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Abstract

Background: Regulating sensations of fatigue and discomfort while performing maximal
endurance exercise becomes essential for making informed decisions about persistence
and/or failure during intense exercise. Athletes with a higher effort capacity have compet-
itive advantages over those with a lower one. The microbiota–brain axis is a considered
the sixth sense and a modulator of the host’s emotional stability and physical well-being.
Objectives: This narrative review aims to explore and evaluate the potential mechanisms
involved in regulating perceptions during endurance exercise, with a focus on the possible
relationship between the gut microbiota balance and the neural system as an adaptive
response to high fatigue chronic exposure. Methods: Electronic databases (PubMed, Web
of Science, Google Scholar, and Scopus) were used to identify studies and hypotheses that
had documented predefined search terms related to endurance exercise, gut microbiota,
the central nervous system, pain, discomfort, fatigue, and tolerance to effort. Results: This
narrative review shifts the focus concerning the symbiotic relationship between the gut
microbiota, the vagus nerve, the central/enteric nervous system, and the regulation of
afferences from different organs and systems to manage discomfort and fatigue perceptions
during maximal physical effort. Consequently, the chronicity supporting fatigued exercise
and nutritional stimuli could specifically adapt the microbiota–brain connection through
chronic efferences and afferences. The present hypothesis could represent a new focus to be
considered, analysing individual differences in tolerating fatigue and discomfort in athletes
supporting conditions of intense endurance exercise. Conclusions: A growing body of
evidence suggests that the gut microbiota has rapid adaptations to afferences from the
brain axis, with a possible relationship to the management of fatigue, pain, and discomfort.
Therefore, the host–microbiota relationship could determine predisposition to endurance
performance by increasing thresholds of sensitive afferences perceived and tolerated. A
richer and more diverse GM of athletes in comparison with sedentary subjects can improve
the bacteria-producing metabolites connected to brain activity related with fatigue. The
increase in fatigue thresholds directly improves exercise performance, and the gut–brain
axis may contribute through the equilibrium of metabolites produced for the microbiota.
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1. Introduction
In recent years, research on the connection between the gut microbiota (GM) and

the central nervous system (CNS) has been growing exponentially [1,2], particularly in
its relation to health, physical performance, and cognitive processes related to perception,
emotions, and pain [3–5]. Until now, only a limited number of studies have reported the
interaction between the GM and the brain’s emotions, perceptions, and sensations. Thus,
no previous studies have hypothesised on the possible bidirectional influence existing
between endurance exercise and the GM-CNS axis, which modulates fatigue and unpleas-
ant sensations [1,6]. The primary communication networks between the gut and brain
involve neural, endocrine, and immune pathways, encompassing the central, enteric, and
autonomic nervous systems, as well as the hypothalamic–pituitary–adrenal axis. The GM
can modulate the enteric nervous system response through the excitability of the nervous
system, as well as the production of metabolites that enable signals to reach the CNS via
the vagus nerve [7]. The GM, composed of a complex community of microorganisms,
interact with the vagus nerve in the passage of digestive material [8] and in the regulation
of gut hormones, neurotransmitters, and short-chain fatty acids (SCFAs) [8–10]. Therefore,
individual differences and chronic changes in the GM profile may influence the cognition,
perceptions, and sensations of the host. Some investigations have described that exercise in
humans also increases neurogenesis and alters the microbiota profile [11].

Endurance exercise involves the ability to sustain a specific type of physical activity,
such as running, cycling, or swimming, for a prolonged period, where intensity and
duration increase, perceived effort rises, and fatigue levels become limiting to continue the
activity. The physiological changes that occur during long endurance activities, affecting
different systems such as cardiovascular and respiratory, metabolism, thermoregulation,
and acid–base balance, contribute to altered perceptions. For this reason, training routines
contribute to elevating sensitisation, the neuronal plasticity that occurs in response to
prolonged fatigue, pain, and discomfort stimuli during intense efforts, even over several
days [8]. Therefore, the globality of training stimulus, supported by endurance athletes,
focuses on improving, on the one hand, physiological performance, and, on the other,
enhancing sensitivity to tolerating discomfort and unpleasant sensations.

The hardness perceived during endurance exercise may contribute to increased sensi-
tisation for peripheral tissues, as well as GM adaptation in athletes. The present hypothesis
describes how promoting a higher effort sensitisation from peripheral and central tissues
adaptively changes the abundance of specific gut bacteria related to brain perceptions (see
Figure 1). Overall, in response to physical and cognitive stress, two different regulatory
systems are activated: (1) the sympathetic–adrenomedullary and hypothalamic–pituitary–
adrenal axes [8,12], and (2) the autonomic nervous system (ANS) [13]. Throughout these
processes, the intestine is particularly important due to its direct influence on the regu-
lation of the CNS, among other factors. Not surprisingly, there is increasing interest in
research on GM and the brain axis, as well as their various connections with health, physi-
cal performance, and cognitive processes related to perception, emotions, and pain [3–5].
Recently, several publications have reported on the implications of GM on physiological
and cognitive functions [1,6]. Still, data are largely lacking on how gut health can directly
influence endurance performance through regulated emotions and tolerance to discomfort
and fatigue.
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Figure 1. Endurance exercise (EE) is the essential stimulus for promoting effort tolerance in athletes
and GM phenotypic adaptive changes. EE promotes gastrointestinal (GI) ischemia, gastrointestinal
damage, and intestinal permeability, which are aggravated by inadequate nutrition and hydration
during EE. EE stimulates the redistribution of blood flow (BF) to the active muscles, promoting
hyperthermia and systemic hypoxemia. The gut microbiota (GM) plays a crucial role in producing
neurotransmitters (NTs) in the gut, primarily through bacteria such as Bifidobacterium, Lactobacillus,
Anaerostipes caccae, and Eubacterium hallii. Thus, some bacteria, such as Akkermansia muciniphila and
Faecalibacterium prausnitzii, specifically produce SCFAs. NTs produced in the gut may contribute
to altering physiological perceptions directly through neural signals from the gut to the brain, and
perceptual thresholds (perceptual E) related to EE are supported during daily activities. EE would
be a necessary stimulus to increase the NT threshold production from the gut, thereby modulating
exertion tolerance.

