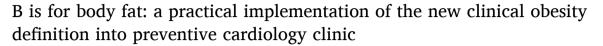
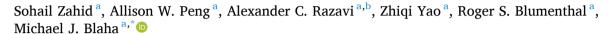
ELSEVIER


Contents lists available at ScienceDirect


American Journal of Preventive Cardiology

journal homepage: www.journals.elsevier.com/american-journal-of-preventive-cardiology

Commentary

^b Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA

ARTICLE INFO

Keywords
Obesity
Preventive cardiology
Primary prevention
Risk factors

ABSTRACT

Obesity is a multifactorial disease with increasing prevalence in the United States and a major contributor to cardiovascular disease. The Lancet Commission recently issued a new definition of obesity to better capture individuals with excess body fat and metabolic consequences of adiposity. In this article, we provide a practical implementation of this new definition into a clinical practice using the ABC model of cardiovascular prevention, a framework to characterize major atherosclerotic risk factors. We recommend to emphasize B is for body fat, with routine measurement using body mass index and waist circumference, tailored history and physical exam to identify obesity-related diseases, lifestyle guidance, and pharmacological recommendations.

1. Manuscript

Obesity is a multifactorial illness with complex interactions from a variety of biological [1], socioeconomic [2], and environmental factors [3]. The obesity epidemic is worsening, with a prevalence rate expected to exceed 50 % of individuals in the United States by 2030 [4]. Obesity is a major contributor to cardiovascular disease (CVD) [5], leading to increased incidence of coronary artery disease, heart failure, and atrial fibrillation [6]. CVD is disproportionately the leading cause of death in individuals with obesity, accounting for over 60 % of deaths [7]. Thus, there is an urgent need to improve our diagnosis of obesity and refine therapeutic strategies to prevent the progression of cardiovascular disease.

To address this need, in January 2025 the Lancet Commission outlined a new definition of obesity, stratifying individuals by preclinical and clinical obesity [8]. Obesity is defined as excess body fat assessed by at least two different anthropometric measurements such as body mass index (BMI) and waist circumference, direct measurement via imaging, or if the BMI is extreme (i.e. \geq 40 kg/m²) [8]. Clinical obesity is defined as organ dysfunction or significant functional limitation due to excess body fat whereas preclinical obesity has no corresponding deficits [8]. The Lancet Commission has provided guidance on how to define obesity to account for different regions or ethnicities and suggested a rubric for

how to diagnose clinical obesity [8]. However, there are ongoing needs to discuss clinical implementation of this obesity definition and how such change may inform risk assessment and treatment goals.

One approach to improve prevention of CVD is the ABC framework [9,10], which simplifies the health criteria described by the American Heart Association (AHA) to promote cardiovascular health [11]. In this framework, A refers to assessment of risk, anti-inflammation, antiplatelet/anticoagulation therapy; B corresponds to body weight and blood pressure; C for cigarette cessation and cholesterol; D for dream (sleep), diet, digital health, and diabetes; E for exercise; F for factors of the environment; and G for genetics [10].

In this article, we present a rationale for the new clinical obesity definition from the Lancet Commission, practical implementation for integrating this definition into a routine preventive cardiology clinic, and an outline of knowledge gaps and future research directions.

2. Rationale of the new obesity definition

The current definition of obesity by the WHO classifies obesity based on BMI, defining obesity as at least BMI of 30 kg/m², with further subdivisions into Class I (30–34.9 kg/m²), Class II (35–39.9 kg/m²), and Class III (\geq 40 kg/m²) or severe obesity [12]. While the WHO obesity definition is widely adopted in current research, clinical practice, and

^{*} Corresponding author at: Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, 600N Wolfe St, Blalock 524, Baltimore, MD 21287. E-mail address: mblaha1@jhmi.edu (M.J. Blaha).

health policy, it has numerous limitations for clinical practice. BMI does not differentiate between fat and lean mass, account for visceral fat distribution, predict disability or functional limitation, or provide any information about obesity-related organ dysfunction [13], simultaneously underestimating and overestimating the consequences of adiposity in select populations [14].

