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Abstract

INTRODUCTION: Obesity is a major modifiable risk factor for Alzheimer’s disease

(AD), but the mechanistic link between peripheral metabolic dysfunction and AD pro-

gression remains unclear. Adipose-derived extracellular vesicles (EVs) may penetrate

the brain and alter lipid homeostasis, contributing to neurodegeneration.

METHODS:We isolated exosome-enriched EVs from subcutaneous and visceral fat of

lean and obese individuals, followed by lipidomic profiling. An in vitro amyloid-β (Aβ)
aggregation assay using purified Aβ40 and Aβ42 peptides was performed under lipid

environments mimicking physiological and pathological states.

RESULTS:Obese-derived EVs exhibited distinct lipid profiles, particularly in lysophos-

phatidylcholine (LPC) and sphingomyelin (SM) species. Functional assays demon-

strated that lipid identity and concentration critically influenced Aβ aggregation

kinetics.

DISCUSSION: Our study reveals that obesity-associated EV lipids modulate Aβ
aggregation, linking adipose metabolism to AD pathology. These findings support

lipid-targeted strategies as potential therapeutics for neurodegenerative diseases.
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Highlights

∙ Human adipose-derived extracellular vesicles (EVs) from obese individuals exhibit

distinct lipidomic profiles.

∙ EV lipids modulate amyloid-β (Aβ) 40 and Aβ42 aggregation in a lipid-type- and

concentration-dependent manner.

∙ Lysophosphatidylcholine (LPC) and sphingomyelin (SM) species from obese EVs

significantly deregulate Aβ fibrillization in vitro.
∙ EV lipid cargo links peripheral metabolic state to amyloid pathology in Alzheimer’s

disease.

1 BACKGROUND

Alzheimer’s disease (AD) and its associated dementia are projected to

affect about 82million peopleworldwide by 2050.1 The lipid-rich brain

is influenced by lipid-related genes and peripheral lipid abnormalities,

particularly in obesity, which has been identified as a top modifiable

risk factor for dementia in epidemiological studies.2 Mechanisms link-

ing obesity to AD pathology include lipotoxicity, insulin resistance,

adipokine signaling, inflammation, and immune cell fate shifts;3–6 all of

which are exacerbated in individuals with obesity and primarily con-

tribute by the peripheral tissues. However, the molecular mechanisms

connecting specific tissues, such as adipose tissue in obesity, to AD

pathology remain largely unclear.

Clinical lipidomic and metabolomic studies consistently reveal

early-stage dysregulation in various lipid classes in AD brains, includ-

ing ceramides, sphingomyelin, cholesterol, and glycerolipids.7 Lipid

metabolism influences multiple pathogenic processes in AD, including

amyloidosis, tauopathy, neuroinflammation, neuronal damage, energy

deficits, oxidative stress, andmyelin homeostasis.8,9

The amyloid cascade hypothesis proposes that amyloid-β (Aβ) 40
and 42 peptides are generated via the amyloidogenic pathway, medi-

ated by the sequential cleavage of β-secretase and γ-secretase, and
subsequently secreted into the extracellular space.10–12 Under patho-

physiological conditions, Aβ40 and Aβ42 aggregate into oligomers or

assemble into symmetrical, periodic fibrils, a process known as Aβ fib-
rillization, which ultimately leads to the formation of amyloid plaques,

a hallmark pathological feature that is visibly detectable in the brains

of AD patients.13–15

Aβ fibrillization is influenced by multiple genetic and environ-

mental factors, including gene regulation, Aβ polymorphism,16 metal

ions,17 and lipids.18–20 Adipocyte-derived extracellular vesicles (EVs)

can cross the blood–brain barrier and deliver exogenous molecules,

including RNAs, DNAs, proteins, and lipids, thereby disrupting the

brain microenvironment.21–29 Although EV-associated miRNAs have

been implicated in AD progression,21,30 the role of EV-derived lipids in

exacerbating AD pathology remains largely unresolved.

Lipids constitute themajority of the brain’s dry mass and are crucial

for both normal function and pathology.31 Cryo-electron microscopy

analysis of amyloid plaques has identified a substantial presence of Aβ

fibrils alongside an enriched lipid content.32 The in vivo and in vitro

study demonstrated that, lipid-driven condensation of Alzheimer’s Aβ
peptide initiates its transition into amyloid aggregates.33 Research

on the interaction between lipids and Aβ aggregation indicates that

negatively charged phospholipids facilitate Aβ fibrillization, whereas

neutral lipids exhibit minimal or no impact.34,35 Moreover, lipid mem-

branes with distinct compositions have been found to enhance Aβ
fibrillization and aggregation on biological surfaces, including cell and

vesiclemembranes.36,37 Building upon these findings, investigating the

influence of lipid components on Aβ fibrillization under pathophysio-

logical conditions from a lipid-type-specific perspective may provide

valuable insights into lipid-based therapeutic strategies for AD.8,31

In this study, we first isolated pure, well-characterized samples of

EVs originating from an obese/lean population and conducted qual-

ity control (QC) assessments to confirm EV purity, size distribution,

and morphology. We then systematically profiled and quantified the

full range of lipids detected in the isolated EVs using multidimensional

mass spectrometry and advanced lipidomics analysis to annotate,

quantify, and identify lipid species with pathophysiological relevance.

Subsequently, we investigate how specific EV-derived lipids influence

the aggregation dynamics of human Aβ peptides to reveal new insights

into the intersection of metabolic dysfunction and neurodegenerative

risk.

2 METHODS

2.1 Human subjects and adipose tissue collection

Subcutaneous (SQA) and visceral (VA) adipose tissues were collected

from lean and obese individuals (Supporting Information Table 1)

undergoing elective abdominal surgery at The Ohio State Univer-

sity Wexner Medical Center. Subjects were excluded if they had

active infection or febrile illness, a history of cancer or organ trans-

plantation, chronic use of immunosuppressive or anti-inflammatory

medications, or recent chemotherapy within the past year. Additional

exclusion criteria included uncontrolled metabolic conditions (such

as type 1 diabetes), autoimmune disorders, human immunodeficiency

virus/acquired immunodeficiency syndrome (HIV/AIDS), substantial
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weight fluctuation (>10% change within the previous 3 months), or

prior diagnosis of lipodystrophy, hemochromatosis, or other systemic

illnesses likely to impact adipose metabolism. Tobacco use and hor-

monal treatments (e.g., corticosteroids, estrogen replacement) were

also considered grounds for exclusion. Baseline clinical parameters—

including body weight, body mass index (BMI), waist circumference,

blood pressure, fasting glucose, insulin, triglycerides, and high-density

lipoprotein (HDL)—were recorded preoperatively.

Adipose tissue samples were harvested intraoperatively at the

surgical site near the umbilicus. Abdominal subcutaneous adipose tis-

sue was obtained via a 3–4 cm skin incision (approximately 1 cm in

depth), followed by aspiration with a small liposuction cannula under

sterile conditions and local anesthesia (1% lidocaine with 1:100,000

epinephrine). All procedures were performed by experienced surgi-

cal collaborators at The Ohio State University (OSU) clinical research

center. Between 5 and10 grams of tissue were collected from each

participant and processed within 60min of excision.

Upon collection, samples were divided for two distinct applications.

One portionwas immediately flash-frozen in liquid nitrogen and stored

at −80◦C for lipidomic analysis. The remaining tissue was transferred

into ice-cold sterile saline and promptly transported to the laboratory

for adipocyte isolation and subsequent EV extraction.

To maintain sterility throughout processing, samples were placed in

sterile containers filledwith prechilled sterilemedia andhandled exclu-

sively under a laminar flow hood. Adipocytes and the stromal vascular

fraction (SVF) were isolated by collagenase I digestion of finely minced

adipose tissue, following previously established protocols.38

2.2 Isolation of human adipocyte-derived EVs

Exosome-enriched EVs were isolated from human adipocytes for

lipidomic analysis and in vivo studies. Human adipocytes were isolated

from subcutaneous adipose tissue samples as described above. After

isolation, adipocytes were washed and cultured in serum-free main-

tenance medium (DMEM/F-12 supplemented with 25 µg/mL insulin

and 1% penicillin/streptomycin) at 37◦C for 16–20 h in 6-well plates

(3 mL/well). This serum-free condition was used to eliminate lipid con-

tamination from fetal bovine serum (FBS) and ensure the purity of EVs

for downstream applications.

