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A leptin-based Bayesian
inference of a pro-satiety state
reflects a basal circadian rhythm
in women with obesity
Qing Xiang, Saman Khazaei and Rose T. Faghih*

Department of Biomedical Engineering, Tandon School of Engineering, New York University, New
York, NY, United States
Introduction: Leptin, primarily secreted by adipose tissue, is a critical hormone

involved in regulating energy balance and food intake by inducing satiety.

Although several hormones influence satiety, leptin plays a dominant role in

long-term satiety regulation.

Methods: We apply a state-space estimation framework using Bayesian filtering

to infer continuous, long-term pro-satiety states from plasma leptin

concentrations collected from premenopausal women with obesity. Our

approach adopts methodologies previously applied to biosignals such as skin

conductance and cortisol data to estimate latent states, leveraging the features in

the leptin secretory pulses and plasma leptin levels. Additionally, we investigate

the potential influence of meals, sleep, and bromocriptine treatment on the pro-

satiety states. We introduce the High Satiety Index (HSI), a direct, long-term

satiety measure based on leptin secretion dynamics, minimizing biases inherent

in conventional assessment methods.

Results: Comparisons of the estimated state in different time windows show that

the pro-satiety state inferred by leptin secretion is significantly higher during

sleep, aligning with a circadian rhythm. The estimated state does not show a

significant variation in response to meal intake or bromocriptine treatment.

Discussion: The leptin-based estimator reflects basal variations of satiety in

women with obesity. This framework shows the feasibility of applying Bayesian

filtering to track satiety and can be further developed to perform a

multimodal estimation.
KEYWORDS

satiety, leptin, obesity, marked point process, Bayesian filtering, circadian rhythm
1 Introduction

Leptin is a hormone secreted primarily in the adipose tissues (fat cells) and is associated

with body weight (1, 2). It regulates body energy and food intake by inducing satiety (1, 3–6).

Although other hormones such as gut hormones also affect satiety, leptin is a major factor

that affects long-term satiety (7, 8). Leptin provides information on the energy storage in the
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human body to the brain. As fat accumulates, more leptin is released

and acts in the hypothalamus, leading to high satiety and behaviors

that will reduce energy intake (9). Previous studies have conducted

and discussed several methods of satiety measurement, including

bipolar and unipolar scales (10) and appetite ratings using the visual

analogue scale (VAS) (11, 12). However, these measurements are

subjective and may require consideration of various conditions under

which the measurements are taken (10). The measurement of satiety

is often under the guideline of the satiety cascade, first introduced by

Blundell et al. in (13). The cascade describes short-term and long-

term aspects that affect satiety. It also distinguishes short-term and

long-term satiety by naming the former “satiation” and the latter

“satiety” (13). The former refers to the feeling that stops eating,

meaning that it is mainly affected by sensory factors such as gastric

distension (7). Satiety, or more precisely long-term satiety, on the

other hand, determines the beginning of meals and is often

considered the opposite of hunger (14). Long-term satiety is often

measured between meals, but the measurement is usually

complicated by many internal and external factors (7).

Other hormones are also involved in the satiety cascade, such as

ghrelin, a hunger-inducing hormone (13, 14). Ghrelin is secreted

from the stomach and has a short-term effect of increasing appetite

(15). It does not affect leptin but acts as a counterpart to leptin and

can be seen as an anti-satiety feature (16), as they both act in the

hypothalamus and affect downstream neural signaling that leads to

food related behaviors (8). Leptin’s primary role is to regulate

energy storage in the body, but its regulation is asymmetric, as it

is more effective in replenishing fat storage when it is low than

resisting obesity (8). Giving leptin’s characteristics, our goal is to

decode a continuous pro-satiety state from plasma leptin

concentration collected from a cohort of women with obesity, as

an effort to measure the long-term basal satiety in an objective way.

Many latent state estimation schemes have been developed

based on state-space models. Information extracted from

biosignals and behavior measurements has been used as

observations from which the state is estimated (17). These state-

space methods have been applied in various fields including

behavioral learning (18–21), movement decoding (22, 23), latent

state underlying neural spiking estimation (24, 25), and sleep onset

process tracking (26). The estimators developed in these studies

often utilized Bayesian filtering for processing binary observations.

