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Introduction
Compelling epidemiological links and experimental evidence have causally linked exposure to air pollu-
tion with the pathogenesis of  insulin resistance and development of  type 2 diabetes mellitus (T2D) (1). 
Recent evidence suggests that as much as 20% of  the global burden of  T2D mortality may be accounted for 
by exposure to air pollution consisting of  fine particulate matter smaller than 2.5 μm (PM2.5) (2). In prior
studies, the effects of  inhaled PM2.5 in inducing a range of  abnormalities important for the pathogenesis of  
insulin resistance, including oxidative stress, skeletal muscle insulin resistance, hepatic insulin resistance, 
endoplasmic reticulum (ER) stress, hypothalamic inflammation, and circadian dysregulation have been 
demonstrated (3–8). These mechanisms are ultimately thought to converge in abnormal whole-body metab-
olism and phenotypic manifestations consistent with T2D (9–12). The range of  phenotypic manifestations 
in T2D has increased the appreciation of  the potential dysregulation of  epigenetic pathways responsible for 
transcriptional control of  key metabolic cascades, which may ultimately converge in insulin resistance and 
abnormal whole-body metabolism (3, 13–16). Environmental triggers and chemicals have been shown to be 
facile mediators of  epigenetic changes such as DNA methylation and histone modification, which play an 
essential role in controlling chromatin compaction state and DNA repair (17, 18). In this context, we have 

Recent experimental and epidemiologic data have strongly associated air pollution in the 
pathogenesis of insulin resistance and type 2 diabetes mellitus. We explored the effect of 
inhalational exposure to concentrated ambient particulate matter smaller than 2.5 μm (PM2.5), 
or filtered air, using a whole-body inhalation system (6 hours/day, 5 days/week) for 24 weeks on 
metabolism and brown adipose tissue (BAT) function. Mechanistic evaluation of insulin resistance, 
glucose uptake with 18F-fluorodeoxyglucose positron emission tomography, alongside evaluation 
for differentially methylated regions, chromatin accessibility, and differential expression of genes 
was performed. PM2.5 exposure impaired metabolism through changes in key BAT transcriptional 
programs involved in redox stress, lipid deposition, fibrosis, and altered thermogenesis. Significant 
differential methylation and widespread chromatin remodeling was noted in BAT with PM2.5. 
Integrated analysis uncovered a role for the histone deacetylase HDAC9 and histone demethylase 
KDM2B. The latter demethylates Lys-4 and Lys-36 of histone H3. Specifically, studies using 
ChIP combined with quantitative PCR confirmed HDAC9 and KDM2B occupancy and reduced 
H3K36me2 on the promoter of target BAT genes in PM2.5 mice, while Hdac9/Kdm2b knockdown 
and overexpression increased and reduced BAT metabolism, respectively. Collectively, our results 
provide insights into air pollution exposure and changes in BAT and metabolism.
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previously demonstrated the involvement of  histone deacetylases 2, 3, and 4 (HDAC2, -3, and -4) and other 
epigenetic pathways in the development of  insulin resistance and circadian disruption in mice exposed to 
air pollution (14). Brown adipose tissue (BAT) has recently been shown to play a central role in whole-body 
metabolism, through its function in the physiological turnover of  endogenous metabolites such as glucose 
and fatty acid clearance, and as a major site for thermogenic disposition of  caloric load and susceptibility to 
insulin resistance (19). In previous research, we demonstrated a significant impact of  chronic inhalational 
exposure to concentrated ambient PM2.5 on BAT dysfunction and circadian disruption in tissues such as the 
liver (14, 20, 21). In this study, we investigated whole-body metabolism, genome-wide DNA methylation 
patterns, differential chromatin accessibility, and transcriptional and functional changes in BAT in response 
to air pollution exposure in order to uncover broad integrated regulators of  metabolism and BAT function 
in response to air pollution.

Results
PM2.5 causes impaired glucose uptake and altered mitochondrial structure in BAT. Figure 1A depicts representa-
tive positron emission tomography (PET) images of  the concentrated ambient particulate air pollution 
exposure group (henceforth referred to as PM2.5), compared with the filtered (FA) air controls. In BAT, the 
standard uptake value (SUV) of  PM2.5-exposed mice was significantly lower than in FA-exposed mice (8.32 
± 0.52 vs. 11.83 ± 1.05; P < 0.02). In brain and heart, 18F-fluorodeoxyglucose (FDG) uptake showed a 
trend to lower levels in PM2.5-exposed mice, while uptake in liver, skeletal muscle, and white adipose tissue 
(WAT) was found to be comparable to control mice (Figure 1A). BAT in PM2.5-exposed mice exhibited 
dysmorphic mitochondria, with significant subcellular heterogeneity by transmission electron microscopy 
(TEM) (Figure 1B). Lower numbers of  mitochondria were noticed in BAT of  PM2.5-exposed mice, com-
pared with FA-exposed mice. Strikingly, BAT of  PM2.5-exposed mice exhibited abnormal lipid deposition, 
with large lipid droplet size and with comparable numbers of  lipid droplets between groups (Figure 1B).

PM2.5 alters rhythmicity of  genes involved in circadian rhythm, mitochondrial biogenesis, and antioxidant response 
in BAT. Decreased rhythmic expression of  Prdm16 mRNA was observed at zeitgeber time 8 (ZT8), ZT12, 
and ZT20 (P < 0.05) in PM2.5-exposed mice, compared with FA, encoding a key BAT transcription fac-
tor that regulates thermogenic gene programs in brown adipocytes (Figure 1C). Our data confirmed an 
approximately 3- to 4-fold decrease in Prdm16 mRNA amount over a 24-hour period in PM2.5-exposed mice, 
compared with that of  FA-exposed mice. Similarly, Ucp1, which exhibited a strong circadian rhythmicity 
with a peak at ZT12, was abrogated in PM2.5-exposed mice (Figure 1C). Pgc1a, Ampk, Cpt1, and Cidea by 
quantitative reverse transcription PCR (qRT-PCR) also displayed alternate patterns of  rhythmicity (Figure 
1C). Marked variations in temporal expression of  key BAT antioxidant pathways, including Nrf2 (encod-
ing nuclear factor erythroid 2–related factor 2) and GSH-related genes (GSR, glutathione [GSH] system) 
(Figure 1C). In addition, we applied Cosinor analysis (Supplemental Figure 1; supplemental material avail-
able online with this article; https://doi.org/10.1172/jci.insight.187023DS1) to investigate the rhythmic 
variation of  the genes noticed in Figure 1C. Compared with FA-exposed mice, PM2.5 exposure altered the 
24-hour oscillations of  metabolic and antioxidant genes in BAT. These included changes in the rhythm-ad-
justed mean (mesor) of  Prdm16, Cidea, Ampk, Cpt1, Ucp1, Nrf2, Cat, Sod2, and Sod3 (all reduced, P < 0.05), 
and Scd1 (elevated, P < 0.05); changes in amplitude (the mean of  the rhythm from peak to trough) of  
Prdm16, Cidea, Srebp1c, Acc, Ampk, and Cpt1 (all reduced, P < 0.05), and Sod3 (elevated, P < 0.05); as well as 
a changes in the acrophase (the hour at which the rhythm peaks) of  Pgc1a, Cidea, Srebp1c, Ampk, Gst1a, and 
Cat (all P < 0.05) (Supplemental Figure 1).

PM2.5 alters the “batokine” profile and induces inflammation and fibrosis in BAT. The mRNA levels of  Fgf21, 
Adipoq, Fst, Cxcl14, and Nrg4 were strongly decreased (Figure 1D) in response to PM2.5. In contrast, Tnfa 
and Il6 were higher in PM2.5 (Figure 1D). BAT in PM2.5-exposed mice had more extracellular matrix 
deposition (Supplemental Figure 2, A–C). Gtf2ird1, encoding a cold-inducible transcription factor that 
represses adipose tissue fibrosis through a PRDM16-EHMT1 complex, was decreased in PM2.5 mice (Sup-
plemental Figure 2D). Col5a1, which encodes α1 (V) collagen, was upregulated in the BAT of  PM2.5-ex-
posed mice, with no changes in Col1a and Col3a expression (Supplemental Figure 2D). Apart from the 
above classical fibrotic markers, the transcription levels of  other notable fibrotic markers such as Angptl2, 
Mrtfa, and Mrtfb were significantly and moderately upregulated by PM2.5 (Supplemental Figure 2D). The 
mRNA levels of  fibrotic suppressor Ehmt1 (encoding euchromatic histone lysine methyltransferase) were 
downregulated by PM2.5.
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PM2.5 causes impaired glucose homeostasis and energy expenditure. We identified a marked and signifi-
cant decrease in glucose and insulin clearance in PM2.5 compared with FA animals (Figure 2, A and B). 
PM2.5-exposed mice showed a significant reduction in energy expenditure during dark-phase conditions 
(Figure 2C). Oxygen consumption (VO2) and carbon dioxide production (VCO2) in PM2.5 mice were lower 
than in FA during both light and dark phases (Figure 2, D and E). The respiratory exchange ratio (RER) 
was not significantly different between groups during the light and dark phases (Figure 2F). However, 
during the light and dark phases, PM2.5-exposed mice showed a general decrease in RER, indicating a shift 
in substrate utilization toward fat oxidation (Figure 2F) (22). No difference in locomotor or ambulatory 
activity, or caloric or water intake was observed (Figure 2, G–I).