After incubation, culture supernatants were collected and cleared

of cellular debris by sequential low-speed centrifugation. To improve

EV yield and scalability, exosome-enriched EVs were isolated using

tangential flow filtration (TFF), followed by ultrafiltration to concen-

trate the preparations. The resulting EVs reached concentrations of

approximately 1012 particles/mL.

All EV isolation and characterization procedures adhered to the

guidelines of the International Society for Extracellular Vesicles (ISEV).

Characterization of human adipocyte-derived EVs was performed

using microfluidic resistive pulse sensing (MRPS) to assess particle

size and concentration, immunomagnetic bead capture for exoso-

mal surface markers, and Western blotting for adipocyte-specific and

exosomal proteins.

RESEARCH INCONTEXT

1. Systematic review: We searched PubMed and Google

Scholar using the terms “adipose-derived EVs,”

“lipidomics,” and “Aβ aggregation.” Although prior

studies have suggested a link between metabolic dys-

function and Alzheimer’s disease (AD), the specific role of

human adipose-derived extracellular vesicles (EV) lipids

in modulating amyloid-β (Aβ) pathology remains poorly

defined.

2. Interpretation: Our study shows that EVs from obese

adipose tissue carry specific lipid species that modu-

late Aβ40 and Aβ42 aggregation in a lipid-type- and

concentration-dependent manner. These findings pro-

vide compelling molecular evidence linking peripheral

lipid imbalance to Aβ aggregation, suggesting that

metabolic dysfunction associated with obesity may con-

tribute to central amyloid pathology via adipose-derived

EV lipids. Further in vivo validation is warranted to

substantiate this proposed link.

3. Future directions: This work provides a foundation for

investigating lipid homeostasis for AD, particularly in

metabolically at-risk populations. Future studies will

focus on validating these lipid–Aβ interactions in vivo,

identifying promising therapeutic strategies, and assess-

ing their relevance to clinical outcomes.

2.3 In vivo visualization of EV distribution

For in vivo tracing in mice, EVs were isolated from mouse adipose tis-

sue using a modified protocol incorporating collagenase II digestion.

ThepurifiedEVswere labeledwith theExoGlow™-VivoEVLabelingKit

(Cat # EXOGV900A-1) according to the manufacturer’s instructions,

and subsequently administered via tail vein injection at a dose of 6.55

× 109 particles per mouse. Fluorescence imaging was performed using

an IVIS (In Vivo Imaging System) to visualize EV biodistribution.

2.4 Lipidomics

Lipid species were analyzed using multidimensional mass

spectrometry-based shotgun lipidomics approach.39 In brief, each

exosome sample was homogenized, and the protein content of each

sample was determined by a Pierce BCA assay. An equivalent of

0.01mg protein homogenatewas then added to a glass tube alongwith

a premixed lipid internal standard. Lipid extraction was performed

using a modified Bligh and Dyer procedure.40 The lipid extract was

dispersed in chloroform:methanol (1:1, v:v) at a ratio of 4000 µL/mg

protein for storage.
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For shotgun lipidomics, the lipid extract was further diluted to a

total lipid concentration of ∼2 pmol/µL. The mass spectrometric anal-

ysis was performed on a triple quadrupole mass spectrometer (TSQ

Altis, Thermo Fisher Scientific, San Jose, CA) and a hybrid quadrupole-

Orbitrapmass spectrometer (Q-Exactive, ThermoFisher Scientific, San

Jose, CA), both equipped with an automated nanospray ion source

device (TriVersa NanoMate, Advion Bioscience Ltd., Ithaca, NY) as

described previously.41

The data processing and analysis was performed based on the

principles of shotgun lipidomics such as ion peak selection, baseline

correction, isotope effect correction, etc.39,42,43 The final lipicomics

result were normalized to the protein content (nmol/mg protein) (Sup-

porting Information Table 2). Lipidomics profiling (Figures 1 and 2) was

performed using MetaboAnalyst 5.0, following renormalization of the

raw lipid data with the built-in algorithm provided by the platform.

Supporting Information Table 3 presents lipidomic data from adipose

tissue.

2.5 Outlier detection analysis

To identify potential outlier samples from global lipidomic profiles, the

Isolation Forest algorithm was applied using default hyperparameters.

This unsupervised anomaly detection method is designed for high-

dimensional data and operates by randomly partitioning the feature

space; samples that require fewer splits to be isolated are assigned

higher anomaly scores. The algorithm is nonparametric, robust to

noise, and does not assume a specific data distribution. To evaluate the

influence of the identified outlier on downstream analyses, sensitivity

analyses were performed by comparing results with and without the

inclusion of outlier (Lean 1). This approach enabled validation of the

robustness of major lipidomic findings and ensured that conclusions

were not driven by a single data point.

2.6 Reagent preparation of ThT assay

Amyloid- β40 and 42, ultra pure, with NaOH, recombinant human

(Sigma, #AG964 & AG970) were dissolved in 1% NH4OH to 1 mg/mL.

And then add in 1XPBS to a stock concentration as 200 uM. Before

thioflavin T (ThT) assay, the Aβs were sonicated for 200 s using a Mar-

shall Scientific Sonifier model B450 (microtip, 10% amplitude) with

intermittent pause to allow samples to cool down. ThT (Sigma, #T3516)

was dissolved in PBS buffer and was filtered through a 0.2 µm syringe

filter. Morin (Sigma, #M4008) and phenol Red (Sigma, #P3532) were

also dissolved with PBS.

For the lipid details, sodium oleate (Sigma, #07501), sodium palmi-

tate (Sigma, #P9767), Brain SM (Avanti, #860062P), egg SM (Avanti,

#860061P), milk SM (Avanti, #860063P), egg lysophosphatidyl-

choline (LPC) (Lyso PC; Avanti, #830071P), 18:0 LPC (Lyso PC;

Avanti, #855775), 16:0-20:4 phosphatidylethanolamine (PE) (Avanti,

#850759C), 16:0-18:1 PE (Avanti, #850757P), C18(Plasm)-18:1 PE

(Avanti, #852758P), and C18(Plasm)-20:4 PE in ethanol (Cayman,

#37137).

Stock solutions of sodium palmitate and sodium oleate (100 mM)

werepreparedbydissolving the fatty acid powders in ethanol, followed

by brief sonication cycles (10 s per pulse, 200 W) on ice. Sonication

was continued until the mixture became uniformly cloudy, indicating

thorough dispersion. The stock solutions were protected from light

and stored at 4◦C. Prior to use, aliquots were prewarmed to 60◦C

and briefly sonicated again. For details, please refer to the previously

publishedmethod.44

For all lipids, those provided in powder formwere directly dissolved

in molecular-grade ethanol (Sigma, #E7023) to 100 mM as stock. For

lipids supplied in chloroform, the solvent was first evaporated under a

gentle nitrogen stream, and the resulting lipid film was redissolved in

an equivalent volume of ethanol. During this process, sonication was

applied to facilitate completedispersionof the lipids in ethanol. Prior to

use, aliquots and lipids in ThT-reaction buffers were briefly sonicated

again.

Lipid concentrations reflecting human pathophysiological states

were obtained from the HumanMetabolome Database (HMDB) along

with relevant literature sources. To facilitate direct comparison, all

concentration values were standardized to µM units, consistent with

plasma lipid data. For brain-derived measurements, the following

conversion principles were applied:

∙ For values reported as nmol/mg protein, concentrations were con-

verted to µM using the formula: nmol/mg protein × brain protein

content (28-54mg/g)45 × brain density (1.03 kg/L)46

∙ For values reported as nmol/g brain wet weight, the conversion

formula was: nmol/g × brain density (1.03 kg/L)46

2.7 Fibrillization kinetics assays

To identify anoptimal assaybuffer formonitoringAβ fibrillization in the
presence of various lipid components using ThT, three buffer systems

were evaluated:

∙ Buffer A: 50mMTris, 150mMNaCl, and pH 7.2

∙ Buffer B: 20mMHEPES, 150mMNaCl, and pH 7.2

∙ Buffer C: 10mMphosphate, 150mMNaCl, and pH 8.0

Buffer C was ultimately selected as the optimal condition based on

signal consistency and reproducibility.

