
Academic Editor: Giovanni Tarantino

Received: 8 August 2025

Revised: 23 September 2025

Accepted: 24 September 2025

Published: 2 October 2025

Citation: Sheikh, M.Y.; Younus, M.F.;

Shergill, A.; Hasan, M.N. Diet and

Lifestyle Interventions in Metabolic

Dysfunction-Associated Fatty Liver

Disease: A Comprehensive Review.

Int. J. Mol. Sci. 2025, 26, 9625.

https://doi.org/10.3390/

ijms26199625

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Review

Diet and Lifestyle Interventions in Metabolic Dysfunction-
Associated Fatty Liver Disease: A Comprehensive Review
Muhammad Y. Sheikh *, Muhammad F. Younus, Annie Shergill and Muhammad N. Hasan

Fresno Clinical Research Center, Fresno, CA 93720, USA; faraz.younus@hotmail.com (M.F.Y.);
shergill7590@yahoo.com (A.S.); nameer.hasan@gmail.com (M.N.H.)
* Correspondence: liverdisease@gmail.com

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form,
metabolic dysfunction-associated steatohepatitis (MASH), have become the leading causes
of chronic liver disease worldwide, with increasing rates of cirrhosis, hepatocellular car-
cinoma, and cardiovascular complications. Pathogenesis involves a complex interplay of
dietary excess, sedentary lifestyle, insulin resistance, adipose tissue dysfunction, and alter-
ations in the gut microbiome, which collectively lead to hepatocellular stress, inflammation,
and fibrogenesis. Despite ongoing advances in pharmacotherapy, lifestyle intervention
remains the cornerstone of management. Evidence shows that sustained weight loss of
≥5% reduces hepatic steatosis, ≥7% improves necroinflammation, and ≥10% stabilizes or
reverses fibrosis. Dietary strategies, including Mediterranean-style patterns, high-protein
approaches, and intermittent fasting, have been shown to be effective in improving in-
sulin sensitivity and reducing intrahepatic triglycerides. Exercise interventions, focusing
on both aerobic fitness and resistance training, enhance metabolic flexibility and combat
sarcopenia, thereby improving hepatic and systemic outcomes. Equally important are
behavioral support, digital health tools, and multidisciplinary approaches that enhance
adherence and address barriers such as socioeconomic disparities, limited access, and
patient engagement issues. Personalized nutrition plans, integrating physical activity, and
ongoing support for behavioral change are essential for long-term disease management.
This review synthesizes current evidence on the roles of macronutrients, micronutrients,
dietary quality, physical activity, and adjunctive behavioral strategies in managing MASLD.
By translating mechanistic insights into practical, evidence-based recommendations, we
aim to provide clinicians, dietitians, and exercise professionals with effective frameworks
to slow disease progression and improve outcomes across diverse patient populations.

Keywords: metabolic dysfunction-associated steatotic liver disease (MASLD); metabolic
dysfunction-associated steatohepatitis (MASH); macronutrients; micronutrients; lifestyle
intervention; weight loss; obesity; dietary modifications; aerobic exercise; resistance exercise

1. Introduction
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the

most common chronic liver disease worldwide, now recognized as a multisystem metabolic
disorder closely linked to obesity, type 2 diabetes mellitus (T2DM), and cardiovascular
risk [1]. A meta-analysis of 72 studies from 17 countries estimated a global prevalence of
32.4%, with a significant increase over the past two decades [2]. Another pooled analysis
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found that the global prevalence of MASLD rose from 25.3% in 1990–2006 to 38.0% in 2016–
2019 [3], highlighting its rapid growth. These rates exceed 50% in high-risk populations.
Overall, MASLD prevalence worldwide ranges from 25% to 38%, with future projections
suggesting continued growth in the coming decades.

MASLD includes a range of histological changes, from benign isolated steatosis to
metabolic dysfunction-associated steatohepatitis (MASH), which is marked by steatosis,
lobular inflammation, and hepatocyte ballooning degeneration [4]. Epidemiologic models
project that MASH prevalence will increase to 2.8–4.6% of adults by 2040. Transition rates
show the disease’s progressive nature: about 6–7% of individuals with simple steatosis
develop early fibrosis each year, and 5–9% progress annually to more advanced fibrosis
stages without treatment. Approximately 20% of MASLD patients progress to MASH, with
15–20% of those with MASH potentially developing cirrhosis over 15–20 years [5].

Insulin resistance (IR) contributes to the development of MASLD, often alongside
obesity, type 2 diabetes, and other aspects of metabolic syndrome [1]. However, many
patients have non-obese or lean MASLD, where unchangeable genetic predispositions and
modifiable epigenetic and lifestyle factors such as gut dysbiosis, poor diets, and physical
inactivity play key roles. Polymorphisms in different loci (e.g., PNPLA3, TM6SF2) increase
susceptibility to steatosis, inflammation, and fibrosis [1,6,7]. The risk of adverse liver
outcomes is higher with T2DM or cardiovascular disease, with cirrhotic MASH patients
facing an annual decompensation risk of over 2.7% and a hepatocellular carcinoma (HCC)
risk of 0.1–0.2% per year. Besides liver-related issues, MASLD is increasingly recognized
as a factor in extrahepatic diseases, including cardiovascular, kidney, and cancer-related
complications, which often surpass liver-related mortality.

Since MASLD is a key part of the cardio-metabolic disease spectrum, the American
Diabetes Association (2025) guidelines recommend routine MASLD screening in people
with diabetes, along with early lifestyle therapy to reduce hepatic and cardiovascular
risks [8]. Terminology changes from NAFLD to MAFLD were introduced to highlight the
central role of metabolic dysfunction and to clarify phenotypes [9]. These updates build
on earlier efforts to refine disease drivers and heterogeneity in at-risk populations [10].
T2DM, in particular, accelerates fibrosis progression, emphasizing the importance of careful
MASLD monitoring in this group [11]. Notably, advanced fibrosis remains the strongest
predictor of liver-related and all-cause mortality, underscoring the need for early risk
stratification [12]. This connection to cardio-metabolic comorbidities is evident in their
prevalence within MASLD, with obesity seen in up to 82% of cases, metabolic syndrome in
66–76%, and T2DM in 55–70%. The risk of cardiovascular disease nearly doubles in MASLD,
with 37–73% of affected individuals having established CVD or risk factors. Hypertension
is very common, especially in advanced disease, while renal dysfunction and sleep apnea
often coexist and increase morbidity. MASLD accounts for 20–40% of cryptogenic cirrhosis,
and population studies estimate cirrhosis prevalence of up to 1.8%.