Air pollution–induced DNA methylation patterns in BAT. Figure 3A shows hierarchical clustering analysis 
and principal component analysis (PCA) of  BAT for FA- and PM2.5-exposed mice in biological replicates. 
We identified a total of  881 differentially methylated regions (DMRs, see Methods). Out of  these DMRs, 
464 were hypomethylated (PM2.5 < FA) and 417 were hypermethylated (PM2.5 > FA). After further reduc-
ing the dimensionality of  the data and selecting out missing or redundant gene annotations, a list of  441 
unique fully annotated DMRs was assembled (234 hypomethylated and 237 hypermethylated, see Supple-
mental Table 1A). The distribution of  DNA methylation levels of  significant DMRs is also shown in Figure 
3B. Figure 3C depicts the global proportions of  identified methylated CpG sites per genomic partition 
(long interspersed nuclear element [LINE], long terminal repeat [LTR], short interspersed nuclear element 
[SINE], Intergenic, Promoter, Exon, Intron, 3′UTR, transcription start site [TTS]) by exposure groups. No 
global difference in the proportions of  methylation per genomic partition between FA- and PM2.5-exposed 
mouse samples was detected. DMRs were primarily localized in LINE, Intron, LTRs, and Intergenic parti-
tions, with the total number of  DMRs much lower in Promoter, SINE, 3′UTR, Exon, and TSS partitions. 
When DMRs were categorized according to their distance from the TSS, we observed that DMRs were 
primarily localized around 50–500 kb upstream or downstream of  the TSS (Figure 3D). We then examined 
the total number of  identified DMRs according to hyper- or hypomethylation status by genomic partition 
(LINE, SINE, LTR, Intergenic, Intron, Exon, 3’UTR, Promoter, and TSS) in the FA and PM2.5 samples. 
Interestingly, there were more hypomethylated DMRs identified in the LINE and LTR partitions, while 
hypermethylated DMRs were more common in Intergenic, Intron Promoter, and Exon partitions (Figure 
3E). Figure 3F depicts the results of  significantly enriched Gene Ontology (GO) terms (in Biological Pro-
cess) of  DMRs according to DNA methylation status. Hypomethylated regions corresponded to gluconeo-
genesis, inflammation, and carbohydrate biosynthesis, while hypermethylated regions predicted pathways 
involving cellular senescence, redox stress, etc.

Given the findings of  altered circadian function and redox stress, we explored potential methylation 
pathways that could explain circadian and Nrf2 dysregulation, especially given the central role of  NRF2 as 
a redox transcription factor (23). First, we identified the promoter sites within ±1 kb of  the corresponding 
TSSs of  circadian and NRF2 target genes. Second, we predicted the corresponding enhancer sites using 
published histone ChIP-seq datasets (enriched peaks from H3K27ac and H3K4me1). Figure 3G shows the 
DMRs in the promoter and enhancer regions of  the top 5 and bottom 5 target genes associated with cir-
cadian rhythm and NRF2. Among circadian rhythm target genes, we found Lep, Adipoq, and Mapk10 to 
be hypermethylated, while Nms, Id2, and Serpine1 were hypomethylated in PM2.5-exposed mice. Figure 
3H shows the corresponding heatmap of  significant DMR enrichment levels in the enhancer regions of  
circadian and NRF2 target genes for the FA and PM2.5 sample groups. We also performed de novo motif  

Figure 1. Impaired glucose uptake and altered ultrastructure and secretory function of BAT induced by air pollution. (A) FDG distribution in various 
peripheral tissues induced by insulin. Representative axial, coronal, sagittal images of mice from FA versus PM2.5 exposure (n = 4) are shown. PET/CT 
showing specific BATs that were assessed in this study (ROI placement in BAT in axial, coronal, and sagittal PET images and overlaid on CT images), and 
localization of specific tissues was established utilizing CT scans. Bar plots indicate mean FDG uptake level of BAT and other metabolic organs from mice 
exposed to FA versus PM2.5 (n = 4). (B) Representative TEM photomicrographs acquired from the section of the BAT from mice exposed to FA and PM2.5 
for 24 weeks (n = 2). Bar plots represent mean mitochondrial number and size per image field. Higher magnification (scale bars: 0.5 μm) of mitochondria 
shows lamellar cristae in FA-exposed and tubular cristae structure in PM2.5-exposed mice. Lower magnification (scale bars: 2 μm) micrographs demon-
strate the accumulation of lipid droplets in mitochondria. Bar plots represent the mean number of lipid droplets and their size per image field. Data were 
collected across 48 fields of view for 2 mice per group. (C) Heatmap indicates 24-hour circadian variation (ZT0 to ZT20) of thermogenic, metabolic, and 
antioxidant gene expression in BAT tissues (n = 3). Data are presented as fold change relative to the baseline (FA at ZT0) and the heatmap shows the 
mean value at each time point. Statistical significance was determined using an unpaired, 2-tailed Student’s t test, with P < 0.05 considered significant 
when comparing each ZT point between groups. (D) Describes the batokine mRNA expression levels in BAT from mice exposed to FA versus PM2.5 for 24 
weeks (n = 5). Data are provided as mean ± SEM. *P < 0.05 versus FA-exposed mice by unpaired, 2-tailed Student’s t test.
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prediction to identify potential transcription factor binding sites (TFBSs) that overlap with DMRs. Hyper-
methylated DMRs in the PM2.5 samples corresponded to sites enriched for the TFBSs of  Tcf7, Nfkb-p65, and 
Barx1, while hypomethylated DMRs in the PM2.5 samples were found to be enriched in the TFBSs of  Foxo1, 
Elf3, and Foxh1 (Figure 3I). Figure 3J illustrates differential methylation profiles of  DMRs in proximal 
(DMR-to-TSS < 2 kb) or distal (DMR-to-TSS > 2 kb) target sites of  specific regulated genes and pathways 
involving in inflammatory ROS/glutathione metabolism, circadian rhythm, and BAT metabolism.

Air pollution–induced DNA accessibility patterns in BAT. Figure 4A shows a multidimensional scaling 
(MDS) plot. We identified a total of  2278 differentially accessible regions (DARs, see Methods), of  which 
833 were gain of  accessibility (GA) (PM2.5 > FA) and 1445 were loss of  accessibility (LA) (PM2.5 < FA) 
regions. After further reducing the dimensionality, a curated list of  1861 unique DARs was assembled 
(482 GA and 1379 LA, Supplemental Table 1B and Supplemental Figure 3). The plots in Figure 4, B 
and C show the distribution of  significant DARs by DNA accessibility status and endorse the power of  
our variable selection method, as all DARs would have been called nonsignificant (false negative) had we 
used a regular fold-change method (e.g., |log2[FC]| > 2). Figure 4D identifies the top 10 GA and top 10 
LA DARs, also mapped in the Bayesian ANOVA (BAM) “M” and volcano scatter plots (Figure 4, B and 
C). Figure 4E illustrates DNA accessibility profiles of  representative genes of  interest in the key pathways 
of  BAT metabolism, ROS and glutathione synthesis, and circadian rhythm altered in response to PM2.5. 
A significant reduction in DNA accessibility in response to PM2.5 exposure, as evidenced by the average 
assay for transposase-accessible chromatin using sequencing (ATAC-seq) peak enrichment, was noted in 
Ucp1, Gclc, and Sik1. Figure 4F depicts the results of  GO terms in Biological Process by DNA accessibility 
status. The DARs in the PM2.5 samples were primarily localized in intronic regions (Figure 4G) and were 
mostly in distal regulatory sites (5–500 kb) downstream of  the TSS, with a much smaller proportion of  
upstream promoter sites that were differentially accessible (Figure 4H and Supplemental Figure 4). We also 
characterized the functional annotations of  all identified DAR enhancer and regulatory sites predicted by 
Genomic Regions Enrichment of  Annotations Tool (GREAT) analysis (see Methods) (24). In addition, 
we performed de novo motif  prediction using HOMER software (see Supplemental Methods) to identify 
potential TFBSs that overlap with DARs. In the PM2.5 samples, DARs associated with GA were enriched in 
TFBSs that corresponded to Stat5, Arid3a, Thrb, and Barx1, while DARs associated with LA were enriched 
in TFBSs that corresponded to Spf1, Klf15, Znf519, Hinfp, and Tfap2c (Figure 4I). Through analysis using 
RGT_HINT software (25), we observed similarly enriched TFBSs, such as the Spf, Klf, and Znf families, in 
DARs primarily associated with LA (Figure 4J).

