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Background: Abdominal obesity is a significant risk factor for metabolic syndrome 
and cardiovascular diseases, with increasing evidence highlighting the role of gut 
microbiota in its development. In Indonesia, where 23.4% of adults are obese, 
few studies have examined the gut microbiota in relation to abdominal obesity, 
particularly in the context of unique dietary patterns. This pilot study investigated 
the gut microbiota composition in adults with abdominal obesity in Semarang, 
Indonesia, and its associations with body composition and macronutrient intake.
Methods: This cross-sectional study was conducted in Semarang and included 
46 adults aged 20–50 years, categorized by abdominal obesity status (22 with 
abdominal obesity and 24 without). Anthropometric measurements, body 
composition, and dietary intake were assessed. Gut microbiota profiles were 
analyzed using 16S rRNA gene sequencing of fecal samples.
Findings: In the Semarang population, individuals with abdominal obesity had 
higher visceral fat (12.32 ± 3.44% vs. 6.96 ± 2.91%) compared to those without 
abdominal obesity. Prevotella_9 copri was positively associated with visceral 
fat (r = 0.206, p = 0.169), a finding that differs from studies conducted outside 
Indonesia, potentially showing the uniqueness of the profile.
Conclusion: The correlation of Prevotella_9 copri in subjects from Semarang, 
Indonesia, differs from findings in other studies, providing a potential unique 
gut microbiota profile in the Indonesian population and providing a platform for 
future studies to clarify these hypotheses. Larger longitudinal studies are needed 
to validate these findings and establish causality.
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1 Introduction

Obesity affected 16% of the global adult population in 2024, with 
developing countries such as Indonesia currently experiencing rising 
rates; 23.4% of Indonesian adults were obese in 2023, up from 21.8% in 
2018 (1, 2). Jakarta, the capital region, has a prevalence of abdominal 
obesity of 31.8%. There are some interesting findings where the coastal 
districts have a lower prevalence (for example, in the Nusa Tenggara 
Timur Province, where majority of the population lives in the rural areas, 
the prevalence is 13.3%) (2–5). Indonesia has distinct geographical 
characteristics, from coastal to non-coastal, with one study showing an 
improvement in the health quality in the coastal area. A study from 
Geiger SJ et al. shows better reported self-health in population near the 
coastal area (6). However, the study has yet to clarify whether living in 
coastal area is associated with lower body mass index (BMI) and/or 
reduced obesity prevalence. While rapid urbanization, nutritional 
transition, and lifestyle changes may have contributed to these trends, 
other factors may also explain the difference between abdominal obesity 
and other factors, such as gut microbiota where different dietary intake 
can alter the gut microbiota composition, producing different nutritional 
metabolism (7), possibly explaining the uniqueness of Indonesian 
population, where predominantly coastal living is associated with lower 
BMI and overall lower abdominal obesity (8). With that perspective, the 
study that overviews the profile of gut microbiota in adults with 
abdominal obesity and comparing with non-abdominal obesity in 

Indonesia is necessary, given the diversity of dietary intake in urban and 
rural areas of Indonesia (9).

BMI may not fully capture health risks from fat distribution; 
abdominal circumference better indicates visceral fat accumulation. 
Abdominal obesity’s strong link to visceral fat and metabolic 
complications has prompted microbiota investigations. Visceral fat, 
more than subcutaneous fat, correlates with metabolic syndrome, 
insulin resistance, and cardiovascular disease (4). Recognizing these 
associations is critical for public health and clinical practice, as 
understanding fat distribution patterns can improve early 
interventions and reduce obesity complications. Additionally, research 
indicates that gut microbiota significantly influences metabolic health. 
Individuals with altered microbial communities show metabolic 
changes with increased calorie absorption and adiposity, suggesting 
the microbiome’s potential as a metabolic biomarker and therapeutic 
target (10, 11). Differences in locations, such as coastal and non-coastal 
areas, could alter human gut microbiota through variations in dietary 
intake. Fıçıcılar’s study in Samsun, Turkey, showed higher fish intake 
in coastal areas, while Bratlie et al.’s research in Norway found that fish 
consumption was correlated with higher Firmicutes and lower 
Bacteroidetes compared to controls (12, 13).

To bridge these insights, this pilot study integrates abdominal 
circumference measures with gut microbiota profiles, body composition, 
and macronutrient intake in Indonesian adults with abdominal obesity 
and non-abdominal obesity, conducted by a cross-sectional study in 
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Semarang, Indonesia, exploring the potential idea to benefit the 
population, researchers, and policymakers in precision nutrition.