Fibrillization assayswere conducted in 384-well nonbinding surface

microplates (Greiner, #781903), with a final reaction volume of 40 µL

per well. The assaymixture included the following components:

∙ Lipid samples: 4 µL of ethanol-dissolved lipids added per well, with

serial dilutions ranging from 1X to 1/1024X.

∙ Buffer C: used as the base buffer in all wells

∙ ThT: added from a 200 µM stock to a final concentration of 20 µM
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F IGURE 1 Lipidomic profiling of extracellular vesicles (EVs) from lean and obese individuals. (A) Unsupervised hierarchical clustering heatmap
of lipidomic profiles from EVs isolated from lean and obese individuals. The analysis was performed usingMetaboAnalyst 5.0 based on normalized
lipid abundance values. Each column represents an individual sample (blue for lean, pink for obese), and each row corresponds to a lipid species.
Color scale indicates Z-score–normalized relative abundance, with blue representing lower levels and brown indicating higher levels. (B, C)
Quantification of major lipid classes in EVs from lean and obese individuals. (B) Levels of specific lipid species—including triacylglycerol (TAG), free
fatty acids (FA), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), phosphatidic acid (PA), phosphatidylcholine (PC),
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∙ Aβ42: added last into the reactionmixture from a 200 µM stock to a

final concentration of 20 µM

∙ Negative control dyes: morin and phenol red, each added at 20 µM

final from 200 µM stocks

Control groups were configured as follows:

∙ Blank: Buffer C only

∙ NTC (no template control): Buffer C+ ThT

∙ Positive control: Buffer C+ ThT+Aβ42
∙ Negative control: Buffer C+ ThT+Aβ42+ phenol red+morin

Fluorescence-based aggregation assays were performed using a

BioTek Synergy H1 plate reader (Agilent, #1623193). Reactions were

incubated at 37◦C with fluorescence readings taken every 5 min-

utes. Prior to each read, the plate was subjected to a 20-second

double-orbital shake. ThT fluorescence was measured with excita-

tion at 440 nm and emission at 484 nm. Background subtraction was

performed using the NTCwells containing only buffer and ThT.

2.8 Kinetic data presentation and statistics

To quantify the effects of different lipids on Aβ40 and Aβ42 ThT

fluorescence signal and aggregation kinetics over time, a repeated

measures analysis of variance (ANOVA) was applied using the area

under the curve (AUC) as the within-subject factor. For each sample,

raw fluorescence intensity–time curves collected at equally spaced

time points were summarized by AUC, capturing the overall response

magnitude. As all samples were measured at identical intervals (each

5 minutes), AUC values were mathematically equivalent to mean rel-

ative fluorescence unit (RFU) up to a constant factor, allowing valid

group-level comparisons.

One-way ANOVAwas then performed on AUC values to assess dif-

ferences between lipid treatment groups. Outliers were identified and

excluded using a leave-one-out z-score method, in which each repli-

cate was compared to others within the same group at each time

point. Replicates exhibiting consistently elevated deviations across the

time course were removed. This QC step was applied to all lipid/Aβ
conditions, each of which included at least duplicate or triplicate

measurements for statistical analysis.

This approachpreserved the advantagesof repeatedmeasurements

in minimizing within-group variability while allowing a straightfor-

ward assessment of group effects on cumulative or average response.

Results were reported as mean ± standard error of the mean (SEM)

for each condition. Post hoc comparisons were conducted using Dun-

nett’s test, comparing each treatment group to the positive control.

p-values were reported in GraphPad style: p > 0.05 (ns), p < 0.05 (*),

p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). Statistical analy-

ses and visualizations were conducted using GraphPad Prism [version

10.2.1].

3 RESULTS

3.1 EV purification and quality control (QC)

EVs mediate crosstalk between adipose tissue and the brain21 (Figure

S1A). Exosome-enriched EVs isolated from murine adipocytes exhib-

ited efficient brain biodistribution following tail vein administration

(Figure S1B,C). To characterize the lipid signature of human EVs

derived fromobese adipocytes,we first isolatedexosome-enrichedEVs

using tangential flow filtration (TFF) followed by ultrafiltration.47 EVs

were obtained from subcutaneous adipose tissue (SQA) and visceral

adipose tissue (VA) collected from elective surgical adipose biopsies of

lean and obese donors.

phosphatidylserine (PS), and sphingomyelin (SM)—weremeasured from EVs derived from pooled adipocyte isolates in each group (n= 5 per
group). (C) Lipid class quantification in EVs from individual patients (n= 4-5 per group), showing interindividual variation. Data are normalized to
total EV protein (p or nmol/mg protein). Data are presented asmean± SEM; two-tailed t-test; *, increase; #, decrease; comparedwith the
corresponding controls, */#p< 0.05, and **/##p< 0.01. (D,E) SimplifiedManhattan plots of lipid class alterations between obese and lean EVs
(including Lean 1). (D) Fold changes (log10[Obese/Lean]) of individual lipid classes stratified by lipid species. Each dot represents a detected lipid
species, color-coded by class. (E) Statistical significance (−log10 P value) of lipid class differences calculated based on unpaired two-tailed t-tests
using raw lipidomic concentrations from lean and obese individuals. Notable classes such as FAC, TAG, PC, LPC, and PA exhibit significant
alterations in fold change and/or p-value distribution. (F) Lipid–lipid correlation heatmap of EV lipidomic profiles from lean and obese individuals.
Pairwise correlations between lipid species were calculated usingMetaboAnalyst 5.0 based on combined datasets from both groups. The color
scale represents the Pearson correlation coefficient, ranging from –0.5 (purple, negative correlation) to 1.0 (yellow, strong positive correlation).
Hierarchical clustering was applied to group lipid species with similar covariation patterns, revealing distinct lipid modules and potential
coregulatory networks. Tenmajor lipid clusters (a–j) were identified, each outlined and annotated with representative lipid classes on the right.
Key lipid species contributing to each cluster are summarized and compared between obese and lean groups in the accompanying Supporting
Information Tables 4 and 5. Fold-change (obese/lean) values for each lipid species are also shown as a grayscale bar (FCO/L) adjacent to the cluster
annotation, highlighting cluster-specific lipid alterations associated with obesity. (G) Partial least squares discriminant analysis (PLS-DA) plots
showing lipid class–specific separation between EVs from lean and obese individuals (including Lean 1). EV lipidomic data were analyzedwith
individual patient samples as input. Samples from lean and obese subjects are shown in blue and brown, respectively, with ellipses representing
95% confidence intervals. The percentage of explained variance for the first and second components (T score [1] and orthogonal T score [1]) is
indicated in parentheses. (H) Volcano plot identifying differentially abundant lipid species between obese and lean EVs. Each dot represents a lipid
species, plotted by log2(fold changeObese/Lean) on the x-axis and−log10(P value) on the y-axis. Blue dots indicate significantly downregulated
species in obesity (p < 0.05 and FC < −1), red dots represent significantly upregulated species (p < 0.05 and FC > 1), and grey dots are
nonsignificant. Top 15 upregulated and 15 downregulated lipid species are annotated and listed by class and composition.
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F IGURE 2 Lipid composition comparison between adipose tissue and extracellular vesicles (EVs). (A) Comparative analysis of lipid class
abundance in adipose tissue and adipose-derived EVs from lean and obese individuals. Lipid classes are ranked based on total abundance (pmol/mg
protein) and displayed in descending order for each source. Horizontal bars represent the summed concentrations of all detected species within
each lipid class, with tick marks indicating individual lipid species and bold tick mark indicating the total lipid class. Blue and brown bars denote
adipose tissue and EVs, respectively. The numbers adjacent to each lipid class indicate the count of detected species. (B) Comparison of lipid
species diversity across lipid classes in adipose-derived EVs andmatched adipose tissues. Donut charts show the distribution of identified lipid
species grouped by class, with a total of 123 species detected in EVs and 274 in adipose tissue. Each color represents a distinct lipid class, as
indicated in the legend. (C) Comparison of lipid class-specific signatures between extracellular vesicles (EVs) and adipose tissue. Thematrix
highlights lipid classes that are enriched or selectively represented in either EVs (brown dots) or adipose tissue (blue dots). Signature lipid classes
were defined based on relative abundance, distribution pattern, and specificity to each compartment. (D–H) Chord diagrams representing lipid
coregulation networks among lipid species across different lipid classes in EVs and adipose tissue. (D) Full lipid network in EVs. (E) Full lipid
network in adipose tissue. (F) Adipose tissue lipid network after excluding triacylglycerol (TAG) species tominimize skewing from high-abundance
lipids. (G) Network based on the top 20%most abundant lipid species in EVs. (H) Network based on the top 20%most abundant lipid species in
adipose tissue. Each arc represents a lipid class, and connecting ribbons indicate pairwise coenrichment of lipid species between classes. The
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Isolated EVs then underwent standard QC following established

protocols.48,49 Vesicles with sizes ranging from 60 to 300 nmwere iso-

lated from the supernatant of cultured human adipocytes (Figure S1D).