Most patients with MASLD are asymptomatic. However, some nonspecific symptoms
may include fatigue, discomfort in the upper right abdomen, abdominal swelling, and
pain. The disease is usually brought to medical attention when a patient shows abnormal
liver chemistry tests and features of metabolic syndrome. Liver biopsy remains the gold
standard for diagnosing MASH, evaluating the severity of steatosis, identifying liver
inflammation, hepatocyte ballooning, and fibrosis. However, liver biopsy has limitations
due to the risk of complications, its invasive nature, high costs, sampling variability,
and intra- and inter-observer differences [13]. As a result, non-invasive tests (NITs) are
crucial for clinical assessment. NITs include biochemical biomarkers such as the NAFLD
fibrosis score (NFS), Fibrosis-4 (FIB-4) index, Enhanced Liver Fibrosis (ELF) test, and,
more recently, the metabolomics-advanced steatohepatitis fibrosis score (MASEF), which
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provide valuable risk stratification tools. FIB-4 is recommended as a first-line point-of-care
test, with secondary assessment advised for patients with an FIB-4 score of ≥1.3. Imaging-
based NITs include vibration-controlled transient elastography (VCTE), magnetic resonance
elastography (MRE), MR-MASH score, and multiparametric MRI, such as corrected T1 (cT1).
These tests help evaluate the likelihood of advanced disease. Combining or sequentially
applying these tools improves their accuracy and positive predictive value, thus reducing
the number of patients with indeterminate results [14–18]. Recently, Kanwal et al. outlined
the clinical care pathway for risk stratification and management for physicians treating
patients with MASLD.

Pharmacologic management remains an active area of research. In 2024, Resmetirom,
an oral, liver-targeted, thyroid hormone receptor beta (THR-β) selective agonist, received
FDA approval under the accelerated program after phase 3 RCT results demonstrated
MASH resolution, with a reduction in MASLD activity score of ≥2 points and a decrease
in fibrosis by ≥1 stage [19]. Glucagon-like Peptide-1 Receptor Agonists (GLP-1 RAs),
especially Semaglutide, have shown particular effectiveness in reducing steatosis and
improving liver fibrosis, resulting in MASH resolution after 72 weeks of treatment in
moderate-to-advanced MASH [20].

Since a nutritionally imbalanced diet and sedentary lifestyle are the main contributors
to the development of MASLD [21], lifestyle modification remains the core approach to
management. Targeted changes in diet and physical activity can influence the natural
course of the disease, decrease hepatic steatosis, and slow fibrosis progression. Therefore,
this comprehensive review explores the role of lifestyle interventions, including dietary
strategies and exercise methods, in managing MASLD, with an emphasis on mechanistic
pathways, treatment effectiveness, and future directions.

2. Pathogenesis of MASLD
MASLD pathogenesis is multifactorial, involving various genetic, metabolic, immuno-

logic, and environmental factors that lead to common downstream processes such as
lipotoxicity, oxidative stress, mitochondrial dysfunction, hepatocellular injury, and fibro-
sis. For clarity and simplicity, the main categories of contributing factors can be out-
lined as (i) genetic and epigenetic susceptibility, (ii) hepatic lipid metabolism dysfunc-
tion, (iii) insulin resistance and systemic metabolic issues, (iv) hormonal and endocrine
influences, (v) cardio-metabolic risk factors, (vi) immune and inflammatory pathways,
(vii) gut-liver axis and microbial metabolites, and (viii) environmental, socioeconomic, and
lifestyle factors.

Genetic factors greatly influence the risk and progression of MASLD. Single-nucleotide
polymorphisms in genes such as Patatin-like phospholipase domain-containing protein
3 (PNPLA3), Transmembrane 6 Superfamily Member 2 (TM6SF2), Membrane-bound O-
acyltransferase domain-containing 7 (MBOAT7), 17-β-hydroxysteroid dehydrogenase 13
(HSD17B13), and glucokinase regulator (GCKR) affect lipid regulation, triglyceride ex-
port, and inflammatory responses. For example, variants in PNPLA3 are associated with
lipid accumulation and inflammation in the liver, which can lead to fibrogenesis [22];
variants in TM6SF2 reduce very-low-density lipoprotein (VLDL) export and promote
hepatic steatosis [23]; and loss-of-function mutations in HSD17B13 offer some protection
against steatohepatitis and fibrosis [23]. In addition to single-gene variants, epigenetic
changes—including DNA methylation, chromatin remodeling, and non-coding RNAs
like microRNAs—are increasingly recognized as factors influencing MASLD progression,
although their exact roles still need further investigation.

Hepatic steatosis occurs due to the dysregulation of multiple lipid-processing path-
ways. Excessive fatty acid uptake, increased de novo lipogenesis (especially with
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high fructose consumption), and decreased fatty acid oxidation successively cause the
buildup of triglycerides, free cholesterol, and lipotoxic lipid intermediates. This imbal-
ance induces metabolic stress within the hepatocyte and makes the liver more prone to
lipotoxic injury [24].

Systemic insulin resistance leads to increased lipolysis in adipose tissue and higher
levels of free fatty acids, which then flow to the liver. Insulin resistance in hepatocytes
diminishes the suppression of gluconeogenesis but still encourages lipogenesis, which
worsens steatosis and lipotoxicity. The accumulation of diacylglycerols, ceramides, and sat-
urated fatty acids triggers oxidative stress, endoplasmic reticulum stress, and mitochondrial
dysfunction, resulting in hepatocyte apoptosis and fibrogenesis [25].

Endocrine factors heavily influence MASLD susceptibility and progression. Thy-
roid hormone deficiency worsens lipid accumulation and fibrosis, while lower levels of
growth hormone and adiponectin contribute to insulin resistance and inflammation. Other
hormonal regulators, including sex hormones and glucocorticoids, also impact liver fat
metabolism and overall metabolic health [26].

MASLD exists within a broader context of cardio-metabolic conditions. Type 2 diabetes,
visceral obesity, dyslipidemia, and high blood pressure collectively accelerate hepatic
steatosis, inflammation, and fibrogenesis. These interconnected risk factors increase both
liver disease severity and cardiovascular disease risk, emphasizing MASLD as both a liver
and extra-hepatic condition.