Air pollution–induced mRNA transcription patterns in BAT. Figure 5, A and B show the resulting PCA plot 
and heatmap after clustering, respectively. We identified a total of  678 differentially expressed genes (DEGs). 
Out of  these DEGs, 409 were found to be upregulated (PM2.5 > FA) while 269 were downregulated (PM2.5 
< FA). After further reduction of  dimensionality of  the data, by selecting out the features with redundant 
or missing gene annotations, a curated list of  663 fully annotated DEGs was obtained (402 upregulated and 
261 downregulated, Supplemental Table 1C). The top upregulated genes included Rreb1, Ucp3, Tsku, Ky, and 
Vamp1, while top downregulated genes included Klf15, Gm45061, Fam13a, Zcchc2, Ccng2, Ppp1r3b, Slc5a3, and 
Gas1. Gene set enrichment analysis (GSEA) identified ROS, glutathione, circadian rhythm, and BAT metab-
olism pathways to be downregulated in the PM2.5 (Figure 5C). Panels D–G of Figure 5 give a more in-depth 
view of  the DEG functions and activated pathways. Figure 5D shows the results for the Kyoto Encyclopedia 
of  Genes and Genomes (KEGG) pathways of  DEGs generated through overrepresentation analysis (ORA) 
and GSEA. Among the pathways regulated in the PM2.5-exposed mice, calcium signaling, insulin signal-
ing, fatty acid metabolism, and circadian rhythm were prominent. The PM2.5 samples exhibited a significant 

Figure 2. Impaired glucose clearance and metabolic rate induced by air pollution. (A) Glucose tolerance tests in FA- versus PM2.5-exposed mice (n = 16/
group). After an overnight fast, an i.p. glucose load (2 g/kg) was given to FA- and PM2.5-exposed mice. (B) Insulin tolerance tests were done on 6-hour-fast-
ed mice using an i.p. injection of 0.75 U/kg regular human insulin and blood glucose levels were monitored as indicated in the figures. The AUC of glucose 
and insulin tolerance test results and corresponding average body weight are shown in the bar plots. Energy expenditure, respiratory exchange ratio 
(RER), and physical activity were measured by indirect calorimetry in C57BL/6J mice after 20 weeks of exposure to FA or PM2.5. (C) Energy expenditure was 
calculated from measured VO2 and RER. It is shown respective to body weight for each exposure group as an average over a 72-hour period. Day period is 
represented by white background and night period by gray background. The corresponding bar plots indicate average total day and night energy expen-
diture. VO2 (D), VCO2 (E), RER (F), and physical parameters such as, activity level (G), food and water intake (H), and water consumption (I) are shown as 
average over a 72-hour period. Corresponding bar plots show average day and night total VO2, VCO2, and RER, activity, food and water intake values of the 
FA and PM2.5 groups. Metabolic cage study, all parameters, n = 8/group. Data are provided as mean ± SEM. *P < 0.05 versus FA-exposed mice by unpaired, 
2-tailed Student’s t test.
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upregulation of  genes associated with muscle development and actin cytoskeleton organization, and signifi-
cant downregulation in BAT lipid biosynthetic and fatty acid metabolic processes. The tree view of Figure 5E 
shows the hierarchy of  enriched GO terms from up- and downregulated DEGs. The gene-concept network 

Figure 3. Methylome data analysis of PM2.5-exposed BAT. (A) Hierarchical clustering dendrogram and PCA plot of biological replicates from FA (n = 3) and PM2.5 
(n = 3) in the methylome data of BAT. (B) Scatter plot of DNA methylation levels of statistically significant differentially methylated regions (DMRs: 881, of 
which 464 are hypomethylated and 417 hypermethylated) between FA- and PM2.5-exposed BAT. The x axis is the mean FA DNA methylation level (0%–100%) 
and the y axis is the mean PM2.5 DNA methylation level (0%–100%). (C) Pie charts (%) of global distribution of all CpG sites in predefined genomic partitions by 
PM exposure group. Left: FA samples. Right: PM2.5 samples (binned 100 bp). (D and E) Bar plots of GREAT analysis in PM2.5-exposed BAT.(D) Genomic feature 
distance (DMRs to TSSs) distribution and (E) genomic partition distribution of DMRs. (F) GO analysis of DMR significant terms (Biological Process) by DNA 
methylation status. Left: Hypermethylated genes. Right: Hypomethylated genes. (G) DNA methylation levels in circadian rhythm and NRF2 pathway target 
genes. (H) Heatmap plot of significance of DMR enhancer and regulatory sites predicted by GREAT analysis for the core genes associated with circadian rhythm 
and NRF2 pathways. (I) Predicted DMR target motifs and regulatory enhancer sites by GREAT analysis. Comparison of significant transcription factor motifs 
of DMR target genes by DNA methylation status. Left: Hypermethylated DMR target genes. Right: Hypomethylated DMR target genes. (J) Illustration of CpG 
differential methylation profiles of DMRs in distal or proximal target sites of specific genes and pathways of interest. The y axis shows the DNA methylation 
level (0%–100%) with a smoothing line, and the x axis shows the corresponding CpG genomic location. Each x-axis tick denotes a CpG site. Circled “M” symbols 
denote DMR CpG sites. Far left: Distal enhancer site of Tnfrsf10b (Inflammatory Signaling). Middle left: Proximal promoter site of Mgst1 (ROS and Glutathione 
Metabolism). Middle right: Promoter site of Prdm16 (BAT Metabolism). Far right: Promoter site of Rora (Circadian Rhythm).
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Figure 4. DNA accessibility data analysis of PM2.5-exposed BAT. (A) Multidimensional scaling plot of biological replicates from FA (n = 3) and PM2.5 (PM: 
n = 3) in the DNA accessibility data of BAT. (B and C) Bayesian ANOVA (BAM) “M” scatter plot of statistically significant differentially accessible regions 
(DARs: 2278, of which 833 are with a gain of accessibility [GA] and 1445 with a loss of accessibility [LA]) in PM2.5-exposed BAT. (B) The BAM “M” plot is a 
shrinkage plot, where each point represents a single DAR. Red and green dots indicate GA and LA DARs, respectively. The y axis is the posterior variance 
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view reveals which important genes are involved in the top KEGG pathways (by significance of  P values, 
Figure 5F), while the enrichment map highlights the relationships and overlapping areas that exist between 
any 2 top KEGG pathways (Figure 5G).

DMR and DEG integration analyses by MPLS. We used a joint approach of  correlation analysis and 
multivariate partial least squares (MPLS) modeling (see Supplemental Methods) (26). We identified 621 
DMR-DEG significant interaction pairs. Five of  these pairs were homologous (cis), meaning that the meth-
ylation occurred in the promoter or enhancer of  the same DEG (Figure 6, A and B, and Supplemental 
Table 2A), while 616 were heterologous (trans), meaning that the methylations occurring in promoter/
enhancers of  these genes were strongly correlated with differential expression of  other genes (Figure 6, A 
and C, and Supplemental Table 2B). When all DMR-DEG pairs are plotted in the correlation coefficient 
versus regression coefficient space for visualization, one notices that inferences from straight correlation 
analysis and MPLS modeling are consistent; almost all DMR-DEG pairs are found in the upper-right and 
lower-left quadrants of  the correlation-regression space (Figure 6B). For reasons of  inherent mathematical 
imbalance between the number of  homologous and heterologous pairs, the homologous pairs were called 
significant by one criterion of  correlation or regression, while the heterologous pairs were called significant 
by both criteria (see Supplemental Methods). As a result, significant homologous pairs appear beyond one 
threshold of  significance (top or bottom of  the correlation-regression space, Figure 6B), while significant 
heterologous pairs appear beyond both thresholds of  significance (upper-right or bottom-left corners of  
the correlation-regression space, Figure 6C). Intriguingly, a very large majority of  significant DMR-DEG 
interaction pairs involved heterologous interaction pairs (Figure 6, A and C, and Supplemental Table 2, A 
and B). Figure 6D represents a hypothetical model of  DMR-DEG interactions.

KEGG pathway analysis of  homologous and heterologous DMR-DEG pairs revealed enrichment in 
pathways such as Striated Muscle Functions, Development, and Adaptation, especially in relation to car-
diac muscle and cardiac muscle hypertrophy in response to stress. Of  note was the activation of  pathways 
such as Insulin Signaling/Insulin Resistance and Fatty Acid Metabolism Biosynthesis (Supplemental Table 
3, A and B, highlighted in red).

Next, we searched for significant (enriched) blocks or regions of  differentially methylated CpG sites 
within promoters and enhancers (±2 kb of  the TSS) of  corresponding gene expression changes, i.e., signif-
icant DEGs. Results are shown in a scatter plot and contingency table of  all significant interaction pairs 
(Supplemental Figure 5A). Overall, a strong dependence was observed between the 2 assays; an anticor-
relation trend was observed between gene methylation changes and gene expression changes (Supplemental 
Figure 5A, DNA methylation log[FC] vs. mRNA log[FC] χ2 ≈ 999.6, P ≈ 2.1 × 10–219).