These vesicles were found to contain tetraspanins, such as CD63, used

to validate EV identity (Figure S1E, fluorescent staining). Adiponectin,

produced by adipocytes, is present in the exosome cargo (Figure S1F),

confirming that these are the adipocyte-derived EVs. Also of interest

is the presence of clusterin, which plays a role in AD pathogenesis.50

These data quantify EVs based on particle number, size, and the pres-

ence of specificmolecules, such asCD63, adhering toMISEV2018.48,49

The QC-validated EVs were subsequently processed for lipidomic

profiling.

3.2 Lipidomic profiling

We performed the multidimensional mass spectrometry-based

lipidomics for the EVs derived from both lean and obese individu-

als (Supporting Information Table 2). The heatmap reveals distinct

lipidomic profiles between lean and obese EVs, with hierarchical

clustering showing clear separation between the two groups and

highlighting lipid species that are differentially abundant in obesity

(Figure 1A). Stratified by lipid species and individual patients, several

lipid classes, including triacylglycerols (TAG), phosphatidic acids (PA),

and SM, show significant differences between the lean and obese

groups (Figure 1B,C).

To investigate sample-level deviations observed in EV lipidomic

clustering (Figure 1A), we applied the Isolation Forest algorithm to

identify potential outliers. This analysis revealed one lean sample

(Lean 1) exhibited a high anomaly score, flagging it as a potential out-

lier, whereas the deviating obese sample (Obese 11) was not flagged.

Importantly, we found no technical or biological abnormalities (e.g.,

age, sex, BMI, batch effects; Supporting Information Table 1) associ-

ated with either sample. To evaluate the impact of retaining Lean 1,

we conducted sensitivity analyses with and without its inclusion. key

lipid species such as phosphatidylcholine (PC), PA, LPC, and fatty acyl-

CoenzymeA (FAC) remained significantly altered in obesity, regardless

of whether Lean 1 was included, as confirmed by fold-change and

statistical significance analyses (Figure 1D–E and S2A–E).

The correlation heatmap reveals distinct clustering patterns among

lipid species in lean and obese EVs, indicating obesity-associated

reorganization of lipid coregulation networks (Figure 1F; Supporting

Information Table 4). Hierarchical clustering identified ten discrete

lipidmodules (clusters a–j), each enriched for specific lipid classes, such

as SM, TAG, LPE, or PC. The corresponding fold changes (obese/lean)

for lipid species within each cluster further illustrate their differen-

tial abundance and distribution between obese and lean individuals

(Figure 1F; Supporting Information Table 5).

Furthermore, the clear separation of LPC and SM between lean

and obese groups across various lipid classes indicates significant dif-

ferences in EV lipid composition that remain consistent irrespective

of Lean 1 inclusion (Figure 1G and S2F). When Lean 1 was excluded

(Figure S2F), the lean group exhibited markedly reduced intragroup

variation, suggesting that Lean 1 captures a unique aspect of bio-

logical heterogeneity within the lean cohort. As the overall findings

remained consistent with or without Lean 1, we retained this sample in

all downstreamanalyses to preservebiological variability andminimize

selection bias. Notably, SM were predominantly downregulated, while

PC, LPC, and LPEwere primarily upregulated in obesity (Figure 1H).

To determine the extent to which EVs reflect the lipid composition

of adipose tissue (Supporting Information Table 3) in mediating adi-

pose tissue–brain crosstalk, we conducted a comparative analysis of

the two compartments. Among the detected lipids, the lipidomic com-

parison revealed a selective overlap of FAC, TAG, diacylglycerol (DAG),

PC, PE, PS, SM, LPE, and PI (Figure 2A), with a similar lipid composi-

tion ratio (Figure 2B), suggesting a conserved lipid distribution pattern.

Both SM and PA were identified as signature lipid classes in both EVs

and adipose tissue (Figure 2C).

In the network association analysis, phospholipids such as PC,

PA, and LPE exhibit strong interconnections in EVs (Figure 2D),

whereas TAG dominates the coregulation network in adipose tis-

sue (Figure 2E). When excluding TAG, PE and PC emerge as the

primary connectors within the adipose tissue network (Figure 2F).

When restricting the analysis to the top 20% most abundant lipid

species inEVsandadipose tissue (fromFigure2D to2G; fromFigure2E

to 2H), we observed that overall network connectivity was notably

reduced (Figure 2I), as reflected by sparser interlipid associations in

both groups (Figure 2G–H). This finding suggests that the majority

of lipid coregulation occurs across the full lipidome rather than being

driven solely by the most abundant ones. Importantly, this reduction

pattern in network density was consistently observed across both EVs

and adipose tissue (Figure 2I), suggesting a conserved organizational

principle of lipid network architecture in both systems.

These findings indicate that EVs reflect the lipidomic profile of

adipose tissue to a certain extent, with selective lipid enrichment

and preserved network associations. This reinforces the hypothesis

that EVs serve as lipid carriers facilitating adipose–brain crosstalk.

3.3 Aβ fibrillization evaluation

The aforementioned lipid components in EVs derived from human

adipocytes primarily consist of phospholipids and SM. Regardless of

lipid class, all contain fundamental fatty acid chains. Our systematic

profiling of EVs and adipose tissue revealed that both are enriched in

unsaturated fatty acid chains (Figure S2G–I). Given the diverse effects

diagrams reveal distinct lipid interconnectivity patterns between EVs and adipose tissue, highlighting selective lipid packaging andmodularity in
EV lipid composition compared to the tissue of origin. (I) Correlation between lipid reduction in EVs and adipose tissue. Scatter plot showing the
percentage reduction of major lipid classes in EVs (x-axis; data from Figures 2D–G) versus corresponding reductions in adipose tissue (y-axis; data
from Figures 2E–H). Each dot represents a lipid class, labeled accordingly (e.g., SM, TAG, PC, etc.).
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of lipids on AD, we specifically focused on their role in Aβ fibrilliza-

tion, as amyloid aggregation is a well-defined pathological hallmark

of AD and a critical step in disease progression. Investigating how

lipids influence Aβ fibrillization provides direct mechanistic insights

into their contribution to amyloid pathology andoffers a refined frame-

work for understanding lipid-mediated neurodegenerative processes

(Figure 3A).

To ensure a high-purity background, we employed an in vitro ThT

fluorescence assay to assess the lipid-type-specific effects on Aβ fib-
rillization (Figure 3B). Because Aβ aggregation occurs primarily in the

brain’s extracellular space (Figure 3A,B), lipidomic profiles reflecting

this microenvironment would, in principle, provide the most physio-

logically relevant context. However, currently available brain lipidomic

datasets are largely derived fromwhole-tissue homogenates or region-

specific bulk analyses, representing mixed cell populations and lacking

specificity for the extracellular compartment where Aβ aggregation

occurs.51 Moreover, many of these studies report only relative abun-

dances, with limited data on absolute lipid concentrations.52,53

Given these limitations, the lipid concentrations used in this study

were primarily guided by reported physiological and pathophysio-

logical levels in human plasma. Where available, we also compiled

absolute concentration data from human brain and cerebrospinal fluid

(CSF) lipidomics to provide a more comprehensive frame of reference.

Together, these datasets offer a valuable basis for interpreting the rel-

evance of lipid exposures to Aβ aggregation dynamics. Based on our

analysis (Figure S2G–I), we first evaluated the effects of saturated and

unsaturated fatty acids, using palmitic acid and oleic acid as represen-

tative molecules (Figure 3C). Both are key lipid components broadly

represented across multiple EV lipid classes detected in our lipidomic

dataset and were directly detected as constituent lipid species within

the EV lipidome.