Moreover, Wickramasuriya et al. (27) introduced a marked point

process (MPP) plus continuous observation estimator that takes the

binary sequence of impulse occurrences underlying sweat secretion

as one of the observations to estimate the hidden sympathetic

arousal state. In this research, we implement a similar state-space

approach, leveraging information extracted from plasma leptin

measurements and utilizing Bayesian filtering.

Similar to skin conductance signals that arise from sweat

secretion by sweat glands near the measurement site, blood leptin

comes from fat cells (1) and can be modeled by a two-compartment

state-space model (28). In addition, leptin pulse amplitudes and

inter-pulse intervals have similar distributions to sweat secretory

pulses (29, 30). The estimator applies Bayesian causal inference

which is well-suited for decoding the latent arousal state from skin
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conductance and latent energy state from cortisol given the causal

links (27). But this estimator cannot directly decode long-term

satiety from leptin data. Unlike the relationship between the arousal

state and sweat secretion, where the hidden state causes the

secretion, satiety is an effect of leptin (6), which means that the

direction of causality is the opposite. However, we assume a latent

pro-satiety state that controls leptin secretion, and this pro-satiety

state can be an indicator of a person’s overall satiety. Since the state

estimation scheme assumes a causal link between the hidden state

and leptin secretion, and leptin controls long-term satiety (5, 6), the

estimated state based on leptin may display the dynamics of a

person’s basal satiety over time. Figure 1 illustrates our proposed

satiety inference scheme.

After state estimation, to investigate the latent state’s potential

association with food intake, we compare the estimated state before,

during, and after each meal. We also compare wake and sleep

periods since it has been reported that leptin follows a circadian

rhythm (4, 31). The original study of the dataset used in this study

was designed partly to test the effect of bromocriptine on obesity

(32). With this satiety inference framework, we also examine the

effect of bromocriptine treatment on the estimated pro-satiety state

during these mentioned windows, providing a new perspective in

testing the drug’s effect. We define a High Satiety Index (HSI) that

provides a judgment of the participant’s basal satiety status based on

the estimated state. With this objective method of satiety evaluation,

continuous tracking and automated control systems can be

implemented in portable devices to monitor and influence a

person’s satiety. It is also a step toward a multimodal method of

satiety inference and a monitor for dynamic latent health status in

the human body.
2 Materials and methods

2.1 Dataset

We use leptin data collected in the previous clinical studies by

Kok et al. (32–34). The original clinical study was approved by the

Medical Ethics Committee of the Leiden University Medical Center

and conducted based on the Helsinki Declaration (32). The written

acknowledgment of informed consent for participation was

obtained from all participants. The participants were 18 healthy

premenopausal women with obesity (BMI 30.1–40.5kg/m2, age 22–

51 years with mean = 37.5 ± 1.7) who were not under the influence

of any medication or drugs. Participants with acute or chronic

disease, depression, head trauma, habits of smoking or alcohol

consumption, recent transmeridian flights, nightshift work, weight

change, blood donation, or participation in another clinical trial

were excluded. The data were gathered during the early follicular

phase of their menstrual cycles confirmed by plasma estradiol and

progesterone levels, to minimize hormonal variability between

individuals and across measurements. All, and all participants

were served with the same meal and had a strict meal and sleep

schedule. The meals consist of liquids (16% proteins, 49%

carbohydrates, and 35% fat) for a total of 2100 kilocalories per
frontiersin.org
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day. The meals periods are from 09:30 to 10:00, 13:00 to 13:30, and

18:30 to 19:00. The sleep period is from 23:00 to 07:30 on the next

day. The trial is 24 hours long, from 09:00 to 09:00 on the next day,

following 7 days of placebo treatment. Plasma leptin concentration

levels were measured from blood samples using radioimmunoassay,

which has a detection limit of 0.5 ng/L, at 10-minute intervals

throughout this period. The same protocol was repeated four weeks

later with the same participants who received a 2.5 mg dose of

bromocriptine twice per day for 7 days this time.