The goal of the Lancet Commission was to define clinical obesity as a chronic illness, improve objective criteria for disease diagnosis beyond BMI, and aid in decision-making for future public health and therapeutic strategies [8]. With their new definition, obesity is instead defined as a condition characterized by excess adiposity or body fat, stratified by preclinical and clinical obesity [8]. Preclinical obesity is a condition of excess body fat associated with variable level of health risk but no ongoing illness. Excess body fat can be defined by at least two separate measurements of body size or direct fat measurement, such as with a DEXA scan [8]. In individuals with extreme body fat (i.e. BMI >40 kg/m²), excess body fat can be pragmatically assumed [15]. Additional body size measurements for excess body fat beyond BMI include a waist circumference at least 102 cm for men or 88 cm for women, waist-to-hip ratio of at least 0.9 for men or 0.85 for women, or waist-to-height ratio of at least 0.5 for all, with a supplemental document incorporating variation for different regions or ethnic groups [8].

Clinical obesity is defined as a chronic disease characterized by signs and symptoms of ongoing organ dysfunction and/or reduced ability to conduct activities of daily living due to excess body fat [8]. Examples of adiposity-related organ dysfunction for clinical obesity classification include heart failure, osteoarthritis, metabolic syndrome derangements, or physical immobility [6,8]. The Lancet Commission has provided a supplement of 12 different organ systems corresponding to obesity-related dysfunction with guidance for medical history, physical examination, and studies to aid in the diagnosis of clinical obesity [8].

3. Implementation into a preventive cardiology clinic

The Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease established an ABC model as a simplified framework to allow clinicians to focus on the most pertinent aspects of CVD prevention [10]. This ABC framework is regularly updated and revised to incorporate the latest practice changing updates in cardiology, recently incorporating components such as digital health, coronary calcium scoring, and genetics [10]. Now that the Lancet Commission provided guidance for a new definition and diagnostics of obesity, we can incorporate these elements into the ABC prevention framework.

We suggest amending the previous ABC mnemonic "B is for body weight" to "B is for body fat," in line with the Lancet Commission focus on excess adiposity. Body weight alone is a poor surrogate for adiposity at an individual level. For example, individuals with normal weight can have excess body fat, which is more prominent in certain ethnicities (e.g. East Asians) [16] or elderly populations with increased bone or skeletal muscle loss [14]. Conversely, BMI can over diagnose obesity in high performance athletes with increased lean mass and minimal fat [17]. Body weight and BMI have a U-shaped curve of association with negative cardiovascular outcomes with factors such as smoking, occult malignancy, and frailty influencing the distribution [18]. On the other hand, visceral adipose tissue (VAT) and ectopic fat pads have a strong association with CVD risk, regardless of BMI [19]. While imaging is the gold standard to quantify VAT, anthropometric waist measurements (i.e. waist circumference, waist-to-hip ratio, waist-to-height ratio) better correlate with VAT and overall CVD risk [20], and are non-invasive measurements that are easier to assess in a preventive cardiology setting.

We recommend measuring BMI and waist circumference as initial screening tools for obesity, with medical staff training to accurately measure these metrics. Obesity should be characterized based on region-specific thresholds of BMI and waist circumference (Table 1) [8]. Waist circumference should be measured horizontally using a flexible,

Table 1Body mass index and waist circumference criteria for obesity in different regions.