Notably, it has been suggested that interventions enhancing GM diversity could pos-
itively impact endurance performance [14] and, in parallel, stimulate the production of
metabolites such as NTs and other molecules involved in modulating perceptions and,
consequently, tolerance to fatigue [15–17]. Instead, a GM imbalance may lead to poor
well-being from leaky gut syndrome, which includes chronic low-grade inflammatory con-
ditions, emotional instability, dysregulation of neurotransmitters, chronic fatigue, and even
depression, all of which may impair athletic performance and tolerance to fatigue [18,19].

In this article, we reviewed the current scientific evidence on the relationship between
endurance exercise and GM modulation in CNS perceptions. In addition, we discussed
whether there exists a possible GM profile that improves higher effort tolerance. The main
goal of the present article was to explore the hypothesis based on how hardness training in
athletes could influence the GM ecosystem, alter sensory control through the autonomic
nervous system, and influence additional gut metabolites in the blood and achieving the
brain. The current work aimed to broaden perspectives in the field of sports science by
suggesting that GM composition plays an important role in modulating perceptions during
endurance performance.

2. The Relationship Between Endurance Exercise, Fatigue Perceptions,
and Gut Microbiota Adaptations

The factors limiting endurance performance have traditionally focused on under-
standing how cardiovascular, metabolic, and muscular adaptations are produced [20]. The
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central (mental) regulation and the control of peripheral afferences from specific locomotor
and visceral tissues that limit endurance performance through perceptions remain less
studied. Human feeling includes the expression of body perceptions, emotions, and the
modulation of systemic afferences. In the complex interplay of all these influences, the
gastrointestinal tract and the GM, particularly, are relevant components influencing higher
cerebral functions and behaviour [21–23]. In this regard, the gut metabolomic dialogue
with the brain is essential for regulating perceptions and sensations [24], acting as both
an autocrine, paracrine, and endocrine organ. In addition, the relationship between en-
durance exercise and this malleable organ, composed of the GM, could be very important
to modulate physiological perceptions related to physical effort tolerance.

In such a case, discomfort and fatigue represent an individual and subjective per-
ception involving nociception and nociplasticity [25,26]. In some cases, a higher capacity
for tolerating discomfort during endurance exercise or other activities can explain why
some individuals achieve better physical performances than others [27–29]. Hence, pain
and discomfort coping is an integral part of athletic preparation that develops athletic
character [30–38] in endurance athletes [33,39–47] or combat fighters [48], compared to
power athletes [49].

The “individual limit of sensory tolerance” [28,29,50–52] has been proposed to describe
the point at which individuals recognise their limit based on fatigue, pain, or effort [53],
and can be improved following several weeks of intense training [44,54]. Pain, defined
as the unpleasant, noxious perception that affects mood, social life, and overall quality of
life, is a significant limiter of physical activity and quality of life. The individual threshold
of pain is subjective, involving not only nociception but also emotional, cognitive, and
social components [25]. During maximal endurance activities, athletes feel unpleasant
sensations described with comments such as the following: “I cannot continue the race
at this pace”, “exercise was hard”, “I never feel good”, “legs do not work”, etc. This
effort fatigue is initiated by the activation of nociceptors that populate peripheral organs,
such as skin, muscles, bones, joints, and deep visceral tissues [25,55]. Acute pain can
contribute to modulating immune responses and protect organisms; however, chronic
and sensitive thresholds in the nervous system can lead to elevated nociceptive activation,
making organisms more sensitive to minimal immune reactions. Previous studies in clinical
medicine have linked the composition of the gut microbiota to a higher incidence and
progression of hyperalgesia and pain in certain chronic pathologies and treatments, such as
chemotherapy [56].

Adaptive mechanisms for increasing pain and discomfort tolerance primarily depend
on the stimulation of the interoceptive system, which is interconnected with the brain
and integrated into the interoceptive consciousness [57–59]. The interoceptive system is
an essential peripheral governor, constantly sensing physiological changes that trigger
homeostatic thresholds for internal perceptions, emotions, pain, temperature, oxygen,
sensory touch, muscle tension, discomfort, and intestinal sensations. These sensations
are processed in the brain as an integrated interoceptive conscience [57–59]. As depicted
in Figure 2, physiological afferences processed by the brain from peripheral organs and
tissues transfer a consciousness of the internal body state during physical activities [60].
Thus, the operation of the interoceptive system is a highly relevant topic of research interest
for manipulating perceptions and cognitive responses in conditions of effort, pain, or
discomfort [61].
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Figure 2. Relationship between maximal endurance performance, the interoceptive system, and
regulatory feedback. During maximal effort, athletes feel sensations of pain and discomfort which
are derived from different peripheral systems and processed by the brain. Everyone has a different
set point of tolerance for stress, pain, and exertion, according to their systemic allostatic thresholds.
The interoceptive system has the important function of regulating perceptions from afferent inputs,
including specialised cells, organs, and active tissues such as muscles. The gut and microbiota also
produce afferences from the neurons, metabolites, and enterocytes during endurance exercise and
recovery processes.