In their study, Reddy et al. (28) extracted the underlying

secretory pulses as an MPP through a deconvolution method

based on a state-space model. They also reconstructed the leptin

level using the MPP. In this study, we utilize both the extracted

MPP and the reconstructed leptin level as inputs to the estimator.
2.2 Leptin-related pro-satiety state
estimation

To estimate the hidden pro-satiety states that give rise to leptin

secretory events, we employ an MPP estimator with continuous

observation that involves the inter-pulse intervals, pulse amplitudes,

and the plasma leptin level altogether. Unlike a binary estimator

that treats the secretory pulse sequence as a point process where

pulse amplitudes are ignored (35) or an MPP estimator that

estimates the hidden state based on the MPP only (17), this

approach assumes linear relationships between both the hidden

state and the MPP and between the state and the plasma leptin level.
Frontiers in Endocrinology 03
In their previous study, Wickramasuriya et al. applied such an

estimator to estimate arousal state based on skin conductance and

energy state based on blood cortisol level (27). The leptin pulses

studied in this paper were recovered based on the same state-space

model structure as applied in the estimation of skin conductance

and cortisol pulses (27, 28). Since there are very few pulse events (29

to 45) compared to the total length of 1441 time instants where a

pulse can occur, a substantial portion of the MPP is 0 which

trivializes the nonzero amplitudes (28). To solve this, we chose

larger time bin sizes based on the minimum time interval between

pulse events for each MPP and resampled the data. We use the same

state dynamics and algorithm to decode leptin secretion. The state

dynamics is:

xj = xi−1 + ej, (1)

where xj is the state at time instant j and ej ∼ N (0,s 2
e ) is the

process noise. This definition assumes a random walk process that

controls the state’s evolution over time, which was chosen to model

neural states in several previous works as well as the skin

conductance study (18–20, 24, 26). We denote the occurrence of

a pulse in the MPP as nj∈ (0,1). njis a Bernoulli-distributed random

variable with mass density p(nj = 1)nj (1 − p(nj = 1)1−nj ). Let pj =

p(nj = 1), then pj is related to the state variable xjvia a logit

transformation according to the theory of generalized linear

models (36):

log  (
pj

1 − pj
) = b0 + b1xj, (2)
FIGURE 1

Pro-satiety state evolution and basal satiety inference scheme. xjis the leptin-related hidden pro-satiety state variable at time instant j to be
estimated. nj, rj, and sj are observations and denote leptin pulse occurrence, leptin pulse amplitude, and plasma leptin concentration, respectively.
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pj =
1

1 + e(−b0+b1xj)
, (3)

where b0 and b1 are coefficients to be determined.

We further define the linear relationship between the leptin

secretory pulse amplitudes rj and the state variable xj as:

rj = g0 + g1xj + nj, (4)

where g0 and g1 are coefficients to be determined, and nj ∼
N (0,s 2

n ) is the measurement noise (27).

Based on the binary variable njand the continuous variable rj the

joint probability density function for an observation at a time

instant given the hidden state is,

p(nj ∩ rjjxj) =
1 − pj, if  n = 0,

pjffiffiffiffiffiffiffiffi
2ps 2

n

p e
−(rj−g0−g1xj )

2

2s2n , if  n = 1:

8><
>: (5)

This is based on the assumption that the distribution of the

amplitudes of the leptin secretory pulses can be modeled by a

Gaussian model, which is proven to be effective in our previous

study (30). The Gaussian distribution is also assumed to be a proper

model for the distribution of the skin conductance pulses (35).

When no pulse is observed, rj is not involved.

In addition to rj, we relate the reconstructed plasma leptin level

sj to the state variable xjvia:

sj = d0 + d1xj + wj, (6)

where d0 and d1 are coefficients to be estimated, and wj ∼
N (0,s 2

w ) is the measurement or modeling noise (27). The original

continuous-valued leptin level from plasma measurements has a

lower resolution (10-minute time bin size) than the extracted

underlying pulses (1-minute time bin size). To address this

problem, we reconstruct the continuous-valued leptin level using

the extracted pulses. The reconstructed results according to the

state-space model of leptin secretion defined in the previous chapter

closely resemble the original measurement (28). Now the state xj
gives rise to both the MPP observation and the plasma leptin level

observation with 1-minute time bin size. Although xj is linearly

related to both the MPP and the reconstructed leptin level, the

overall model is nonlinear due to xj’s relationship with pj (27).