Region	Body mass index (kg/m²)	Waist Circumference (cm)
Bangladesh	25	80 (F) / 90 (M)
China	28	85 (F) / 90 (M)
Hong Kong	25	80 (F) / 90 (M)
India	25	80 (F) / 90 (M)
Japan	25	90 (F) / 85 (M)
South Korea	25	85 (F) / 90 (M)
Malaysia	27.5	80 (F) / 90 (M)
Pacific Islanders	32	88 (F) / 102 (M)
Philippines	25	80 (F) / 90 (M)
Singapore	27.5	80 (F) / 90 (M)
Sri Lanka	25	80 (F) / 90 (M)
Taiwan	27	80 (F) / 90 (M)
Thailand	25	80 (F) / 90 (M)
Vietnam	25	80 (F) / 90 (M)
Others	30	88 (F) / 102 (M)

non-stretchable tape at the midpoint between the bottom of the rib cage and the top of the iliac crest when the patient is in the upright position with a relaxed abdomen after normal exhalation [21]. If there is significant discrepancy between BMI and waist circumference, waist-to-hip or waist-to-height ratios can serve as a tiebreaker to identify obesity [22]. We recommend BMI and waist circumference as first line measurements of adiposity as both these metrics are simple to calculate, well established in clinical guidelines, and less sensitive to measurement error [13,21,23]. We also recommend to evaluate fat mass in imaging when available, such as in a DEXA scan ordered for other reasons like osteoporosis screening [24].

Once obesity is accurately defined, we recommend screening for the clinical manifestations of excess adiposity with a comprehensive history and physical examination. Examples of diseases pertinent to a cardio-vascular disease prevention clinic include obstructive sleep apnea, heart failure, pulmonary hypertension, atrial fibrillation, thromboembolism from deep vein thrombosis or pulmonary embolism, hypertension, metabolic syndrome, chronic kidney disease, metabolic associated steatosis liver disease, and functional limitation [6]. Subsequent diagnostic tests including chemistry tests, electrocardiograms, echocardiograms, coronary artery calcium scans, lipid panels, sleep studies, liver ultrasound elastography and others should be ordered based on clinical suspicion when indicated (Fig. 2).

In subsequent visits, we recommend measuring both BMI and waist circumference and assessing for progression of obesity-related diseases to evaluate for the improvement or worsening of clinical obesity [21]. Longitudinal assessment of BMI and waist circumference better prognosticate overall risk and indicate contributions of fat relative to muscle [20].

As the obesity epidemic worsens, there may be a growing need for specialized cardiometabolic clinics to enable multidisciplinary collaboration for early detection of obesity-related diseases and provide access to advanced therapies [25]. Formalized training in cardiometabolic medicine with emphasis on cardiovascular, endocrine, renal, and hepatic health can help clinicians manage complex cases and improve clinical care [25].

4. Treatment of clinical obesity

The management of clinical obesity includes healthy diet and physical activity, with medications and surgery referral in selected individuals (Fig. 1).

Dietary intake is an important modifiable factor that influences both clinical obesity and CVD risk [26]. Consumption of energy-dense, ultra-processed foods with increased saturated fats, added sugars, and refined carbohydrates is associated with both increased adiposity and CVD [26]. The AHA recommends the following components in a

Fig. 1. Schematic of integrating the new clinical obesity definition into the ABC model of CVD prevention. B corresponds to body fat. Excess body fat can be assessed with a combination of anthropometric measurements such as body mass index and waist circumference, with other waist-to-hip ratio or waist-to-height ratio to supplement if values are discrepant. The management of clinical obesity includes diet, physical activity, assessment of risk factors and obesity-related diseases, and medications/surgery referral in select individuals.

heart-healthy diet to prevent CVD – a wide variety of fruits and vegetables, whole grains, plant-based and lean proteins like fish and poultry, unsaturated fats, minimal processed foods and added sugars, increased fiber, reduced sodium intake, and limited alcohol consumption [26]. A 500–750 kcal/day deficit is also recommended in individuals with obesity to promote weight loss [26]. Specific diets like a plant-based diet, Dietary Approaches to Stop Hypertension (DASH) or Mediterranean diet have been consistently associated with improvements in blood pressure, fasting blood glucose, and cholesterol, cumulatively decreasing the risk of CVD even if the magnitude of weight loss is modest [27,28].