3.4 Fatty acids and Aβ fibrillization

Palmitic acid, also known as hexadecanoic acid, is one of themost com-

mon saturated long-chain fatty acids (C16:0) in mammals, comprising

approximately 21%–30% (molar) of human depot fat. In healthy adults,

the blood concentration of palmitic acid can reach 2360 ± 430 µM in

males and2500±630µM in females,54 while lower physiological levels

have been reported around 30.49 ± 2.64 µM.55 Additionally, reported

values in the human CSF of normal adults are 18.0 ± 12.0 µM,56 and

in human brain tissue, palmitic acid was measured at approximately

496 ± 123 nmol/g (∼510.88 ± 126.69 µM) wet weight in control

subjects.57 Under lipotoxic conditions (25–100 mM), both Aβ40 and

Aβ42 exhibit pronounced aggregation (Figure 3D–G). At 3.13 mM, a

concentration representative of pathophysiological overload, palmitic

acid significantly promotes Aβ40 aggregation (Figure 3D,E), whereas

its effect on Aβ42 is minimal (Figure 3F,G). At lower concentrations,

palmitic acid shows negligible influence on the fibrillization of either

Aβ40 or Aβ42, with aggregation rates comparable to the positive

control, indicating a baseline, nonpromotive state under physiological

conditions.

Before examining the effects of additional lipid species, several

methodological considerations warrant clarification to aid in the inter-

pretation of the Aβ aggregation data. The apparent lack of sharply

defined lag, growth, and plateau phases (Figure 3D) is primarily due

to the wide concentration range (0.1 to 100 mM) of palmitic acid

presented in a single plot. This required an expanded y-axis scale

to accommodate high-signal conditions, which in turn visually com-

pressed the kinetic transitions. When only intermediate concentra-

tionswereexamined (FigureS3A), the classical sigmoidal featuresofAβ
aggregation became more distinguishable. However, to preserve com-

parability across all tested concentrations, a unified plot was retained

(Figure 3D)

In our optimized assay system (Method section 2.7), Aβ aggre-

gation proceeds more rapidly than conventional chronic protocols

which typically span 20–150 hours.58,59 The “time zero” (Figure 3D)

refers to the first fluorescence readout, which was collected approxi-

mately 20-30minutes after the reactionwas initiated. This short delay,

caused by sample mixing and plate handling, means partial preaggre-

gation may have already occurred before the first measurement. As a

result, some lipid-treated samples displayed elevated fluorescence at

the initial time point, and lag phases appeared less distinct compared

to longer-duration assays. To preserve potentially informative early

kinetic differences, fluorescence values were not normalized to a uni-

form baseline across conditions (Figure 3D). This decision wasmade to

avoid artificially masking early seeding effects or subtle differences in

nucleation kinetics.

In the Aβ aggregation assay, area under the curve (AUC) quan-

tifies the overall extent of Aβ aggregation over time, as reflected

by the integrated kinetic fluorescence signal. To assess overall Aβ
aggregation under different lipid concentrations, AUC could be calcu-

lated by numerical integration of relative fluorescence unit(RFU) over

time using the trapezoidal rule, a method well-suited for discrete,

uniformly spaced time-series data. Since fluorescence measurements

were collected at consistent 5-minute intervals, the AUC is effectively

proportional to the cumulative RFU values, and their average reliably

reflects aggregation kinetics across conditions (Figure 3E).

To address potential concerns regarding nonzero initial baselines—

a consequence of preaggregation during sample handling prior to the

first readout—we reconstructed simulated curves by extrapolating

back to the actual reaction start time (Figure S3B). These simulations

showed that regardless of the integration start point, experimental

and control groups are statistically distinguishable, supporting the

reproducibility, robustness, and validity of RFU-based comparisons

in capturing both early seeding dynamics and the total extent of Aβ
aggregation.

Oleic acid, also known as octadecenoic acid, is a widely distributed

and abundant long-chain monounsaturated fatty acid (C18:1, omega-

9). In healthy adults, oleic acid concentrations range from 11.42± 1.67

to 2135.4 ± 665.5 µM (n = 54),55,60 with peak levels in patholog-

ical states reaching up to 2365.1 ± 844.5 µM.60 Additionally, oleic

acid concentrations in human CSF have been reported at 36.0 ± 36.0

µM in healthy adults,56 and human brain tissue levels measured at

∼367 ± 123 nmol/g (∼378.01 ± 126.69 µM) wet weight in control
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F IGURE 3 In vivo and in vitromodels of amyloid-β (Aβ) aggregation andmodulation by palmitic acid. (A,B) Conceptual overview of Aβ
aggregation pathways under in vivo and in vitro conditions. (A) Schematic of in vivo Aβ aggregation in a cell-based system. Soluble Aβmonomers
generated in the cytoplasm or near themembrane transition into benign oligomers, toxic oligomers, and eventually amyloid fibrils and plaques
within the extracellular space. The process involves dynamic interconversion between aggregation species and spatial localization across cellular
compartments. (B) Illustration of in vitro Aβ aggregation in a purified, cell-free system, monitored by thioflavin T (ThT) fluorescence. Soluble
monomers self-assemble into benign and toxic oligomers, which ultimately formmature amyloid fibrils. The aggregation kinetics follow a sigmoidal
curve comprising a lag phase, growth phase, and plateau phase. Different ThT fluorescence curves (dashed lines) represent modulation of
fibrillization kinetics under various experimental conditions. (C) Classification of fatty acids based on the number of double bonds (n_DB). Fatty
acids (FAs) are categorized into saturated fatty acids (SFAs; n_DB= 0), monounsaturated fatty acids (MUFAs; n_DB= 1), and polyunsaturated fatty
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subjects.57 Under lipotoxic conditions (6.25–50 µM), Aβ40 undergoes

severe fibrillization (Figure S3C,D). Notably, even at physiopatholog-

ical concentrations (0.39–3.23 µM), Aβ40 aggregation remains evi-

dent (Figure S3C,D). Unexpectedly, at moderate concentrations (0.1–

0.2 mM, or 100-200 µM), the aggregation rate of Aβ40 is significantly

lower than that of the positive control (Figure S3C,D). Surprisingly,

Aβ42 exhibits robust aggregation across all tested concentrations,

both low and high (Figure S3E–F).

In the experiments described above, the convergent finding is that

both saturated and unsaturated fatty acids can promote Aβ fibrilliza-
tion at relatively high concentrations approaching lipotoxic conditions.

Notably, the same fatty acid exerts differential effects on Aβ40 and

Aβ42 aggregation. A divergent observation is that palmitic acid, the

most abundant saturated fatty acid in vivo, does not influence baseline

Aβ aggregation at physiological concentrations. Our study expands the

known benefits of unsaturated fatty acids. In addition to their classi-

cal antioxidant effects—attributed to the presence double bonds—we

observed that their lipid characteristics confer an additional advan-

tage: at physiological concentrations (100–200 µM), unsaturated fatty

acids can suppress the spontaneous fibrillization of Aβ40.

3.5 SM and Aβ fibrillization

SM exhibited pronounced deregulation in our human EV lipidomics

profiling (Figure 1G,H). SM is abundantly present in the nervous sys-

tem, where it plays a critical role in maintaining the structural integrity

of cellular membranes. It is also a key component of the myelin sheath,

particularly in the membranous layers that insulate neuronal axons.61

To further investigate the role of SM in Aβ fibrillization, we selected

three physiologically relevant SM sources: milk SM, egg SM, and brain

SM, which are primarily composed of SM 23:0, SM 16:0, and SM 18:0,

respectively. Each of these SM species was among the detected lipid

constituents in our EV lipidomic analysis.

Among these, SM (23:0) is the least studied in terms of physiolog-

ical and pathological concentrations, with limited reports indicating a

plasma level of 7 ± 2.7 µM.62 SM (16:0) is more commonly detected in

human plasma, ranging from 60 to 190 µM in both males and females

under normal conditions (HMDB-Human metabolome database).63,64

SM (18:0) is reported to reach concentrations of 1145 ± 67 or

1364± 106 µM in adult females,65 while levels as low as 16.2± 0.4 µM

have also been documented in healthymale and female individuals.62

In human CSF, SM (16:0) and SM (18:0) have been detected at con-

centrations of 0.336 ± 0.109 and 0.340 ± 0.154 µM,66 respectively, in

adults over 18 years of age. In contrast, noCSF data are currently avail-

able for SM (23:0), highlighting a gap in the lipidomic characterization

of this species within central nervous system compartments. Although

absolute concentrationsof theseSMspecieshavebeen reported in var-

ious brain regions of mice,67 corresponding quantitative data in the

human brain remain scarce.