To estimate the hidden state xj and s 2
e , we apply an expectation-

maximization (EM) algorithm. The EM algorithm consists of two

steps: E-step, where we predict the current state and the process

noise limit based on the initial or previous state prediction; and M-

step, where we estimate the parameters that maximize the

likelihood of the predicted state variable. Based on Equations 1–6,

the posterior density function for the E-step is (27):

p(xjjy1 : j) =
p(xjjy1 : j−1)p(nj ∩ rjjxj)p(sjjxj)

p(yjjy1 : j−1)
, (7)

where yj denotes the collective observations of the MPP and the

reconstructed leptin level.
Frontiers in Endocrinology 04
2.2.1 E-Step
Based on Equation 7, we implement Bayesian filtering and

utilize both a forward filter and a backward smoother in the E-step,

as applied in the skin conductance study (17, 27, 35). The forward

filter estimates xj jj using all previous observations n1 : j, and the

backward smoother estimates xj Jj using all observations n1 : J (35).

The following shows one iteration of the E-step which involves a

Gaussian approximation (18, 35).

Predict:

xjjj−1 = xj−1jj−1, (8)

s 2
jjj−1 = s 2

j−1jj−1 + s 2
e , (9)

Update:

if nj = 0

Cj =
s 2
jjj−1

d 2
1s 2

jjj−1 + s 2
w
, (10)

xjjj = xjjj−1 + Cj s 2
wb1(nj − pjjj)

�
+d1(sj − d0 − d1xjjj−1)�,

(11)

s 2
jjj =

1
s 2
jjj−1

+ b2
1pjjj(1 − pjjj) +

d 2
1

s 2
w

" #−1

, (12)

if nj= 1

Cj =
s 2
jjj−1

s 2
ns2

w + s2
jjj−1(g1s

2
w + d1s 2

n )
, (13)

xj j=xjjj−1+Cj½s 2
n s 2

wb1(nj−pjjj)+g1s 2
w (rj−g0−g1xjjj−1)+d1s 2

n (sj−d0−d1xjjj−1)�,j
(14)

s 2
jjj =

1
s2
jjj−1

+ b1pjjj(1 − pjjj) +
g1
s 2
n
+
d1
s 2
w

" #−1

: (15)

Note that since pj|j is calculated using xj|j (11), and (14) has xj|j
on both sides of the equation which is solved numerically by the

Newton-Raphson method. Besides, the algorithm switches between

two ways of updating based on nj’s value. This switching is to

account for the different cases in (5) for the MPP.

After predicting the state variable and the variance at each time

bin, we improve the predictions by applying the backward smoother

(17, 27, 35, 37):

Aj =
s 2
jjj

s 2
j+1jj

, (16)

xjjJ = xjjj + Aj(xj+1jJ − xj+1jj), (17)

s 2
jjJ = s2

jjj + A2
j (s

2
j+1jJ − s 2

j+1jj) : (18)
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2.2.2 M-Step
We derive g0, g1, d0, d1,s 2

n ,s2
w ,s 2

e by maximizing the expected

log-likelihood L defined as

L =o
J

j=1
nj(b0 + b1xj) − log  (1 + eb0+b1xj )

−
~Jj j
2 log  (2ps 2

v ) −o
j∈~J

(rj − g0 − g1xj)2

2s 2
v

− J
2 log  (2ps

2
w ) −o

J

j=1

(sj − d0 − d1xj)2

2s 2
w

− J
2 log  (2ps

2
e ) −o

J

j=1

(xj − xj−1)
2

2s 2
e

,

(19)

where ~J denotes the sequence of locations where pulses occur.

