthermore, we must al-
ways consider the contribution of species differences be-
tween rodents and humans, which has already proven to
be impactful for understanding of the mechanism of
GIPR agonism with tirzepatide, a weak GIPR agonist at
the mouse GIPR (51). Incorporating these important bio-
logical details in future experimental design is a require-
ment for continued interrogation of this hypothesis.

Finally, a new class of emerging GLP-1 medicines in-
cludes the development of small molecules to address
concerns about injections, the substantial costs of
manufacturing peptide-based therapies, a limiting sup-
ply of pens, and a cold chain to deliver therapy for the

duration of a patient’s lifespan. This opportunity, to-
gether with advances in molecular resolution of the
structure of the GLP-1R, has led to the development of
several GLP-1R small-molecule agonists now in clinical de-
velopment (52,53), with testing of small-molecule GIPR
antagonists also in the clinic. Simultaneously, antibody-
based GIPR antagonist–GLP-1R agonists such as maritide
that are suitable for monthly dosing, potentially providing
some level of durability for body weight following cessa-
tion of treatment, are also under investigation. It is an ex-
citing time to follow the development of these agents on
several fronts.

Beyond weight loss, GLP-1R agonists reduce the rates
of myocardial infarction, stroke, cardiovascular death, kid-
ney disease, and all-cause mortality in people with type 2
diabetes (54), actions recapitulated by semaglutide in peo-
ple with obesity (55). Moreover, GLP-1 medicines de-
crease the severity of metabolic liver disease and heart
failure with preserved ejection fraction and produce clinical
improvement in people with obstructive sleep apnea or
knee osteoarthritis. While a subset of these benefits are
likely reflective of the weight loss achieved in many of these
trials, it seems likely that weight loss–independent benefits,
perhaps ensuing from the anti-inflammatory mechanisms of
GLP-1 action, also contribute (56). While scrutiny of the ex-
trapancreatic actions of sustained GIPR signaling in humans
is limited, preclinical studies support an anti-inflammatory
action for GIPR agonism, whereas loss of GIPR signaling is as-
sociated with increased inflammatory tone (35,36,57). In
forthcoming safety and outcome studies in individuals with
type 2 diabetes and/or obesity, scrutiny is merited of the ex-
tent to which gain or loss of GIPR signaling, alone or in com-
bination with GLP-1R agonism, will potentiate or exacerbate,
respectively, the anti-inflammatory actions and favorable
outcomes detected with GLP-1R agonism.

Resolving the complexity of GIPR agonism versus an-
tagonism for both control of body weight and improve-
ment in cardiometabolic outcomes mandates that we
remain focused on understanding relevant mechanisms of
action linked not only to weight loss but also to sustained
improvement in human health. Although considerable
progress has been made in the past several decades on
the underlying science of GLP-1–based and, more re-
cently, GIP-based therapies, there is much to learn. An ar-
gument can be made that we are not yet able to resolve
the debate between GIPR agonism and antagonism simply
because so many of the key questions remain unanswered.
Fortunately, studies of the merits of both gain– and loss–
of–GIPR signaling approaches, together with GLP-1R ago-
nism, will soon be further informed by the results of large
safety and outcome studies. Ultimately, the magnitude and
durability of patient benefit across a wide range of clinical
indications will be the deciding factor in evaluating the
relative strengths or limitations of different GIP-based
therapies. It seems likely that there will be room and
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justification for both GIPR agonism and antagonism as
partners in the expanding universe of GLP-1 medicines.
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