The intensity and duration of endurance exercise imply metabolic alterations that
modify the neural response in the motor cortex, resulting in an increase in exertion from
a perceptual perspective of sensations [62,63]. Previous studies have suggested that GM
can modulate the neural system originating from the intestines and may influence pain
thresholds in the brain, which are related to various systemic conditions [3,64,65]. The GM
is capable of activating nociceptors [66], altering mediators of inflammation, and inducing
phosphorylation in certain receptors and ion channels of sensory neurons, which can result
in peripheral sensitisation [65]. Under this premise, the chronic stimulus of endurance
exercise and other specific routines, such as nutrition and hydration, changes the GM
profile individually. Therefore, the individual sensitive perceptions in a complex system
of the body include the afferences derived from the gut through neural, chemical, and
molecular signals.

3. The Hypothesis: Connection Between the GM and Tolerance to Effort,
Pain, or Discomfort Sensations

During maximal endurance exercise, the physiological demands increase proportion-
ally. The brain acts mainly in two protective ways: (1) monitoring biological vital signals
from specialised cells for oxygen, temperature, vascular pressure, etc., and (2) producing
neural perceptions according to the individual thresholds (set-points) that are derived from
afferent discharges from organs and tissues to optimize the intensity of exercise. In addition,
gut–brain communication is crucial in regulating afferent responses related to all stimuli
arising from immune responses, inflammatory pathways, and metabolic efficiency [67],
as well as systemic organs (see Figure 2). With regular endurance training, the different
systemic thresholds can alter their grade of tolerance as an adaptive vital mechanism; if it
is positive, athletes can perform at higher exercise intensities because their physiological
and perceptual limits are increased based on their brain perception tolerance.
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Concomitant changes that occur during exercise alter oxygenation, temperature, and
metabolic activity, which directly affect gut microenvironments and thereby impact the
gut microbiota [68]. The important role of the GM during physical failure is considered
due to its modulatory effect on metabolic digestion, the immune system, systemic inflam-
mation, and endocrine function, which involves regulating NTs and hormones related to
perceptions, emotions, and sensations [1,6,69]. Here, we hypothesise that tolerance to pain,
fatigue, and discomfort may be linked, in part, to intestinal barrier health, damage, and
its biological function of permeability. This premise is based on the concept that the gut
microbiota can directly or indirectly modulate peripheral sensitisation underlying chronic
afferent pain or unpleasant sensations through multiple mediators, including the microbial
by-products (e.g., PAMPs), metabolites (e.g., SCFAs, Bile Acids), and neurotransmitters
(e.g., GABA) that are released. In this regard, athletes who are more sensitive to pain and
effort sensations may be more susceptible to dysregulation of neurotransmitters and may
experience GM dysbiosis [70]. In this case, in response to exercise demands, the GM may be
unable to produce and maintain a certain threshold of SCFAs and NTs in the brain [70,71]
to counteract the cognitive demands of discomfort [72] (Figure 3). Hence, in this regard, it
can be hypothesised that improved intestinal health derived from a positive GM profile
might positively impact the higher tolerance of sensory limits and effort perceptions in
the long term. Therefore, the metabolite dialogue between bacteria and host neural path-
ways would be crucial in stimulating synaptic plasticity, an essential component of the
microbiota–gut–brain axis, and in modifying the neural thresholds of tolerance to fatigue
or discomfort [73]. To modify neuronal perception and sensitivity, it is hypothesised that
physical and functional changes at the level of individual connections between neurons
have occurred [74].

Figure 3. Hypothesis from interactions between GM and CNS afferences related to perceptive
tolerance. The GM acts as a key neuroendocrine organ, directly connected to the CNS through neural
afferences, NT production, and hormone levels.

As a premise of the present hypothesis, it has been postulated that the GM profile in
each individual may differ depending on the perceptions that evolve from acute to chronic
neuropathic injuries, accompanied by pain and impairments in functional performance
in athletes [75,76]. Regarding osteoarthritis pain, for example, increases in Streptococcus
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species were associated with knee osteoarthritis [77], while Coprococcus species were re-
duced in individuals with widespread chronic pain [78]. Recently, it was demonstrated that
the levels of Bacteroides were lower in subjects with reduced tolerance to neuropathic pain.
Conversely, the abundance of Prevotella was increased in subjects with higher tolerance
to pain compared to those with lower levels [64]. Wang et al. [79] reported a reduced
abundance of Bacteroides and Faecalibacterium in subjects with neuropathic pain, but Es-
cherichia—Shigella, Lachnoclostridium, Blautia, Megasphaera, and Ruminococcus torques were
elevated. Lower levels of Faecalibacterium prausnitzii have been correlated with a higher
severity of osteoarthritis in older female adults [80]. Still, higher concentrations have been
associated with antinociceptive effects in a rat model of irritable bowel disease [81]. These
results, in summary, indicate that the GM composition can change drastically in response to
injuries and chronic pain due to the higher inflammatory state in the tissues, which directly
increases neural sensitivity [82]. However, whether GM dysbiosis is the consequence of the
onset of nociceptive pain has not been elucidated, and it is unknown whether systemic pain,
fatigue, and/or negative afferences would be modulated through the gut–brain connection.