To estimate b0 and b1, we apply one of the two approaches

mentioned in (27). From Equation 2, we have

b0 = log  
p0

1 − p0

� �
, (20)

if xj = 0 at time j. We set b1 = 1 and assume that x0 ≈ 0, and the

baseline probability pb approximates p0. pb is taken to be the

number of pulses in the MPP divided by the length of the MPP:

pb =
oJ

j=1nj
J

(21)

The algorithm based on Equations 8–21 iterates between the

two steps until convergence, which we consider is achieved when

the mean distance between obtained variables in consecutive

iterations is smaller than 10−8 (17, 18, 27, 35).
2.3 High satiety index

Satiety index has been given to food, suggesting how much

satiety different types of food can induce in a person (38). Inspired

by the High Arousal Index defined in (35), we define the High

Satiety Index (HSI) based on the estimated pro-satiety state in

humans as mentioned before. The HSI is expressed as the

probability of the estimated state exceeding a certain threshold. It

indicates the certainty of the participant having high satiety based

on observation, similar to the ideal observer certainty defined in

(18). We set the threshold to be the median of the state value so that

it may illustrate a potentially significant change from wakefulness to

sleep period during a full day. Since the estimated state reflects long-

term satiety, the HSI indicates the baseline change of the

participant’s satiety. When the HSI is near 1, it suggests that the

participant is very likely satiated at that time and has no appetite,

whereas when it is near 0, the participant potentially wants to start

eating. It is worth noting that the HSI might not reflect the direct

feeling of hunger or fullness which are more related to short-term

satiety or satiation (14).
Frontiers in Endocrinology 05
3 Results

We applied an MPP with a continuous observation estimator to

uncover the leptin-related hidden state of the 18 participants. The

estimator assumed causal links both between the hidden state and

the leptin secretory pulses and between the hidden state and the

reconstructed plasma leptin levels. Through the EM algorithm, we

obtained the estimated pro-satiety state over 24 hours for the pre-

treatment and post-treatment samples of each participant. For

comparison, we also modified the estimator to apply two other

versions. One only considers the MPP and the other only considers

the continuous observation. The solely MPP-based estimator was

implemented in (35), where the authors linked the pulsatile sweat

secretion modeled as an MPP to the sympathetic arousal state. The

estimator design is the similar to the estimator described above

where a logit transformation is applied to linearly link the pulse

probability to the state variable. Similarly the other version that

is solely based on the continuous observation considers the

relationship in 6 alone, thus modifying the update equations and

cost function in the EM algorithm. The overall structure remains

the same in both versions and their results are compared to

the main estimator, which is based on both MPP and

continuous observation.

The results show that the estimated state based on MPP alone

does not vary much over time compared to the other two versions

while having relatively wide confidence intervals. An example is

shown in Figure 2. From the solely MPP-based estimator, the

estimated probability of pulse occurrence also has little

oscillations through our the day, while the HSI stays close to the

middle for the majority of the time. On the other hand, the

estimator solely based on the continuous observation overfits the

data. At the same time, the MPP plus continuous observation

estimator balances the variances of the MPP and the leptin levels

to output a meaningful result that reflects changes in both inputs

and avoids overfitting.

Since no pulse sequence is involved in the continuous

observation estimator, pulse occurrence probability is not

meaningful; likewise, due to the lack of a relationship between the

leptin levels and the hidden state, we cannot reconstruct leptin

levels from the state estimates in the MPP estimator. A comparison

of the results produced by these three versions of estimators for an

example participant is shown in Figure 2. Results for all participants

are available in the Supplementary Materials.

In the results of the MPP plus continuous estimator, we saw a

dominant pattern of increased plasma leptin level during sleep in all

samples, regardless of the bromocriptine treatment (28) as shown

by Participant 6’s state estimation result in Figure 3. The estimated

state shows a general trend that consists of an increase during the

day and a rapid decrease before waking, with a peak around mid-

sleep and a nadir in the morning.

This is also reflected by the HSI in the majority of cases. Example

estimation results are shown in Figure 3. Estimation results of other

participants can be found in the Supplementary Materials.
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To evaluate potential meal influence on the pro-satiety state, we

calculated the mean state value during different meal-related time

periods. Figure 4 shows the distribution box plots of the mean state

values of all participants. Specifically, in these time windows, a

participant might be preparing to eat, eating, or digesting food.