Physical activity provides cardiovascular benefit and modest weight loss. Current guidelines recommend a minimum of 150 min per week of moderate-intensity aerobic exercise or 75 min per week of vigorous activity [29]. Additionally, a regular physical activity regimen (e.g. 10, 000 steps per day) is associated with decreased all-cause mortality [30]. Although exercise and physical activity result does not result in much weight loss, the cardioprotective effects of sustained exercise are numerous, including improvement in endothelial function, insulin sensitivity, lipid metabolism, inflammation, and visceral adiposity [31]. Previous studies have shown that individuals with elevated BMI and normal cardiorespiratory fitness have significantly reduced CVD events [32,33].

In select individuals, pharmacotherapy is needed to treat clinical obesity and reduce CVD [34,35]. The Food and Drug Administration has approved several medications for the treatment of obesity and associated clinical conditions, which include orlistat, phentermine-topiramate (Topamax tablets), naltrexone-bupropion, as well as GLP-1 and GIP receptor agonists [34]. A few of these therapies, notably GLP-1 and GIP receptor agonists, have shown significant weight loss exceeding 10–15 % of body weight and promising benefits for CVD reduction as well as other obesity-driven diseases [34]. In the SELECT trial, semaglutide (GLP-1 agonist) led to a 10 % reduction in body weight and 1.5 % absolute risk reduction in further CVD over four years in individuals with a BMI \geq 27 kg/m², existing CVD, and without diabetes [36]. In the SUMMIT trial, tirzepetide (GLP-1/GIP agonist) showed a 6.2 % absolute risk reduction in heart failure events in patients with a BMI \geq 30 kg/m²

and heart failure with preserved ejection fraction [37]. Other studies have shown the beneficial impact of GLP-1 and GIP agonists for other metabolic diseases, including the regression of diabetes, improvement in sleep apnea, and improvement in metabolic associated steatotic liver disease [38–40]. Notably, there are additional pharmacotherapies for obesity in the clinical pipeline, including GIP agonists, glucagon agonists, amylin analogs, activin receptor inhibitors, calcitonin agonists, and peptide YY compounds [41]. Further studies are ongoing to investigate the application of these novel medications in preventing other obesity-related diseases.

Metabolic and bariatric surgery provides greater weight reduction and cardiovascular risk factor improvement than pharmaceutical drugs [34]. The 2022 ASMBS guidelines have expanded the indications for metabolic and bariatric surgery, now indicated for individuals with BMI ≥35 kg/m², BMI 30–34.9 kg/m² and a metabolic-associated disease (e. g., diabetes, obstructive sleep apnea), or BMI ≥27.5 kg/m² with a metabolic-associated disease in specific populations (e.g., Asians) [42]. Common procedures include Roux-en-Y gastric bypass, sleeve gastrectomy, and single anastomosis duodenoileostomy with sleeve gastrectomy (SADI-S), with patients typically achieving a 50-70 % loss of excess body weight within the first year [34]. Bariatric surgery confers improvement in several cardiovascular risk factors such as in blood pressure, lipid profiles, and glycemic control [42]. Large cohort studies and meta-analyses demonstrate significant reductions in major adverse cardiovascular events, stroke, heart failure, and all-cause mortality [43–46]. These findings place metabolic and bariatric surgery as the most effective means to reduce body weight and improve cardiovascular

5. Knowledge gaps and future directions

There are several important knowledge gaps with the current Lancet Commission definition of obesity that would benefit from further investigation. One knowledge gap is that there is still uncertainty and debate about how to apply this new definition until studies about the epidemiology of preclinical and clinical obesity emerge [47]. The Lancet Commission recommends clinical monitoring and lifestyle counseling