4. GM-Derived Metabolites: NTs and Neuromodulators and Their
Influence on Brain Perceptions

The intensity and duration of endurance exercise suggest that substrate homeostasis
changes during the activity and directly impacts central command in the motor cortex,
thereby increasing effort perception [62,63]. The perceptions associated with energy home-
ostasis include the regulation of blood pH and the acid–base equilibrium, which is altered
during exercise, leading to increased acidosis. In the intestines, the pH is slightly acidic
in the caecum but approaches neutrality in the colon [83]. In the intestines, abnormal
pH, promoted by chronic metabolic acidosis due to nutritional habits and intense en-
durance exercise, may increase the risks of epithelial damage and adverse changes in
the GM composition of the colon [84]. The stability of colonic pH appears essential for
regulating mucosal integrity, including bicarbonate and lactate production, the bacterial
fermentation of carbohydrates, and the mucosal absorption of SCFAs [84]. Therefore, the
inefficiency of the intestines in regulating blood pH may negatively affect endurance per-
formance and metabolic efficiency. In this regard, some evidence has reported that certain
bacteria (Veillonella atypica) may reduce lactate during exercise and increase endurance
performance [85,86]. On the contrary, the GM composition that can improve the commen-
sal bacteria to produce SCFAs decreases gut pH, and the transformation of primary to
secondary bile acids reduces acidification [87,88].

Signalling molecules derived from the GM include SCFAs, NTs, gut hormones and pep-
tides. The NTs’ influence on neuronal activity is promoted by neuromodulatory molecules,
such as dopamine, noradrenaline, serotonin, and GABA, produced by a wide array of
bacteria [71]. Additionally, the gut microbiota was shown to play a significant role in the
metabolism of tryptophan, which is synthesised mainly in the gut [71]. Considering the
important role of the GM in NT and SCFA synthesis, we propose different specific bacteria
and genera that have been proposed to produce these molecules (see Table 1).
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Table 1. List of target bacteria associated with different phenotypes related to effort tolerance (supra-phenotype): regulation of neurotransmitters, dopamine,
serotonin, acetylcholine, GABA, and noradrenalin; regulation of emotional balance and SCFA butyrate and propionate. Filled gaps indicate an association reported
between a target bacterium and a specific phenotype. Blank gaps indicate the absence of association.

Supraphenotype Effort Tolerance
Phenotypes Dopamine Serotonin Acetylcholine GABA Noradrenalin Emotional Balance Butyrate Propionate

Target-Bacteria

References
[71,89–100] [71,89–94,101–104] [71,89,91,92,105–110] [71,91–93,111–119] [71,91–93,98,120] [98,103,114,121–139] [140–174] [147,158,160,175–200]

Akkermansia muciniphila
Alistipes putredinis

Anaerostipes
Anaerostipes caccae
Anaerostipes hadrus

Anaerotruncus colihominis
Bacillus

Bacteroides
Bacteroides thetaiotaomicron

Bacteroides uniformis
Bacteroides vulgatus

Bifidobacterium
Bifidobacterium adolescentis

Bifidobacterium animalis
Bifidobacterium bifidum
Bifidobacterium breve

Bifidobacterium dentium
Bifidobacterium longum

Blautia
Blautia coccoides

Blautia obeum
Butyricimonas
Butyrivibrio

Clostridium butyricum
Clostridium leptum

Collinsella aerofaciens
Coprococcus

Coprococcus catus
Coprococcus eutactus

Eubacterium
Eubacterium hallii

Eubacterium limosum
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Table 1. Cont.

Supraphenotype Effort Tolerance
Phenotypes Dopamine Serotonin Acetylcholine GABA Noradrenalin Emotional Balance Butyrate Propionate

Target-Bacteria

References
[71,89–100] [71,89–94,101–104] [71,89,91,92,105–110] [71,91–93,111–119] [71,91–93,98,120] [98,103,114,121–139] [140–174] [147,158,160,175–200]

Eubacterium rectale
Faecalibacterium

Lachnospira
Lactobacillus

Lactobacillus acidophilus
Lactobacillus brevis
Lactobacillus casei

Lactobacillus delbrueckii
Lactobacillus helveticus
Lactobacillus paracasei

Lactobacillus plantarum
Lactobacillus reuteri

Lactobacillus rhamnosus
Lactobacillus salivarius

Lactococcus
Lactococcus lactis

Megasphaera
Megasphaera elsdenii

Odoribacter
Oscillibacter
Oscillospira

Parabacteroides
Phascolarctobacterium

Prevotella
Propionibacterium freudenreichii

Roseburia
Roseburia faecis

Roseburia hominis
Roseburia intestinalis

Roseburia inulinivorans
Streptococcus thermophilus

Subdoligranulum
Veillonella
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In this narrative review, we conducted a search of scientific databases, including
PubMed and Google Scholar, using the following terms and keywords: gut microbiota,
physical exercise, endurance exercise, perceptions, fatigue, pain, discomfort, and nervous
system. We included in Table 1 phenotypes related to specific target bacteria and genera
that have been described as modulators of different neuromodulators involving NTs and
SCFAs. Regarding phenotypes (dopamine, serotonin, acetylcholine, GABA, noradrenaline,
emotional balance, butyrate, and propionate), references in such cases describe specific bac-
teria found to be related to these metabolites. We excluded articles that did not consider the
relationship between the GM and the brain axis, as well as its relationship with perceptions
and emotions.