Hepatocellular injury triggers both innate and adaptive immune responses. Kupffer
cells and infiltrating tissue monocytes amplify inflammation by releasing cytokines and
chemokines, while natural killer cells and T lymphocytes promote hepatocyte apoptosis and
fibrosis. Obesity-related adipose tissue inflammation further contributes pro-inflammatory
adipokines that affect the liver. The spleen-liver axis enhances this immunometabolic
signaling: maladaptive changes in splenic immune reservoirs mobilize pro-inflammatory
monocytes and activated T cells to the liver, while splenic macrophages secrete cytokines
that worsen hepatic inflammation and fibrosis. Clinically, splenomegaly and splenic
immune hyperactivity often coincide with disease progression [27], highlighting the role of
the spleen-liver axis in MASLD development.

Intestinal dysbiosis and barrier dysfunction lead to lipopolysaccharides and microbial
products crossing into the portal circulation, which then stimulate hepatic toll-like receptor
pathways and cause inflammation. In addition to changes in microbiota composition,
microbial metabolites also exert direct pathogenic effects: short-chain fatty acids influence
insulin sensitivity and lipogenesis; trimethylamine-N-oxide (TMAO) impacts atherosclero-
sis and metabolic signaling; and endogenous ethanol production promotes oxidative stress
and hepatocyte cell death. Abnormal bile acid metabolism and faulty choline use further
worsen steatosis and inflammation [28].

Dietary patterns high in saturated fats, simple sugars, and ultra-processed foods
promote lipogenesis and oxidative stress, while physical inactivity worsens insulin re-
sistance [25]. Conversely, regular physical activity enhances insulin sensitivity, increases
fatty acid oxidation, and decreases hepatic steatosis, serving as a protective behavioral
factor. Alcohol consumption, even at modest levels, synergizes with metabolic stress to
accelerate disease progression [29]. Environmental pollutants and endocrine-disrupting
chemicals, including phthalates and bisphenols [30,31], accumulate in fatty liver tissue and
contribute to metabolic dysregulation. Social determinants of health, such as urbanization,
socioeconomic status, circadian rhythm disruption, and limited access to healthy foods,
further influence the global burden and outcomes of MASLD [32,33].

Taken together, these interconnected areas form a multidimensional framework for
understanding MASLD. This expanded model highlights not only the biological factors
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behind steatosis and fibrogenesis but also the social and environmental factors that critically
influence disease presentation and clinical course. The pathogenesis of MASLD/MASH
and its sequelae is briefly summarized in Figure 1.

Figure 1. Disease progression involves multiple parallel “hits”: 1. Substrate Overload of Hepatocytes:
Excess calories, metabolic syndrome, and genetic variants (PNPLA3, TM6SF2, HSD17B13) promote
steatosis through increased FFA uptake (CD36, FATP2/5, PPARδ, FABP1) and de novo lipogene-
sis (SREBP1c, ChREBP). Impaired β-oxidation (e.g., hypothyroidism) worsens lipid accumulation.
2. Lipotoxicity and Inflammation: Elevated FFAs contribute to insulin resistance (muscle, adipose,
liver), oxidative stress, cytokine release, and dysbiosis-related endotoxin exposure, fueling hepa-
tocellular inflammation. 3. Hepatic Necrosis and Apoptosis: Lipid toxicity and cytokines (TNF-α,
IL-1β, IL-6, IL-18, IL-33, MCP-1) induce apoptosis/necroptosis, recruiting neutrophils, macrophages,
Kupffer cells, T/NK cells, and activating stellate cells. 4. Hepatic Stellate Cell Activation: Injury
and immune signaling (TGF-β, PDGF, LPS) transform HSCs into collagen-producing myofibrob-
lasts, leading to fibrosis. 5. Cirrhosis with Microanatomical Changes: Lipid accumulation and
hepatocyte ballooning disrupt LSECs, elevate portal pressure, and promote endothelial dysfunction
(↓NO, ↑TXA2). 6. Carcinogenesis: Advanced fibrosis increases the risk for HCC through altered
microbiome-bile acid signaling, mitochondrial and lipid reprogramming, MAT/SAMe imbalance,
p53 loss, HULC upregulation, and miRNA dysregulation. Abbreviations: CD: cluster of differenti-
ation; ChREBP: carbohydrate regulatory element-binding protein; ER: endoplasmic reticulum; EV:
extracellular vesicles; FABP1: fatty acid binding protein I; FATP: fatty acid transport protein; FFA: free
fatty acids; GCKR: glucokinase regulator; HCC: hepatocellular carcinoma; HILC: highly upregulated
in liver cancer; HSC: hepatic stellate cells; HSD17B13: 17b-Hydroxysteroid dehydrogenase type 13;
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HULC: human universal-length non-coding RNA; ILC: innate lymphoid cells; IL: interleukin;
MBOAT7: membrane-bound O-acyl transferase domain-containing 7; KCs: Kupffer cells; LPS:
lipopolysaccharide; OS: oxidative stress; LSECs: liver endothelial sinusoidal cells; MAT: methio-
nine adenosyl transferase; miRNA: micro ribonucleic acid; NO: nitric oxide; PAMP: pathogen-
associated molecular pattern; PDGF: platelet-derived growth factor; PNPLA3: patatin-like phos-
pholipase domain-containing 3; PPAR: peroxisome proliferator-activated receptor gamma; SAMe:
S-adenosylmethionine; SREBP1c: sterol regulatory element-binding protein 1c; VLDL: very low
density lipoprotein; TGF: transforming growth factor; TNF: tumor necrosis factor; Th: T helper; TXA2:
thromboxane A2.

3. Role of Diet and Lifestyle in MASLD
The development of MASLD results from the interaction between genetic and epige-

netic factors with various acquired insults, including disordered liver lipid metabolism,
systemic insulin resistance, hormonal and cardiovascular-related conditions, immune-
inflammatory responses, changes in the gut–liver connection, and environmental and
lifestyle factors. Among these, diet and lifestyle are the main environmental influences.
Weight gain typically occurs when there is an energy imbalance caused by increased caloric
intake and decreased caloric expenditure. The latter is heavily affected by sedentary behav-
iors and insufficient physical activity. Eating a diet high in calories, especially one rich in
saturated fats, simple sugars, and fructose, further promotes fat buildup in the liver and
metabolic damage.

4. Role of Weight Loss
Lifestyle interventions and weight loss are currently the primary treatments for

MASLD [34–36], as only two pharmacological agents have received approval from regula-
tory agencies [19,20]. Sustained weight reduction directly enhances the histopathological
features of MASH. Observational studies have consistently shown the positive effects of
weight loss, as indicated by imaging biomarkers, although relatively few randomized
clinical trials have reported histological endpoints.

