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Genetic subtyping of obesity reveals 
biological insights into the uncoupling 
of adiposity from its cardiometabolic 
comorbidities
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Obesity is a heterogeneous condition not adequately captured by a single 
adiposity trait. We conducted a multi-trait genome-wide association analysis 
using individual-level data from 452,768 UK Biobank participants to study 
obesity in relation to cardiometabolic health. We defined continuous 
‘uncoupling phenotypes’, ranging from high adiposity with healthy 
cardiometabolic profiles to low adiposity with unhealthy ones. We identified 
266 variants across 205 genomic loci where adiposity-increasing alleles were 
simultaneously associated with lower cardiometabolic risk. A genetic risk 
score (GRSuncoupling) aggregating these variants was associated with a lower 
risk of cardiometabolic disorders, including dyslipidemia and ischemic heart 
disease, despite higher obesity risk; unlike an adiposity score based on body 
fat percentage-associated variants (GRSBFP). The 266 variants formed eight 
genetic subtypes of obesity, each with distinct risk profiles and pathway 
signatures. Proteomic analyses revealed signatures separating adiposity- and 
health-driven effects. Our findings reveal new mechanisms that uncouple 
obesity from cardiometabolic comorbidities and lay a foundation for 
genetically informed subtyping of obesity to support precision medicine.

Obesity is a major risk factor for a variety of cardiometabolic disease 
outcomes and is the consequence of intricate interactions between 
genes and environment1–4. Genome-wide association studies (GWAS) 
identified more than 1,000 genetic loci associated with obesity risk5 
and pointed to the central nervous system (CNS) as a key player in body 
weight regulation5,6. Despite these insights into the overarching bio
logy, our understanding of the mechanisms that control body weight is 
still limited. This could be, in part, because GWASs have so far analyzed 

one adiposity trait at a time, most often body mass index (BMI). Such 
single-trait GWASs ignore the vast heterogeneity among individuals  
with obesity in, for example, etiology, life course trajectory and  
cardiometabolic comorbidities.

Therefore, while single-trait GWASs have identified numerous 
loci5, they likely represent only a subset of the mechanisms underlying 
obesity. Multi-trait GWASs, on the other hand, hold the potential to 
reveal more layers of the underlying biology. For example, we and 
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bi-traits at genome-wide significance (P < 5 × 10−10), and for which the 
associations with both corresponding single traits reached nominal 
significance (P < 10−4) and that also colocalized (when the same under-
lying signal drives the associations with both single traits as well as 
with the bi-trait (Methods)) were considered uncoupling variants. As 
such, we identified 266 unique lead variants located in 205 loci (more 
than 1 Mb apart) across the 24 bi-traits (Methods and Supplementary 
Tables 2–4). Of the 205 uncoupling loci we identified, 139 have not pre-
viously been reported in the context of cardiometabolic uncoupling, 
whereas the remaining 66 replicate the majority of the 87 previously 
reported loci7–15. The remaining 21 did not reach significance in our 
study due to a more stringent significance threshold and differences 
in study design, traits and disease outcomes studied. Altogether, 
our analyses identified more than double the number of previously 
reported loci, in part driven by a larger sample size, but also by the 
use of individual-level data that allowed us to design new, continuous 
uncoupling phenotypes, as opposed to summary statistics used in 
previous studies7–11,14 (Supplementary Tables 2 and 5).

A genetic risk score (GRSuncoupling) associated with higher 
adiposity, but lower cardiometabolic traits
To assess the aggregate effect of the 266 uncoupling lead variants 
(variants that were associated with increased adiposity and lower 
cardiometabolic effects or vice versa), we created a genetic risk score 
(GRS) consisting of the 266 lead variants, GRSuncoupling (Methods and 
Supplementary Table 6). To compare GRSuncoupling with a proxy for 
adiposity that captures overall body fat without factoring in the car-
diometabolic component, we created another GRS consisting of 647 
variants that were significantly (P < 5 × 10−10) associated with BFP, GRSBFP 
(Methods). We tested the association of both GRSs with 16 adiposity 
and eight cardiometabolic traits (Methods, Fig. 2a and Supplemen-
tary Table 7). Both GRSs were associated with higher values of most 
adiposity traits; with effect sizes for GRSBFP tending to be generally 
larger than those for GRSuncoupling; however, compared to the GRSBFP, 
the GRSuncoupling was associated with a more favorable fat distribution. 
Specifically, a higher GRSuncoupling was associated with a lower (β < 0) 
MRI-derived visceral adipose tissue (VAT) to abdominal subcutaneous 

others have performed genome-wide searches for loci that uncouple 
excess adiposity from cardiometabolic risk and identified 87 loci for 
which the adiposity-increasing allele associates with lower cardio-
metabolic risk7–14. These uncoupling loci have implicated peripheral 
mechanisms, such as fat distribution, adipocyte function and differ-
entiation, and inflammation, but not the CNS15.

Here, we build upon our previous work11 and leverage individual- 
level data from 452,768 European participants in the UK Biobank to 
perform a comprehensive multi-trait genome-wide screen. We aimed 
to identify new genetic loci that uncouple adiposity from cardiometa-
bolic comorbidities by analyzing three adiposity and eight cardio-
metabolic traits, including lipid, glycemic and blood pressure traits. 
We identified 205 genetic loci, harboring 266 lead variants, where the 
adiposity-increasing allele is associated with a lower risk of at least one 
cardiometabolic trait. Follow-up analyses identified genetic subtypes 
of obesity with distinct pathways, cardiometabolic risk and serum 
protein profiles.

Results
Genome-wide screen identifies 266 adiposity-increasing 
alleles with protective effects on cardiometabolic health
We performed a genome-wide screen in up to 452,768 individuals of 
European ancestry from the UK Biobank to identify adiposity-increasing 
loci that have protective effects on cardiometabolic health. We analyzed 
three adiposity traits (BMI, body fat percentage (BFP) and waist-to-hip 
ratio (WHR)) and eight cardiometabolic traits (total cholesterol (TC), 
LDL cholesterol (LDL-C), HDL cholesterol (HDL-C), triglycerides (TGs), 
random glucose and HbA1c levels, systolic blood pressure (SBP) and 
diastolic blood pressure (DBP)) (Methods, Fig. 1 and Supplementary 
Table 1). We first created 24 ‘bi-traits’, which combine an adiposity and 
a cardiometabolic trait into a new phenotype, obtained by subtracting 
standardized values of one of the eight cardiometabolic traits from 
standardized values of one of the three adiposity traits. High values 
for a bi-trait represent high adiposity but low levels of the cardiometa-
bolic trait and vice versa (Methods and Extended Data Fig. 1). We next 
performed GWAS for each of the 24 bi-traits and each of the 11 single 
traits from which the bi-traits were derived. Variants associated with 
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Fig. 1 | Study overview. Overall steps and traits analyzed in the study. Bi-traits are obtained by subtracting standardized values of a cardiometabolic trait from an 
adiposity trait.
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Fig. 2 | Associations of genetic risk scores with anthropometric and 
cardiometabolic traits in the UK Biobank. a, Estimated per ten-allele change 
effect sizes of GRS–trait associations in UK Biobank European ancestry 
population for GRSuncoupling (in magenta) and GRSBFP (in blue). b,c, Estimated per 
ten-allele change effect sizes of GRS–trait associations in UK Biobank European 
ancestry population for each cluster-specific GRS (GRS 1–8, in red) and GRSBFP  

(in gray). Dashed circles indicate β = 0, indicating no association between 
each GRS and the trait. Points outside the circle represent positive GRS–trait 
associations, whereas those inside represent negative associations. The effect 
and reference alleles of GRS2, a cluster associated with lower WHR and higher 
blood pressure, were flipped to reflect a profile of higher adiposity and facilitate 
comparison with the other clusters.
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adipose tissue volume (ASAT) ratio, trunk fat:gluteofemoral fat (GFAT) 
ratio and liver fat fraction, whereas a higher GRSBFP was associated 
with a higher WHR, trunk fat:GFAT ratio and liver fat fraction, but not 
with VAT:ASAT ratio. Consistently, the GRSuncoupling had a larger effect 
on gynoid than on android fat percentage (android FP), whereas the 
opposite was seen for the GRSBFP.

For cardiometabolic traits, a higher GRSuncoupling was associated 
with a healthier profile; that is lower levels of LDL-C, TC, TG, HbA1c, 
glucose, SBP and DBP and higher HDL-C. A higher GRSBFP, on the other 
hand, was associated with higher TG, HbA1c, glucose, SBP and DBP  
and lower HDL-C, but no effect on LDL-C or TC (Fig. 2a and Supple-
mentary Table 7). This association signature of the GRSuncoupling was 
significantly different from that of the GRSBFP (P < 0.0001) (Fig. 2a and 
Supplementary Table 7).

In men and women separately, the association of GRSuncoupling  
with adiposity traits tended to differ for the fat distribution traits.  
Specifically, the association with a more favorable fat distribution 
(WHR, VAT:ASAT, trunk fat:GFAT ratio) was more pronounced in women 
than in men (Extended Data Fig. 2). This was mostly due to a smaller 
effect on abdominal fat accumulation (waist circumference and android 
FP) in women compared to men, whereas the effect on peripheral fat 
accumulation (hip circumference and gynoid FP) was not substan-
tially different between sexes. Despite these differences in fat distribu-
tion, associations with cardiometabolic traits were similar in men and 
women. No sex-specific effects for either anthropometric or cardio-
metabolic traits were observed for the GRSBFP (Extended Data Fig. 2).