2 Method

2.1 Study design

This cross-sectional study was conducted in northern 
Semarang, Indonesia, from June to December 2024, to examine 
the profile of the gut microbiota in adults with abdominal obesity 
and non-abdominal obesity. Semarang was selected for its rapid 
urbanization and evolving dietary patterns that reflect transitions 
in emerging economies (14). Data were collected from local 
community centers and health facilities across several sites. To 
minimize potential sources of bias, the data collection was 
conducted on the same day as fecal sampling, reducing the chance 
of fabricated results such as having dietary intake before or after 
the fecal collection. The study protocol was reviewed and 
approved by the Medical Ethics Committee of the Faculty of 
Medicine, Diponegoro University (322/EC/KEPK/FK-UNDIP/
VI/2024).

2.2 Participants

The study enrolled adults aged 20–50 years residing in the 
northern part of Semarang, Indonesia, who were categorized based on 
their abdominal obesity status, with abdominal obesity defined as 
waist circumference of ≥90 cm (men) or ≥80 cm (women), according 
to the Indonesian cutoff (15). Exclusion criteria were chronic 
metabolic diseases, pregnancy, or breastfeeding. Participants were 
screened through questionnaires and clinical assessments. 
Recruitment occurred via community outreach, advertisements, and 
primary care providers. All participants provided informed consent 
per Declaration of Helsinki (16). This study enrolled a total of 46 
participants: with 22 in abdominal obesity and 24 in non-abdominal 
obesity group. The sample size was limited by low participation during 
the one-month recruitment period in June and by resource constraints. 
The limited recruitment duration may introduce participation bias; 
however, as most participants were recruited from two clinical centers 
and given the nature of this pilot study, participation bias was 
not considered.

2.3 Study variables and measurements

2.3.1 Anthropometric and vital sign 
measurements

Participants body weight and height were measured using 
calibrated digital scales and stadiometers. These values were used 
to calculate BMI as kg/m2. In addition, waist and hip circumferences 
were measured at standardized anatomical landmarks using 
non-stretchable tape. Waist circumference was emphasized as a 
critical measure because it reflects visceral fat accumulation, which 
is strongly associated with metabolic risk factors (17). Additionally, 
we  measured the systole and diastole of the participants 
blood pressure.

2.3.2 Body composition analysis
Body composition parameters, including fat mass, muscle mass, 

and visceral fat index, were evaluated using bioelectrical impedance 
analysis (BIA) (Tanita, Tokyo, Japan). BIA was selected because it is 
noninvasive, rapid, and cost-effective, with proven reliability compared 
to techniques such as dual-energy X-ray absorptiometry (DXA) (18).

2.3.3 Dietary intake
Macronutrient and energy intakes were assessed using a validated 

semi-quantitative food frequency questionnaire (SQ-FFQ) specifically 
designed for the Indonesian population. The SQ-FFQ was pre-tested 
for reliability and validity in similar cohorts to capture the frequency 
and portion sizes of commonly consumed foods (19), and it is chosen 
instead of other tools such as diet quality questionnaire (DQQ) 
because of the non-specific and generalized nature of DQQ itself (20).

2.3.4 Fecal DNA isolation and sequencing
Fecal samples were collected in sterile containers at −20°C during 

transport and processed at the laboratory. DNA was extracted from 
200 mg fecal matter using QIAamp PowerFecal Pro DNA Kit (Qiagen, 
Hilden, Germany) per manufacturer’s protocol. DNA quality and yield 
were verified by spectrophotometry and gel electrophoresis. The V4 
region of bacterial 16S rRNA gene was sequenced using Illumina 
MiSeq platform (Illumina, San Diego, CA, USA). Studies have 
validated this method for characterizing gut microbial 
communities (21).

2.4 Statistical methods

Data analysis was performed using R programming language 
(version 4.5.0; R Core Team, Vienna, Austria), with microbiome data 
processed using the phyloseq package (version 1.51.0). Baseline data 
were summarized using descriptive statistics. Groups defined by 
abdominal circumference were compared using the Mann–Whitney 
U test for alpha diversity, while beta diversity was assessed using Bray–
Curtis dissimilarity calculated with the vegan package (v2.6–10) in 
R. Non-metric multidimensional scaling (NMDS) and principal 
coordinates analysis (PCoA) were used to visualize beta diversity 
patterns. Group-level differences were statistically evaluated using 
PERMANOVA. The taxa abundance was analyzed using QIIME2 
(QIIME Development Team, Tucson, AZ, USA) and DESeq2 (22). 
Spearman rank correlation was used to assess associations between 
gut microbiota profiles and clinical parameters. To account for 
multiple comparisons, p-values were adjusted using the Benjamini–
Hochberg procedure (false discovery rate, FDR) (23). The Spearman 
correlation analysis showed species with ≥80% abundance best 
visualized gut microbiota associations with biomarkers. A heatmap 
illustrated these correlations, enabling the interpretation of microbial 
patterns and inter-sample variability, as shown in other studies (24).