Comparing the estimated state during these time windows may
Frontiers in Endocrinology 06
inform pro-satiety state changes due to having meals. According to

the trial design that includes a strict schedule for meals, we focus on

4 time windows for each meal:
1. 29 minutes to 0 minutes before the start of the meal period

(-30 window),
FIGURE 3

Examples of pro-satiety state estimation results of the MPP plus continuous observation estimator. (A) Plasma leptin measurements (black),
reconstructed plasma leptin concentration level from deconvolution result (red), and reconstructed plasma leptin concentration level from state
estimate with a 95% confidence interval (blue). (B) Leptin secretory pulse events. (C) Estimated state with a 95% confidence interval. (D) Probability of
leptin pulse occurrence with a 95% confidence interval. (E) The High Satiety Index (HSI). Meal periods are highlighted in red, and sleep period is
highlighted in green. Est, estimation; Cont, continuous observation; MPP, marked point process.
FIGURE 2

Examples of pro-satiety state estimation results by different estimators. Figures from left to right are estimator based on continuous observation,
estimator based on MPP, and estimator based on MPP plus continuous observation, respectively. (A) Plasma leptin measurements (black),
reconstructed plasma leptin concentration level from deconvolution result (red), and reconstructed plasma leptin concentration level from state
estimate with a 95% confidence interval (blue). (B) Leptin secretory pulse events. (C) Estimated state with a 95% confidence interval. (D) Probability of
leptin pulse occurrence with a 95% confidence interval. (E) The High Satiety Index (HSI). Meal periods are highlighted in red, and sleep period is
highlighted in green. Est, estimation; Cont, continuous observation; MPP, marked point process.
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Fron
2. the 30-minute meal period (meal window),

3. 1 minute to 30 minutes after the end of the meal period

(+30 window), and

4. 31 minutes to 60 minutes after the end of the meal period

(+60 window).
We expect that the state values will not show significant change

during each meal-related window than in all previous windows,

since our estimator is solely leptin-based which is not sensitive to

food intake in a short period (7). To test if there is an increase or
tiers in Endocrinology 07
decrease and if the increase or decrease is consistent during and one

hour after meals, we made six comparisons with the median state

value for each meal-related time window. Specifically, we perform a

two-tailed Wilcoxon signed rank test (39) on each pair of data to

test if they are different with statistical significance.

According to Table 1 and Figure 4, there is a consistent increase

for at least one hour since the beginning of lunch. The distribution

of state values during the lunch related windows seem to spread out

more across all participants after bromocriptine treatment, but the

general increase remained statistically significant. Besides, both pre-
FIGURE 4

Mean pro-satiety state values across distinct time windows relative to meals. Each meal window (“breakfast,” “lunch,” and “dinner”) represents the
30-minute period during which participants had their first, second, and last meals of the day, respectively. Other 30-minute windows include “-30”
(from 29 minutes before to the start of each meal), “+30” (1 to 30 minutes following each meal), and “+60” (31 to 60 minutes following each meal).
Box plots covering the wake (07:31–23:00) and sleep (23:01–07:30) periods are also shown.
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treatment and post-treatment data show a much higher mean state

value during sleep than during wakefulness (p = 0.0002 and p =

0.0033). Wilcoxon signed rank tests comparing pre-treatment and

post-treatment data over the same time periods show no statistical

significant results.
4 Discussion

Using the MPP plus continuous observation estimator, we

obtain the hidden pro-satiety state that leads to the observation of

both the underlying leptin secretory pulses and the plasma leptin

levels. We also applied an MPP-based estimator without linking the

state to the reconstructed leptin levels. As demonstrated in Figure 2,

this estimator does not produce state values that have large

variations over time compared to the results from the other two

estimators. This is likely due to the fact that leptin pulses are more

spread out throughout the day and do not have a burst during any

short time window. To strengthen the influence of the leptin

secretory events, we downsampled the pulse sequences by

dividing them into segments and using a single pulse to represent

all pulses in each segment with an aggregated pulse amplitude. This

helps concentrate the influence of each pulse. However, since

almost no inter-pulse intervals are very small (30), the estimated

state is still relatively flat after downsampling the pulse sequence.

For estimating the pro-satiety state, adding the continuous leptin

concentration as a reference would make the estimated state more

informative, as it would show additional features which might

directly reflect the impact of leptin in the hypothalamus, leading

to downstream satiety related neural activities (8).