In our ThT-based fibrillization assays, SM 23:0 significantly

enhanced Aβ aggregation at higher concentrations, including at

physiologically relevant levels near 7 µM (Figure 4B–E). However,

this proaggregation effect was markedly attenuated at lower con-

centrations. Notably, in the Aβ42 system, SM 23:0 at concentrations

below 2 µMappeared to suppress fibrillization over time (Figure 4D,E),

suggesting a potential biphasic effect.

In contrast, SM 16:0 consistently promoted Aβ aggregation across

both high and lowconcentration ranges (Figure S4). ForAβ40, a thresh-
old concentration for fibrillization enhancement was observed at 25

µM, while Aβ42 showed a peak proaggregation response at approx-

imately 100 µM. These differing peak responses imply that Aβ40
and Aβ42 interact with SM 16:0 in distinct structural conformations,

leading to divergent fibrillization kinetics. SM 18:0, the predominant

component of brain-derived sphingomyelin, exhibited a strong proag-

gregation effect on Aβ42. Its effect on Aβ40 was relatively moderate,

particularly at lower concentrations, where little to no promotion of

aggregation was observed (Figure S5).

These findings suggest that certain sphingomyelin species, particu-

larly SM (23:0), can significantly inhibit Aβ42 fibrillization at relatively

low, physiologically relevant concentrations, potentially contributing

to the attenuation of AD-related amyloid pathology. In contrast, SM

(18:0) and SM (16:0) did not exhibit such inhibitory effects under

similar conditions. This highlights that, despite sharing a common sph-

ingomyelin backbone, variations in acyl chain length and saturation can

result in markedly different impacts on Aβ aggregation dynamics.

The observed differential effects may be attributed to several fac-

tors. Longer, fully saturated acyl chains such as those in SM (23:0)

may confer distinct biophysical properties, such as increased mem-

brane rigidity or altered lipid packing, that influence Aβ interaction

at the lipid interface. Alternatively, the ability of specific SM species

to modulate local microenvironments—such as surface hydrophobic-

ity or curvature stress—may selectively affect Aβ42’s conformational

transition and nucleation kinetics.

acids (PUFAs; n_DB> 1). Representative examples of each class are shown: palmitic acid (16:0) as an SFA, oleic acid (18:1) as aMUFA, and linoleic
acid (18:2) as a PUFA. (D-G) Experimental kinetics for Aβ40 and Aβ42 aggregation under varying concentrations of palmitic acid (PA). (D and F)
Aggregation kinetics of Aβ40 and Aβ42 in the presence of serially diluted palmitic acid (0.1–100mM), using the ThT fluorescence assay.
Fluorescence intensity is shown as relative fluorescence units (RFU) at Ex/Em= 440/484 nm. Positive control: Aβ40 or Aβ42+ ThT; negative
control: Aβ40 or Aβ42+ ThT+ phenol red+morin. (E,G) Quantification of aggregation kinetics at varying concentrations. Each dot represents an
individual fluorescencemeasurement (RFU) at a specific time point for the indicated lipid concentration. Bars indicate themean± SEM for each
group. Asterisks (*) and hash symbols (#) indicate statistical significance compared to the Positive control group. Statistical approach consistent
withMethods Section 2.8. Statistical comparisons were conducted using an ordinary one-way analysis of variance (ANOVA), with removal of
outliers as appropriate. Post hocmultiple comparisons were performed using Dunnett’s test to compare each treatment group against the positive
control. p-values were reported in GraphPad style, with significance thresholds as follows: *, increase; #, decrease; p> 0.05 (ns), p< 0.05 (*/#),
p< 0.01 (**/##), p< 0.001 (***/###), and p< 0.0001 (****/####).
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F IGURE 4 Experimental kinetics of amyloid-β (Aβ) aggregation in the presence of milk sphingomyelin. (A)Molecular structure of lipids ofMilk
sphingomyelin (SM), Egg SM, and Brain SM. (B–E) Experimental kinetics for Aβ40 and Aβ42 aggregation under varying concentrations ofMilk SM.
(B, D) Aggregation kinetics of Aβ40 and Aβ42 in the presence of serially dilutedMilk SM (0.1–100mM), using the thioflavin T (ThT) fluorescence
assay. Fluorescence intensity is shown as relative fluorescence units (RFU) at Ex/Em= 440/484 nm. Positive control: Aβ40 or Aβ42+ ThT; negative
control: Aβ40 or Aβ42+ ThT+ phenol red+morin. (C, E) Quantification of aggregation kinetics at varying concentrations. Each dot represents an
individual fluorescencemeasurement (RFU) at a specific time point for the indicated lipid concentration. Bars indicate themean± SEM for each
group. Asterisks (*) and hash symbols (#) indicate statistical significance compared to the Positive control group. Statistical approach consistent
withMethods Section 2.8, with significance thresholds as follows: *, increase; #, decrease; p> 0.05 (ns), p< 0.05 (*/#), p< 0.01 (**/##), p< 0.001
(***/###), and p< 0.0001 (****/####).
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3.6 LPC and Aβ fibrillization

Lysophospholipids are bioactive lipids formed as intermediates dur-

ing the dynamic turnover of membrane phospholipids.68 Although

studies have reported altered lysophospholipid levels in AD. Region-

specific increases in LPC and LPE have been observed in the AD

brain using various lipidomic techniques, including LC-ESI-MS and

FIA-MS/MS.69–72

In our study, EV lipidomic profiling revealeddistinct, nonoverlapping

clusters and marked deregulation of LPC species between obese and

lean individuals (Figure 1G,H). We selected egg LPC and LPC 18:0 for

Aβ aggregation assays (Figure 5A). Both specieswere directly detected
in our EV lipidomics dataset. Egg LPC consists of approximately 69%

LPC 16:0 and 24% LPC 18:0. In healthy individuals (both male and

female), circulating LPC 16:0 levels range from 41 to 150 µM (HMDB),

with reported averages of 106.6 ± 16.7 and 141 ± 50 µM.10 Under

abnormal condition, levels may rise to 142.1 ± 39.6 µM in females.73

In comparison, physiological LPC 18:0 levels are typically lower, rang-

ing from 9.1 to 54 µM (HMDB), and may reach up to 48.5 ± 20.2 µM

in healthy individuals in both genders.74 LPC18:0 has been reported at

0.069 ± 0.019 µM in adults.66

In our ThT-based fibrillization assays, LPC species demonstrated

concentration-dependent effects on Aβ aggregation. At higher patho-
physiological concentrations (1.56 to 100 µM), LPC 16:0 significantly

promoted the aggregation of both Aβ40 and Aβ42 (Figure 5B–E). This

proaggregatory effect diminished at lower LPC 16:0 concentra-

tions. However, considering the reported physiological and pathologi-

cal plasma levels of LPC 16:0, such low concentrations are infrequent

in vivo, suggesting that the observed inhibitory effects may have

limited physiological relevance. These findings imply that under condi-

tions such as obesity, elevated LPC levels transported to the brain via

extracellular vesicles could enhance Aβ fibrillization.
Unexpectedly, LPC 18:0 exhibited a robust proaggregatory effect

on Aβ40 across all tested concentrations, surpassing the positive con-

trol byapproximately threefold (FigureS6A,B). In contrast, its influence

on Aβ42 aggregation was less pronounced, with significant yet mod-

est fold changes observed at both high and low concentrations (Figure

S6C,D).

The evidence indicates that LPC exerts differential effects on Aβ
aggregation, varying with concentration and Aβ subtype. Notably,

under obesity-related conditions, elevated LPC levels transported to

the brain via EVs may exacerbate Aβ fibrillization. These findings

underscore the intricate role of lipid metabolism in AD pathogenesis

and suggest that lipid dyshomeostasis is integral to AD pathology.