3 Results

3.1 Participants

A total of 46 participants were recruited and categorized into two 
groups based on abdominal obesity status: 22 individuals with 
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abdominal obesity and 14 individuals with a normal abdominal 
profile, with the flowchart available in Figure 1. In this study, there 
were clear differences between people with abdominal obesity and 
those with non-abdominal obesity, particularly the abdominal obesity 
group had a higher BMI (29.71 ± 5.34 kg/m2 vs. 23.32 ± 4.20 kg/m2), 
larger waist circumference (98.83 ± 11.11 cm vs. 81.37 ± 11.30 cm), 
and higher visceral fat (12.32 ± 3.44% vs. 6.96 ± 2.91%) compared to 
the normal obesity group. Full details are available in Table 1.

3.2 Heatmap analysis

The heatmap analysis in Figure  2 reveals distinct correlations 
between human health parameters and gut microbiota composition, 
with more than 80% represented by the following taxa: Roseburia 

inulinivorans, Faecalibacterium prausnitzii, Bacteroides massiliensis, 
Bacteroides caccae, Bacteroides stercoris, Prevotella stercorea, 
Bacteroides vulgatus, Phascolarctobacterium faecium, Collinsella 
aerofaciens, Bacteroides fragilis, Prevotella_9 copri, Sutterella 
wadsworthensis, Alistipes putredinis, Bacteroides uniformis, 
Parabacteroides merdae, Bacteroides plebeius, and Bacteroides 
coprocola. In this analysis, significant correlations were observed 
between several species with biomarkers, with interpreted key details 
available in Table 2.

3.3 Alpha and beta diversity

Alpha diversity analysis using species richness and diversity 
indices showed no significant differences between abdominal obesity 

FIGURE 1

CONSORT 2010 flow diagram.
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FIGURE 2

Heatmap correlation between the gut microbiota, body composition, and macronutrient intake. Red indicates a positive correlation, and blue indicates 
a negative correlation. The intensity of the color corresponds to the strength of the correlation, with deeper colors indicating stronger relationships. 
White dots inside the box indicate significance.

TABLE 1  Characteristics of individuals.

Subject characteristics p-Valuea Abdominal obesity (n = 22) Non-abdominal obesity (n = 24)

Age (years old) 0.360 35.27 ± 8.93 34.04 ± 9.68

Height (cm) 0.159 164.90 ± 10.72 160.71 ± 7.38

Weight (kg) 0.000* 81.47 ± 21.23 60.48 ± 12.66

BMI (kg/m2) 0.000* 29.71 ± 5.34 23.32 ± 4.20

Waist circumference (cm) 0.000* 98.83 ± 11.11 81.37 ± 11.30

Fat mass (%) 0.005* 31.93 ± 6.57 25.94 ± 7.05

Muscle mass (%) 0.010* 27.62 ± 5.41 31.40 ± 5.05

Visceral fat (%) 0.000* 12.32 ± 3.44 6.96 ± 2.91

Systolic blood pressure (mmHg) 0.085 129.77 ± 16.56 121.67 ± 12.73

Diastolic blood pressure (mmHg) 0.097 89.18 ± 9.46 84.75 ± 8.71

Energy (kcal) 0.296 2043.02 ± 438.46 1907.65 ± 430.54

Protein (g) 0.257 88.76 ± 23.11 80.67 ± 22.14

Fat (g) 0.531 81.73 ± 21.00 77.30 ± 25.97

Carbohydrate (g) 0.350 245.89 ± 58.55 226.18 ± 52.86

Fiber (g) 0.982 17.45 ± 4.55 16.95 ± 5.17

PUFA (g) 0.296 20.56 ± 7.40 18.25 ± 6.09
aMann–Whitney U Test.
All data are in Mean ± SD, with p-value of <0.05 (indicated with star (*)) being significant. BMI, Body mass index; PUFA, Polyunsaturated fatty acids.
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and non-abdominal obesity groups. Species numbers were similar 
(p = 0.9), and Shannon, Simpson, and Inverse Simpson indices 
showed no differences (p = 0.72, 0.5, 0.5), indicating similar microbial 
diversity between groups. Beta diversity analysis using NMDS and 
PCoA plots revealed no significant separation between groups, as 
supported by PERMANOVA results (R2 = 0.016, p = 0.953), indicating 
minimal compositional differences in gut microbiota.