GRSuncoupling associates with protective effect on 
cardiometabolic outcomes but with increased risk of 
weight-bearing diseases
To better understand the clinical impact of genetic predisposition 
to adiposity and cardiometabolic comorbidities, we performed a 
phoneme-wide association analysis (PheWAS) between each of the 
two GRSs (GRSuncoupling, GRSBFP) and 10,965 disease outcomes in the 
UK Biobank (n = 373,747) (Methods, Supplementary Table 8 and 
Fig. 3). Both scores were associated with increased risk of obesity.  
While GRSuncoupling is associated with a healthier cardiometabolic  
profile, it is also associated with an increased risk for other diseases, 
often weight-bearing diseases, to the same extent as GRSBFP. Specifically, 
a higher GRSuncoupling was associated with a lower risk of conditions 
related to lipoprotein metabolism (OR = 0.92, P = 1.4 × 10−89), essential 
primary hypertension (OR = 0.96, P = 1.7 × 10−27), noninsulin-dependent 
diabetes (OR = 0.94, P = 5.6 × 10−21), ischemic heart disease (OR = 0.96, 
P = 7.4 × 10−11), angina (OR = 0.96, P = 1.6 × 10−8) and acute myocardial  
infarction (OR = 0.96, P = 3.6 × 10−6) (Fig. 3), whereas a higher  
GRSBFP was associated with increased risk of these conditions; how-
ever, a higher GRSuncoupling was associated with an increased risk of 
noncardiometabolic, weight-related conditions, including cellulitis 
(OR = 1.05, P = 1.14 × 10−11), gonarthrosis (OR = 1.06, P = 9.9 × 10−25) and 
varicose veins (OR = 1.08, P = 7.9 × 10−26), similar to GRSBFP (Fig. 3 and 
Supplementary Table 8).

The 266 uncoupling lead variants group into 8 clusters with 
distinct cardiometabolic signatures
We sought to identify genetically defined subgroups among the  
266 uncoupling variants based on similarity of association with adi-
posity and cardiometabolic traits using NAvMix clustering analyses 
(Methods). As such, we identified eight clusters with distinct associa-
tion signatures (Fig. 4). Specifically, variants in three clusters (4,7 and 8) 
were associated with increased adiposity and protective effects across 
multiple trait groups, whereas lead variants in the other five clusters 
were associated with increased adiposity with protective effects on 
only one of the cardiometabolic trait groups.

We then calculated cluster-specific GRSs, GRS1–GRS8, which 
aggregate the effects of lead variants in each cluster and tested their 

association with anthropometric and cardiometabolic traits (Methods 
and Supplementary Table 6). These cluster-specific GRSs displayed a 
distinct association signature (Methods, Fig. 2b,c and Supplementary 
Table 7). For example, GRS4, GRS7 and GRS8 are associated with two  
or more cardiometabolic trait groups. Specifically, GRS4 is associated 
with higher overall adiposity (higher BFP, BMI, fat-free mass index 
(FFMI)) and favorable lipid and glycemic profiles (lower LDL-C, TC, TG, 
higher HDL-C and lower HbA1c), possibly mediated through a more 
favorable fat distribution (lower WHR, VAT:ASAT and android FP). 
GRS7 and GRS8 were mainly associated with lower TG and higher HDL-C, 
lower HbA1c and blood pressure (Fig. 2b,c and Supplementary Table 7).  
In addition to the stronger effects on HDL-C and TG, GRS7 differs  
from GRS8 in its association with adiposity. GRS7 has a strong effect on 
body fat distribution (for example lower WHR, VAT:ASAT and higher 
gynoid and lower android FP). On the other hand, GRS8 is associated 
with higher overall adiposity (BFP, BMI, gynoid and android FP, ASAT 
and SAT), lower FFMI, without an obvious effect on fat distribution 
(Fig. 2b and Supplementary Table 7). GRS3 and GRS5 are similarly  
associated with higher overall adiposity, with GRS3 being associated 
with lower blood pressure (SBP and DBP) and GRS5 with lower glycemic 
traits (glucose and HbA1c). GRS1 is associated with greater overall body 
size (BMI, FFMI and BFP), and with lower TG and higher HDL-C levels, but 
also with higher levels of LDL-C, TC and HbA1c. Of all cluster-specific 
GRSs, GRS6 has the strongest effect on overall body size. On the car-
diometabolic side, GRS6’s profile is opposite to that of GRS1; as GRS6 
is associated with lower LDL-C and TC levels, but also with higher TG 
and lower HDL-C levels, and high blood pressure and glycemic traits 
(Figs. 2b,c and 4). Finally, GRS2 is the only cluster where the adiposity 
effect is driven mainly by an association with WHR. A higher GRS2 
is associated with higher gynoid fat accumulation (WHR, VAT:ASAT  
ratio and trunk fat:GFAT ratio), but lower blood pressure. In terms of 
disease outcomes, we observed cluster-specific associations consist-
ent with the characteristics of each cluster (Supplementary Table 8).

These findings highlight the potential for GRSs to identify sub-
groups among individuals with obesity. The GRSuncoupling quantifies  
people’s risk of obesity without cardiometabolic comorbidities, 
whereas the GRSBFP quantifies people’s risk of obesity with cardio-
metabolic comorbidities. The cluster-specific GRSs provide further 
granularity to this subgroup identification.

GRSuncoupling association signature validated in an independent 
cohort
We validated the association profiles of GRSuncoupling, the eight 
cluster-specific GRSs (GRS1–8) and GRSBFP with adiposity and cardio-
metabolic traits in the Atherosclerosis Risk in Communities (ARIC) 
study, a population-based cohort (n = 15,792 individuals) (Methods and 
Supplementary Table 9). Similar to the UK Biobank, in ARIC, GRSuncoupling 
was associated with a healthier cardiometabolic profile with lower 
levels (β < 0) for glucose, TC, LDL-C, TG, SBP and DBP and higher HDL 
compared to GRSBFP. Both GRSs were associated with high adiposity 
including BMI, waist and hip circumference, and WHR, albeit GRSBFP 
generally had higher effect sizes (Extended Data Fig. 3a and Supplemen-
tary Table 10). Similarly, the association signature of the cluster-specific 
GRSs with adiposity and cardiometabolic traits corresponded to that of 
the UK Biobank (Extended Data Fig. 3b,c and Supplementary Table 10).

GRSuncoupling is associated with lower T2D and CHD incidence
The implementation of GRSs in other cohorts is straightforward and 
allows for the assessment of individuals’ predisposition to comorbidi-
ties. We tested associations of GRSuncoupling and GRSBFP with incident coro-
nary heart disease (CHD) and T2D in ARIC and the Mount Sinai BioMe 
Biobank, an electronic medical record-linked biobank (n = 50,000).  
A higher GRSuncoupling was associated with a significantly lower risk 
of both incident CHD (hazard ratio (HR) 0.95; 95% CI 0.92–0.98, 
per ten-allele change in GRS) and T2D (HR 0.96, 95% CI 0.92–0.99) 

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03931-0

(Supplementary Table 11), whereas a higher GRSBFP was associated 
with higher risk of developing T2D (HR 1.04, 95% CI 1.01–1.07), but not 
CHD (HR 1.01, 95% CI 0.99–1.04).

To evaluate whether lifestyle factors influence the effects of  
GRSuncoupling and GRSBFP on cardiometabolic disease risk, we strati-
fied ARIC participants by physical activity level (Methods). Within  
the physically active group, the protective effect of GRSuncoupling on 
T2D risk was enhanced (HR 0.88, 95% CI 0.80–0.97) (Supplementary 
Table 12), whereas the adverse association of GRSBFP was attenuated  
(HR 0.99, 95% CI 0.92–1.05). These findings suggest that physical  
activity may modulate the effects of GRSuncoupling and GRSBFP on T2D 
susceptibility. We did not observe the same effect for CHD.

GRSuncoupling already predisposes to higher adiposity but a more 
favorable cardiometabolic profile early in life
Among 3,457 Danish children and adolescents from the HOLBAEK study 
(Methods and Supplementary Table 13), the GRSBFP and GRSuncoupling were 
associated with higher overall adiposity (Extended Data Fig. 4a). Within 
the population-based cohort subset of 1,811 participants, both GRSs 
showed associations with BMI, to the same extent as those observed 
in the UK Biobank (for example, GRSuncoupling: 0.09 in UK Biobank  
and 0.08 in HOLBAEK) (Supplementary Table 14). Participants with 
a higher GRSBFP were more likely to present with a dysglycemic pro-
file (higher HOMA-IR, insulin, C-peptide), whereas the GRSuncoupling 
associated with a neutral glycemic profile and lower alkaline phos-
phatase (ALP) levels (Extended Data Fig. 4b). Moreover, having a higher  
GRSuncoupling associated with a lower risk of dyslipidemia (OR 0.89,  
95% CI 0.82–0.97) (Extended Data Fig. 4c).

Uncoupling loci and overall adiposity loci have distinct tissue 
and pathway enrichment profiles
We next performed enrichment analyses for the 266 uncoupling 
lead variants, using data-driven expression prioritized integra-
tion for complex traits (DEPICT) (Methods), to identify the tissues  
and gene sets in which potential candidate genes may be acting and 
compared these with the results for the 647 BFP variants. Genes located 

in BFP-associated loci were mainly enriched in the CNS (P = 0.002), 
consistent with previous observations for BMI-associated loci6. In  
contrast, genes located in the uncoupling loci were not enriched in the 
CNS (P = 0.74) and were mostly enriched in adipose tissue (P = 7 × 10−7), 
and in cardiovascular (P = 1.4 × 10−5), digestive (P = 7.8 × 10−4), endocrine 
(P = 2.5 × 10−4) and musculoskeletal systems (P = 2.5 × 10−5) (Fig. 5 and 
Supplementary Table 15).