4.1. The Important Role of SCFAs in Inflammation Regulation and Immune Response for
Perceptual Perceptions

SCFAs are produced in the large intestine through the anaerobic fermentation of
dietary fibres [9]. These molecules are considered beneficial for gut health and play an
important role in maintaining gut barrier homeostasis [201]. SCFAs are produced by
bacteria from two main bacterial genera, specifically the Bacteroidetes phylum, which mainly
produces propionate, and the Firmicutes phylum, which produces primarily butyrate [202].
Interestingly, a previous study reported that the concentration of SCFAs changed in line
with the alteration of the ratio of Firmicutes to Bacteroidetes phylum bacteria [203]. In any
case, SCFAs play important roles in maintaining gut barrier integrity and modulating
gut and systemic inflammation [9]. Gut microbiota dysbiosis has been implicated in
altered neurologic pathologies, such as depression, Alzheimer’s, Parkinson’s disease, and
autism spectrum disorder, which has been improved with SCFA administration [204]. The
abundance of butyrate-producing bacteria, such as those from the Clostridium, Eubacterium,
and Butyrivibrio genera [205], was associated with attenuated pain and tumour necrosis
factor-α (TNF-α) levels in a peripheral nerve injury model [206]. In one study of rats
exposed to chronic stress, a reduced level of Bacteroides bacteria has been identified [207],
while bacteria belonging to the Firmicutes phylum, such as Clostridium, increased, providing
benefits for visceral hypersensitivity by inhibiting low-grade inflammation [208].

Therefore, the proportion of Firmicutes and Bacteroidetes phyla may be associated with
pain sensitivity because, indirectly, SCFA production can increase nerve activation in the
brain, derived from gut afferences. The SCFA metabolites modulate neurotransmission
and increase the expression of enzymes, altering the production of noradrenaline and
dopamine [209].

The importance of modulating the immune response is vital to mediate the sensitive
response of the neural system. This modulation begins in the gut through the regulation
of the GM and its metabolites, such as SCFAs or bile acids, and their conversion from a
primary to a secondary pathway.

4.2. Neurotransmitters, Gut Peptides, and Vagus Nerve–CNS Communication

Overall, communication between the GM and the CNS largely depends on the vagus
nerve (VN), which serves as the central pathway of the parasympathetic nervous system,
comprising 80% afferent and 20% efferent fibres. The VN connects vital organs such as the
lungs, heart, or intestines with the brain [210] through metabolites and neural discharges,
influencing perceptions and behaviour [1,211–215].

In the brain, perceived exertion is expressed through the activity of various regions
of the motor cortex [216], which is modulated by changes in the concentration of different
NTs such as noradrenaline, dopamine, and serotonin [29,217–219]. As can be seen in
Figure 3, the interaction between certain nutrients, derived metabolites, and digestive
hormones during and after endurance exercise modulates the adaptive regulation of neural
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perceptions and connections accordingly to individual sensory thresholds of fatigue and
discomfort. The individual’s perception of exertion is key to voluntarily and involuntarily
continuing through action with different intensities. Therefore, the state of the GM is
crucial to regulate NT levels from the gut, including glutamate, dopamine, serotonin, and
GABA, and also to produce other important metabolites, such as SCFAs and gut hormones
(including orexin, galanin, ghrelin, gastrin, and leptin).

A healthy GM may stimulate positive perceptions through the synthesis of nutrients
and metabolites, producing beneficial connections in the CNS. It is possible that chronic
interconnection between neural discharges from the gut and neuromodulators of the GM
changes perceptions and improves tolerance to pain, exertion, and discomfort. In contrast
with this hypothesis, dysbiosis of the GM and local inflammation of the intestines probably
promote irregular afferences and sensations. The reduced production of NTs due to lower
levels of target bacteria, such as Lactobacillus or Bifidobacterium, and SCFAs may reduce
endurance performance through intolerance to effort and poor perceptions. These concepts
are depicted in Figure 3, showing the possible bidirectional pathway between the CNS and
GM (afferent and efferent nerves from the hypothalamic/pituitary/adrenal (HPA) axis to
the gastrointestinal tract) [220].

Neurotransmitters and gut peptides derived from GM metabolites directly modulate
other molecules in the blood, such as catecholamines (dopamine and norepinephrine),
serotonin (5-HT), noradrenaline, GABA, acetylcholine, and histamine [71].

Glutamate transfers intestinal sensorial signals to the brain through the VN [221]. It
is the predominant excitatory neurotransmitter that activates different areas of the brain,
spinal cord, and periphery involved in pain sensation [222]. Specific bacteria which have
been reported to produce glutamate are Lactobacillus plantarum, Bacteroides vulgatus, and
Campylobacter jejuni [223].

In contrast to glutamate, GABA neurotransmitters modulate sensory neuron activ-
ity, producing a net inhibitory effect on nociceptive transmission and decreasing pain
and discomfort [224]. Concerning GABA production [225], different species have been
reported to be important: Bifidobacterium spp., dentium, Bacteroides fragilis, Parabacteroides,
Eubacterium [226], and some Lactobacillus spp. [227].