3.7 PE and Aβ fibrillization

In EV lipidomic profiles, lipid species such as PC, SM, TAG, and LPC

were prominently detected, likely reflecting their high intrinsic abun-

dance, efficient ionization, and preferential incorporation into EVs

during biogenesis, underscoring their structural and functional rele-

vance in EV composition. To explore the contribution of lipids beyond

those enriched in EVs, we included another Zwitterionic lipid, PE in

our Aβ aggregation assays (Figures 6 and S7-S9), given its high abun-

dance in neuronal membranes and its known biophysical effects on

membrane curvature and protein–lipid interactions.75–77

Plasmalogen PEs, defined by a vinyl ether linkage at the sn-1

position, are enriched in the brain and have been shown to protect

against oxidative stress.78 Changes in their levels indicate peroxiso-

mal dysfunction, implicating redox imbalance and lipid metabolism

disturbances commonly observed inmetabolic and neurodegenerative

diseases such as diabetes and AD.79,80 Based on our lipidomics profil-

ing, we selected C18(Plasm)-20:4 PE, C18(Plasm)-18:1 PE, 16:0/20:4

PE, and 16:0/18:1 PE for ThT-based fibrillization assays (Figure 6A).

These PE species were not among those directly detected in our

current EV lipidomics dataset.

According to concentration estimates from the HMDB,

C18(Plasm)-20:4 PE ranges from approximately 3.717 ± 0.679

to 28.290 ± 21.925 µM in the human circulatory system,

while C18(Plasm)-18:1 PE ranges from 2.160 ± 0.374 to

27.865 ± 22.648 µM. For diacyl PE species, concentrations esti-

mated via MetaboAnalyst indicate that 16:0/20:4 PE ranges from

6.002 ± 2.136 to 52.133 ± 21.658 µM, and 16:0/18:1 PE ranges from

3.660 ± 1.734 to 41.967 ± 12.350 µM.

In human brain, all four PE species—C18(Plasm)-20:4 PE,

C18(Plasm)-18:1 PE, 16:0/20:4 PE, and 16:0/18:1 PE—were detected

across multiple brain regions, including the frontal, parietal, and

temporal cortices, as well as the cerebellum.81 Notably, C18(Plasm)-

20:4 PE (P16:0-22:4/P18:0-20:4) was the most abundant, with

concentrations ranging from ∼20 to 54 nmol/mg protein (∼576.8

to 1557.36 µM), and showed a marked reduction in individuals with

higher Clinical Dementia Rating (CDR) scores.81 C18(Plasm)-18:1

PE (P18:0-18:1/P16:0-20:1) also demonstrated broad regional pres-

ence (∼7–32 nmol/mg protein (∼201.88–922.88 µM)) and a similar

CDR-dependent decline.81 In contrast, the diacyl species 16:0/20:4

PE and 16:0/18:1 PE were present at lower levels (∼1.4–5.4 nmol/mg

protein (∼40.376–155.736 µM)) and exhibited minimal changes with

CDR.81 These results suggest a selective vulnerability of plasmalogen

PE species.

In our ThT-based fibrillization assays, both C18(Plasm)-20:4 PE

and C18(Plasm)-18:1 PE markedly promoted Aβ40 and Aβ42 aggrega-
tion at supraphysiological concentrations (Figures 6B–E and S7A–D).

Interestingly, under concentrations approximating physiological lev-

els, these plasmalogen PEs continued to enhance Aβ40 aggrega-

tion (Figures 6B–C and S7A,B), but exhibited a significant inhibitory

effect on Aβ42 aggregation (Figures 6D–E and S7C,D). Similarly, both

16:0/20:4 PE and 16:0/18:1 PE showed a strong proaggregatory effect

on Aβ40 (Figures S8A–B and S9A,B), with 16:0/18:1 PE displaying

a dose-dependent response, except at the lipid-toxic concentration

of 100 µM (Figure S9A,B). For Aβ42, 16:0/20:4 PE significantly pro-

moted aggregation at moderate to high concentrations (Figure S8C,D),

whereas 16:0/18:1 PE elicited variable responses across low and high

concentrations (Figure S9C,D).

These results indicate that both the chemical structure and concen-

tration of PE species critically influence Aβ aggregation dynamics.
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F IGURE 5 Experimental kinetics of amyloid-β (Aβ) aggregation in the presence of egg lysophosphatidylcholine (LPC; Lyso PC). (A)Molecular
structure of lipids of egg Lyso PC and 18:0 Lyso PC. (B-E) Experimental kinetics for Aβ40 and Aβ42 aggregation under varying concentrations of
LPC (16:0). (B andD) Aggregation kinetics of Aβ40 and Aβ42 in the presence of serially diluted LPC (16:0) (0.1–100mM), using the ThT
fluorescence assay. Fluorescence intensity is shown as relative fluorescence units (RFU) at Ex/Em= 440/484 nm. Positive control: Aβ40 or Aβ42+
ThT; negative control: Aβ40 or Aβ42+ ThT+ phenol red+morin. (C, E) Quantification of aggregation kinetics at varying concentrations. Each dot
represents an individual fluorescencemeasurement (RFU) at a specific time point for the indicated lipid concentration. Bars indicate the
mean± SEM for each group. Asterisks (*) and hash symbols (#) indicate statistical significance compared to the Positive control group. Statistical
approach consistent withMethods Section 2.8, with significance thresholds as follows: *, increase; #, decrease; p> 0.05 (ns), p< 0.05 (*/#), p< 0.01
(**/##), p< 0.001 (***/###), and p< 0.0001 (****/####).
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F IGURE 6 Experimental kinetics of amyloid-β (Aβ) aggregation in the presence of C18(Plasm)-20:4 phosphatidylethanolamine (PE). (A)
Molecular structure of lipids of C18(Plasm)-20:4 PE, C18(Plasm)-18:1 PE, 16:0-20:4 PE, and 16:0-18:1 PE. (B-E) Experimental kinetics for Aβ40
and Aβ42 aggregation under varying concentrations of C18(Plasm)-20:4 PE. (B andD) Aggregation kinetics of Aβ40 and Aβ42 in the presence of
serially diluted C18(Plasm)-20:4 PE (0.1-100mM), using the thioflavin T (ThT) fluorescence assay. Fluorescence intensity is shown as relative
fluorescence units (RFU) at Ex/Em= 440/484 nm. Positive control: Aβ40 or Aβ42+ ThT; negative control: Aβ40 or Aβ42+ ThT+ phenol red+
morin. (C,E) Quantification of aggregation kinetics by calculating the area under the fluorescence curve (AUC) for each concentration. AUC values
reflect the extent of Aβ40/ Aβ42 fibrillization. Asterisks (*) and hash symbols (#) indicate statistical significance compared to the Positive
control group. Statistical approach consistent withMethods Section 2.8, with significance thresholds as follows: *, increase; #, decrease; p> 0.05
(ns), p< 0.05 (*/#), p< 0.01 (**/##), p< 0.001 (***/###), and p< 0.0001 (****/####).
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Plasmalogen PEs exhibit isoform-specific and concentration-

dependent effects—enhancing Aβ40 aggregation while suppressing

Aβ42 aggregation at physiological levels. In contrast, diacyl PEs (e.g.,

16:0/20:4 and 16:0/18:1 PE) consistently promote Aβ40 aggrega-

tion, with 16:0/18:1 PE displaying a clear dose-dependent response.

However, their effects on Aβ42 aggregation appear less predictable.

Collectively, these findings suggest that lipid structural remodeling

may selectively modulate amyloidogenic processes in AD.

4 DISCUSSION

Obesity is increasingly recognized as one of the most prominent mod-

ifiable risk factors for dementia, including AD.2 A substantial body of

evidence, from both long-term and recent studies, has demonstrated

that high-fat diet (HFD) feeding induces neuroinflammation and cog-

nitive decline in animal models and humans.6,82–84 EVs have been

identified as key mediators of adipose tissue–brain communication,21

underscoring their potential to convey obesity-related signals that

influence central nervous system (CNS) function. Even beyond obe-

sity, disruptions in lipid homeostasis are critical in AD pathogenesis,7,8

highlighting the relevance of studying adipose-derived EV lipids in the

broader context of neurodegenerative disease.

In this study, we first employed an EV tracking strategy combined

with organ-specific analysis to evaluate the biodistribution of adipose-

derived EVs in the brain (Figure S1B,C). Building on this foundational

insight, we performed rigorous QC of the isolated EVs, adhering to

the guidelines provided by the international society forextracellu-

lar vesicles (ISEV) and other established protocols,48,85,86 including

particle size and concentration analysis using microfluidic resistive

pulse sensing (MRPS) (Figure S1D), immunomagnetic capture of EV

markers (Figure S1E), and Western blotting to assess adipocyte- and

exosome-enrichedmarkers (Figure S1F). Together, these steps ensured

high-quality EV preparations and minimized the risk of confounding

artifacts in subsequent analyses.