In gene set enrichment analyses, we replicate previous findings  
for uncoupling loci, implicating insulin signaling, glucose homeostasis, 
lipid metabolism, immune and inflammatory response, and path-
ways related to adipose tissue biology (Supplementary Table 16). In  
addition, we identify gene sets not previously implicated, including 
those related to vascular development, skeletal muscle development, 
liver development, circadian rhythm, sex differentiation, among  
others, thereby implicating new biological processes.

On the other hand, genes in BFP loci were enriched for neuro
development and neuron differentiation including pathways  
related to brain development and regulatory mechanisms of the  
nervous system, consistent with previous literature6 (Extended Data 
Fig. 5 and Supplementary Table 16).

Cluster-specific gene set enrichment analyses implicated bio-
logical pathways that are consistent with their cardiometabolic health 
profile. For example, triglyceride lipase activity was highlighted for 
cluster 1, cardiovascular-related gene sets for cluster 2, muscle-related 
gene sets for cluster 4, transcriptional regulation of white adipose tis-
sue regulation for cluster 7 (Extended Data Fig. 6 and Supplementary 
Tables 16 and 17).

The uncoupling GRSs are defined by distinct plasma proteomic 
profiles
To further characterize the biological signature of the GRSs, we assessed 
their association with 2,920 Olink-derived plasma proteins in the UK 
Biobank (Methods and Supplementary Tables 18 and 19). In line with 
the finding that 80% of these proteins are associated with measured 
BMI in this population16, both the GRSBFP and GRSuncoupling were associ-
ated (false discovery rate (FDR) < 0.005) with a substantial number of 
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Fig. 3 | Association of genetic risk scores with disease outcomes in the UK 
Biobank. Phenome-wide association results of disease outcomes and GRSBFP  
(in blue) and GRSuncoupling (in magenta) performed using the PHEnome Scan 

ANalysis Tool (PHESANT) in 373,747 European participants. Data are presented as 
OR ± CI. ORs represent effect size estimates per ten risk-allele increments. Case–
control sample sizes for each outcome are presented in Supplementary Table 8.
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protein levels: 915 (31.3%) and 337 (11.5%), respectively, of which 208 
proteins were associated with both GRSs. Of these 208 overlapping 
proteins, 176 (85%) showed directional consistency in effect estimates, 
likely reflecting primarily adiposity-driven effects (Extended Data Fig. 7  
and Supplementary Table 18). Notable examples include proteins 
shown to associate most strongly with higher BMI16, such as leptin 
(LEP), fatty acid binding protein 4 (FABP4) and pro-adrenomedullin 
(ADM). On the other hand, 32 proteins showed directionally opposing 
effects, potentially highlighting health-driven effects (Fig. 6). These 
include proteins involved in lipid transport (for example LDLR, APOA1 
and APOF), hormonal status (for example IGFBP1, IGFBP2, SHBG and 
FGF21) or thermogenesis (for example LDLR, GHR, SHBG, CKB and 
LAMP2). A total of 129 proteins were associated with GRSuncoupling, but 
not with GRSBFP (Extended Data Fig. 8 and Supplementary Table 18), 
including neuropeptides (AGRP, NPY and BDNF), hormones (GCG and 
ADIPOQ), lipoprotein lipase (LPL) and myostatin (MSTN).

Gene prioritization identifies genes implicated in various 
pathways
To identify putative causal genes within the 205 uncoupling loci, we 
used 14 bioinformatic and functional genomics tools. We prioritized 
the gene(s) most likely to be causal in each locus and ranked them based 
on the number of genomic tools that provided support for the given 
gene. Of the 1,623 candidate genes, 82 were considered high-scoring 
genes (Methods and Supplementary Table 20). These include genes 
previously described to be associated with opposite effects on obesity 
and cardiometabolic traits, such as PPARG7,17–19, FAM13A9,11, PEPD11,19–21 
and IRS1 (refs. 11,19,22,23). The two highest scoring genes, prioritized 
by 11 tools, were PCSK1 and SMG6 (Supplementary Table 20). While 
PSCK1’s role in obesity is well established24,25, there is no obvious  
functional role for either PCSK1 or SMG6 in uncoupling of obesity  
from cardiometabolic health.

Other high-scoring genes have been implicated in adipose  
tissue expandability (PPARG26,27, IRS1 (refs. 28–30), RSPO3 (ref. 31), 
FAM13A32, CTSS33,34, TIMP4 (refs. 35,36), PEPD19–21, JMJD1C37, CSK38,39, 
HLX40, MED19 (ref. 41), SENP2 (ref. 42), MLXIPL43,44, ARNT45,46, PIK3R1 

(ref. 47) and PNPLA2 (ref. 48)), insulin secretion and beta-cell func-
tion (PIK3R149, GPRC5B50, MEF2D51, FBN1 (ref. 52), LDB1 (ref. 53), 
SENP2 (ref. 54), MAPT55, PBX1 (ref. 56), beiging of white adipose tissue  
and brown adipose tissue function (CSK39, SLC22A3 (ref. 57), SENP2 
(ref. 58), MED19 (ref. 41), LDB1 (ref. 59), HLX40 and CRHR1 (ref. 60)) and 
inflammation and fibrosis (PEPD20,21, BCN2 (ref. 61), MST1 (refs. 62–64), 
GPRC5B65, MAFF66, CTSS34,67, NPEPPS68, CSK38 and FBN1 (ref. 52,69))  
(Supplementary Table 21). Many of these genes and pathways have  
been described before in the context of uncoupling11, but we also  
identify genes involved in pathways that have not previously been 
implicated, such as hepatic control of glucose homeostasis (ARNT70, 
CTSS34,71, YWHAB72, FBN1 (ref. 73), LDB1 (ref. 74) and SENP2 (ref. 75)), 
hepatic lipid accumulation (JMJD1C76, NPEPPS77 and MLXIPL44,78)  
and skeletal muscle growth and function (PPP3R1 (ref. 79), CTSS80,81, 
CXXC5 (ref. 82), NPEPPS83, SENP2 (ref. 84) and FBN1 (ref. 69)) (Supple-
mentary Table 21).

Prioritized genes in loci that belong to the same cluster tend to 
share related pathways. For example, prioritized genes in cluster 7 
are implicated in regional adipose expandability, including FAM13A32 
and RSPO3 (ref. 31), consistent with lower WHR and improved lipid 
profile, being the defining characteristics for cluster 7 (Fig. 3 and  
Supplementary Table 21). Another example is for cluster 3, character-
ized by lower SBP and DBP, which contains several genes implicated 
in beiging of white adipose tissue and brown adipose tissue func-
tion, including CSK39, HLX40, LDB1 (ref. 59), MED19 (ref. 41) and SENP2  
(ref. 58) (Fig. 4 and Supplementary Table 21). Brown adipose tissue 
has been previously linked to lower odds of cardiometabolic diseases, 
including hypertension85. The overall protective cluster 8 has a more 
diverse biological basis with multiple genes implicated in adipose 
expandability, including PPARG26,86, IRS1 (refs. 23,28–30,87), TIMP4 
(ref. 36), CTSS34, ARNT45,46 and PIK3R1 (ref. 47). TIMP4 is also implicated 
in nutrient uptake35 and ARNT and CTSS in hepatic glucose control70,71. 
Therefore, our prioritized genes are implicated in known and/or novel 
pathways that plausibly contribute to the uncoupling of adiposity from 
cardiometabolic risk.

Discussion
Obesity is a highly heterogeneous disease that cannot be captured 
by one single adiposity trait. Here, we performed a multi-trait gene- 
discovery analysis to account for heterogeneity in cardiometabolic 
comorbidities. We designed continuous uncoupling phenotypes that 
range from high adiposity with a healthy cardiometabolic profile to 
low adiposity with an unhealthy cardiometabolic profile. GWASs of 
these new phenotypes identified 266 independent variants across 205 
genomic loci where the adiposity-increasing allele is also associated 
with a lower cardiometabolic trait. Furthermore, the 266 variants cluster 
into eight groups, each representing a genetic subtype with a distinct 
cardiometabolic risk profile, pointing to specific underlying pathways.

The genetic uncoupling score that aggregates the uncoupling 
effects of the 266 variants (GRSuncoupling) was associated with a healthier 
cardiometabolic profile, distinctly different from that of the genetic 
adiposity score (GRSBFP). The protective effects of GRSuncoupling may be 
partially mediated through an association with a more favorable fat 
distribution characterized by a lower WHR and lower MRI-derived 
VAT/ASAT and trunk fat/GFAT, in particular among women, com-
pared to GRSBFP. These findings corroborate previous observations  
with greater power, including the sex-specific observations9,10,12,88,89. 
With such distinct cardiometabolic risk profiles, these genetic scores 
may facilitate early risk stratification of individuals with obesity allow-
ing for a timely and personalized prevention. This genetic risk stratifi-
cation was already apparent in childhood and adolescence. Moreover, 
the uncoupling score was also associated with lower risk of prevalent 
and incident T2D and CHD in adulthood; however, while the cardio-
metabolic risk is reduced among individuals with a high uncoupling 
score, risk for diseases, such as cellulitis, arthrosis, sleep disorders and 
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Fig. 4 | Heatmap of the association of the lead variants with adiposity and 
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phlebitis among others, is comparable to those with a high adiposity 
score, consistent with a previous report90. These observations under-
score that the weight-bearing impact of a high body weight on overall 
health remains, even when cardiometabolic risk is lower.

In previous studies, we and others have identified three clusters of 
uncoupling loci11,14. Here, with many new uncoupling loci, we replicate 
the previously reported clusters with greater delineation and identify 
several new clusters. For example, in previous studies, one of the uncou-
pling clusters was linked to favorable fat distribution. We identified  
two such clusters (4 and 7) that, however, differ in the strength of 
associations with each of the phenotypes. Most new clusters are char-
acterized by the fact that the adiposity-increasing loci are associated 
with specific cardiometabolic traits, for example, healthier glycemic 
profile (cluster 5), lower blood pressure (cluster 3) and more granularity  
(clusters 1, 6, 7 and 8 with four distinct lipid profiles). Our findings 
extend current knowledge by underscoring that there is substantial  
heterogeneity among uncoupling loci. The clusters of loci represent 
distinct genetic subtypes that suggest a range of mechanisms under
lying the uncoupling of obesity from its cardiometabolic comorbidities.