DAR and DEG integration analyses by MPLS modeling. To study how genomic regions of  DNA accessi-
bility (blocks of  peaks) regulate downstream gene expression, we used the curated DAR (Supplemental 
Table 1B) and DEG datasets (Supplemental Table 1C, see also Supplemental Methods). Using the same 
joint approach of  correlation analysis and MPLS regression modeling for data (see Supplemental Meth-
ods) (26), we identified 4255 DAR-DEG significant interaction pairs (13 homologous/cis, Figure 7, A 
and B, and Supplemental Table 4A; 4242 heterologous/trans, Figure 7, A and C, and Supplemental Table 
4B). The conclusions were similar to those for the MPLS modeling of  DMR-DEG interactions, including 
the fact that the very large majority of  significant DAR-DEG interactions were heterologous (Figure 7, A 
and C, and Supplemental Table 4, A and B). GO and KEGG pathway databases revealed enrichment in 
several pathways such as T2D, Insulin Signaling and Secretion, and Fatty Acid Biosynthesis and Metab-
olism. Of  note is also the activation of  JAK-STAT, MAPK, AMPK, and cAMP signaling pathways, among 
others (Supplemental Table 5, A and B, highlighted in red). Figure 7D represents a hypothetical model of  
DAR-DEG interactions.

and the x axis is the Bayesian test statistic (Zcut) value. (C) The volcano plot, in which every point represents a single DAR, is a scatter plot of statistical 
significance versus magnitude-of-change, where the y axis represents the absolute value of the Bayesian test statistic (Zcut) and the x axis represents 
the log(fold change). (D) Table of top 10 significant DARs ordered by decreasing significance and by DNA accessibility status: GA (red) or LA (green). “NAs” 
refer to intergenic DARs peaks with no gene annotation. (E) Illustration of PM2.5 exposure–induced DNA accessibility peaks profiles of DARS in specific 
pathways of interest. Left: BAT Metabolism (Ucp1). Middle: ROS and Glutathione Metabolism (Gclc), Right: Circadian Rhythm (Sik1). (F) GO analysis (Bio-
logical Process) of DAR significant GO terms by DNA accessibility status. (G and H) Bar plots of GREAT analysis by DNA accessibility status. (G) Genomic 
partition distribution and (H) genomic feature distance distribution (DAR peaks to TSSs) of DARs associated with GA or LA. (I and J) Predicted DAR target 
motifs and regulatory enhancer sites by GREAT analysis. (I) Comparison of significant transcription factors motifs of DAR target genes by DNA accessibili-
ty status. (J) RGT_HINT analysis of significant (enriched) transcription factor DNA-binding sites of DAR target genes by DNA accessibility status.
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Figure 5. Transcriptome data analysis of PM2.5-exposed BAT: differential expression and associated functional analyses. (A) PCA plot of biological repli-
cates from FA (n = 4) and PM2.5 (n = 4) in the transcriptome data of BAT. (B) Hierarchical clustering and heatmap plot of statistically significant differential-
ly expressed genes (DEGs: 663, of which 409 are upregulated and 269 are downregulated) in PM2.5-exposed BAT. (C) GSEA of transcriptome data in specific 
pathways of interest. Left: ROS and Glutathione Metabolism. Middle: Circadian Rhythm. Right: BAT Metabolism. Red: upregulated; Blue: downregulated 
in PM2.5. NES, normalized enrichment score. Most of the genes in these pathways were downregulated. (D–G) GO and KEGG pathways of DEGs by overrep-
resentation analysis (ORA) and GSEA. (D) Dot plot of top regulated KEGG pathways of DEGs analyzed by ORA (left) and GSEA (right). (E) Tree plot views of 
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We also searched for significant (enriched) blocks or regions of differentially accessible chromatin peaks 
within promoters and enhancers (±2 kb of the TSS) of corresponding gene expression changes, i.e., significant 
DEGs. Results are shown in a scatter plot and contingency table of all significant interaction pairs (Supple-
mental Figure 5B) and comparison was done (Supplemental Figure 5B) by comparing the counts by categories 
using a χ2 test of independence (Supplemental Figure 5B). Overall, a strong dependency was observed between 
the 2 assays; a correlation trend was observed between gene accessibility changes and gene expression changes 
(Supplemental Figure 5B, DNA accessibility log[FC] vs. mRNA log[FC] χ2 ≈ 2090.7, P < 10–300).

Overall DMR, DAR, and DEG integration analyses. The significantly regulated regions (441 DMRs, Sup-
plemental Table 1A; and 1861 DARs, Supplemental Table 1B) and genes (663 DEGs, Supplemental Table 
1C) identified from the curated datasets, as well as significant DMR-DEG and DAR-DEG interaction 
pairs identified either by MPLS, ATLAS (Supplemental Methods), or GREAT analysis were used to con-
duct gene-level intersection analyses. We first show intersections (or not) of  significant regions of  DARs, 
DMRs, and DEGs in Figure 8A. This resulted in 73 homologous and 1788 heterologous regions and genes 
involved in DAR-DEG interaction pairs, as well as 20 homologous and 421 heterologous regions and genes 
involved in DMR-DEG interaction pairs. Out of  these, only 2 (Hdac9 and Kdm2b) were common to both 
DAR-DEG and DMR-DEG interaction pairs, meaning that they are simultaneously regulated at the DNA 
accessibility, methylation, and mRNA expression levels (Figure 8A). The lists of  unique and significant 
DAR-DEG and DMR-DEG interaction pairs found by MPLS integration analyses (Figure 6, A and C, 
Figure 7, A and C, Supplemental Table 2, A and B, and Supplemental Table 4, A and B) were subjected to 
similar gene-level intersection analyses. Supplemental Figure 6A verified that no (zero) homologous pair 
intersected with a heterologous pair and revealed that very few (only 9) of  the DAR-DEG and DMR-DEG 
interaction pairs intersect with each other.

Supplemental Figure 6 shows corresponding intersections of  significant pairs. To confirm, we also 
matched the target genes predicted by GREAT or ATLAS analyses with MPLS modeling. Gene-level 
intersections of  significant interaction pairs predicted by MPLS and GREAT are shown in Supplemen-
tal Figure 6B. Focusing on the 5 central intersections (highlighted in red, Supplemental Figure 6B), 14 
target genes common to DARs and DMRs were confirmed by at least 2 independent analytical methods 
(GREAT and MPLS) in at least one assay (DNA chromatin accessibility or methylation). These 14 genes 
(listed in red, Supplemental Figure 6B), are reported in Supplemental Table 6, where each row is a DMR-
DEG (top) or DAR-DEG (bottom) interaction pair containing one instance of  these genes and showing 
the expression level of  the corresponding DEG. Similarly, gene-level intersections of  significant interac-
tion pairs predicted by MPLS and ATLAS are shown in Supplemental Figure 6C. Here, focusing on the 
5 central intersections (highlighted in red, Supplemental Figure 6C), 13 target genes common to DARs 
and DMRs were confirmed by at least 2 independent analytical methods (ATLAS and MPLS) in one 
assay (DNA chromatin accessibility or methylation). Similarly, these 13 genes (listed in red, Supplemental 
Figure 6C) are reported in Supplemental Table 7, where each row is a DMR-DEG (top) or DAR-DEG 
(bottom) interaction pair containing at least one instance of  these genes and showing the expression level 
of  the corresponding DEG.

Furthermore, we used ATLAS analysis for the intersection of  predicted enhancer sites from 2 epig-
enome data analytical studies (Supplemental Figure 7A) to determine the genomic distance from DMR 
sites or DAR peaks to target enhancers. We show histograms of  distributions of  genomic distances by assay 
with the overlap between ATLAS and MPLS predictions by bins (Supplemental Figure 7B). For each over-
lap, the hypergeometric test was applied, and all overlaps were found to be highly significant (Supplemental 
Figure 7B; hypergeometric test P values from proximal to distal bins, DMRs: P ≈ 7.7 × 10–17, P ≈ 2.5 × 
10–33, P ≈ 1.8 × 10–16, P ≈ 5.1 × 10–13; DARs: P ≈ 4.1 × 10–47, P ≈ 1.3 × 10–64, P ≈ 1.2 × 10–33, P ≈ 7.9 × 10–36).

The above DMRs and DARs common target genes (14 and 13) were pooled together and included in an 
in-depth functional analysis (Supplemental Figure 8). Supplemental Figure 8A shows the result of  enriched 
GO terms of  DMR and DAR common target genes analyzed by ORA. Among the significant ontologies 
activated in PM2.5-exposed mice, one notes the significance of  RNA Carbohydrate Domain DNA-Binding, 
Atg8 and Atg12 Activating Enzymes, and Epidermal Erb-3 and Erb-4 Class Receptor Binding ontologies in 

significant (ORA enriched) top regulated GO terms. Left: Upregulated GO terms. Right: Downregulated GO terms. (F) Gene-concept network of top KEGG 
pathways (smallest pathways’ P values from B) and associated genes in DEGs. Left: ORA. Right: GSEA. (G) Enrichment map of top KEGG pathways in 
DEGs. Left: ORA. Right: GSEA. The thickness of an edge between any 2 KEGG pathways is proportional to the overlap between the 2 pathways.