Weight loss improves liver biochemical tests, histology, serum insulin levels, and
quality of life in patients with MASLD [21,37–41]. A meta-analysis revealed that a min-
imum of 5% weight loss significantly improved disease severity, while a 7% reduction
in body weight was associated with an improved NAFLD activity score (NAS) [37]. A
prospective trial demonstrated greater reductions in NAS, MASH resolution, and fibrosis
regression with more than 10% weight loss [21]. These findings support a dose–response
relationship, where greater weight loss is associated with more significant improvements
in liver inflammation, ballooning, and histological resolution of MASLD or MASH [42].

Caloric restriction (CR), independent of physical activity, consistently improves liver
enzymes, hepatic inflammation, and fibrosis [21]. Even moderate weight loss through CR is
beneficial, with a significant reduction of approximately 4.5% that improves steatosis, waist
circumference, and serum ALT, AST, and lipid profiles [43]. A systematic review and meta-
analysis of patients with Class III obesity (BMI ≥ 40 kg/m2) showed that energy-restricted
diets resulted in a weight loss of at least 10% when observed for six weeks or longer [44].
When CR is combined with behavioral programs, very-low-energy diets achieve greater
weight loss than behavioral interventions alone [45]. Interestingly, sex-specific outcomes
have been observed, with women experiencing greater reductions in fat-free mass, hip
circumference, and LDL cholesterol compared to men [46].

Guidelines recommend structured physical activity and dietary caloric restriction
(Table 1). Both aerobic and resistance training, including intensive lifestyle intervention
(ILI), are effective [35].
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Key Summary 
• Reduction of ≥5% of total body weight reduces liver fat 
• Reduction of 7-10% improves liver inflammation 
• Reduction of ≥10% improves fibrosis 
• Bariatric procedures should be considered for class II and III obesity 

Table 1. Guidelines for weight loss in MASLD in various societies.

Society Guidelines % Weight Loss Dietary Restrictions Physical
Activity Ref.

AASLD (2023)

3–5% weight loss improves
steatosis.

7–10% weight loss
improves most

histopathologic features of
MASH, including fibrosis.

A diet that leads to a caloric
deficit and is limited in

carbohydrates and
saturated fats.

Mediterranean dietary
pattern.

Aerobic exercise at
least five times a week

for a total of
150 min/week

[47]

EASL-EASD-
EASO (2024)

3–5% weight loss for
MASLD with average

weight
≥5% weight loss for
steatosis reduction

≥7–10% weight loss for
MASH and fibrosis

reduction

Recommend the
Mediterranean diet.

Minimizing processed and
ultra-processed foods while

increasing the intake of
unprocessed or minimally

processed foods.

>150 min/week of
moderate or 75 min of

vigorous exercise.
Minimizing sedentary

time.

[48]

KASL (2021) 7–10% weight loss.

Calorie restriction
(500 kcal),

low-carbohydrate, and low
fructose diet.

Exercising for at least
30 min. Three times a

week
[49]

APWP (2025)

>5% for steatosis reduction
7–10% for MASH resolution

>10% improves liver
fibrosis

1200–1800 kcal/day or
500–750 kcal caloric

restriction
Low-carbohydrate and

ultra-processed food
abstinence

Mediterranean diet,
ketogenic diet, intermittent
fasting, and time-restricted
feeding are recommended

150–240 min/week of
moderate-to-vigorous

intensity aerobic
exercise

2–3 days/week of
resistance training

[50]

NICE (2016)
Consider NICE guidelines

for obesity and weight gain
prevention.

Consider NICE guidelines
for obesity and weight gain

prevention. No specific
diet.

Consider NICE
guidelines for obesity

and weight gain
prevention.

[51]

ADA (2025) ≥5% decreases steatosis
≥10% improves fibrosis

Mediterranean diet benefits
on cardiometabolic factors;

highly saturated fats,
carbohydrates, and alcohol

should be avoided

150 min/week of
moderate or

75 min/week of
rigorous aerobic

2–3 times/week of
resistance training

[8]

Abbreviations: AASLD: American Association for the Study of Liver Diseases; Asia-Pacific Working Party on
Non-Alcoholic Fatty Liver Disease; EASL-EASD-EASO: European Association for the Study of the Liver/European
Association for the Study of Diabetes/European Association for the Study of Obesity; KASL: Korean Association
for the Study of the Liver; APWP: Asia-Pacific Working Party; NICE: National Institute for Health and Care
Excellence; ADA: American Diabetes Association.
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5. Role of Dietary Modifications
Beyond total caloric restriction, the quality and distribution of dietary intake are im-

portant factors affecting MASLD risk and progression. Excessive calorie intake, especially
within a Western-style diet, promotes gut dysbiosis, inflammation, and obesity [52]. Gain-
ing as little as 3–5 kg can increase the likelihood of developing MASLD [53]. Additionally,
eating habits are significant: frequent snacking between meals has been independently
associated with higher levels of hepatic steatosis [54].

The Western diet, characterized by low consumption of fruits, vegetables, whole
grains, and fish, leads to deficiencies in fiber, vitamins, minerals, and antioxidants [55,56].
In contrast, healthy dietary patterns that include fruits, vegetables, nuts, olive oil, and fish
exhibit protective associations [56,57]. A retrospective study revealed that individuals with
high adherence to a Western pattern were twice as likely to have MASLD compared to those
with low adherence, regardless of age, gender, BMI, physical activity, and energy intake [56].
Similarly, high adherence to a Western diet has been associated with an increased risk of
fibrosis [58]. Conversely, participants with the highest adherence to healthy dietary patterns
were 41% less likely to develop MASLD [56]. Experimental evidence supports this further,
as a Western-style, low-choline, high-sugar, high-fat diet has been shown to cause steatosis,
inflammation, and fibrosis in mice [59].

Relying heavily on processed foods also leads to high salt intake [60]. This has been
linked to chronic metabolic inflammation [61,62], which promotes the progression of
MASLD. Although the role of salt in preventing or treating MASLD remains unclear, its
well-known connection to hypertension and cardiovascular disease suggests an increased
risk of morbidity and mortality [63,64].

Taken together, caloric restriction remains the most well-supported approach for
improving MASLD. However, enhancing diet by cutting saturated fats, simple sugars,
and excess fructose, while following a Mediterranean-style eating pattern, further boosts
metabolic and liver health.