We identified shared and distinct proteomic association signa-
tures for GRSuncoupling versus GRSBFP. For the majority (85%) of the 208 
proteins associated with both genetic scores, the direction of the asso-
ciation was consistent across both scores. This suggests that, for these 
proteins, levels are driven by adiposity. For example, levels of leptin and 
adipsin/complement factor D, two adipokines known to be elevated in 
individuals with obesity irrespective of their cardiometabolic health 
status91, increased with the increase in both uncoupling and adipos-
ity scores. A subset of proteins (15%) showed directionally opposite 
associations between the two scores, capturing health-driven effects. 
For example, higher plasma levels of IGFBP1 and IGFBP2 were associ-
ated with a higher uncoupling score (higher adiposity and improved 
cardiometabolic health), but with a lower adiposity score, representing 
lower adiposity and improved cardiometabolic health, corroborating 
previous reports demonstrating that lower levels of IGFBP1 and IGFBP2 
are associated with hypertriglyceridemia and insulin resistance92–94. 
Also, lower LDLR levels and higher SHBG levels were associated with a 
higher uncoupling score, consistent with a metabolically healthy state 
as observed by others95–100.
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Higher levels of circulating LDLR may indicate increased hepatic 
LDLR shedding and reduced lipoprotein clearance101. GRSBFP was  
associated with higher levels of circulating LDLR, which has been  
linked to elevated plasma triglycerides and LDL-C95,101—factors con-
tributing to cardiometabolic complications such as inflammation, 
atherosclerosis and myocardial infarction96,97. In contrast, GRSuncoupling 
and lipid-protective clusters 1, 7 and 8 were associated with lower 
plasma LDLR, consistent with a healthier metabolic profile. Reduced 
circulating LDLR in these subtypes may reflect greater hepatic LDLR 
availability and more efficient lipid clearance, suggesting enhanced  
hepatic lipid clearance as a potential mechanism underlying the  
cardiometabolic benefits observed in these subtypes.

Several proteins were exclusively associated with a higher uncou-
pling score, such as ADIPOQ and LPL. ADIPOQ has been shown to  
be higher in metabolically healthy individuals, promoting insulin  
sensitivity and having cardioprotective and anti-inflammatory 
effects91,102,103, whereas LPL plays a role in triglyceride clearance  
and lipid distribution, potentially contributing to a metabolically 
healthy state104,105. Myostatin levels decreased with an increasing  
uncoupling score. Myostatin is considered a drug target for sarco-
penia and muscle mass preservation in combination with weight- 
loss drugs106,107, implicating skeletal muscle mass and function in  
metabolic health91.

In contrast to a role of the CNS in overall obesity, tissue enrich-
ment analysis for genes in uncoupling loci pointed to adipose tissue, 
cardiovascular, digestive, endocrine and musculoskeletal systems, 
implicating pathways previously reported for uncoupling (insulin 
signaling, glucose homeostasis, lipid metabolism, immune and inflam-
matory response and adipose tissue biology)7,11,15, but also revealing new  
ones (for example vascular development, skeletal muscle development, 

liver development, kidney development, cartilage development, circa-
dian rhythm, sex differentiation and response to hypoxia).

To pinpoint candidate causal genes within each uncoupling locus, 
we established a bioinformatics and functional genomics gene prioriti-
zation pipeline. The highest scoring genes provide further support for 
biological processes such as adipose tissue expandability, fat distribu-
tion and brown adipose tissue function. Other newly identified genes 
highlight emerging mechanisms, such as inflammation and fibrosis, 
hepatic glucose control and lipid accumulation, and muscle func-
tion. For example, liver specific ablation of Jmjd1c, a gene prioritized 
for rs10761785, which is associated with higher BMI, WHR and lower 
LDL-C and TC levels, decreases lipogenesis and protects from insulin 
resistance despite obesity in mice76. Knockout of Arnt, a gene prior-
itized for rs10888393 and associated with increased BFP, high HDL-C 
and low HbA1c, may have a tissue-specific role affecting adiposity and 
cardiometabolic health. Fat-specific Arnt knockout mice are leaner 
and protected against diet-induced glucose intolerance and obesity, 
whereas hepatocyte-specific Arnt knockout mice have increased fasting 
glucose and impaired glucose tolerance45,46,70.

Our study has several limitations. First, it was conducted exclu-
sively in individuals of European ancestry, so the generalizability  
of our findings to other populations remains to be determined.  
Second, our proteomic profiling analysis was constrained by the set 
of proteins assayed and may not capture all relevant proteins driv-
ing adiposity and/or health effects. Third, gene prioritization relied 
on existing annotations and previous knowledge, which may bias 
against novel genes with currently unknown functions. Nonetheless, 
we employed a comprehensive strategy that integrates predictions 
from multiple bioinformatic and functional genomic tools to help 
mitigate these limitations.
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Taken together, by designing continuous uncoupling traits, we 
substantially increased statistical power for discovery, resulting in a 
more than twofold increase in the number of uncoupling loci identified. 
Gene prioritization and pathway and protein analyses underscore the 
importance of a range of peripheral pathways in uncoupling. We pro-
vide further support for adipose tissue expandability, insulin secretion 
and beta-cell function, beiging of white adipose tissue, inflammation 
and fibrosis, and also highlight mechanisms not previously implicated 
in uncoupling, such as hepatic lipid accumulation, hepatic control 
of glucose homeostasis and skeletal muscle growth and function. 
Individuals with a high genetic uncoupling score display a protective 
cardiometabolic risk profile despite having a higher risk of obesity. 
Their profile is distinct from that of individuals with a high overall 
adiposity score who have an increased cardiometabolic risk. Notably, 
we show that this risk stratification is already evident in childhood and 
adolescence. The overall genetic uncoupling score and its eight derived 
sub-scores advance the genetic subtyping of obesity by delineating 
distinct cardiometabolic risk signatures. The GRSs corresponding to 
the eight genetic subtypes can be readily implemented in other popula-
tions. These genetic subtypes may form the basis of subtype-stratified 
treatment, prevention and prognosis and may ultimately contribute 
to precision medicine in obesity.
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Methods
Ethical approval
UK Biobank data access was approved by the UK Biobank through 
project application number 1251. UK Biobank has obtained approval 
from a committee and researchers do not need separate approval. 
The HOLBAEK study was approved by the ethics committee of region 
Zealand, Denmark (SJ-104) and by the Danish Data Protection Agency 
(REG-043-2013). For ARIC, all relevant ethical guidelines have been 
followed and any necessary Institutional Review Board (IRB) and/or 
ethics committee approvals have been obtained.

Study populations
UK Biobank. The UK Biobank is a prospective cohort study with exten-
sive genetic and phenotypic data, collected in approximately 500,000 
individuals, aged between 40–69 years. Participants were enrolled from 
April 2007 to July 2010 at one of 21 assessment centers across the UK. 
Baseline information, physical measures and biological samples were 
collected according to standardized procedures108–110. Questionnaires 
were used to collect health and lifestyle data. Study design, protocols, 
sample handling and quality control have been described in detail 
elsewhere108–110.

Ancestry. We restricted analyses to individuals of European ances-
try, defined by using k-means clustering111. In brief, we calculated 
principal components and their loadings for 488,377 genotyped par-
ticipants based on the intersection of ~121,000 quality-controlled 
variants with the 1000 Genomes Project reference panel (phase 3 
v.5). We projected the 1000 Genomes reference panel dataset on the 
principal-component analysisA (PCA) loadings from the UK Biobank. 
We then applied k-means clustering to the UK Biobank PCA and the 
projected 1000 Genomes reference panel dataset, prespecifying four 
clusters. Individuals that clustered with the EUR 1000 Genomes cluster 
were assigned as European ancestry.

Phenotypes. We analyzed 11 single traits; three adiposity traits: BMI, 
BFP and WHR; and eight cardiometabolic traits: TC, LDL-C, HDL-C, 
TGs, glucose, HbA1c levels, SBP and DBP. All phenotypic data used 
for analyses were collected at the baseline visit. BMI was calculated 
as weight (kg) divided by height squared (m2). WHR was created by 
dividing the waist circumference by the hip circumference. Individuals 
with waist and hip measurements <50 cm and >150 cm were removed. 
For individuals on lipid-lowering medication, LDL-C was adjusted by 
dividing the LDL-C value by 0.7 and TC by dividing by 0.8 (refs. 112,113). 
TC and TG were log transformed. For the GWAS analysis of glucose and 
HbA1c, individuals receiving insulin therapy, (n = 4,697) and those 
with glucose > 15 mmol l−1 or HbA1c > 100 were excluded (n = 804). 
SBP and DBP were created by calculating the average of two measure-
ments at the baseline visit and adjusted for medication use by adding 
15 mm Hg on the SBP value and 10 mm Hg on the DBP value114,115. Upon 
exploring the data, we identified a subgroup of women recruited in one 
center, Sheffield, who deviated from the rest of the data. As a result, we 
excluded 121 women recruited at Sheffield and that had BFP > 55% and 
BMI > 40 kg m−2. Additionally, women who were pregnant at the time 
of recruitment were excluded. Finally, 452,768 participants (207,204 
men and 245,564 women) were included in the analyses of lipid traits 
and 448,071 (204,377 men and 243,694 women) for glycemic traits.