1 2

R E S E A R C H  A R T I C L E

JCI Insight 2025;10(18):e187023  https://doi.org/10.1172/jci.insight.187023

PM2.5-exposed mice. The tree view gives the corresponding hierarchy of  enriched GO terms (Supplemental 
Figure 8B), the gene-concept network view reveals which important genes are involved with (sometimes 
multiple) top GO terms (Supplemental Figure 8C), while the enrichment map highlights relationships and 
overlaps that exist between any 2 GO terms (Supplemental Figure 8D).

Figure 6. DNA accessibility data analysis of PM2.5-exposed BAT and integrative analysis with transcriptome data: overall integrative analysis. Integra-
tive analysis of transcriptome and methylome data on curated DMR-DEG interaction pairs identified by MPLS (see Methods). (A) Categories of DMR-DEG 
interaction pairs by interaction type (homologous [top] vs. heterologous [bottom]), directionality of change (between hypermethylated and hypomethyl-
ated DMRs and up- vs. downregulated DEGs) and correlation sign (between regression and correlation coefficients). (B and C) Scatter plots of DMR-DEG 
interaction pairs in the correlation-regression space (B, homologous vs. C, heterologous). For each interaction type, a point represents a DMR-DEG pair. 
Correlation and regression coefficient thresholds of significance are shown (in-plot dotted lines). Full (middle plot) and close-up views (left- and right-
hand sides of plots) of all significant pairs are highlighted and mapped on the plots. Lists of up to top 10 significant pairs are shown. (B) Top 5 homologous 
DMR-DEG pairs. Left: 3 homologous negatively correlated DMR-DEG pairs. Right: 2 homologous positively correlated DMR-DEG pairs. (C). Top 616 heter-
ologous DMR-DEG pairs. Left: 319 heterologous negatively correlated DMR-DEG pairs. Right: 297 heterologous positively correlated DMR-DEG pairs. (D) 
DMR-DEG interaction mechanism model. Left: Cis regulatory elements (CREs) corresponding to homologous (cis) DMR-DEG pairs. Right: Trans regulatory 
elements (TREs) corresponding to heterologous (trans) DMR-DEG pairs.
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Based on our DMR, DAR, and DEG interaction analysis, we identified Hdac9 and Kdm2b as genes 
that intersect in all categories (Figure 8A, Supplemental Figure 9, and Supplemental Table 9). Fig-
ure 8B shows their corresponding patterns of  mRNA expression, DNA chromatin accessibility, and 
DNA methylation and Figure 8C shows the corresponding patterns of  DNA chromatin accessibility 
and DNA methylation sites in their promoters. We performed a binding assay of  HDAC9, KDM2B, 

Figure 7. DNA accessibility data analysis of PM2.5-exposed BAT and integrative analysis with transcriptome data: overall integrative analysis. Integra-
tive analysis of transcriptome and DNA accessibility data on curated DAR-DEG interaction pairs identified by MPLS (see Methods). (A) Categories of DAR-
DEG interaction pairs by interaction type (homologous [top] vs. heterologous bottom]), directionality of change (between gain of accessibility [GA] and 
loss of accessibility [LA] DARs and up- vs. downregulated DEGs) and correlation sign (between regression and correlation coefficients). (B and C) Scatter 
plots of DAR-DEG interaction pairs in the correlation-regression space (B, homologous vs. C, heterologous). For each interaction type, a point represents 
a DAR-DEG pair. Correlation and regression coefficient thresholds of significance are shown (in-plot dotted lines). Full (middle plot) and close-up views 
(left and right-hand sides plots) of all significant pairs are highlighted and mapped on the plots. Lists of up to top 10 significant pairs are shown. (B) Top 13 
homologous DAR-DEG pairs. Left: 8 homologous negatively correlated DAR-DEG pairs. Right: 5 homologous positively correlated DAR-DEG pairs. (C). Top 
4242 heterologous DAR-DEG pairs. Left: 1996 heterologous negatively correlated DAR-DEG pairs; Right: 2246 heterologous positively correlated DMR-DEG 
pairs. (D) DAR-DEG interaction mechanism model: Left: Cis regulatory elements (CREs) corresponding to homologous (cis) DAR-DEG pairs. Right: Trans 
regulatory elements (TREs) corresponding to heterologous (trans) DAR-DEG pairs.
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Figure 8. DNA accessibility data analysis of PM2.5-exposed BAT and integrative analysis with transcriptome data: overall integrative analysis. (A) 
Venn diagram of gene-level intersection analyses. Intersections of significant genes and regions as well as target genes predicted by GREAT, ATLAS, 
and MPLS analyses on curated interaction pairs (see Methods). Three-set intersections between all significant genes and regions (DEGs, 663; DMRs, 
441; DARs, 1861). Listed in red are the 2 genes (Hdac9 and Kdm2b) found significant in all 3 assays (DMRs, DARs, and DEGs). (B) Profiles of DNA 
chromatin accessibility levels (orange, normalized read counts within region), DNA methylation levels (green, percentage of methylated sites over 
total sites [mCpG/CpG] within region), and mRNA expression levels (blue, normalized read counts within region) of the 2 genes (Hdac9 and Kdm2b) 
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and H3K36me2 with limited target genes of  interest, and compared results between BAT of  PM2.5 and 
FA mice. Immunoprecipitated HDAC9 physically interacted with Prdm16, Rora, and Gst1a (Figure 8D) 
but only Gst1a binding was increased (Figure 8D). It is conceivable that HDAC9 interaction promotes 
decreased expression of  Gst1a in BAT of  PM2.5 mice; transcriptional repression of  Gst1a by HDAC9 
binding may drive oxidative stress in BAT. HDAC9 also physically interacted with Prdm16 and Rora, 
resulting in their downregulation, although this was not significant (Figure 8D). We detected a signifi-
cant 2-fold increased binding of  Kdm2b to Nrf2 and Ucp1 upon PM2.5 exposure (Figure 8D). KDM2B is 
a histone lysine demethylase, which targets dimethyl residues for demethylation. H3K36me2 methylation 
status can be used as a marker for KDM2B activity. Reduced H3K36me2 binding was detected in Nrf2 
and Ucp1 in PM2.5 mice (Figure 8D), suggesting that KDM2B represses Nrf2 and Ucp1 transcription 
through increased di-demethylation in histone residues across the genome. The reduced methylation at 
the H3K36me2 histone mark is surrogate evidence of  potential KDM2B activity in PM2.5 mice (Figure 
8D). To further confirm our findings, we analyzed our RNA-seq, whole-genome bisulfite sequencing 
(WGBS), and ATAC-seq profiles to assess potential changes in the target genes of  HDAC9 and KDM2B: 
Ucp1, Prdm16, and Nrf2. We observed decreased raw counts of  Ucp1 in RNA-seq, which correlated with 
reduced raw counts in ATAC-seq, although methylation levels remained unchanged (Figure 8E). Sim-
ilarly, the raw counts for Prdm16 in both RNA-seq and ATAC-seq were consistent, but methylation did 
not show any changes. Interestingly, the raw counts for RNA seq, methylation, and ATAC-seq of  Nrf2 
were all decreased, indicating reduced chromatin accessibility, which corresponds to the downregulation 
of  transcription in Ucp1, Prdm16, and Nrf2 (Figure 8E). Figure 8F illustrates the mechanism of  HDAC9 
and KDM2B function in BAT acetylation and methylation, respectively.

Since we have demonstrated that Hdac9 and Kdm2b are highly expressed in BAT upon exposure to 
PM2.5, and that their expression is positively correlated with a decrease in Nrf2 expression (an upstream 
regulator of  antioxidant activity) and Ucp1 (a crucial regulator of  BAT thermogenesis), we aimed to con-
firm the roles of  Hdac9 and Kdm2b in BAT oxidative stress and bioenergetics in brown adipocytes (T37i 
cell line). To achieve this, we performed transient overexpression and knockdown of  these epigenetic 
regulators. BAT cells treated with serum from PM2.5-exposed mice exhibited a significant upregulation 
of  Hdac9 and Kdm2b expression (Figure 9, A and B) compared with serum from FA-treated cells. Also, 
transient overexpression of  Hdac9 and Kdm2b effectively enhanced their expression at the mRNA level in 
BAT cells (Figure 9, C and D) relative to cells transfected with a scrambled plasmid. Moreover, overex-
pression of  these genes led to a marked increase in oxidative stress (Figure 9E), which was subsequently 
reduced by treatment with small interfering RNAs (siRNAs) targeting the mRNA regions of  Hdac9 and 
Kdm2b (Figure 9F). In our bioenergetic studies, transient overexpression of  either Hdac9 or Kdm2b (Fig-
ure 9, G–I) resulted in a significant decrease in glucose uptake, lactate production, and extracellular 
oxygen consumption (ECR), while simultaneously promoting mitochondrial swelling (Figure 9J and 
Supplemental Figure 10). These changes were associated with a reduction in Ucp1 expression (Figure 
9K). In contrast, knockdown of  either Hdac9 or Kdm2b led to a significant increase in glucose uptake, 
lactate levels, ECR, and a reduction in mitochondrial swelling (Figure 9, L–O, and Supplemental Figure 
10) compared with scrambled RNA–treated cells. These effects corresponded to an increase in Ucp1 
expression (Figure 9P). The above effects were more pronounced when both genes were silenced simulta-
neously in BAT cells. Taken together, these results suggest that PM2.5 exposure suppresses key processes 
such as antioxidant activity and mitochondrial bioenergetics in BAT via distinct epigenetic pathways 
mediated through Hdac9 and Kdm2b.