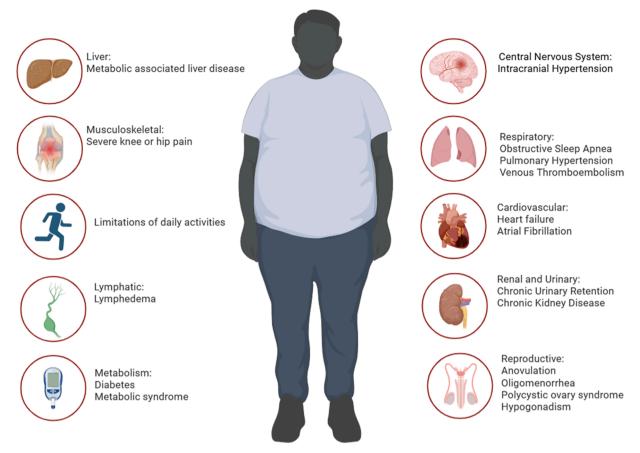


Fig. 2. Examples of qualifying conditions that constitute clinical obesity. Individuals with obesity and at least one of these qualifying diseases have clinical obesity whereas individuals with none of these diseases have preclinical obesity.

for individuals with preclinical obesity and evidence-based medical treatment based on risk and patient preference for those with clinical obesity [8]. However, if preclinical obesity is uncommon, then distinguishing it from clinical obesity is unlikely to make a meaningful difference. Another gap is that the natural history of preclinical obesity is unclear [47]. Whereas many cardiovascular conditions have established guidelines for surveillance and diagnostic studies for asymptomatic disease (e.g. serial echocardiograms for asymptomatic severe aortic stenosis), the guidance for preclinical obesity is not defined yet. However, recent guidelines and consensus statements from major cardiovascular societies have begun to incorporate recommendations involving weight loss therapy for CVD risk reduction [48]. For example, the 2024 ESC Clinical Consensus Statement on Obesity provides a Class 2a indication for semaglutide to reduce CVD risk among individuals with BMI >27 kg/m² with chronic coronary syndrome without diabetes [48]. Additionally, the Obesity Association and the American Diabetes Association is currently developing the Standards of Care and Obesity -2025 to provide evidence based recommendations for screening, diagnosis, and management of obesity and related complications [49]. Some key questions include: the transition length from preclinical to clinical obesity, genetics and prognostic biomarkers for disease progression, how to improve healthcare literacy, and public health implications to prevent the development of clinical obesity [8].

One significant challenge for obesity assessment is that current clinical trials and insurance coverage are dependent on BMI criteria, which is problematic for individuals with increased adiposity at normal BMI levels [13]. We recommend greater advocacy for waist circumference in routine clinical practice through society guidelines, regulatory frameworks, pharmaceutical agencies, and clinical education, as numerous studies have shown waist circumference is a strong

independent predictor of visceral adiposity and cardiovascular outcomes [20,21]. As obesity is increasing in prevalence but still grossly undertreated, we believe that greater recognition and characterization of obesity will improve overall care. Incorporation of obesity frameworks beyond BMI, such as with the Lancet Definition, may help achieve this goal, especially given accurate risk factor diagnosis is paramount in preventive cardiology.

6. Conclusion

The purpose of our review was to integrate the new Lancet Commission definition of obesity into a simplified ABC framework to improve the focus on body fat/adiposity rather than body weight, provide practical guidance for therapy, monitor adiposity longitudinally, and prevent future CVD.

Funding

This manuscript was not supported by any specific research funding

Author contributions

All authors contributed to the writing of the manuscript and agreed to its publication.

Disclosures

Michael Blaha received consulting fees from Agepha, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Eli Lilly and Company, Genentech, Merck, Novo Nordisk, Roche, Vectura Limited; research grants to Johns Hopkins University from Amgen, Bayer, and Novo Nordisk; and end point review committee membership from Abbott Laboratories and Siemens. None of these companies were involved with this manuscript.