Genotypes. Participants were genotyped on two arrays. The majority 
(n = ~450,000) were genotyped using the UK Biobank Axiom Array and 
the remaining participants (n = ~50,000) were genotyped using the  
UK BiLEVE Array, which has >95% of the variants in common with the  
UK Biobank Axiom Array. Quality control, performed by the UK Biobank 
team, included testing for batch, plate and array effects, Hardy– 
Weinberg equilibrium and discordance across control replicates. Sam-
ples of poor quality, with high missingness rate and heterozygosity, 

were removed110. Missing single-nucleotide polymorphisms (SNPs) 
were imputed using the UK10K reference panel by the UK Biobank team.

Atherosclerosis Risk in Communities study
The ARIC study is a prospective cohort study of 15,792 individuals, 
including 11,478 white individuals and 4,314 African American indi-
viduals, from four US communities (Forsyth County, NC; Jackson, 
MS; suburbs of Minneapolis, MN; and Washington County, MD).  
Participants aged between 45–64 years at baseline and recruited 
between 1987–1989, received extensive examinations, including medi-
cal, social and demographic data. A detailed description of the ARIC 
study design is published elsewhere116. Adiposity and cardiometabolic 
traits considered in this study were measured at the baseline visit.

Incident CHD was ascertained through a combination of death 
certificate reviews, hospital records and annual participant follow-ups 
to identify hospitalizations and deaths occurring during the previous 
year117. Incident CHD cases were defined as definite fatal CHD, definite 
or probable myocardial infarction (MI), silent MI between examinations 
as determined by ECG, or coronary revascularization. T2D cases were 
identified at baseline and during follow-up visits using glucose meas-
urements, self-reported physician diagnosis of T2D or use of diabetes 
medication. T2D was defined in accordance with World Health Organi-
zation guidelines as a fasting serum glucose ≥7.0 mmol l−1, a non-fasting 
serum glucose ≥11.0 mmol l−1 (when fasting samples were unavailable) 
or the use of blood glucose-lowering medications. Individuals with T2D 
at baseline were removed from this analysis.

Blood was drawn for DNA extraction at the baseline exam.  
Genotyping within ARIC was performed on the Affymetrix 6.0 DNA 
microarray (Affymetrix) and genotype data that passed quality control 
filters were imputed into the 1000 Genomes phase 3 reference data 
using IMPUTE v.2.3.2 (refs. 118,119). The ARIC study was approved  
by the IRBs at each site and written informed consent was obtained 
from all study participants.

BioMe Biobank
BioMe is an ongoing electronic medical record-linked biobank with 
more than 60,000 patients enrolled through the Mount Sinai Health 
System in New York. BioMe is a multiethnic biobank comprising indi-
viduals of African, Hispanic, European, Asian and other ancestries. 
Genotyping data on the Global Screening Array (GSA-24v1-0_A1) is 
available for 32,595 individuals. The data were cleaned for duplicate 
samples, discordant sex, heterozygosity rate that exceeded 6 × s.d. from 
the population mean, call rate <95% at the site and individual level and 
deviation from the Hardy–Weinberg equilibrium. After quality control 
(QC), 31,705 individuals and 604,869 variants were retained. Imputation 
of the GSA array was performed using impute2 (ref. 120) using the 1000 
Genomes reference panel. In the BioMe Biobank, CHD cases were identi-
fied using ICD-9 and ICD-10 codes, procedure codes for bypass surgery 
or percutaneous transluminal coronary angioplasty or documentation 
of abnormal cardiac catheterization. T2D cases were defined using the 
eMERGE phenotyping algorithm121. Baseline was defined as first outpa-
tient visit after 1 January 2011, with at least 1 year enrolled in the Mount 
Sinai Health system. Individuals with CHD or T2D cases occurred before 
or within 1 year of enrollment were classified as prevalence cases and 
excluded from analyses. The BioMe Biobank received ethics approval 
from the IRB of the Mount Sinai School of Medicine.

The HOLBAEK study
The HOLBAEK study consists of two Danish cohorts: a cohort from 
the Children’s Obesity Clinic of the Holbaek Hospital, comprising 
children and adolescents with a BMI at or above the 90th percentile 
(BMI s.d. score (SDS) ≥ 1.28, overweight or obesity) based on Dan-
ish reference standards122; and a population-based cohort recruited 
from schools in 11 municipalities across Region Zealand123. In the 
obesity clinic cohort, anthropometrics were measured at clinical 
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examinations, whereas the population-based group was assessed in 
a mobile laboratory by medical professionals. Details on the cohort 
and phenotypic data are published elsewhere124. We considered 23 trait 
s for our cross-sectional analyses (5 binary and 18 continuous). BMI SDS 
was derived using the least mean squares method, referenced against 
Danish reference standard122. Waist-to-height ratio (WtHR) SDS and 
WHR SDS were calculated based on age- and sex-specific reference 
values from NHANES125. Obesity was defined as having a BMI SDS ≥ 2.33 
(99th percentile and above126). Hyperglycemia, insulin resistance, 
dyslipidemia and hypertension were defined according to published 
guidelines127–130. HOMA-IR was calculated as (insulin mU l−1 × glucose 
mM)/22.5. Exclusion criteria for the current analyses included individu-
als younger than 5 years or older than 19 years, those taking medications 
for obesity or diabetes, participants meeting T2D criteria based on fast-
ing plasma glucose levels ≥7.0 mmol l−1 or HbA1c ≥ 48 mmol mol−1, and 
individuals without genotyping data. The final number of participants 
of European ancestry analyzed was 1,646 for the obesity clinic cohort 
(45% boys, median age 11.7 years (Q1 9.6 years–Q3 14.0 years)) and 
1,811 for the population-based cohort (43% boys, median age 11.6 years  
(Q1 8.9 years–Q3 14.5 years))

Genotype data. Genotyping in the HOLBAEK study was conduc
ted using Illumina Infinium HumanCoreExome-12 v.1.0 or 
HumanCoreExome-24 v.1.1 BeadChips, analyzed on the Illumina  
HiScan system. Genotype calling was performed using the Genotyping 
Module (v.1.9.4) within GenomeStudio software (v.2011.1; Illumina). 
Phasing was done with EAGLE2 (v.2.0.5), and imputation was carried 
out using PBWT to the Haplotype Reference Consortium (HRC1.1) via 
the SANGER imputation server. As HRC1.1 does not include insertions 
and deletions and does not fully overlap with imputed UK Biobank 
genotype data, up to 20% of GRSBFP and GRSuncoupling variants were not 
available. We therefore identified high linkage disequilibrium (LD) 
(R2 > 0.8) proxies, based on LD information from 20,000 unrelated 
(KING < 0.0884), randomly sampled UK Biobank participants. These 
participants self-identified as ‘White British’ and clustered with this 
group in PCA. Genotype QC for this reference panel included filtering 
on SNP missingness <5% and INFO > 0.3, and we excluded participants 
with sex chromosome anomalies, sex discrepancies, heterozygo-
sity outliers and genotype call rate outliers. Proxies were identified  
for 123 of 142 missing variants for GRSBFP and 56 of 58 missing  
variants for GRSuncoupling, with a median R2

UKB of 0.99. The final GRSs 
therefore included 628 and 264 variants, respectively, with a median 
INFOHOLBAEK of 0.98. The GRSs were scaled to per ten-allele change.

Statistical analysis. Using linear and logistic regression, we assessed 
the association between both GRSs and the 23 outcome traits, adjusting 
for age, sex, four PCs and genetic batch (n = 3). The continuous traits 
were log transformed (except for BMI, WHR, WHtR, SBP and DBP SDS) 
and then standardized to unit variance and s.d. of one. All analyses  
were stratified by cohort (obesity clinic/population) and estimates 
pooled using inverse-variance weighting. In addition, all analyses 
were further stratified by sex (Supplementary Table 11). P values were 
adjusted using Benjamini–Hochberg correction across the 23 traits.

GWAS analyses
Our GWAS analyses aimed to identify variants that uncouple adiposity 
from its comorbidities. As such, we used 11 single traits: three adiposity 
traits: BMI, BFP and WHR; and eight cardiometabolic traits: TC, LDL,-C 
HDL-C, TG, glucose, HbA1c, SBP and DBP. First, we derived residuals 
for each of the single traits, for men and women separately, using lin-
ear regression analyses adjusting for age, age2, genotyping array and 
sequencing center. Next, the distributions of residuals of the 11 single 
traits were inverse normalized. The derived s.d. scores have a mean 
of 0 and a s.d. of 1. We then created pairwise composite traits with one 
of the anthropometric traits and one of the cardiometabolic traits by 

subtracting the s.d. scores of the cardiometabolic trait (TC, LDL-C, HDL-C, 
TG, glucose, HbA1c, SBP and DBP) from those of the adiposity traits (BMI, 
BFP and WHR), resulting in 24 bi-traits. For example, a BMI–TC bi-trait 
is created as follows: BMIsdcores – TCsdcores (Extended Data Fig. 1). For any 
given individual, a positive score for the BMI–TC bi-trait indicates that the 
person has a relatively higher BMI compared to their TC levels, whereas 
a negative score means that they have a relatively lower BMI compared 
to their TC levels. As HDL-C correlates positively with cardiometabolic 
health, HDL-C needs to be treated differently when creating the bi-traits. 
We have addressed this by flipping the sign of HDL z-scores before  
creating the bi-traits. This adjustment ensures that subtracting HDL-C 
from an adiposity trait results in a bi-trait where a positive or nega-
tive score retains the same meaning as for the other bi-traits. In other  
words, BMI–HDL, is in fact BMI–(–HDL). Therefore, a positive score 
indicates high BMI and high HDL, which corresponds to high adiposity  
and a protective cardiometabolic effect. Conversely, a negative  
score indicates low adiposity and high cardiometabolic risk (low HDL).