5.1. Role of Macronutrients

The components of macronutrients in a diet are linked to the development of
MASLD, regardless of energy intake [65]. Unhealthy eating habits can directly promote
MASLD/MASH by affecting triglyceride (TG) buildup in the liver, altering insulin sensi-
tivity, and changing postprandial TG metabolism. Patients with MASH tend to consume
more saturated fats and fewer polyunsaturated fatty acids (PUFAs), fiber, and vitamins C
and E [66,67]. An extensive population-based study conducted by Rotterdam found that
eating a diet high in animal protein was closely associated with MASLD in individuals with
abnormal fat accumulation [68]. Regardless of weight loss and calorie intake, maintaining a
balanced diet with the correct macronutrient composition can help reduce liver fat buildup.
Therefore, understanding and analyzing specific macro- and micronutrients, as well as
their effects on the liver, is crucial [69].

5.1.1. Fats

Lipids are essential for membrane integrity, hormone production, and energy
metabolism, but their impact on MASLD varies depending on fatty acid composition [70,71].

Saturated Fats

Saturated fatty acids (SFAs) are present in animal products (e.g., dairy products,
red meat, butter, whole milk), plant-based products (e.g., coconut oil, palm oil), and
processed foods (e.g., desserts and sausages). SFAs, especially palmitic and lauric acids,
raise intrahepatic triglyceride content (IHTG) and plasma ceramides more than PUFAs
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and free sugars by promoting adipose tissue lipolysis [72]. SFAs also reduce insulin
sensitivity by inducing endotoxemia, contributing to lipotoxicity signaling, and speeding
up inflammation and fibrogenesis [73–78].

Monounsaturated Fats

Monounsaturated fatty acids (MUFA) are mainly found in olive oil, avocados, and
nuts [79]. MUFAs are less toxic to cells than saturated fatty acids (SFAs) and can even
reduce SFA-related cellular damage [80]. Consuming MUFA is linked to a healthier lipid
profile, characterized by lower LDL cholesterol, triglycerides, a decreased total cholesterol-
to-high-density lipoprotein (HDL) ratio, as well as better insulin sensitivity and reduced
hepatic steatosis [79–85].

Polyunsaturated Fats

There are two main types of essential PUFAs: omega-3 and omega-6. Omega-3 PUFAs
are commonly found in cold-water and marine fish (e.g., salmon, mackerel, tuna, herring,
sardines), flaxseed, chia seeds, and walnuts [86]. Omega-6 PUFAs are usually present in
various vegetable oils (e.g., safflower, canola, sunflower, corn, soybean), sunflower and
pumpkin seeds, corn, Brazil nuts, and walnuts [86]. The primary dietary omega-6 PUFA is
linoleic acid. Omega-3 PUFAs include alpha-linolenic acid (ALA), eicosatetraenoic acid
(EPA), and docosahexaenoic acid (DHA) [86,87].

Omega-3 PUFAs (EPA, DHA, ALA) consistently reduce hepatic steatosis, improve
metabolic parameters, and exert anti-inflammatory and antifibrotic effects, although fibrosis
regression remains inconsistent across RCTs [86–95]. Notably, protective benefits may be
most relevant in high-risk groups, including women [89–91,95]. A balanced intake with
omega-6 fatty acids appears essential for optimal metabolic outcomes [86,89].

Trans Fats

Trans fats are found in partially hydrogenated vegetable oils, desserts, cream, or solid
fats and are a recognized risk factor for developing MASLD [68]. Industrial trans fats
have strong pro-oxidative and pro-inflammatory effects, contributing to obesity, insulin
resistance, and MASLD progression in experimental models [68,96–100]. Although clinical
evidence is limited, it supports restricting their intake.

5.1.2. Carbohydrates

Carbohydrate quality, rather than total intake, is key to MASLD development. Excess
refined carbs and added sugars, especially fructose, trigger hepatic de novo lipogenesis
(DNL), increase visceral fat, worsen insulin sensitivity, and activate inflammatory and
fibrogenic pathways [101–112]. High intake of sugar-sweetened drinks is strongly linked
to MASLD occurrence and progression, with a dose–response effect seen in long-term
studies [113–118]. Conversely, diets focused on whole grains, fiber-rich foods, fruits,
and vegetables enhance insulin sensitivity, lower intrahepatic triglycerides, and reduce
metabolic risk [105–107].

Fructose

Fructose strongly stimulates de novo lipogenesis [108], leading to SFAs associated
with MASH [77]. It can induce lipogenesis by upregulating lipogenic gene expression, such
as SREBP-1c and ChREBP, which increase the FFA pool in the liver by being metabolized
through energy-mediated processes into triglycerides, promoting DNL, and causing deple-
tion of adenosine triphosphate (ATP). It is also linked to bacterial overgrowth in the small
bowel and elevated endotoxin levels in the portal vein, which can promote inflammation
and progression from steatosis to MASH [108–118].
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5.1.3. Dietary Fiber

A lack of fiber in the diet has been linked to MASLD regardless of race or ethnic
group [119,120]. The mechanism behind this association remains unclear [121,122]; how-
ever, a recent study combining dietary fiber and probiotic therapy found that this combined
approach modulates fatty acid oxidation by activating the Acly/Nrf2/NF-κB signaling
pathway. It also reduces inflammation and lipid synthesis [123]. Among fibers, prebiotic
fibers are non-digestible carbohydrates (e.g., garlic, asparagus, and onions) that primarily
function by regulating the gut microbiota [121].

The gut microbiota primarily helps with nutrient absorption in the liver. It also
influences hepatic inflammation by providing toll-like receptor ligands (TLRs), which cause
hepatocytes to release pro-inflammatory cytokines. Disruption of these functions leads to
impaired lipid and glucose balance, resulting in steatogenesis, inflammation, and fibrosis,
indicating the development of MASH [122]. Altering the gut microbiota with prebiotic
fibers may offer a therapeutic approach to treating MASH.

Fructooligosaccharides promote their prebiotic effects by encouraging the growth
of Bifidobacteria in the large intestine, which helps prevent the proliferation of harmful
bacteria [124]. Viscous dietary fiber intake decreases insulin resistance (IR), adiposity, and
hepatic steatosis regardless of fermentability [125]. A randomized, placebo-controlled
clinical trial showed that supplementing with oligofructose (a dietary fiber found in veg-
etables) increased Bifidobacterium growth and notably improved hepatic steatosis and
NAS compared to placebo-induced weight loss [126]. A recent meta-analysis revealed
improvements in BMI, ALT, AST, and insulin resistance with fiber supplementation in
MASLD [127].