found to be significant in all 3 assays (DMRs, DARs, and DEGs). Top: Hdac9. Bottom: Kdm2b. (C) Genomic region views of DNA chromatin accessi-
bility peaks and DNA methylation sites in the promoters of genes Hdac9 and Kdm2b. Blue, FA group; Red, PM2.5 group. Hdac9 top: right-to-left ORF 
(cropped, negative DNA strand). Hdac9 middle: DNA methylated sites showing one significant hypermethylated DMR (red rectangle). Hdac9 bottom: 
DNA accessibility peaks showing one significant gain of accessibility (GA) and 2 loss of accessibility (LA) DARs (red and green rectangles). Kdm2b top: 
right-to-left ORF (negative DNA strand). Kdm2b middle: DNA methylated sites showing one significant hypermethylated DMR (red rectangle). Kdm2b 
bottom: DNA accessible peaks showing 2 significant LA DARs (green rectangles). (D) ChIP-qPCR binding assay. Top: Hdac9 (n = 3) binding sites on 
Rora, Gst1a, and Prdm16 promoters. Middle: Kdm2b (n = 4) binding sites on Nrf2, Ucp1, and Prdm16 promoters. Bottom: H3k36me2 (n = 4) binding 
sites on Nrf2, Ucp1, and Prdm16 promoters. The fold changes of binding regions between exposure groups are indicated. See also Supplemental Table 
9. (E) Whole genome profiles of Hdac9 and Kdm2b specific target genes: Ucp1 (top), Prdm16 (middle), and Nrf2 (bottom). (F) Schematic diagram 
illustrating the PM-induced Hdac9-associated deacetylation and corresponding gene downregulation, and PM-induced Kdm2b-associated demethyl-
ation mechanism and corresponding gene downregulation. Data are provided as mean ± SEM. P values versus FA-exposed mice by unpaired, 2-tailed 
Student’s t test.
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Discussion
We have demonstrated an important effect of  chronic ambient PM2.5 exposure on BAT function and whole-
body metabolism resulting from redox stress, lipid deposition, and reduced thermogenic pathways. These 
effects were associated with widespread chromatic remodeling and genome-wide differential methylation, 
involving sites enriched for TFBSs, including circadian and Nrf2 targets. Changes in chromatin accessibility 
and differential methylation mostly involved enhancer elements in distinct genes (heterologous). Only 2 genes, 
Hdac9 and Kdm2b, were regulated through simultaneous changes in mRNA expression, chromatin accessibil-
ity, and DNA methylation with ChIP-qPCR for H3K36me2, revealing that HDAC9 physically interacted with 
multiple genes involved in redox stress, circadian rhythm, and BAT metabolism, with reduced expression 
of  Nrf2, Ucp1, and Prdm16. We demonstrate that plasma from PM2.5-exposed mice increased expression of  
Hdac9 and Kdm2b in cultured brown adipocytes, with overexpression of  Hdac9 and Kdm2b lowering Ucp1 and 
reducing glucose uptake, lactate production, and oxygen consumption, while silencing both genes improved 
bioenergetics and increased Ucp1. These effects were exaggerated when both Hdac9 and Kdm2b genes were 
silenced together.

Impaired glucose clearance and hyperglycemia and reduced insulin-induced glucose uptake in BAT, 
detected by FDG distribution, were associated with reduced RER and whole-body energy expenditure with 
PM2.5. BAT tissue from PM2.5-exposed mice exhibited increases in redox stress, lipid deposition, fibrosis, 
changes in circadian rhythmicity and BAT metabolic genes, and a reduction in antiinflammatory cytokines. 
BAT ultrastructural changes included reductions in mitochondrial number and alterations in mitochondrial 
cristal architecture were noted, which have been previously described in response to PM2.5 exposure (20, 
21). Collagen deposition in BAT sections was enhanced together with an increase in adipocyte mRNA lev-
els of  Angptl2, a gene enhancing fibrosis accumulation by elevating Tgfb, while Gtf2ird1, a gene responsible 
for repressing adipose tissue fibrosis, was reduced (27–29).

Widespread changes in chromatin accessibility in response to air pollution exposure was noted, with a 
refined set of  1861 DARs (482 GA, 1379 LA). Most DARs were in intronic and distal regulatory regions 
rather than promoter regions. GO analysis of  DARs revealed enrichment in pathways related to ER 
stress, tyrosine dephosphorylation, and stress-activated protein kinase signaling, accompanied by a gain 
in chromatin accessibility. These pathways are integral to the hallmark features of  metabolic dysregulation 
observed in PM2.5-exposed mice. Key genes involved in BAT metabolism (Ucp1), oxidative stress response 
(Gclc), and circadian regulation (Sik1) showed reduced accessibility following PM2.5 exposure. Motif  analy-
sis revealed that GA DARs were enriched for TFBSs, such as STAT5 and ARID3a, while LA DARs were 
enriched for TFBSs including SPF1, KLF15, and ZNF519. Increased enrichment of  Stat5-binding sites in 
GA DARs suggests enhanced activation of  inflammatory signaling pathways — likely a stress response 
to PM2.5 that could dampen BAT’s thermogenic function, while enrichment of  Arid3a motifs may reflect 
epigenetic remodeling — potentially suppressing genes involved in mitochondrial biogenesis or thermogen-
ic activation, both essential to BAT function. In contrast, loss of  accessibility to Klf15 is a key metabolic 
regulator, promoting lipid oxidation and thermogenic gene expression in BAT. It also has antiinflammatory 
effects. Loss of  accessibility at Klf15 sites likely reflects a shutdown of  BAT’s thermogenic and antiinflam-
matory programs, shifting the tissue toward metabolic inefficiency and inflammation.

To investigate how changes in chromatin accessibility affect gene expression, we integrated DARs with 
DEGs using correlation and MPLS regression. This analysis revealed 4255 significant DAR-DEG pairs, 
with the vast majority occurring in trans rather than cis pairs. Enriched pathways included insulin signaling, 
fatty acid metabolism, and key regulatory cascades like JAK-STAT, MAPK, AMPK, and cAMP. DARs 
within promoter/enhancer regions (±2 kb of  TSS) of  genes correlated with gene expression changes with 
a strong dependency between accessibility and expression changes (χ2 ≈ 2090.7, P < 10–300), supporting a 
coordinated regulatory relationship.

Exposure to PM2.5 significantly altered DNA methylation patterns in BAT, with 881 DMRs identified 
—roughly split between hypermethylated and hypomethylated sites. Most DMRs were found in genomic 
regions distant from gene promoters, such as introns, intergenic areas, and repetitive elements (LINEs and 
LTRs). An important finding in our study was the overrepresentation of  TFBSs of  genes in response to 
PM2.5. This included T cell factor 7 (Tcf7), NF-κB p65 (Nfkbp65), BARX homeobox 1 (Barx1), ETS tran-
scription factor ELK4 (Elk4), and NK2 homeobox 2 (Nkx2). These TFBSs were enriched in hypermethyl-
ated DMRs, while the TFBSs of Foxo1, Elf3, Foxh1, Cdx1, Smad1, and Prdm15 were enriched in hypometh-
ylated DMRs. Hypomethylated regions were associated with genes involved in enhanced gluconeogenesis 
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and inflammation, while hypermethylated regions mapped to pathways linked to metabolic dysregulation, 
insulin resistance (Lep, Adipoq, Mapk10) and antioxidant dysfunction via reduced levels of  NRF2 (Serpine1, 
Id2) (30). TCF7 binds to specific DNA sequences and acts as a transcription factor, and plays a critical role 
in regulating gene expression (31). PRDM16, a key regulator of  brown adipocyte differentiation, collabo-
rates with TCF7 to mediate the transcription of  Ucp1, a gene essential for nonshivering thermogenesis (32). 
An upregulated NF-κB pathway heightens inflammation but also can enhance oxidative stress by promot-
ing Keap1 expression (which degrades Nrf2) (33).