Other neural signalling has been associated with acetylcholine, which is found in
various species, including Lactobacillus plantarum [228], Bacillus acetylcholine [10], and B.
subtilis, as well as Escherichia coli and Staphylococcus aureus [229].

Dopamine plays a key role in motivation, predisposing individuals to continue a task
despite feelings of discomfort [230] and increasing its release during 1–2 h of physical
activity [231]. Therefore, a reduction in dopamine concentration during exercise may be
involved in mechanisms contributing to central fatigue by negatively affecting dopamin-
ergic neurocircuits associated with movement and other areas involved in reward and
motivation [232]. Dopamine and noradrenaline are thought to play major, yet opposite,
roles in the development of central fatigue [233–236]. Higher brain dopamine levels, for
example, have been described to improve endurance performance [237] through increased
arousal, reward, and motivation [217]. These findings coincide with a faster rate of increase
in the rating of perceived exertion during exercise [238].

Acworth et al. [239] and Newsholme et al. [240] suggested that elevations in brain
5-HT could also contribute to increased exercise-induced fatigue, as they are associated
with decreased sleep quality and mental alertness (although this association is not entirely
clear) [240,241]. Thus, the elevation of 5-HT in the brain may evoke significant effects on
arousal, lethargy, sleepiness, and mood, likely linked to an altered perception of effort
and muscular fatigue [242]. Moreover, it has been demonstrated that the concentration
of 5-HT during endurance exercise increases until it reaches its maximal levels at the



Nutrients 2025, 17, 2836 12 of 27

moment of fatigue or cessation of the activity [242]. Davis and colleagues [230] speculated
that elevations of 5-HT during physical activity might contribute to fatigue through the
inhibition of dopamine release, suggesting that a low 5-HT/dopamine ratio in the brain
favours better performance than a high 5-HT/dopamine ratio [230]. It has been estimated
that 90% of the serotonin in humans is produced by intestinal bacteria [102], and the
Corynebacterium genus is capable of synthesising serotonin [243], which influences mood
state, pain perception, and other functions [68]. Similarly, Enterococcus influences the
production of 5-HT [65], which, together with noradrenaline, modulates the descending
modulatory pain of the CNS [17].

4.3. The Negative Effects of Gut Dysbiosis on Perceptions and Tolerance to Fatigue

It has been reported that GM modulates cognition, afferences, and mood state through
communication with the brain. In this regard, a dysbiosis of the GM may elevate toxins
and lipopolysaccharides (LPS) in the blood, activating immune cells and increasing the
sensitisation and immune response of the host [244]. Therefore, certain molecules and toxins
from the GM can drive mechanical hypersensitivity and mediate pain and fatigue tolerance.
Symbionts, commensals, and mutualist bacteria can become pathogenic in situations of
dysbiosis, leading to significant tissue inflammation and pathology in the gut, skin, and
other barriers, which can result in pain or lower tolerance to discomfort. For example, the
fungus Candida albicans, an opportunistic pathogen, can maintain a commensal homeostatic
relationship with its host; however, under certain conditions, such as stress or dysbiosis, it
can become pathogenic and have a net negative effect on its host. The secondary effects of
pathogens in the gut include the activation of the immune response and the expression of
pathogen recognition receptors (PRRs) by host cells, which can detect pathogen-associated
molecular patterns (PAMPs). It has been reported that toxins and PAMPs can act directly
on sensory afferences and reduce tolerance to discomfort and pain [244].

A state of chronic gut dysbiosis can lead to increased intestinal permeability.
Pathogenic species can produce barrier disruption through direct binding to epithelial cells,
such as enteropathogenic E. coli, or by secreting toxins, including zonula occludens toxin
(ZOT) and hemagglutinin/protease (HA/P) secreted by Vibrio cholerae, or the enterotoxin
secreted by Clostridium perfringens [245]. In summary, a chronic dysbiosis of the GM could
change the immune response, with the gut–brain connection involving perceptions and
mood states. These conditions may be important in predisposing individuals to tolerate
effort during maximal exercise.

5. Differences Between Endurance Athletes and the General Population
Regarding Gut Microbiota and the Neural System as an Adaptive
Response to High Fatigue Exposure

The adaptive biological responses that we are building during our life depend on the
most stimuli supported. In this regard, the maximal physiological stimuli supported during
exercise by athletes and the general population differ largely. Thus, nutrition strategies
associated with exercise in athletes promote changes in their GM in comparison with the
general population. The differences between the GM of athletes (even comparing athletic
level, elite and sub-elite) and the general population have been demonstrated. In fact,
greater GM diversity is related to better endurance performance in elite athletes [246–248].

Athletic training and competition coexist with an ample range of sensations and
perceptions of fatigue and discomfort. Previous studies have described how fatigue cre-
ates specific neural networks and learned feelings associated with physiological limits
achieved during exercise [46,249,250]. The maintenance of long periods of tachycardia,
hyperventilation, hyperthermia, dehydration with alterations on metabolism homeostasis,
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and inflammatory processes after exercise change perceptions and thresholds of tolerance
on intensity and volume. In these conditions, these perceptions and sensations possibly are
not supported by the general population with lower tolerance.