For BMI as the adiposity measure, we have eight bi-traits: BMI–TC, 
BMI–LDL-C, BMI–HDL-C, BMI–TG, BMI–glucose, BMI–HbA1c, BMI–SBP, 
BMI-DBP. Similarly, for BFP: BFP–TC, BFP–LDL-C, BFP–HDL-C, BFP–TG, 
BFP–glucose, BFP–HbA1c, BFP–SBP, BFP–DBP, and for WHR: WHR–TC, 
WHR–LDL-C, WHR–HDL-C, WHR–TG, WHR–glucose, WHR–HbA1c, 
WHR–SBP and WHR–DBP. As such, we performed 70 mixed model 
GWAS tests analyzing 24 bi-traits and 11 single traits within men and 
women separately (35 traits × 2) using BOLT-LMM v.2.4.1131 adjusting 
for the first ten principal components.

Variants with MAF < 0.1% were removed from the analyses. For 
imputed variants, an INFO score threshold = 0.3 was used. For each 
trait, we used METAL to meta-analyze the GWAS results of men and 
women using fixed effects132. Using LD score regression v.1.0.1 (LDSC), 
we observed mild inflation, with LDSC intercepts ranging between 
1.09 and 1.18 and LDSC ratios indicating that 10–13% of the inflation 
observed can be ascribed to causes other than a polygenic signal. 
Therefore, we applied genomic control by adjusting the s.e. for the 
LDSC intercept. Specifically, for each trait, we used the corrected s.e.: 
s.e.corrected = s.e.GWAS × sqrt (LDSC intercept) of the sex-specific GWAS 
as the s.e. column in the inverse-variance weighted meta-analysis of 
men and women. The new corrected LDSC intercepts ranged from 
1.03 to 1.08. LDSC ratio indicated that no more than 5.7% of the infla-
tion observed can be ascribed to causes other than a polygenic signal.

Conditional analyses. To identify additional independent signals  
in associated loci for the 24 bi-traits, we used GCTA v.1.94.4 (ref. 133). 
We performed approximate joint and conditional SNP association 
analyses in each locus, which takes into account LD between SNPs. 
For each locus, we defined a 2-Mb region encompassing 1 Mb on both 
sides of the lead SNP. Lead SNPs (P < 5 × 10−10) identified in known 
long-range high-LD regions were treated as a single large locus in the 
GCTA analysis134. We used unrelated European ancestry participants 
from the UK Biobank as the reference sample to acquire conditional  
P values for association. Conditional independent variants that reached 
P < 5 × 10−10 were considered as index SNPs. We additionally restricted 
to SNPs that were genome-wide significant (P < 5 × 10−10) in the original 
summary statistics.

Identification of genome-wide significant loci. Our genome-wide 
significance threshold of P < 5 × 10−10 accounted for the analyses of 
24 bi-traits, across women and men. To identify genome-wide associ-
ated loci and their respective lead SNPs, we proceeded as follows. We 
started with the independent variants that resulted from the condi-
tional analyses. To define a locus associated with increased adiposity 
and protective effects on cardiometabolic traits, we retained only 
variants for which the single-trait GWASs for both traits reached mar-
ginal significance, defined as P < 10−4, and for which the association  
was opposite to the established phenotypic correlation. For example, 
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for BMI and LDL-C, we selected variants for which the BMI–LDL-C 
bi-trait reached genome-wide significance, and subsequently extracted 
the variants for which the single-trait associations with BMI and with 
LDL-C reached P < 10−4 and their direction of association was opposite 
of the established phenotypical positive association. As such, we identi-
fied 1,103 association signals across the 24 bi-traits. Next, we applied a 
Bayesian divisive clustering algorithm, HyPrColoc135 to determine, for 
each of the 1,103 association signals, whether the associations across 
the bi-traits and both single traits colocalize. In the above example, 
we would only keep loci of which the associations colocalize across 
the BMI–LDL-C bi-trait, BMI and LDL-C. HyPrColoc is a deterministic 
Bayesian algorithm that, for a given genomic region, identifies clusters 
of traits which colocalize at distinct causal variants135. The algorithm 
also allows for sample overlap for the tested traits and corrects for it. As 
such, we provided the following input files to HyPrColoc upon testing 
the colocalization for each of the 1,103 associations: (1) a file with the 
β values of all the variants to be tested and the traits in consideration; 
(2) another file with their s.e. values; (3) a 3 × 3 matrix denoting the 
phenotypic correlation between the bi-trait and its corresponding pair 
of single traits estimated from the UK Biobank data; (4) an LD matrix 
for all variants within 1-Mb region around the lead SNPs; and (5) a 3 × 3 
matrix with all values equal to 1. We used a 1-Mb region around the 
input variant (0.5 Mb on each side). Therefore, of 1,103 association 
signals, we found that 602 association signals corresponding to 425 
unique SNPs colocalized across the bi-traits and their corresponding 
single traits. We subsequently inspected LocusZoom plots for poten-
tial overlap between independent loci across the traits and for missed 
colocalized association signals because HyPrColoc assumes only one 
‘causal’ variant per region. This manual inspection led to either nar-
rowing or widening the genomic region of 32 colocalized association 
signals and performing HyPrColoc again to identify other colocalized 
variants that were missed.

If more than one variant in the same region was retained for dif-
ferent traits, we chose the lead variant based on the following criteria. 
If the variants were in high LD (r2 > 0.9), we randomly picked one of 
them. Otherwise, if more than one variant was significantly associated 
with related traits, such as BMI–glucose, BFP–glucose and BMI–HbA1c, 
then we chose the variant that had lower P values for a larger number 
of traits. Last, if two variants in the same region were each associated 
with a bi-trait that represents different categories of cardiometabolic 
traits, we kept both variants even though they were in the same locus. 
For example, if one variant was associated with BMI–SBP and another 
with BMI–HbA1c, then we kept both, as the two may be contributing 
to the uncoupling of adiposity and comorbidities via different mecha-
nisms. In all cases, each variant is represented only once regardless of 
how many traits the variant is associated with. In total, we retained 266 
unique variants in 205 genomic loci. For 152 (57%) of the 266 variants, 
the effect allele was the minor allele.

Cluster analysis
We used the Noise-Augmented von Mises-Fisher Mixture model  
(NAvMix) algorithm to cluster the 266 lead variants based on their asso-
ciation with the single traits136. In brief, noise-augmented directional 
clustering clusters variants based on their proportional associations 
with different traits. The algorithm outputs a probability of mem-
bership for each datapoint (variant) to belong to each cluster. Each 
datapoint is then assigned to the cluster for which it has the highest 
probability. The procedure is repeated for a varying number of clus-
ters and the final number of clusters is chosen based on the Bayesian 
Information Criterion. NAvMix outputs a noise cluster that includes 
data points (variants) that do not belong to any cluster and are thus 
considered outliers. We used the effect size (β) of the association of 
each of the 266 lead variants with each of the 11 single traits as input. 
We used BFP as a reference, assuming a positive direction of effect to 
facilitate comparison across traits. The associations with other traits 

were expressed using the BFP-increasing allele as the effect allele and 
the BFP-decreasing allele as the alternate allele.

Genetic risk scores and their association with anthropometric 
and cardiometabolic traits, and phenome-wide association 
study
We constructed GRSs for all 266 identified variants combined  
(GRSuncoupling) and for each of the eight clusters separately (GRS1–
GRS8) in 373,747 unrelated individuals of European ancestry from 
the UK Biobank. We also generated a GRS for BFP (GRSBFP) based on 
647 lead variants (where 353 (55%) variants had the effect allele as 
the minor allele) that reached P < 5 × 10−9 (clumped for r2 < 0.1 in a 
1-Mb region, MHC region removed) in our single-trait GWAS for BFP 
in the UK Biobank. All of the ten GRSs were weighted by the effect size 
estimated for BFP from the GWAS that we performed in the current  
study. The GRSs were rescaled to per ten-allele change137 to enable  
comparison across GRSs that consist of different number of SNPs.  
Cluster 2 was identified by the clustering analysis to be associated 
with lower WHR. For all analyses that followed the clustering analyses, 
the effect and reference alleles of genetic variants that were used to 
construct GRS2 were flipped to reflect a profile of higher adiposity 
and facilitate comparison with the other clusters. To support imple-
mentation of our approach in other cohorts, we provide the code for 
constructing the GRSs (Supplementary Code) and the variant-specific 
effect sizes (β values) used in the GRSs (Supplementary Table 6).

To test the association of GRSs with anthropometric and cardio-
metabolic traits, we performed linear regression analyses for 24 traits, 
including SBP, DBP, HDL-C, TG, LDL-C, TC, glucose and HbA1c, and the 
following anthropometric traits: height, WHR, hip circumference, 
waist circumference, BFP, FFMI (computed as whole body fat-free 
mass divided by height squared), BMI, gynoid fat percentage, android 
fat percentage, MRI-measured VAT, ASAT, VAT:ASAT ratio, liver proton 
density fat fraction (liver fat), trunk fat (total trunk fat volume), GFAT 
volume and trunk fat:GFAT ratio. GFAT was calculated using VAT, ASAT 
and the total adipose tissue between the bottom of the thigh muscles 
to the top of vertebrae T9 (TAT) volume using the following formula138:

GFAT = TAT (between top of T9 and bottom of thigh muscles) –  
VAT – ASAT. Each of the traits was adjusted for age, sex, genotype  
array and study site and the first ten principal components in a lin-
ear regression model. The resulting residuals were transformed to 
approximate normality using inverse-normal rank scores before the 
association testing.