In our integration analysis of  DEGs, DARs and DMRs, we uncovered only 2 targets, Hdac9 and the 
histone demethylase Kdm2b that were upregulated. Their roles in the regulation of  other BAT transcription 
factors, antioxidant transcription factors, and circadian targets were further confirmed using ChIP-qPCR 
and H3K36me2 methylation status. Our results are supportive of  a physical interaction between Hdac9 and 

Figure 9. Effect of siRNA-mediated knockdown and CRISPR/Cas9-mediated overexpression of Hdac9 and Kdm2b on ROS generation, bioenergetics, 
and mitochondrial function in BAT cells in vitro. (A) Hdac9 and (B) Kdm2b mRNA levels were analyzed by qRT-PCR in BAT cells treated with serum 
derived from FA- and PM2.5-exposed mice for 48 hours. (C) Hdac9 and (D) Kdm2b mRNA levels were analyzed by qRT-PCR in BAT cells overexpressing either 
a scrambled plasmid or Hdac9 or Kdm2b. TBP was used as an internal control. (E) ROS production levels in BAT cells overexpressing Hdac9, Kdm2b, or a 
scrambled plasmid (control). (F) ROS production levels in BAT cells transfected with either control (scrRNA) or Hdac9 or Kdm2b siRNA and treated with 
serum from FA- and PM2.5-exposed mice for 48 hours. (G) Glucose uptake, (H) lactate, (I) ECR, (J) mitochondrial swelling, and (K) Ucp1 mRNA level in BAT 
cells overexpressing Hdac9, Kdm2b, or a scrambled plasmid (control). (L) Glucose uptake, (M) lactate, (N) ECR, (O) mitochondrial swelling, and (P) Ucp1 
mRNA level in BAT cells transfected with either control (scrRNA) or Hdac9 or Kdm2b siRNA and treated with serum from FA- and PM2.5-exposed mice for 
48 hours. P values were calculated by unpaired Student’s t test for 2 group comparisons and 1-way ANOVAs (Bonferroni’s multiple comparison) for com-
parisons involving 3 or more groups. The data were obtained from 3 independent experiments.
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Prdm16/Rorα/Gst1 and suggest a close cooperation between epigenetic regulators and transcription factors 
involved in BAT thermogenesis and circadian rhythm. A previous report showed that Hdac9 knockdown 
and overexpression influenced the expression of  Ucp1, Prdm16, and Nrf2, supportive of  our findings (34–
36). Prdm16 has been previously shown to physically interact with Hdac after treatment with Hdac3-selec-
tive inhibitors, inducing thermogenic gene expression (34). We found a trend toward reduced binding of  
Hdac9 with Prdm16 after PM2.5 exposure, which might be explained by Hdac9 possessing differential effects, 
whereby it may either repress or activate Prdm16 (37). We observed an increased expression of  Kdm2b in 
PM2.5 mice that specifically demethylates H3k36me2, leading to repressive functions. Methylation at H3K4, 
H3K36, and H3K79 is usually associated with gene activation, whereas methylation at H3K9, H3K27, and 
H4K20 is associated with gene silencing (37). Our ChIP-qPCR results indicate Kdm2b strongly bound with 
the promoter of  Nrf2 and Ucp1 in the BAT of  PM2.5-exposed mice, suggesting Kdm2b-induced demethyla-
tion may decrease the expression of  Nrf2 and Ucp1 in BAT (38, 39). H3K36me2 significantly decreased in the 
promoters of  Nrf2 and Ucp1 in PM2.5-exposed mice, implicating Kdm2b in the depletion of  H3K36 methyla-
tion, in turn leading to the transcriptional repression of  these genes. Other studies have demonstrated that 
activation of  Kdm2b reduced BAT-selective genes Ucp1 and Pgc1a (39), while depletion of  histone H3K36 
methylation by H3K36me2 impairs the induction of  Pparg target genes, including Ucp1 during adipogenesis 
(38). In our study, the H3K36me2 status of  Prdm16 after PM2.5 exposure was comparable to FA, indicating 
H3K36me2 depletion may not alter Prdm16. A previous study found a demethylase-independent role for 
Kdm2b in transcriptional repression through shaping the RNA polymerase II occupancy region (40). Thus, 
Kdm2b may also play a demethylase-independent role in Prdm16 expression.

The deacetylation and demethylation of  histones may serve as a tandem molecular switch to regulate 
brown adipose gene expression and differentiation. Under physiological circumstances, Kdm2b and Hdac9 
may be downregulated, with a facilitatory impact on the expression of  multiple BAT targets. Hdac9 and 
Kdm2b are upregulated in response to PM2.5, resulting in reduced DNA accessibility with repression of  tar-
gets such as Nrf2, Ucp1, and Prdm16 and adverse impacts on BAT metabolism. Deacetylation may further 
regulate methylation, as the absence of  acetyl groups on lysines means that they can be methylated and 
recruit methylysine-binding proteins, some of  which may counteract transcription (41). Indeed, deacetylated 
histones contribute to chromatin compaction through strengthening histone tail–DNA interactions (42, 43).

Exposure of  cultured brown adipocytes to plasma from PM2.5-exposed animals recapitulated the effects 
of  long-term PM2.5 exposure on BAT, with increased Hdac9 and Kdm2b expression together with a reduc-
tion in Ucp1 and BAT metabolic pathways. siRNA directed against either Hdac9 or Kdm2b restored the 
impairment in BAT respiratory function, with silencing of  both genes further enhancing effects. Based on 
our findings, we propose that chronic air pollution exposure modulates critical regulators such as Hdac9 
and Kdm2b, which in turn downregulate key genes like Nrf2 and Ucp1, altering BAT metabolism and func-
tion. This cascade of  events in response to PM2.5 enhances oxidative stress and shifts mitochondrial energy 
imbalance, leading to mitochondrial dysfunction in BAT, inflammation, and reduced metabolic function. 
Taken together, our findings provide insights into how air pollution contributes to metabolic dysfunction 
and may set the stage for development of  T2D. Importantly, our study provides evidence for substantial 
redundancy in DNA methylation and chromatin accessibility, with most changes being transcriptionally 
silent. Our study has nonetheless some limitations that are worth acknowledging. The epigenetic changes 
in this study were at a single time point and to what extent these represent changes at other time points may 
need further investigation. Finally, further research is necessary to determine the extent to which these find-
ings translate into metabolic changes in humans and in populations exposed to high levels of  air pollution.

In conclusion, chronically inhaled PM2.5 impacts BAT function and metabolism through differential 
DNA methylation and impact on global chromatin structure. We demonstrate a potential causal role of  2 
key epigenetic factors, Hdac9 and Kdm2b, which may represent unique pathways through which air pollu-
tion exposure could alter BAT function.

Methods
Further information can be found in Supplemental Methods.

Sex as a biological variable. In this study, we exclusively used male mice because they display less vari-
ability in phenotype; it is unknown whether the findings are relevant for female mice. Additionally, our pre-
vious study demonstrated a sex-dimorphic effect when exposed to air pollution (3). Consequently, female 
mice were excluded from the current study.
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Experimental design and air pollution exposure. Male C57BL/6J mice (3 weeks old) were purchased 
from The Jackson Laboratory. Mice were maintained at 21°C on a 12-hour light/12-hour dark cycle; 
to help acclimate them to the new environment, they had free access to water and were fed a regular 
chow (Research Diets, D12492). Subsequently, mice were randomly separated into 2 exposure groups 
(n = 16/group). Mice were exposed through inhalation to either FA or PM2.5 (~10-fold over ambient 
level; ~60–120 μg/m3) for 6 hours/day, 5 days/week, for 24 weeks. Inhalation exposure was carried 
out in a Versatile Aerosol Concentrator and Exposure System (VACES) air pollution exposure facility 
at the Case Western Reserve University Animal Facility. The design of  VACES has been described 
previously (14) and provides stable concentrations of  PM2.5, which are roughly 10 times the ambient 
exposure. Biweekly exposure filters were collected and analyzed for the elemental concentration pres-
ent in PM2.5 (Supplemental Figure 11).

Glucose and insulin tolerance tests. Glucose tolerance tests were performed after 14 weeks of  PM2.5 expo-
sure. Mice were fasted overnight for 16 hours; 2.0 g glucose/kg body weight was administered intraper-
itoneally. Blood glucose levels were measured in tail blood using a Contour blood glucose monitoring 
system at 0, 20, 40, 60, 90, and 120 minutes following glucose administration. Insulin tolerance tests were 
performed after 16 weeks of  PM2.5 exposure. Mice were starved for 6 hours before intraperitoneal injection 
with insulin (Humulin R, Eli Lilly) at 0.75 IU/kg body weight. Blood was taken from the tail vein and glu-
cose levels were measured using a Contour blood glucose monitoring system at 0, 20, 40, 60, 90, and 120 
minutes after injection.

In vivo indirect calorimetry. Mice were housed individually for a total of  4 days in metabolic cages of  the 
Promethion Metabolic Measurement System (Sable Systems International) during the 20 weeks of  PM2.5 
exposure. Only the 3 full light-dark cycles of  data were used for analyses. VO2, VCO2, RER, energy expendi-
ture (kcal), physical activity, and food and water intake were simultaneously measured for each mouse after 
a 1-day acclimatization period. RER, a measure of  metabolism substrate choice (carbohydrate or fat), was 
calculated as the ratio between VCO2 and VO2. Energy expenditure indicates energy utilized during resting 
and activity period (nonshivering). All data collected were averaged over a monitoring period of  3 days.