An important goal of athletes is stimulating tolerance to physiological limits and
improving fatigue thresholds to reach greater performance in the final and decisional
moments of competition. The link between the brain and systemic organs is key to elevate
tolerances of discomfort related to heat, hypoxia, metabolic acidosis, or muscular soreness.
Although it could be considered not directly related to fatigue, the gut microbiota special-
ization in athletes possibly provides NTs, SCFAs, and endocrine molecules supporting
the brain modulation of neural networks. In fact, the neuronal loop of synapsis related to
perceptions and emotions is connected to different molecules such as NTs derived from
microbiota [73]. Therefore, a basic threshold for tolerating harder perceptions of discomfort
could relate to the specialized GM production of neural metabolites. The specific nature of
exercise determines nutrition, absorption, and substrate uptake during and after physical
activity. In this regard, providing specific nutrients to feed a favourable GM must be a main
goal for athletes but also in the general population. Some studies have postulated a direct
correlation of fatigue tolerance in athletes with better physical performance [251,252]. The
better effort regulation, self-control, and executive functions such as inhibitory control in
athletes due to athletic training increase willpower by changing the connectivity between
brain structures [253] through the action of neurotransmitters in the CNS [254].

The hypothesis described here supports the idea that greater dopaminergic activity in
athletes in comparison with sedentary subjects can enhance motivation and tolerance to
discomfort, increasing performance. Reaching a richer and more diverse GM in athletes
in comparison with sedentary subjects would improve the abundance of short-chain fatty
acid (SCFA)-producing bacteria contributing to the support of brain activity related to
fatigue [255,256].

6. Nutritional and Probiotic Interventions to Modulate GM and Change
Effort Sensitivity: The Hypotheses

Precision nutrition approaches are being developed to provide comprehensive and dy-
namic nutritional recommendations tailored to individual variables, including microbiota,
health status, and dietary patterns [257]. Generally, microbiota-based precision nutrition
approaches seek to optimise GM and its modulating ability. In this regard, probiotics-based
precision nutrition has been preliminarily explored to modulate the GM–brain axis us-
ing mainly probiotics [258], which are defined as live microbes that, when introduced in
adequate quantities, confer health benefits on the host [259]. Furthermore, according to
the influence of probiotics reported in other areas, such as against several GM dysbiosis
conditions, or the positive effect, even in clinical trials, on chemotherapy side effects [260]
and infections [261], we could hypothesise their positive results in sports, performance,
and effort tolerance-related areas in the future. However, despite promising results, the
consumption of probiotics in food and/or supplements has shown a common limitation
in bioavailability and effect duration, regardless of the area of application, as they are not
maintained in the intestine [262].

To address this limitation, microbiome-based precision nutrition is recommended, in-
cluding probiotics and prebiotics to promote the growth of beneficial gut microbes, thereby
favouring the natural development of the GM and potentially extending its metabolic ef-
fects [263]. In other words, combining probiotics and prebiotics produces the first bioactive
metabolites directly in the human gut. Secondly, stimulating target bacteria not only to
colonise but also to maintain themselves in the intestine, consequently, has a potential
long-term effect.
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Although the International Society of Sports Nutrition (ISSN) concluded that probiotics
have strain-specific effects in athletes [264], most studies associate effort tolerance-related
phenotypes with specific bacteria at the genus or species level (see Table 1). Therefore,
selecting target bacteria associated with effort tolerance-related phenotypes should be done
by prudent criteria and should be investigated in the future.

In summary, current evidence allows for the description of target bacteria with some
of the most functionally evidenced effort tolerance-related phenotypes associated with neu-
rotransmitters and gut metabolites. In this sense, several studies have associated different
bacteria with neurotransmitter regulation, specifically regarding dopamine [71,89–100], sero-
tonin [71,89–94,101–104], acetylcholine [71,89,91,92,105–110], GABA [71,91–93,111–119], and
noradrenalin [71,91–93,98,120] (see Table 1). Similarly, there is increasing evidence of the
contribution of specific bacteria to emotional balance [98,103,114,121–139]. The GM influ-
ence on its phenotype appears to be related, at least in part, to neurotransmitter regulation
due to the reported bacteria’s psychoactive ability; therefore, they have been preliminarily
selected as target bacteria. On the other hand, as previously reported, the SCFAs’ pivotal
role, specifically butyrate [140–174] and propionate [147,158,160,175–200] (see Table 1), in
the overall functionality of the GM, and potentially in effort tolerance, is strongly supported
by the scientific literature.

It is worth noting that part of the current scientific evidence on a bacterium’s ability
to produce a specific metabolite is based on in vitro studies. In vitro studies are essential
for generating knowledge, but they are insufficient for determining whether a bacterium
behaves the same way in a real biological system. To assess the potential of a bacterium
on human health, in vivo studies must be performed. For example, to determine if a
bacterium meets the requirements of a potential probiotic strain, various in vitro tests are
first conducted. Following this, in vitro and in vivo safety assessments, clinical trials, and
in vivo efficacy assessments are conducted to ensure the product’s safety and effectiveness
in humans. There is no universal international standard to determine the safety of a
probiotic for humans. Suppose a bacterium is considered safe for humans. In that case, it is
classified as “Generally Recognised as Safe” (GRAS) by the United States Food and Drug
Administration, or it is included in the “Qualified Presumption of Safety (QPS) list” by the
European Food Safety Authority (EFSA) [265].