5.1.4. Proteins

Proteins are essential macronutrients for enzymatic activity, cell repair, and energy
regulation. Besides quantity, the kind and source of protein significantly affect MASLD risk
and progression.

High intake of animal protein, especially red and processed meats, has been linked
to MASLD, type 2 diabetes, and metabolic syndrome, while plant-based proteins appear
protective. Replacing animal protein with plant protein significantly reduces MASLD
risk [105,128]. Meta-analyses show a positive link between red meat consumption and
MASLD development [129], with population studies indicating increased mortality risk
from both processed and unprocessed red meat, which is decreased when replaced with
white meat [130]. Cooking red meat at high temperatures also contributes to insulin
resistance through heterocyclic amine formation [131].

In contrast, fish, eggs, white meat, and low-fat dairy offer high-quality protein with a
lower metabolic risk. Fish and eggs also provide omega-3 fatty acids and choline, nutrients
essential for hepatic lipid export and anti-inflammatory pathways. Choline deficiency
hampers very-low-density lipoprotein (VLDL) secretion, leading to intrahepatic fat buildup
and faster fibrosis, highlighting the importance of choline-rich foods in MASLD prevention.
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Key Summary: 
• Saturated fats increase hepatic fat, insulin resistance, and inflammation, which may accelerate fibrosis. 
• MUFA and Omega-3 PUFAs may improve insulin sensitivity, lipid profiles, and reduce steatosis. 
• Refined carbohydrates and fructose promote DNL, visceral fat buildup, and progression to MASH. 
• Adequate dietary fiber may enhance insulin sensitivity, decrease steatosis, and modulate gut microbi-

ota-inflammation pathways. 
• Red and processed meats may increase risk, while plant-based foods, fish, and choline-rich options may 

be protective. 
• Limited sugar-sweetened beverages, ultra-processed food, and saturated fats may have a negative  

correlation with MASLD. 

5.2. Role of Micronutrients

Micronutrients are the vitamins and minerals necessary for most body functions,
disease prevention, and overall health. The different vitamins and minerals, along with
their effects on MASLD, are discussed below.

5.2.1. Vitamins

Vitamins with antioxidants support health by reducing oxidative stress [132]. This
property may help reverse hepatic fibrosis in patients with MASLD, slow the progression
of liver injury, and prevent MASH from advancing to a more severe stage [133].

Vitamin E

Vitamin E is a fat-soluble vitamin with antioxidant, anti-inflammatory, and anti-
apoptotic properties [134,135], with the most evidence supporting its therapeutic benefits
in MASLD. It enhances its anti-inflammatory effect by increasing adiponectin levels and
reducing the release of various inflammatory cytokines such as TNF-α, IL-1, IL-2, IL-4, and
IL-8 [136]. It neutralizes hydroxyl, peroxyl, and superoxide radicals and protects against
plasma lipid and LDL peroxidation. Vitamin E can scavenge reactive oxygen species and
also eliminate reactive nitrogen species [137]. Additionally, this vitamin acts as an anti-
apoptotic agent by increasing the expression of the anti-apoptotic protein B-cell lymphoma-
2 (BCL-2) and decreasing the levels of pro-apoptotic proteins BAX and p53 [135].

According to the PIVENS (Pioglitazone versus Vitamin E versus Placebo for Treatment
of NASH) trial, daily supplementation of vitamin E (800 IU) was considered more effective
than a placebo for treating MASH in non-diabetic adults [138]. Data from this study
showed improvements in MASH histological parameters. There was no difference between
pioglitazone and placebo. However, treatment with vitamin E also resulted in a decline in
MASH, with improved ALT levels that reduced hepatic steatosis, lobular inflammation,
and hepatocellular ballooning. No significant reduction in fibrosis was observed [138].
This study, however, only included patients with MASH who did not have diabetes. Since
insulin resistance and progression to T2DM and metabolic syndrome are key aspects of
MASH development, the results of the PIVENS trial cannot necessarily be generalized to
this patient group. The effects of vitamin E were further studied in the diabetic population.
A cohort of T2DM patients participated in a randomized, double-blind, placebo-controlled
trial where they received either vitamin E 400 IU twice daily, vitamin E 400 IU twice daily
plus pioglitazone 45 mg/day, or a placebo. The data showed that combination therapy
(vitamin E 400 IU twice daily plus pioglitazone 45 mg/day) was more effective than placebo
in improving liver histology in MASH and T2DM patients. However, vitamin E alone was
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ineffective at altering the primary histological abnormalities. As with the PIVENS trial,
fibrosis was not improved [139].

Daily supplementation with vitamin E (mainly α-tocopherol, at least 200 IU daily)
may lower hepatic biomarkers of lipid peroxidation and boost the activity of natural antiox-
idants in the liver [140]. A systematic review and meta-analysis of 12 randomized clinical
trials showed improvements in ALT and AST levels in the vitamin E group compared
to placebo [141]. Another meta-analysis of high-quality RCTs assessed how vitamin E
treatment affected patients with MASH compared to metformin and thiazolidinediones.
This analysis found that vitamin E significantly enhanced histological scores for steatosis,
lobular inflammation, and ballooning [142]. A prospective study comparing vitamin E
(400 IU twice daily) and pentoxifylline (400 mg three times daily) with vitamin E alone
demonstrated greater fibrosis regression and better insulin resistance improvements with
combination therapy [143]. Another recent meta-analysis concluded that vitamin E might
improve the biochemical, metabolic, and histological features of MASLD [144]. Vitamin E
appears to be a promising treatment option for MASLD; however, larger prospective trials
are necessary to confirm this relationship. According to the AASLD and EASL-EASD-EASO,
vitamin E (800 IU/day) may be used in nondiabetic adults with biopsy-confirmed MASH.