CRediT authorship contribution statement

Sohail Zahid: Writing – review & editing, Writing – original draft, Conceptualization. Allison W. Peng: Writing – review & editing, Writing – original draft, Conceptualization. Alexander C. Razavi: Writing – review & editing, Writing – original draft, Conceptualization. Zhiqi Yao: Writing – review & editing, Writing – original draft, Conceptualization. Roger S. Blumenthal: Writing – review & editing, Supervision, Conceptualization. Michael J. Blaha: Writing – review & editing, Supervision, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests

Michael Blaha reports a relationship with Abbott Laboratories Inc that includes: non-financial support. Michael Blaha reports a relationship with Agepha that includes: consulting or advisory. Michael Blaha reports a relationship with Amgen that includes: consulting or advisory and funding grants. Michael Blaha reports a relationship with AstraZeneca Pharmaceuticals LP that includes: consulting or advisory. Michael Blaha reports a relationship with Bayer Corporation that includes: consulting or advisory and funding grants. Michael Blaha reports a relationship with Boehringer Ingelheim Corp USA that includes: consulting or advisory. Michael Blaha reports a relationship with Eli Lilly and Company that includes: consulting or advisory. Michael Blaha reports a relationship with Genentech Inc that includes: consulting or advisory. Michael Blaha reports a relationship with Novartis Pharmaceuticals Corporation that includes: consulting or advisory. Michael Blaha reports a relationship with Novo Nordisk Inc that includes: consulting or advisory and funding grants. Michael Blaha reports a relationship with Roche that includes: consulting or advisory. Michael Blaha reports a relationship with Siemens that includes: non-financial support. Michael Blaha reports a relationship with Vectura Group Limited that includes: consulting or advisory. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Lincoff AM, Brown-Frandsen K, Colhoun HM, et al. Semaglutide and cardiovascular outcomes in obesity without diabetes. New England Journal of Medicine 2023;389: 2221–32. https://doi.org/10.1056/NEJMoa2307563.
- [2] Koskinas KC, Van Craenenbroeck EM, Antoniades C, et al. Obesity and cardiovascular disease: an ESC clinical consensus statement European Heart. Journal 2024;45:4063–98. https://doi.org/10.1093/eurheartj/ehae508.
- [3] Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies WHO Expert. Consultation 2004;363:157–63. https:// doi.org/10.1016/S0140-6736(03)15268-3.
- [4] Afshin A, Forouzanfar MH, Reitsma MB, et al. Health effects of overweight and obesity in 195 countries over 25 years New England. Journal of Medicine 2017; 377:13–27. https://doi.org/10.1056/NEJMoa1614362.
- [5] Lichtenstein AH, Appel LJ, Vadiveloo M, et al. 2021 dietary guidance to improve cardiovascular health: a scientific statement from the American heart association. Circulation 2021;144:e472–87. https://doi.org/10.1161/CIR.00000000000001031.
- [6] Sanders LM, Allen JC, Blankenship J, et al. Implementing the 2020-2025 dietary guidelines for Americans: recommendations for a path forward. Journal of Food Science 2021;86:5087–99. https://doi.org/10.1111/1750-3841.15969.
- [7] Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and cardiovascular disease: a scientific statement from the American heart association. Circulation 2021;143: e984–1010. https://doi.org/10.1161/CIR.0000000000000973.
- [8] Sjöström L, Peltonen M, Jacobson P, et al. Bariatric surgery and long-term cardiovascular events. JAMA 2012;307:56–65.
- [9] Hyman MH, Dang DL, Liu Y. Differences in obesity measures and selected comorbidities in former national football league professional athletes. Journal of