Next, we conducted a comprehensive lipidomics profiling of these

EVs. Although most prior studies have focused on murine adipocyte-

derived EVs,86 our systematic study focused on human-derived sam-

ples, thus increasing the clinical relevance and translational potential

of our findings. To further investigate the lipid alterations associated

with obesity, we conducted both a standalone lipidomic analysis of

adipocyte-derived EVs and a comparative analysis with lipidomic pro-

files from human adipose tissue. We identified a subset of lipids that

were markedly deregulated in EVs derived from obese individuals

(Figure 1H). Among these, LPC and SM emerged as two lipid classes

that consistently segregated lean and obese samples into nonoverlap-

ping clusters (Figure 1G), highlighting their strong linkage tometabolic

dysregulation and underscoring their potential as clinically relevant

biomarkers.

These lipids are known to participate in a variety of intracellu-

lar processes and extracellular signaling events. Elevated levels of

LPC, for example, are associated with cellular damage, potentially

through mechanisms such as altering membrane permeability and

disrupting osmotic balance.87 DESI-based mass spectrometry imag-

ing has identified spatial colocalization of lysophospholipids with

Aβ aggregates in AD brains, suggesting LPC may play a direct role

in modulating Aβ pathology.88 Similarly, SM plays an essential role

in intracellular signaling. As a major component of sphingolipids, it

can function as a lipid second messenger regulating cellular stress

responses, proliferation, differentiation, and neuronal survival.89,90

Within membrane microdomains such as lipid rafts, sphingolipids—

together with cholesterol—modulate the activity of transmembrane

proteins,91 which are critical for synaptic function and neuronal com-

munication. These findings raise the intriguing hypothesis that direct

interactions between Aβ and these lipid classes may influence Aβ con-
formation, ultimately modulating aggregation propensity in AD and

contributing to AD progression.

Because adipocyte-derived EVs can penetrate the blood–brain

barrier (BBB) andaccumulate in thebrainparenchyma,21 their cargos—

including DNA/RNAmolecules, proteins, and lipids—may have diverse

impacts on neuronal health. For instance, EV-associated microR-

NAs have been shown to induce synaptic damage and cognitive

impairment,21 while specific EV lipid components may further disrupt

or remodel local lipid homeostasis in the CNS. Given the multi-

faceted nature of EV cargo, we isolated the specific impact of lipids

on Aβ fibrillization without confounding effects from other molecular

components. To achieve this, we employed a ThT-based in vitro fib-

rillization assay using a pure system containing only synthetic human

Aβ peptides—rather than mouse-derived Aβ—to maximize clinical rel-

evance. Although lipid–Aβ interactions have been probed in bilayer

membrane models,33,92 such systems often comprise complex lipid

mixtures, confounding the role of individual lipid species.

By contrast, our pure lipid–Aβ system allows for direct and specific

interactions with minimal confounders, likely explaining the acceler-

ated fibrillization kinetics observed. Interestingly, the ThT fluores-

cence curves exhibited a rapid increase reminiscent of seeded or

secondary nucleation-like aggregation, rather than the slower kinet-

ics typically seen with spontaneous Aβ monomer aggregation.93 This

suggests that under these simplified conditions, direct interactions

between lipid molecules and Aβmay facilitate nucleation or conforma-

tional shifts that expedite the aggregation process.

A growing body of literature supports the notion that Aβ exhibits

strong affinity for lipid molecules.18,32,33,94 Moreover, our study pro-

vides important new insights by systematically examiningmultiple lipid

species over a range of biologically relevant concentrations, extending

from pathophysiologically high (lipotoxic) to normal physiological lev-

els. This approach also encompassed both Aβ40 and Aβ42 monomers,

direct evidence that the same lipid species can exert distinct effects on

different Aβ isoforms. Our data suggested that:

4.1 Concentration-dependent lipid effects

The influence of lipid concentration on Aβ aggregation varies sig-

nificantly among lipid types. Certain lipids exhibited a clear dose-

dependent promotion of Aβ aggregation, as reflected by stepwise
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changes in kinetic parameters such as lag time (Tlag), half-maximal flu-

orescence time (T1/2), and growth phase duration (Tgrow), promoting

fibrillization at high concentrations yet inhibiting it at lower levels.

Others showed less predictable patterns, signifying complex lipid–

peptide interactions. A consistent observation across multiple lipid

species, including oleic acid (Figure S3), egg-derived lysoPC (Figure 5),

egg SM (Figure S4), and brain SM (Figure S5), was a biphasic response,

inwhichAβ aggregation peaks at intermediate lipid concentrations and

decreases at both lower and higher levels. Although the underlying

mechanism is not fully understood, this trend may reflect a concen-

tration range that promotes fibrillization. These effects may involve

changes in condensate dynamics, as recent studies have implicated

lipid-mediated phase separation as a key modulator of Aβ aggre-

gation dynamics.33,95,96 In addition, steric hindrance and molecular

crowding97 may also contribute to this biphasic phenomenon. In the

present study, we focused primarily on direct lipid–Aβ interactions

rather than lipid–lipid assembly or supramolecular organization. How-

ever, lipid–lipid interactions could indirectly influence Aβ aggregation
by reshaping membrane curvature, surface tension, or fluidity—all fac-

tors known to affect amyloid formation.20,36,37,98 Collectively, these

factors may explain why aggregation peaks at intermediate lipid con-

centrations, potentially through convergent or distinct mechanisms,

although further molecular-level validation is warranted.

4.2 Isoform-specific responses

The same lipid species could have either similar or distinct effects

on Aβ40 and Aβ42 aggregation, suggesting that structural differences

between the two isoformsmay influence their lipid-binding properties.

It is well established that Aβ neurotoxicity follows the hierarchy of
nonfibrillar oligomers > fibrils > monomers,37 implying any perturba-

tion in the aggregation pathway can have profound implications for

disease pathogenesis. Our findings reveal that lipid-specific modula-

tion of Aβ aggregation may not only alter fibrillization kinetics but

shift the distribution of Aβ species toward those with distinct toxic

potentials. Given that Aβ40 and Aβ42 can behave differentially in the

same lipid milieu, it is plausible that their toxic potentials could also

diverge—particularly under obese conditions, where lipid composition

and concentration are significantly altered.

From a mechanistic standpoint, our findings highlight the criti-

cal role of lipid composition and concentration in modulating Aβ
aggregation dynamics and, by extension, AD pathology. Interactions

between lipid molecules and Aβ can facilitate pathological aggre-

gation through biophysical processes such as phase separation and

condensate formation,33 effectively creating nucleation platforms

or altering local molecular crowding to accelerate oligomer or fib-

ril formation. Crucially some lipids exhibit concentration-dependent

biphasic effects—promoting aggregation at higher levels yet inhibit-

ing it at lower doses—highlighting the need for nuanced control of

lipid microenvironments when considering therapeutic interventions

or interpreting diseasemechanisms.

Moreover, these findings carry important translational implications.

As EVs and lipid-based carriers gain traction as promising therapeu-

tic delivery systems capable of crossing the BBB, rational design of

their lipid constituents becomes critical. Ensuring biocompatibility

and target specificity must be balanced against the risk of inadver-

tently driving Aβ aggregation or exacerbating neurotoxic pathways.

By demonstrating that even subtle shifts in lipid composition or con-

centration can meaningfully alter Aβ aggregation outcomes, our work

underscores the necessity for precise lipid profiling and engineering in

such delivery platforms.

Finally, the lipid–Aβ specificity observed here underscores that

maintaining tightly regulated lipid metabolic homeostasis in the brain

is pivotal formitigating or preventing neurodegeneration. Asmetabolic

dysfunction and obesity continue to rise globally, their intersection

with neurodegenerative diseases demands closer scrutiny. Our study

contributes a foundational understanding of howdiscrete lipid species,

present at various concentrations, can shape Aβ assembly and possibly

translate into altered neuronal toxicity. Although our findings provide

molecular insights using a well-controlled pure system, we acknowl-

edge that the current study does not establish whether EV lipid differ-

ences directly contribute to Aβ aggregation in the brain. Future studies
incorporating appropriate animal models, allowing the disentangle-

ment of potential confounding effects, will be essential to determine

the physiological relevance of EV-mediated lipid–Aβ interactions in the
context of AD pathology.
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