In addition, we performed phenome-wide association (PheWAS) ana
lyses in unrelated individuals of European ancestry from the UK Biobank 
using the PHEnome Scan ANalysis Tool (PHESANT)139. Analyses were 
performed using a linear or logistic regression for continuous and binary 
outcomes, respectively, using the following covariates: age at enrollment, 
sex, genotyping array and the first ten genetic principal components.

Statistical analysis in ARIC and BioMe
We generated ten GRSs: GRSuncoupling, GRS1–GRS8 and GRSBFP in 9,240 
unrelated European ancestry participants of the ARIC study. For  
the continuous traits, we created rank-based inverse-normal trans-
formed traits adjusting for age, sex and the first ten PCs. We analyzed 
adiposity and cardiometabolic traits, including hip circumference, 
waist circumference, WHR, BMI, SBP, DBP, HDL-C, TG, LDL-C, TC and 
glucose in ARIC. We performed linear regression analyses to test 
the association of each GRS with the continuous traits. For analyses  
of incident T2D and CHD, we generated ten GRSs: GRSuncoupling and  
GRSBFP in 23,208 unrelated individuals of European (n = 8,985), Hispanic 
(n = 7,984) and African (n = 6,239) ancestry from the BioMe Biobank.  
We tested the association of each GRS with incident T2D and CHD in 
BioMe and ARIC using a Cox proportional hazard model after adjusting 
for age, sex, ancestry (for BioMe) and ten principal components. BioMe 
and ARIC association results were meta-analyzed using inverse-variance 
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weighted meta-analysis. To further examine how lifestyle factors influ-
ence the association between GRSs and cardiometabolic disease risk 
in ARIC, we assessed physical activity—quantified as total metabolic 
equivalent (MET) hours per week of moderate-to-vigorous leisure- 
time physical activity. In the Cox models, we further stratified parti
cipants into physically active (top 30% of MET levels) and inactive  
(bottom 70%) groups to assess whether physical activity level impacted 
these associations.

Plasma proteomic characterization of the GRSs
We assessed the association of GRSuncoupling, GRS1–GRS8 and GRSBFP with 
Olink-derived plasma protein measurements in the UK Biobank. This 
analysis included 30,271 unrelated individuals of European ancestry 
from the random baseline sample selected by the UK Biobank Pharma 
Proteomics Project16, specifically those included in Olink batches 1–6. 
After excluding three proteins with >25% missing data (PCOLCE (62%), 
NPM1 (73%) and GLIPR1 (>99%)), we included 2,920 proteins with a 
median missingness of 2.8%. Measurements below the limit-of-detection 
were included, in line with Olink’s recommendations (https://olink.
com/faq/how-is-the-limit-of-detection-lod-estimated-and-handled/).  
Using linear regression, we assessed the association between the ten 
GRSs (scaled to a per ten-allele change) and protein measurements 
(rank-based inverse-normal transformed). Covariates included age at 
measurement, age squared, sex, UK Biobank assessment center, ten PCs, 
genotyping array, Olink batch, fasting time at measurement (hours) 
and time between measurement and processing of the sample by Olink 
(years). Benjamini–Hochberg adjustment was applied to control the FDR 
at 0.005 (0.05/10 × GRS) across the 29,200 protein–GRS associations. 
To distinguish between adiposity- and health-driven associations, we 
grouped proteins that showed evidence of association with both GRSBFP 
and one or more of the adiposity-uncoupled GRSs, based on their direc-
tional concordance. Moreover, we assessed which proteins uniquely 
associated with any of the adiposity-uncoupling GRSs, but not GRSBFP.

Gene prioritization analysis
To identify the likely causal gene(s) within each of the identified loci, 
we used a combination of up to 14 bioinformatics and functional geno
mics methods. In addition to the annotated ‘nearest gene’, we used a  
‘coding proxy’ approach, five bioinformatics tools, and leveraged 
in vitro adipogenic differentiation dataset with seven measures.  
For each gene, we summed the number of methods for which it was 
prioritized. Genes with a score ≥7 were prioritized. The methods  
used for the gene prioritization score are described below.

Bioinformatics tools. Nearest gene. We used the nearest gene as  
predicted by Ensembl Variant Effect Predictor (VEP)140.

Coding proxy. For a given lead SNP, we considered variants in high 
LD (r2 > 0.8) within a 1-Mb window. If one or more of those variants 
was a coding variant, then the gene(s) in which those coding vari-
ants lie were prioritized. We annotated the variants in VEP. A coding 
variant was defined as any variant with the following annotations: 
synonymous_variant, missense_variant, inframe_insertion, inframe_
deletion, stop_gained, frameshift_variant, splice_donor_variant and 
splice_acceptor_variant.

ABC-max. We used FUMA141 to select all SNPs in high LD (r2 > 0.8) using 
as reference panel UK Biobank release 2b 10K Europeans. We inter-
sected the total of 10,095 SNPs (lead SNPs and proxies in high LD) with 
enhancers and target genes predicted by the Activity-by-Contact (ABC) 
model142 in the following tissues: adipose, adrenal gland, astrocytes, 
pancreas, cardiac muscle cell, coronary artery, smooth muscle cell 
of coronary artery, heart ventricle, hepatocyte, liver, spleen, skeletal 
muscle myoblast and thyroid gland. Intersection of SNPs and enhancers 
was carried out using the function intersect from BEDtools v.2.29.2143.

Polygenic Priority Score. We used Polygenic Priority Score v.0.1  
(ref. 144), a similarity-based algorithm that uses a broad range of omics 
data, including scRNA-seq. We used a reference panel of 10,000 ran-
domly selected subjects from the UK Biobank and retrieved the gene 
with the highest Polygenic Priority Score in each associated loci.

Data-driven expression prioritized integration for complex traits. We 
used summary statistics generated from the association analyses 
of the 266 lead SNPs with BFP as input for DEPICT with default para
meters145. DEPICT is an integrative tool that uses transcriptome expres-
sion (microarray data), pathways and protein–protein interactions to 
prioritize the most likely causal genes and highlight enriched tissues 
and pathways.

fastENLOC. We colocalized associated loci with expression quantitative 
trait loci (eQTLs) from GTEx v.8 (ref. 146) using fastENLOC147, prioritiz-
ing genes affected by eQTLs colocalizing at regional colocalization 
probability (RCP) > 0.1. We colocalized lead SNPs and variants in high 
LD (r2 > 0.8) with eQTLs in adipose tissue (subcutaneous and visceral), 
pituitary, brain cortex, brain hypothalamus, brain hippocampus, brain 
amygdala, adrenal gland, thyroid gland, liver, kidney, pancreas, skeletal 
muscle, salivary gland and heart (atrial appendage and left ventricle).

CS2G depot-specific gene prioritization. We intersected the 266 
associated variants and their proxies (r2 > 0.8) with depot-specific 
chromatin accessible signals in subcutaneous and visceral human 
primary adipose-derived mesenchymal stem cells (AMSCs). We then 
performed combined S2G strategy CS2G148 to predict the effector 
genes. We reported the effector genes with a cutoff of 0.05 on the 1000 
Genome and UK Biobank scores. The detailed protocol for AMSC prolif-
eration, induction and differentiation is outlined in Laber et al.149. Over-
all, AMSCs were obtained from subcutaneous and VAT from patients 
undergoing a range of abdominal laparoscopic surgeries149 and isolated 
as previously described150. For a subset of donors, the purity of AMCSs 
was assessed as previously described151. Each participant gave written 
informed consent before inclusion and the study was approved by 
the ethics committee of the Technical University of Munich (study 
no. 5716/13). Cells were introduced (counted as differentiation day 
0) and put into differentiation for 14 days until fully differentiated. 
Samples are collected at differentiation day 14. Donor genotyping, 
SNP QC as well as the genotype imputation were performed as previ-
ously described152. Nuclei and library preparation for AMSC ATAC-seq 
were performed as previously described152. ATAC peaks were called by 
MACS3 (v.3.0.0). After peak calling, narrow peaks from all the samples 
(n = 15 subcutaneous AMSCs and n = 14 visceral AMSCs) were first com-
bined, then the overlapped intervals were merged into a single interval 
using BEDtools (v.2.30.0) (function BEDtools merge -I)143.

Overlap with eQTL data from GTeX. For the association and scoring 
of SNPs with genes we made use of eQTL data from GTEx (v.8) for sub-
cutaneous and VAT as well as enhancer capture HiC data (‘GSE140782_
ECHiC.txt.gz’ https://doi.org/10.1038/s41588-020-0709-z), DNase-seq 
based chromatin accessibility (‘GSE113253_DNase_processed_data.
tar.gz’ https://doi.org/10.1038/s41588-019-0359-1) and gene expres-
sion data (‘GSE113253_GeneExpr_BM.txt.gz’ https://doi.org/10.1038/
s41588-019-0359-1) of hBM-MSC-TERT4 cells subjected to adipocyte 
differentiation in vitro.

Specifically, the lead SNP or a proxy SNP, which was determined  
using the R package LDlinkR (https://doi.org/10.3389/fgene. 
2020.00157) with a threshold of R2 > 0.8, had to fulfill at least one of 
the four criteria: (1) overlapping with an eQTL in VAT; (2) overlapping 
with an eQTL in subcutaneous adipose tissue; (3) overlapping with a 
genomic region that is linked by the enhancer capture data to a pro-
moter region; or (4) overlapping with a DNase1 hypersensitive region. 
If only the latter case was true, the closest transcription start site was 
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chosen to be the candidate gene. Overlap was determined using the R 
package GenomicRanges.

For each unique combination of lead SNP and putative candidate 
gene, we set up a score based on an overlap of the proxy SNPs with an 
eQTL, overlap of the proxy SNPs with a DNase1 hypersensitive site and 
its change in accessibility during adipocyte differentiation, overlap of 
the proxy SNPs with an enhancer region contacting the promoter of 
the candidate gene and the expression of the candidate gene and its 
significant change during adipocyte differentiation.