Vitamin C

Vitamin C has antioxidant properties and can neutralize free radicals [145], similar
to vitamin E. It may lower hepatic oxidative stress and inflammatory markers [146,147].
Regulation of adiponectin by vitamin C reduces inflammation, hepatic lipid buildup, and
systemic IR through hepatic lipid balance [148]. In rats with dexamethasone-induced
glucose intolerance, vitamin C supplementation was associated with improved insulin
resistance [149]. A cross-sectional study found that low vitamin C intake in adults could
increase the risk of developing MASLD [150]. Conversely, similar vitamin C levels were
observed in both MASLD and non-MASLD (healthy controls) subjects [151]. Combined
dietary intake of vitamin C and E has been inversely related to MASLD severity [152]. In a
prospective, double-blind, randomized, placebo-controlled trial, a group of patients with
MASH received either 1000 IU and 1000 mg of vitamin C and E or a placebo daily for six
months. Combination therapy with vitamins C and E showed a significant improvement
in MASLD fibrosis scores [153]. However, this may not reflect the efficacy or safety of
using vitamin C alone. Another study with lower doses of vitamins C and E demonstrated
improvements in ALT levels, necroinflammatory activity, and fibrosis [154]. More recently,
a double-blind randomized clinical trial using vitamin C alone reported improvements in
the treatment group’s AST, ALT, fasting insulin, and fasting glucose [155].

Vitamin D

Vitamin D is an essential nutrient that plays a key role in calcium balance. Emerging
evidence suggests that vitamin D deficiency is linked to MASLD [156–158]. Although
another study found no connection between vitamin D deficiency and MASLD, among
those with MASLD, having sufficient vitamin D levels was associated with a lower risk of
liver fibrosis in a dose-dependent way [159]. When taken as a supplement, vitamin D may
protect against fibrosis by inhibiting HSC proliferation [156] or by improving inflammatory
markers [160].
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Vitamin D influences insulin resistance by binding directly to vitamin D receptors
(VDR) on pancreatic beta cells to enhance insulin secretion. A deficiency in vitamin D
may lead to insulin resistance (IR) and raise the risk of MASLD [161]. An RCT with
162 patients showed improved IR within the vitamin D treatment group compared to the
control [162]. Another double-blind RCT found that calcitriol was 1.8 times more effective
than cholecalciferol in reducing insulin resistance in MASLD patients [163]. Vitamin
D also impacts the immune system by regulating genes involved in innate immunity.
Toll-like receptors 2 and 4 on macrophages, polymorphonuclear cells, monocytes, and
epithelial cells become activated when vitamin D levels are low, playing a key role in
MASLD development [164]. Vitamin D promotes hepatic autophagy, which helps prevent
hepatic steatosis [165]. Currently, several clinical trials are exploring vitamin D’s effects on
liver abnormalities and its potential benefits for MASLD patients. A recent meta-analysis
found no significant impact of vitamin D on MASLD [166]. However, other studies report
reductions in liver steatosis and fibrosis after one year of daily supplementation with
1000 IU of vitamin D [167], as well as improvements in lipid profiles and liver enzyme
levels after six weeks of taking 2000 IU daily [168].

Vitamin A

Vitamin A, also called retinol or retinoic acid, regulates cellular processes such as cell
growth and immune function. An inadequate intake or vitamin A deficiency promotes
the progression of MASLD [169], where quiescent HSCs store dietary retinol and retinyl-
palmitate esters (RE) inside lipid droplets. When activated, HSCs rapidly lose their vitamin
A content in response to liver injury. This process has been linked to the onset of vitamin A
deficiency, which worsens chronic liver disease [170]. Retinol released from HSCs is partly
converted into retinoic acid, which can modulate the immune response by decreasing liver
injury severity and promoting liver regeneration. If hepatic damage continues, activated
HSCs gradually transform into myofibroblast-like cells that produce extracellular matrix,
leading to liver fibrosis. Retinoic acid has been shown to reduce the proliferation and
spread of hepatocellular carcinoma [170]. Multiple studies suggest that preventing MASLD
depends on proper activation of retinoic acid signaling. Serum retinol levels are low in
patients with the MASLD risk variant of PNPLA3. Despite this evidence and numerous
studies highlighting vitamin A’s benefits on liver lipid metabolism in obesity-related
MASLD animal models [171], no clinical trials are currently exploring its therapeutic
potential in humans. A study linking total dietary vitamin A intake to MASLD risk found
an inverse relationship, particularly among adults under 45 and women [172].

Vitamin B3

Vitamin B3, also known as niacin or nicotinic acid, is water-soluble and easily ob-
tained from dietary sources. It acts as a precursor to the coenzymes nicotinamide adenine
dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), which
are essential in lipid metabolism [173]. Vitamin B3 may reduce intrahepatic triglycerides
(IHTG) associated with MASLD by inhibiting diacylglycerol acyltransferase 2, an enzyme
that catalyzes the final step in triglyceride synthesis [174]. Nicotinamide (NAM), a precur-
sor to methyl nicotinamide and a form of niacin, has been shown in studies to improve
insulin resistance caused by a high-fat, high-fructose diet in rats when delivered in chitosan
nanoparticles [175]. NAM also helps prevent liver steatosis and fibrosis by regulating re-
dox potential through glucose-6-phosphate dehydrogenase- and malic enzyme-dependent
mechanisms [176]. Some research suggests that higher dietary intake of niacin [177] or
niacin supplementation [178] may be associated with lower liver fat levels. However, an
RCT found that while niacin treatment improved serum triglycerides, VLDL, and insulin
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sensitivity, it did not reduce hepatic fat accumulation [179]. Furthermore, some studies
indicate that niacin might induce insulin resistance [180].

Vitamin B6

Vitamin B6, also known as pyridoxine, is water-soluble, found in various foods,
and essential for normal brain development. In a cross-sectional study, vitamin B6 is
positively associated with the development of hepatic steatosis [181]. However, a recent
open-label, single-arm, single-center study examined the therapeutic effects of vitamin B6
supplementation (90 mg daily) in patients with MASLD. Vitamin B6 supplementation has
been shown to significantly reduce hepatic fat accumulation [182]. Pyridoxamine (vitamin
B6) influences oxidative stress, AGE products, and TNF-α levels [183].

Vitamin B9

The liver is a vital organ that stores and metabolizes vitamin B9, also known as folate
or folic acid, found in various foods [184]. Folic acid supplementation inhibits hepatic
lipogenesis, helping to reduce hepatic steatosis in high-fructose-fed rats by activating liver
kinase B1, AMP-activated protein kinase, and acetyl-CoA carboxylase in the liver [185]. It
also significantly decreases the pro-inflammatory NF-κB pathway and cytokine expression
in mice [186]. Another study examined folate receptor beta (FR-β) protein expression in
human MASLD and rodent models of MASH, finding increased FR-β expression in both,
making it a potential future therapeutic target. Folate supplementation was associated
with reduced levels of pro-inflammatory cytokines TNF-α and CXCL8 (chemokine (C-X-C
motif) ligand 8), decreased LC3B (light chain 3 B) expression, and increased IL-22 levels
in a dose-dependent manner [187]. Low vitamin B9 levels have been linked to increased
severity of MASH [188]. A retrospective study in a Chinese population identified low
serum folic acid as an independent risk factor for MASLD [189]. A recent randomized
controlled trial assessing 1 mg daily oral folic acid supplementation found no significant
changes in liver enzymes, lipid profiles, insulin resistance, or hepatic steatosis grade [190].