4 Discussion

This study identified several significant correlations among various 
species and biomarkers, as demonstrated through heatmap analysis in 
Figure 2 and detailed in Table 2. There are several potential metabolic 
functions of the identified microbes according to several studies. 
Prevotella_9 copri is notably involved in amino acid and carbohydrate 
metabolism (25), while Bacteroides coprocola has shown a characteristic 
distribution of single-nucleotide polymorphisms (SNPs) in type 2 
diabetes patients (26). Roseburia inulinivorans is recognized for its 
utilization of inulin and starch (27), and Bacteroides massiliensis also 
plays a role in carbohydrate metabolism (28). Sutterella wadsworthensis 
demonstrates potential binding to mucus and extracellular matrix 
proteins (29), and Bacteroides plebeius has been isolated from seaweed-
eating Japanese individuals (30). From these identified microbes, 
several correlations were observed. For instance, BMI exhibited a 
positive correlation with Prevotella_9 copri, consistent with findings 
from a study examining this relationship in children (31). While waist 
circumference correlated positively with Prevotella_9 copri and 
Bacteroides coprocola, no prior studies have reported similar findings. 
These species are abundant in individuals consuming carbohydrate-
rich diets, suggesting a potential link between these species and waist 
circumference via carbohydrate intake. However, our study found no 
significant correlation between these species and carbohydrate 
consumption. (25, 32, 33). Several studies have reported findings that 
differ from those of the present study. For instance, Asnicar et al. (34) 
identified an inverse correlation between Prevotella_9 copri and 
visceral fat, whereas this study observed a positive correlation. This is 
interesting because while there is a possible explanation of increasing 

PUFA serum level as the reason of negative correlation in one of the 
studies, in this study Prevotella_9 copri are having no significance with 
the PUFA serum level (34). Furthermore, there are few researches that 
explore the relationship between other species and biomarkers. This 
scarcity may be  attributed to the limited exploration of species-
biomarker correlation, especially in Indonesia, where dietary intake 
and other biomarkers differ from those in other regions.

Alpha diversity analysis showed no significant differences in 
species richness and diversity indices between groups, indicating 
maintained microbial biodiversity regardless of abdominal obesity 
status. Beta diversity analysis revealed no segregation of gut 
microbiota community structures between abdominal obesity and 
non-abdominal obesity groups, with NMDS and PCoA plots showing 
no clustering differences. These findings contrast with prior studies 
that demonstrated distinct clustering patterns between metabolically 
unhealthy individuals and healthy controls, suggesting obesity-linked 
microbial composition differences (35, 36). However, in this study, 
such clear distinctions were not observed. The lack of correlation 
between alpha and beta diversity may be explained by their different 
aspects: alpha diversity measures the richness and evenness within a 
single sample, whereas beta diversity measures the differences 
between samples. Study limitations include low sample size (n = 46) 
and cross-sectional design preventing causal inference. While 
taxonomic profiles were analyzed, microbial metabolite functions 
were not studied. Furthermore, other associated factors were not 
observed such as physical activity that showed the effects of the 
overall microbiota composition, limiting the generalizability (37), 
However, given the nature of this study as a pilot study, this work 
provides the groundwork for future microbiota research.

In conclusion, this study revealed a potential uniqueness in one 
of the gut microbiota, with Prevotella_9 copri showing an inverse 
correlation with visceral fat compared to findings from other 
studies conducted outside of Indonesia. These microbial profiles 
may serve as biomarkers for early detection and personalized 
interventions. However, the small sample size and cross-sectional 
design restrict the generalizability and causal inference. Future 
studies with larger sample sizes and comparisons across urban and 
rural locations, including coastal and highland regions, will 
be beneficial to validate these associations, enhance understanding 
of the underlying mechanisms, and advance microbiota-targeted 
strategies for managing abdominal obesity and its 
metabolic consequences.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material; further inquiries can be directed 
to the corresponding author.

Ethics statement

The studies involving humans were approved by Medical Ethics 
Committee of the Faculty of Medicine, Diponegoro University. The 
studies were conducted in accordance with the local legislation and 
institutional requirements. The participants provided their written 
informed consent to participate in this study.

TABLE 2  Species-to-biomarker key highlights from Spearman 
correlations analysis.

Variable Species Correlation 
value

p-Valuea

BMI Prevotella_9 copri 0.322 0.029

VF* 0.206 0.169

Diastolic blood 

pressure

Bacteroides coprocola −0.302 0.032

PUFA 0.364 0.013

Energy Roseburia inulinivorans 0.349 0.018

Protein 0.334 0.023

Fat Bacteroides massiliensis 0.326 0.027

Carbohydrate Sutterella wadsworthensis 0.294 0.047

Fiber Bacteroides plebeius 0.388 0.008

aAdjusted p-value.
*Indicating species-to-biomarker of interest. BMI, Body mass index; VF, Visceral fat; PUFA, 
Polyunsaturated fatty acid.
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