Tissue and gene set enrichment
Tissue and gene set enrichment were performed by DEPICT, using 
summary statistics generated from the analysis on BFP as input with 
default parameters145. Both were performed on all uncoupling loci 
and on cluster-specific loci. Only gene sets with at least ten genes were 
included. We restricted our analyses to the Gene Ontology, KEGG and 
REACTOME pathway terms. We used FDR < 0.05 as a threshold for sig-
nificance when considering all the 266 variants. For the cluster-specific 
analysis, as the clusters have a small number of variants and therefore 
less power, we used P < 0.05 as a threshold from the ‘Nominal P value’ 
output from DEPICT regardless of the FDR value.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Description of the datasets and full results are provided in Supple
mentary Tables 1–21. UK Biobank data are accessible through the 
application process outlined at https://www.ukbiobank.ac.uk/
enable-your-research. Detailed information on the genetic data pro-
vided by UK Biobank is available at http://www.ukbiobank.ac.uk/
scientists-3/genetic-data/ and http://biobank.ctsu.ox.ac.uk/crystal/
label.cgi?id=100314. Access to the HOLBAEK study data can be granted 
through appropriate approvals from the Danish Data Protection 
Agency and the Ethics Committee for Region Zealand, in accordance 
with patient consent and data processing agreements. The ARIC dataset 
is accessible through a process outlined here: https://aric.cscc.unc.
edu/aric9/researchers/new_to_aric.

Code availability
The R code required to reproduce the GRSs for the genetic obesity 
subtypes is present as an accompanying supplementary file.
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Extended Data Fig. 1 | Schematic Representation of Bi-Trait Phenotype Derivation. Pairwise difference between BMI and TC z-scores results in a new normally 
distributed bi-trait BMI–TC.
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Extended Data Fig. 2 | Sex-specific associations of genetic risk scores with 
anthropometric and cardiometabolic traits in the UK Biobank. A. Estimated 
per 10 allele change effect sizes of GRS–trait associations in UK Biobank 
European ancestry population for GRSuncoupling (men in light magenta, women  
in dark magenta) and GRSBFP (men in light blue, women in dark blue).  
B-C. Estimated per 10 allele change effect sizes of GRS–trait associations in  

UK Biobank European ancestry population for each cluster-specific GRS  
(GRS 1–8, men in light magenta, women in dark magenta). The dashed circles 
are labeled ‘0’, indicating no association between each GRS and the trait. Points 
outside the circle represent positive GRS–trait associations, while those inside 
represent negative associations.
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Extended Data Fig. 3 | Associations of genetic risk scores with anthropometric 
and cardiometabolic traits in the ARIC study. A. Estimated per 10 allele change 
effect sizes of GRS–trait associations in 9,240 unrelated European ancestry 
participants of the ARIC study for GRSuncoupling (in magenta) and GRSBFP  
(in blue). B-C. Estimated per 10 allele change effect sizes of GRS–trait associations 
in UK Biobank European ancestry population for each cluster-specific GRS  

(GRS 1–8, in red) and GRSBFP (in gray). Dashed circles indicate Beta=0, indicating 
no association between each GRS and the trait. Points outside the circle 
represent positive GRS–trait associations, while those inside represent negative 
associations. The effect and reference alleles of GRS2, a cluster associated with 
lower WHR and higher blood pressure, were flipped in order to reflect a profile of 
higher adiposity and facilitate comparison with the other clusters.
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Extended Data Fig. 4 | Associations of genetic risk scores with anthropometric 
and cardiometabolic traits in the HOLBAEK study. A. Estimated per 10 allele 
change effect size of GRS-anthropometric trait associations for GRSuncoupling 
(in magenta) and GRSBFP (in blue). B-C. As A, but for associations with 
continuous and binary cardiometabolic traits, respectively. Continuous traits 

were standardized to mean 0 and SD 1. Dashed circles in A and B indicate Beta=0, 
and the dashed line in C indicates odds ratio=1. Points outside the dashed circles 
in A and B represent positive GRS–trait associations, while those inside represent 
negative associations. *analysis restricted to the population-based cohort only.
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Extended Data Fig. 5 | Pathways enriched for GRSuncoupling and GRSBFP loci. 
REACTOME, GO, and KEGG results from DEPICT gene set enrichment analyses 
were used to group pathways into broader categories. DEPICT assigns gene 
scores reflecting their likelihood of belonging to specific gene sets, then tests 
enrichment by summing these scores across associated loci and comparing 
them to sums from matched random loci. Repeated sampling generates a null 

distribution used to compute adjusted Z-scores, P values, and FDRs. Pathways 
from REACTOME, GO, and KEGG enriched with nominal non-adjusted P < 0.01 
were grouped into broad pathway categories to enable visualization and plotted 
for each of GRSuncoupling and GRSBFP. The width of each category is proportional to 
the number of pathways in that category. Redundant pathways were removed. 
Full results are presented in Supplementary Table 16.
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Extended Data Fig. 6 | Enriched pathways per cluster. Cluster-specific DEPICT 
gene set enrichments specific to REACTOME, GO, and KEGG pathways were 
grouped into broad pathway categories. DEPICT assigns gene scores reflecting 
their likelihood of belonging to specific gene sets, then tests enrichment by 
summing these scores across associated loci and comparing them to sums from 

matched random loci. Repeated sampling generates a null distribution used to 
compute adjusted Z-scores, P values, and FDRs. To facilitate visualization of the 
mostly represented pathways per cluster, we considered pathways with nominal 
and non-adjusted P values < 1x10−3. FDR values adjusted for multiple testing and 
full results are presented in Supplementary Table 16.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03931-0

Extended Data Fig. 7 | Plasma proteins (n=176) with directionally consistent 
associations with the body fat percentage- and uncoupling genetic risk scores 
in the UK Biobank. Estimated per 10 allele change effect sizes of GRS-protein 

associations in UK Biobank European ancestry population for GRSuncoupling  
(in magenta) and GRSBFP (in blue), for rank-based inverse-normal transformed 
Olink-derived plasma protein concentrations.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03931-0

Extended Data Fig. 8 | Plasma proteins (n=129) which associate with the 
uncoupling- but not the body fat percentage genetic risk score in the UK 
Biobank. Estimated per 10 allele change effect sizes of GRS-protein associations 

in UK Biobank European ancestry population for GRSuncoupling (in magenta) and 
GRSBFP (in blue), for rank-based inverse-normal transformed Olink-derived 
plasma protein concentrations.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We used R and shell scripting to collect data 

Data analysis GWAS analysis was conducted in BOLT-LMM v2.4.1,  
Inflation of associations was tested by LDSC v1.0.1,  
Conditional analysis was performed using GCTA 1.94.2,  
Co-localization of the signals between the bi-traits and the corresponding single traits was performed using hyprcoloc v. 1.0 
Visual  inspection of signals in a given genomic region was done using locuszoom v.0.12.0 
Pathway and tissue enrichment analyses was performed using DEPICT v1.release194, 
ABC-max, Polygenic Priority Score PoPs v0.1, fastENLOC v.3.1, CS2G , GTex v 8 were used for gene prioritization analyses.  
We performed the meta-analysis using Metal  v.2020-05-05  
R software was used to perform phewas analyses, to create figures, and other data handling 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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- A description of any restrictions on data availability 
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Description of the datasets and all results are provided in Supplementary Tables 1-20.  
UK Biobank data are accessible through the application process outlined at https://www.ukbiobank.ac.uk/enable-your-research. Detailed information on the genetic 
data provided by UK Biobank is available at http://www.ukbiobank.ac.uk/scientists-3/genetic-data/ and http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100314. 
Access to the Holbeck data can be granted through appropriate approvals from the Danish Data Protection Agency and the Ethics Committee for Region Zealand, in 
accordance with patient consent and data processing agreements. The ARIC dataset is accessible through a process outlined here: https://aric.cscc.unc.edu/aric9/
researchers/new_to_aric. .  

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender Sex was treated as a biological factor. We used self-reported sex.  
GWAS analyses were performed within men and women separately  and then meta-analyzed. We also report sex-specific 
results in Supplementary Table 4 and describe them on page 6.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We defined European ancestry using k-means clustering. Analyses were only performed in Europeans since the discovery 
phase was performed in the UK Biobank, which is predominantly European. 

Population characteristics The UK Biobank study population is residents of the UK aged 40-69 years at recruitment.  Details on the population 
characteristics are provided in Supplementary Table 1. 

Recruitment For the UK Biobank, participants were invited to take part in the study on a voluntary basis. Recruitment took place between 
2007 and 2010. Comprehensive details of the recruitment process are provided here:https://pmc.ncbi.nlm.nih.gov/articles/
PMC4380465/. 

Ethics oversight UK Biobank data access was approved by the UK Biobank through project application number 1251. UK Biobank has obtained 
approval from its a committee, and researchers do not need separate approval. The Holbaek study was approved by the 
Ethics committee of region Zealand, Denmark (SJ-104) and by the Danish Data Protection Agency (REG-043-2013). For ARIC, 
all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been 
obtained.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We performed the analysis in 452,768  individuals. Our study is one of the largest multi-trait GWAS analyses. The UK Biobank had 
comprehensive data on multiple biomarkers (lipids, glucose etc.) on a large sample size which enabled our multi-trait GWAS design. 

Data exclusions Standard sample and genotype quality control was implemented and described in detail in the Methods section. 

Replication We validated our results in two additional datasets, ARIC and HOLBAEK which is a pediatric population cohort. Our results were consistent 
across all datasets. 

Randomization There were no experimental groups in the study. 

Blinding Blinding was not relevant to our study as this is not an intervention study or a clinical trial. The UK Biobank is a prospective study and GWAS 
analysis is a hypothesis-free approach. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants
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