A simple state estimator based on continuous observation alone

can extract important trends from the data. However, this estimator

leaves out the influence of the timings and amplitudes of leptin

secretory pulses, and thus cannot produce meaningful probabilities

for the pulse occurrences. Algorithmically, since the estimator also

updates and minimizes the variances of the input, it quickly overfits

and presents a convergence issue. The formulation of the estimator

involves a forward filter and a backward filter. Without the MPP,

the forward filter resembles a Kalman filter that reduces noise based
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on the variance of the input (40, 41). However, since the estimator

also minimizes the input variance, it overfits the input as the

variance approaches 0. On the other hand, the output of the MPP

plus continuous observation estimator outputs a state that reflects

changes in the pulse sequences and the leptin concentration levels,

balancing features from both inputs.

The estimated leptin-related hidden states capture the general

trend of the reconstructed plasma leptin level which displays a peak

around midnight and decreases rapidly until reaching a minimum

in the morning. The HSI also shows a clear distinction between

wake and sleep in most results. However, some cases such as the

estimated state of the pre-treatment sample of participant 16

(shown in Figure 3) show more oscillation than the average

results. And the HSI also shows a relatively chaotic pattern. A

disrupted circadian rhythm of the biological system might have

been a cause of the participant’s obesity (42). Despite these cases,

our comparison and test results show that the wake-sleep difference

is statistically significant, and in most cases, the estimated states and

the HSI have patterns similar to the results of participant 6 shown in

Figure 3, suggesting a circadian rhythm (43). As expected, this

circadian rhythm resembles that of blood leptin levels (44, 45), but it

is more apparent. The near-zero HSI during most of the day in most

cases reflects low basal satiety, meaning that the participant may

have a good appetite under the right conditions (14). On the other

hand, the high HSI during nighttime suggests high basal satiety in

the participant who is unlikely to feel the need for food (14).

Moreover, leptin as a satiety hormone is not only regulated by wake

and sleep periods but also active and resting periods (46). The pro-

satiety state also reflects this behavior. In many cases such as

participant 6, both the pre-treatment and post-treatment samples

indicate a high satiety after dinner and before sleep. This might

suggest that the participants are relatively inactive though still

awake (46). The HSI derived from the pro-satiety state reveals

basal satiety status that can hardly be accurately measured through

self-reporting especially in a free-living setting due to

underreporting and misreporting (7).

By comparing the differences between time windows around

each meal, we have found a consistent increase in the estimated

state during the time windows after lunch across all participants.
TABLE 1 P-values of two-tailed Wilcoxon signed rank test on estimated state from each two meal-related windows.

Meals meal vs.-30 +30 vs.-30 +60 vs.-30 +30 vs.meal +60 vs.meal +60 vs. +30

Breakfast pre-
treatment

0.3491 0.3061 0.3720 0.6165 0.5566 0.3271

Breakfast post-
treatment

0.1570 0.1701 0.1989 0.1701 0.2668 0.5566

Lunch pre-treatment 0.0096 0.0123 0.0043 0.0123 0.0005 0.0002

Lunch post-treatment 0.0249 0.0004 0.0002 0.0002 0.0002 0.0002

Dinner pre-treatment 0.0347 0.1119 0.1570 0.3958 0.3491 0.2311

Dinner post-treatment 0.1989 0.2145 0.0854 0.2145 0.0347 0.0429
meal: meal window; −30: from 29 minutes before to the start of a meal; +30: 1 to 30 minutes following a meal; +60: 31 to 60 minutes following a meal. p-values less than 0.05 are in bold (indicating
statistical significance).
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However, such a pattern is not apparent after dinner and does not

show after breakfast. Further studies that focus on meal sizes and

compositions might provide us with more details on the reason

behind the discrepancy between the effects of the different meals

(38). Nonetheless, circadian rhythm is dominant and can

overshadow the effect of meals on long-term satiety if there is any

(43). The decrease in the pro-satiety state before waking could

extend to the morning and the breakfast period. The low or slowly

rising HSI during these time windows further supports that food

intake does not have an acute effect on the leptin-based pro-

satiety state.