- Occupational and Environmental Medicine 2012;54:816–9. https://doi.org/10.1097/JOM.0b013e3182572e53.
- [10] Neeland IJ, Ross R, Després J-P, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes & Endocrinology 2019;7:715–25. https://doi.org/10.1016/S2213-8587(19)30084-1.
- [11] Sommer I, Griebler U, Mahlknecht P, et al. Socioeconomic inequalities in non-communicable diseases and their risk factors: an overview of systematic reviews. BMC Public Health 2015;15:914. https://doi.org/10.1186/s12889-015-2227-y.
- [12] Organization WH. Obese and overweight. World Health Organization; 2024.
- [13] Malhotra A, Grunstein RR, Fietze I, et al. Tirzepatide for the treatment of obstructive sleep apnea and obesity New England. Journal of Medicine 2024;391: 1193–205. https://doi.org/10.1056/NEJMoa2404881.
- [14] Feldman DI, Wu KC, Hays AG, et al. The Johns Hopkins Ciccarone Center's expanded 'ABC's approach to highlight 2020 updates in cardiovascular disease prevention. American Journal of Preventive Cardiology 2021;6:100181. https://doi.org/10.1016/j.ajpc.2021.100181.
- [15] Franks PW, McCarthy MI. Exposing the exposures responsible for type 2 diabetes and obesity. Science 2016;354:69–73. https://doi.org/10.1126/science.aaf5094.
- [16] Piché M-E, Poirier P, Lemieux I, et al. Overview of epidemiology and contribution of obesity and body fat distribution to cardiovascular disease: an update. Progress in Cardiovascular Disease 2018;61:103–13. https://doi.org/10.1016/j. pcad.2018.06.004.
- [17] Melson E, Ashraf U, Papamargaritis D, et al. What is the pipeline for future medications for obesity? International Journal of Obesity 2025;49:433–51. https://doi.org/10.1038/s41366-024-01473-y.
- [18] Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nature Reviews Genetics 2021;23:120. https://doi.org/10.1038/s41576-021-00414-z.
- [19] Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery. Circulation Research 2016;118:1844–55.
- [20] Packer M, Zile MR, Kramer CM, et al. Tirzepatide for heart failure with preserved ejection fraction and obesity New England. Journal of Medicine 2025;392:427–37. https://doi.org/10.1056/NEJMoa2410027.
- [21] Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—5-year outcomes New England. Journal of Medicine 2017; 376:641–51.
- [22] Jastreboff AM, Aronne LJ, Ahmad NN, et al. Tirzepatide once weekly for the treatment of obesity New England. Journal of Medicine 2022;387:205–16. https:// doi.org/10.1056/NEJMoa2206038.
- [23] The Lancet Diabetes Endocrinology null. Redefining obesity: advancing care for better lives. Lancet Diabetes and Endocrinology 2025;13:75. https://doi.org/ 10.1016/S2213-8587(25)00004-X.
- [24] Wolfe BM, Kvach E, Eckel RH. Treatment of obesity: weight loss and bariatric surgery Circulation Research. This is a duplicate citation to citation 19 2016;118: 1844–55. https://doi.org/10.1161/CIRCRESAHA.116.307591.
- [25] Eisenberg D, Shikora SA, Aarts E, et al. 2022 American society of metabolic and Bariatric surgery (ASMBS) and international federation for the surgery of obesity and metabolic disorders (IFSO) indications for metabolic and bariatric surgery. Obesity Surgery 2023;33:3–14. https://doi.org/10.1007/s11695-022-06332-1.
- [26] Whelton SP, McAuley PA, Dardari Z, et al. Association of BMI, fitness, and mortality in patients with diabetes: evaluating the obesity paradox in the Henry Ford exercise testing project. FIT Project Cohort 2020;43:677–82. https://doi.org/ 10.2337/dc19-1673.
- [27] Rubino F, Cummings DE, Eckel RH, et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes and Endocrinology 2025;13:221–62. https://doi. org/10.1016/S2213-8587(24)00316-4.
- [28] Yao Z., Tchang B.G., Albert M., et al. Associations between class I, II, or III obesity and health outcomes 2025;4:EVIDoa2400229. https://doi.org/10.1056/EVID a2400229
- [29] Jeong S-M, Lee DH, Rezende LFM, et al. Different correlation of body mass index with body fatness and obesity-related biomarker according to age, sex and raceethnicity Scientific. Reports 2023;13:3472. https://doi.org/10.1038/s41598-023-30577.w
- [30] Blüher M. Metabolically healthy obesity 2020;41:bnaa004. https://doi.org/10. 1210/endrey/bnaa004.
- [31] Reedy J, Krebs-Smith SM, Miller PE, et al. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. Journal of Nutrition 2014;144:881–9. https://doi.org/10.3945/ jn.113.189407.
- [32] Razavi AC, Cao Zhang AM, Dardari ZA, et al. Allocation of semaglutide according to coronary artery calcium and BMI: applying the SELECT trial to. MESA 2025;18: 451–61. https://doi.org/10.1016/j.jcmg.2024.10.004.
- [33] Reiter-Brennan C, Cainzos-Achirica M, Soroosh G, et al. Cardiometabolic medicine - the US perspective on a new subspecialty. Cardiovascular Endocrinology Metabolism 2020;9:70–80. https://doi.org/10.1097/XCE.0000000000000224.
- [34] Bannuru RR. Introduction and methodology: standards of care in overweight and obesity-2025 BMC. Open Diabetes Research Care 2025;13:e004928. https://doi. org/10.1136/bmjdrc-2025-004928.
- [35] Paluch AE, Bajpai S, Bassett DR, et al. Daily steps and all-cause mortality: a metaanalysis of 15 international cohorts. Lancet Public Health 2022;7:e219–28. https:// doi.org/10.1016/S2468-2667(21)00302-9.
- [36] Blaha MJ, Bansal S, Rouf R, et al. A practical "ABCDE" approach to the metabolic syndrome Mayo. Clinical Proceedings 2008;83:932–41. https://doi.org/10.4065/ 83.8.932.
- [37] Services UD of H and H. 2018. Physical activity guidelines advisory committee. 2018. Physical activity guidelines advisory committee scientific report. 2018.