The bioavailability of GM key metabolites, neurotransmitters, and neuromodulators
is affected by the cooperative and competitive relationships between bacteria within the
microbial community. Cooperative relationships primarily refer to cross-feeding, where a
product generated by one bacterium is utilised as a substrate by another [266]. There is an
example of bidirectional cross-feeding between target bacteria Akkermansia muciniphila and
Eubacterium hallii. A. muciniphila degrades host mucus and generates 1,2-propanediol that
supports the growth of E. hallii. In return, E. halli produces pseudovitamin B12, which is
used by A. muciniphila as a cofactor for converting succinate to propionate [151]. Bacteria
compete to utilise the same energy resource, as observed for target bacteria A. muciniphila
and Bacteroides thetaiotaomicron, which are both mucolytic [151,267].

The final target-bacteria selection is detailed in Table 1, indicating which bacteria
have been associated with each effort tolerance-related phenotype and the corresponding
literature references in each case. As can be seen, there is currently abundant and coherent
scientific evidence regarding effort tolerance-related phenotypes and GM. Interestingly,
some target bacteria have been associated with regulating more than one phenotype, such
as Streptococcus thermophilus and Lactobacillus plantarum, both of which are involved in
regulating acetylcholine, dopamine, and serotonin, and the latter is also associated with reg-
ulating GABA (Table 1). In addition, it is noteworthy that 17 of the 65 target bacteria listed
in Table 1 are considered probiotics and are included in the revised list of microorganisms,
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with QPS-recommended microorganisms, for safety risk assessments carried out by the
EFSA (https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps,
accessed on 26 July 2025). The target bacteria included in the EFSA list are Bifidobacterium
(B. adolescentis, B. animalis, B. bifidum, B. breve, and B. longum), Lactobacillus (L. acidophilus, L.
brevis, L. casei, L. delbrueckii, L. helveticus, L. paracasei, L. plantarum, L. reuteri, L. rhamnosus, L.
salivarius, and L. lactis), and Streptococcus thermophilus.

Therefore, we propose that these types of target bacteria have a high potential to
influence effort tolerance and overall health positively, and are especially promising as
targets in microbiome-based precision nutrition. Hence, a microbiome-based precision
nutrition approach is proposed for effort tolerance-related GM optimisation (comprising
phenotypes related to the regulation of the neurotransmitters dopamine, serotonin, acetyl-
choline, GABA, and noradrenaline, as well as emotional balance and the SCFAs butyrate
and propionate).

7. Limitations
Despite the strong evidence presented here regarding the potential of microbiome-

based precision nutrition, the practical application of this food recommendation should be
tested in future longitudinal studies, where different individuals are analysed before and
after a precision nutrition intervention to improve effort tolerance by GM in the mid- to
long-term. Although it is possible to change the composition of the microbiota through
food in the short term, the objective should be to maintain these changes in microbiota
composition [268] and, consequently, that the potential benefit in effort tolerance would be
durable. In this regard, a microbiome-based precision nutrition approach could facilitate
the individual identification of target diet components by a nutrition professional, who
must consider the specific requirements of each person due to food allergies or incompati-
bilities between specific diet components and particular medications or treatments. The
present investigation of this topic is scarce, and no previous studies have proposed a similar
hypothesis as described here. For this reason, some of the proposals presented here cannot
be demonstrated or replicated. Although we inform the individual of their fatigue and
discomfort threshold during maximal exercise, we do not present any proposal for measure-
ment. The Borg scale has been employed for decades, connecting individual perceptions to
physiological limits during maximal effort competence. Therefore, a separate analysis of
the GM and different NTs related to maximal effort tolerance could be proposed for future
study. These limitations observed here are the same as those observed in other studies
which recently describe the connection between some neuropsychological pathologies,
such as depression, anxiety, hyperactivity, and even neurodegenerative diseases. Despite
the present limitations, this article could contribute to considering the GM state in states of
physical underperformance associated with fatigue or discomfort tolerance.

8. Conclusions
An appropriate management of tolerance to effort and discomfort during intense en-

durance exercise is a key factor for successful performance in competition. Higher tolerance
for effort and discomfort is certainly an advantage for competitive athletes. In this context,
the GM state is physiologically important for the athlete’s health, exercise performance,
and competition success, which is also associated with improved sensory effort tolerance.
Previous studies in other medical areas have suggested that the GM composition can
improve pain tolerance during degenerative injuries, such as osteoarthritis, as well as in
medical treatments, including chemotherapy or post-surgery states. Concerning endurance
performance, only a few data are available on the potential role that certain GM phenotypes
could play in increasing the maximal tolerance to effort and fatigue. Here, we hypothesise

https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps
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that GM status may modify cognitive processes of discomfort, pain, and/or effort during
intense exercise through the modulation of systemic and local inflammation, gut barrier
permeability, vagal signalling, and the production of metabolites and neurotransmitters in
the intestines, as well as their direct connection with the brain. Furthermore, we propose
specific bacteria that have been described as modulators of different GM metabolites related
to the regulation of pain, discomfort, and effort tolerance through the modulation of gut
peptides, hormones, and neurotransmitters. The GM is modified through exercise in ath-
letes, but at the same time precision nutrition and probiotics may be optimal for modulating
specific perceptual responses and brain sensations. Future studies should evaluate whether
perceptions resulting from high-intensity training are necessary to stimulate the GM and
the increase in particular bacteria related to the favourable modulation of gut permeability
and anti-inflammatory levels. It is reasonable to think that a favourable GM state could
improve CNS connections related to effort tolerance, stimulating areas of the brain involved
in emotions and perceptions.
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