The original study on the dataset has found a decrease in overall

mean leptin level after bromocriptine treatment (32). We expanded

on this comparison by comparing the pro-satiety states estimated

from pre-treatment and post-treatment data different time windows

for each participant. However, the results did not show a significant

change during any of the investigated time windows. Although it is

shown in the previous studies (28, 32) that the mean leptin level is

reduced after the treatment, bromocriptine does not affect the

diurnal pattern of the pro-satiety state. Future studies including

real-world monitoring studies may also implement this method in

testing the effects of other medication on satiety. The proposed

dynamic inference of satiety provides more details than traditional

tests on related hormones or surveys.

Feeling satiated involves an integration of hormonal signals in

the brain, including ghrelin secreted from the stomach and insulin

from the pancreas (7, 15). Insulin has a diurnal pattern exactly in

phase with that of leptin while it is more sensitive to food intake,

whereas ghrelin has a pattern reciprocal to that of insulin (7, 47).

This study focused on leptin and its link to the long-term aspect of

the satiety cascade (13). Based on our satiety inference scheme, a

multimodal estimator can be developed to incorporate more related

biosignals such as insulin, and ghrelin, which have short reaction

times to food intake (14). Nonetheless, using an unimodal

approach, we isolate the hormone and may have a clearer

understanding of its specific effect on human homeostasis. To

fully capture the satiety felt by a person, downstream neural links

need to be studied. In other words, how leptin and other hormones

signaling in the hypothalamus leads to behaviors such as food

seeking, food consumption, and meal termination requires

further investigation (48). Both a unimodal analysis of each

involved biosignals and a multimodal analysis of the biosignals

combined might be needed for determining their exact roles in

appetite control.

The presented unimodal algorithm may have better time

efficiency when implemented in real-world applications like

health monitoring devices. The leptin data collection required

measuring plasma leptin concentrations from blood samples

every 10 minutes for 24 hours (32). The details are presented in

the Methods section. This invasive way of data collection is not

practical for long-term monitoring and the development of an

automated wearable device. To increase temporal resolution, a

higher frequency of sample collection might be preferred. Thus,

non-invasive measurements are essential for a potential wearable
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device. Recently, studies have applied new technologies to measure

and monitor glucose, glucocorticoids, and other biosignals in non-

invasive or minimally invasive ways, such as electrochemical

continuous glucose monitoring (CGM) (49) and sweat-sensor

based CGM (50). Other CGM schemes include using optics or

microwaves (51). In addition, U-RHYTHM, a portable device that

collects interstitial fluid is capable of measuring glucocorticoids and

other hormones for a long period (52, 53). These examples have

shown that a better leptin measuring scheme is possible, and

implementing our method in a wearable device is achievable.

Since our long-term satiety estimator assumed relatively simple

links between observations and the latent state, the estimation

process is fast and can be done in real time. However, the

deconvolution for recovering the underlying pulses may take a

longer time, but a near real-time deconvolution algorithm is also

possible (54). In addition, the presented state estimation algorithm

is flexible and can be customized depending on the individual by

setting different hyperparameters (details on hyperparameters are

available in the Supplementary Materials). This could be a crucial

function for wearable devices that can adapt to users with different

health conditions.

In conclusion, this study applied an estimator to infer the 24-

hour basal satiety using leptin secretory pulses and the continuous

leptin levels. The estimated hidden states display a circadian rhythm

with a prominent increase during nighttime. This hidden state is an

indicator of long-term basal satiety grounded in the assumed causal

link between the hidden state and leptin secretion as well as between

leptin secretion and the pro-satiety state (7, 13). Despite limited

sample size, our method presents the feasibility of applying a

Bayesian framework to track satiety, demonstrating its practicality

in revealing person-specific hidden health status and providing a

new direction in drug testing and patient monitoring for future

studies with larger cohort sizes. Future studies may also incorporate

other satiety-related hormones such as ghrelin and insulin and

apply both a unimodal and a multimodal framework to reflect a

more complete spectrum of satiety. Furthermore, the same

method can be applied to investigate the differences in the pro-

satiety state and HSI across different weight groups. The results

might help design a more personalized treatment of satiety-related

diseases and diets for general health improvement. larger groups

of participants with different body weights should be studied under

the same framework to consider its correspondence with body

weight. Last but not least, with the rapid development of minimally

invasive and portable devices, the proposed satiety inference

method contributes to a real-world implementation of automated

monitoring and medication testing for satiety and potentially other

latent states.
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