- [38] Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR working group on visceral obesity. Nature Reviews Endocrinology 2020;16:177–89. https://doi.org/ 10.1038/s41574-019-0310-7.
- [39] Wu Y, Li D, Vermund SH. Advantages and limitations of the body mass index (BMI) to assess adult obesity. International Journal Environmental Research Public Health 2024;21:757. https://doi.org/10.3390/ijerph21060757.
- [40] Loomba R, Hartman ML, Lawitz EJ, et al. Tirzepatide for metabolic dysfunctionassociated steatohepatitis with liver fibrosis New England. Journal of Medicine 2024;391:299–310. https://doi.org/10.1056/NEJMoa2401943.
- [41] Elagizi A, Kachur S, Lavie CJ, et al. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Mayo Clinical Proceedings 2018;61: 142–50. https://doi.org/10.1016/j.pcad.2018.07.003.
- [42] Lloyd-Jones DM, Allen NB, Anderson CAM, et al. Life's essential 8: updating and enhancing the American heart association's construct of cardiovascular health: a presidential advisory from the American heart association. Circulation 2022;146: e18–43. https://doi.org/10.1161/CIR.0000000000001078.

- [43] Aminian A., Zajichek A., Arterburn D.E., et al. Association of metabolic surgery with major adverse cardiovascular outcomes in patients with type 2 diabetes and obesity 2019;322:1271–82.
- [44] Romero-Corral A, Somers VK, Sierra-Johnson J, et al. Accuracy of body mass index in diagnosing obesity in the adult general population. International Journal of Obesity 2008;32:959–66. https://doi.org/10.1038/ijo.2008.11.
- [45] Perdomo CM, Cohen RV, Sumithran P, et al. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023;401:1116–30. https://doi.org/ 10.1016/S0140-6736(22)02403-5.
- [46] Piché M-E, Tchernof A, Després J-P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circulation Research 2020;126:1477–500. https://doi. org/10.1161/CIRCRESAHA.120.316101.
- [47] Silver H.J., Welch E.B., Avison M.J., et al. Imaging body composition in obesity and weight loss: challenges and opportunities 2010:337–47.
- [48] Ward ZJ, Bleich SN, Cradock AL, et al. Projected U.S. state-level prevalence of adult obesity and severe obesity New England. Journal of Medicine 2019;381:2440–50. https://doi.org/10.1056/NEJMsa1909301.
- [49] Baioumi AYAA. Comparing measures of obesity: waist circumference, waist-hip, and waist-height ratios. Elsevier; 2019.