FDG uptake. [18F]-fluorodeoxyglucose (FDG) was purchased from PETNET solution. After an 8-hour 
fast, mice were injected with insulin (0.75 U/kg) diluted in 0.9% physiological saline and 5 minutes lat-
er received an intravenous administration of  FDG (200–300 μCi). After injection, the mice were main-
tained under conscious conditions and warmed using a heating pad. Before PET imaging, a computed 
tomography (CT) scout view was obtained to ensure mice were placed in the co-scan field of  view (FOV) 
where the highest image resolution and sensitivity are achieved. Once the static acquisition was done, 
a CT acquisition scan was performed for attenuation correction. At 30 minutes, small-animal PET/CT 
(Inveon, Siemens) imaging were performed using an acquisition time of  15–30 minutes for PET at the 
Case Center for Imaging Research. Quantitative image analysis of  the uptake of  FDG in different organs 
was performed using Carimas II software (https://nmmitools.org/2019/01/01/carimas/). This program 
allows the regions of  interest (ROIs) to be extrapolated from the reconstructed PET image frames, allowing 
the quantification of  the SUV in a specific region. ROIs were defined based on the PET and 14 CT co-reg-
istered images from brain, liver, heart, muscle, WAT, and BAT and FDG tissue uptake was calculated using 
the mean of  the SUVs.

TEM. BAT tissues were removed and immersed in 2.5% glutaraldehyde buffered to pH 7.4 with 0.1 
M sodium phosphate and held for 2 hours for the first fixation. After rinsing with a sodium phosphate 
buffer, tissues were post fixed in 1% osmium tetroxide solution for 2 hours. Tissues were dehydrated in a 
series of  graded ethanols, placed into propylene oxide, and embedded in Araldite. Tissues were cut with an 
ultramicrotome to ultrathin sections of  60–80 nm and stained with uranyl acetate and lead citrate and then 
examined under transmission electron microscope (JEOL 100 CXII) at 80–100 kV in the Cryo-Electron 
Microscopy core Laboratories at Cleveland Centre for Membrane and Structural Biology.

ChIP-qPCR. BAT tissue was isolated and flash frozen from FA- or PM2.5-exposed mice as indicated. 
Chromatin was isolated using the Imprint Chromatin Immunoprecipitation Kit (CHP1, Sigma-Aldrich) 
and performed per the manufacturer’s instructions. In brief, mouse BAT tissues were incubated with 
formaldehyde (1%, v/v) for 10 minutes at 37°C to crosslink the nuclear proteins to DNA. Subsequently, 
crosslinking was quenched by adding 1× glycine and incubation for 5 minutes at room temperature and 
BAT tissues were rinsed with ice-cold PBS and homogenized in lysis buffer containing protease inhibitor 
cocktail (homogenized with a Dounce homogenizer) followed by sonication and immunoprecipitation 
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with IP-validated antibodies against HDAC9 (PA5-11245, Invitrogen), KDM2B (09-864, EMD Milli-
pore), and H3K36me2 (ab176921, Abcam). IgG antibody and anti–RNA polymerase II antibody binding 
reactions were used as a negative and positive control, respectively. The captured chromatin was eluted 
and de-crosslinked, and the DNA was recovered. The ChIP-isolated DNA was subjected to PCR and 
qPCR analyses using primer pairs spanning the promoter region of  Nrf2, Rora, Gst1a, and Prdm16, and the 
TSS of  Ucp1. Fold enrichment was calculated by normalization to the average Ct value of  input DNA and 
compared with Gapdh. ChIP-qPCR primer sequences are listed in Supplemental Table 10.

In vitro mouse brown adipocyte culture and treatment. Mature mouse brown adipocytes were obtained from 
the preadipocyte T37i cell line (Merck Millipore) by following the manufacturer’s recommendations. After 
differentiation, mature brown adipocytes were incubated with serum (10%) collected from mice exposed 
through inhalation to either FA or PM2.5 as described in Experimental design and air pollution exposure above. 
After 48 hours of  incubation (in the presence or in the absence of  Hdac9 and Kdm2b gene depletion or over-
expression), cells were harvested and used for bioenergetics study (oxygen consumption, glucose uptake, 
and lactate levels), assessment of  ROS, and molecular biology analyses, including real-time PCR and mito-
chondrial functionality assessed by mitochondrial swelling assay.

Hdac9 and Kdm2b knockdown and overexpression. Transient transfection of  mature brown adipocytes 
with commercially available mouse Hdac9 and Kdm2b siRNA (Santa Cruz Biotechnology) was performed 
using Lipofectamine reagent (Invitrogen). A predesigned scrambled siRNA (Microsynth, 5′-UACACACU-
CUCGUCUCUdTdT-3′) was used as negative control. Hdac9 and Kdm2b overexpression was achieved 
using Hdac9 and Kdm2b CRISPR Activation Plasmids (Santa Cruz Biotechnology). Transient transfection 
was performed in antibiotic-free medium, and the medium was replaced after 24 hours. The following 
primer sequences were used for gene expression analysis: Hdac9 forward, 5′-GAGCCCCAAATGAG-
GTTGGA-3′ and reverse, 5′-TGCCGTCACTTTGTACCCTC-3′; Kdm2b forward, 5′-TCTTTGAGTGC-
CGGGAGTTT-3′ and reverse, 5′-ACAAGTCCTCGTTCTCGTCG-3′; Ucp1 forward, 5′-CCGAAACTG-
TACAGCGGTCT-3′ and reverse, 5′-TGATCCCATGCAGATGGCTC-3′.

3-Nitrotyrosine assay. The levels of  3-nitrotyrosine, a marker of  oxidative damage mediated by per-
oxynitrite, were measured in serum-treated mature brown adipocytes by a commercially available ELISA 
kit (ab116691, Abcam).

Oxygen consumption rate and lactate level. The oxygen consumption rate (OCR) and lactate levels in T37i 
cells were measured using the fluorescence-based Extracellular O2 Consumption Assay Kit (ab197243, 
Abcam) and the L-Lactate Assay Kit (ab65330, Abcam) respectively, following the manufacturer’s instruc-
tions. Briefly, cells were seeded in 96-well plates and recovered for 24 hours prior to the treatment with FA- 
and PM2.5-exposed mouse serum, either in the presence or absence of  Hdac9 and Kdm2b gene depletion or 
overexpression. OCR for each well was calculated and normalized to the cell number. Fluorescence intensities 
used to detect OCR are expressed as a percentage of  FA serum. For lactate estimation, samples were subject-
ed to deproteinization by the perchloric acid/KOH method, and fluorescence was measured at 587 nm.

Glucose uptake. Intracellular glucose uptake was measured using cell lysates with a Glucose Uptake 
Assay kit (ab136955, Abcam) according to the manufacturer’s instruction. Briefly, 2 × 103 3T3-L1 cells/
well were seeded in 100 μL of  serum-free DMEM/F12 overnight to increase glucose uptake. The following 
day, cells were starved for glucose by preincubating with 100 μL KRPH buffer containing 2% BSA for 40 
minutes and then stimulated with insulin (1 μM for 20 minutes) to activate glucose transporter. Relative 
glucose uptake was determined using a standard curve.

Mitochondrial swelling assay. Mitochondria were isolated from T37i cells using a swelling buffer (250 
mmol/L sucrose, 10 mmol/L MOPS, 5 μmol/L EGTA, 2 mmol/L MgCl2, 5 mmol/L KH2PO4, 5 mmol/L 
pyruvate, 5 mmol/L malate) and incubated with 150 μmol/L CaCl2 in a final volume of  200 μL in a 
96-well plate for 20 minutes. Absorbance was read every 30 seconds at 520 nm.

Statistics. Results are presented as mean ± SEM. All data were tested for normal distribution and equal 
variance prior to use in parametric tests. Two-group comparisons were performed using Student’s 2-tailed t 
test. For multiple-group comparisons, 1-way and 2-way ANOVAs (repeated/nonrepeated measures where 
appropriate) were used to test for differences among the group means. Significant ANOVA interactions 
between variables were followed by Tukey’s multiple-comparison test. Tests of  independence of  categorical 
variables were carried out using χ2 tests. For all analyses, a P value of  less than 0.05 was considered signifi-
cant and false discovery rate (FDR) correction was used to account for type I error using the adjusted Ben-
jamini-Hochberg method. For differential gene expression analysis, we used a cutoff  of  FDR less than 0.05.
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Study approval. All animal experiments were approved by the Case Western Reserve University Institu-
tional Animal Care and Use Committee (IACUC) and conducted according to institutional guidelines for 
ethical animal use (protocol 2016-0319).

Data availability. The data supporting the findings of  this study are available in NCBI Gene Expression 
Omnibus (GEO) (transcriptome dataset: GSE145840; epigenome dataset: GSE255961). Values for all data 
points in graphs are reported in the Supporting Data Values file.
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