Vitamin B12

Vitamin B12, or cobalamin, exists in two metabolically active forms in humans: methyl-
cobalamin and 5′-deoxyadenosylcobalamin. The other two forms, cyanocobalamin and
hydroxocobalamin, become biologically active once converted into these forms. They serve
as cofactors for the mitochondrial enzyme methylmalonyl-CoA mutase, which is involved
in lipid metabolic pathways [191]. Vitamin B12 is stored in the liver. A systematic review
and meta-analysis found that vitamin B12 levels are not associated with MASLD. However,
a significant difference in homocysteine levels was observed in MASLD patients, suggesting
that homocysteine could be a potential marker of liver damage [192]. Low vitamin B12
levels have been linked to increased severity of MASH [188]. An RCT assessing 1 mg of
daily vitamin B12 supplementation versus a placebo in patients with MASLD reported
a significant reduction in homocysteine levels in the treatment group compared to the
placebo. The study also noted a significant within-group decrease in liver steatosis and
fasting blood glucose levels in the treatment group; however, these differences were not
seen when comparing between groups [193].
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5.3. Role of Minerals 

Key Summary: 
• Vitamin E is the most researched; it helps improve steatosis, inflammation, and ballooning in non-diabetic 

MASH. 
• Vitamin C may enhance antioxidant defenses and, when combined with Vitamin E, has shown potential in 

improving fibrosis scores. 
• Vitamin D deficiency is common in MASLD; supplementation may improve insulin resistance and inflam-

mation, although trial results remain inconsistent. 
• Vitamin A deficiency is linked to fibrosis progression; proper retinoic acid signaling might offer protection. 
• Folate (B9) and B12 deficiencies are associated with more severe MASH; supplementation could reduce in-

flammation and improve metabolic parameters. 
While these links between vitamin supplementation and MASLD/MASH outcomes are encouraging, it is important to recog-
nize that most evidence comes from nonrandomized or observational studies; therefore, these findings should be approached 
with caution until confirmed by high-quality randomized clinical trials. 

 

5.3. Role of Minerals
5.3.1. Calcium and Phosphorus

Disruption of calcium and phosphorus balance is increasingly recognized as a key
factor in MASLD. Altered calcium signaling impairs lipid management, increases oxidative
stress, and promotes inflammation and fibrosis, while balanced calcium flux supports
lipid breakdown, autophagy, and hepatocyte regeneration [194]. Similarly, phosphorus
influences liver lipid metabolism by stimulating autophagy, enhancing fatty acid oxida-
tion, and reducing triglyceride accumulation, with optimal levels providing protective
effects. Both calcium and phosphorus play a dual role: maintaining homeostatic levels
helps sustain metabolic stability and prevents fat accumulation, whereas deficiency or
excess can lead to steatosis, inflammation, and progression to advanced liver disease [195].
Therefore, maintaining balanced mineral levels is essential for preventing and influencing
the progression of MASLD.

5.3.2. Zinc and Magnesium

Zinc and magnesium both play crucial roles in the development of MASLD. Zinc
is essential for lipid metabolism, antioxidant defense, and insulin signaling. Deficiency
impairs lipophagy, increases oxidative stress, disrupts the unfolded protein response,
and can lead to liver cancer and fibrosis, while sufficient levels protect against steatosis,
inflammation, and insulin resistance. However, paradoxically, elevated circulating zinc at
the onset may indicate dysfunctional liver utilization or increased intake.

Magnesium, on the other hand, influences insulin sensitivity, mitochondrial functions,
and inflammatory signaling. Deficiency impairs tyrosine kinase activity and glucose
uptake, increases oxidative stress, and leads to hepatocyte ballooning and steatohepatitis.
Conversely, higher intake improves insulin resistance, reduces inflammation, and lowers
the long-term risk of MASLD. However, excessive dietary calcium, by altering absorption
dynamics, may diminish the effects of magnesium.

Together, zinc and magnesium affect MASLD progression through common mecha-
nisms involving oxidative stress, insulin resistance, and fibrogenesis. The levels of both
elements are usually harmful when deficient, and supplementation provides protective
effects in both experimental and human studies [196].
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5.3.3. Iron and Selenium

Iron and selenium homeostasis are better understood as modulators of MASLD patho-
genesis; their impact, whether protective or adverse, depends on circulating levels of these
elements. Increased iron levels are consistently associated with a higher risk of MASLD
through mechanisms involving disrupted iron transport, oxidative stress, and resulting
insulin resistance and subclinical inflammation. Elevated liver iron promotes hepatocellular
damage by producing reactive oxygen species, activating stellate cells, and increasing fibro-
sis. It also contributes to systemic disease via β-cell dysfunction and cardiovascular injury.
In contrast, moderate iron restriction reduces liver damage, emphasizing the importance of
maintaining an optimal iron balance.

Selenium also shows dose dependence related to MASLD. While at normal sele-
nium and selenoprotein levels, it provides antioxidant and immunomodulatory benefits.
However, excessive selenium intake increases production of reactive oxygen species via se-
lenomethionine metabolites, leading to oxidative stress, inflammation, and lipid buildup in
the liver. Studies in mice and humans confirm that high selenium exposure accelerates liver
injury and metabolic issues, and correcting selenium excess may help in clinical settings.

Together, the studies demonstrate that both iron and selenium serve as double-edged
regulators in MASLD, where homeostatic balance provides protection, whereas excess
promotes disease progression [197].

 
 

 

 

 

 

 

 

 

Key Summary 
• Zinc deficiency promotes oxidative stress, impaired lipophagy, and fibrosis, while adequate levels may pro-

tect against steatosis and insulin resistance. 
• Magnesium deficiency worsens insulin resistance, oxidative stress, and hepatocyte injury; supplementation 

might improve inflammation and metabolic control. 
• Iron overload drives oxidative stress, stellate cell activation, and fibrosis; balanced restriction may reduce 

hepatic injury and systemic complications. 
• Selenium may show a dose-dependent effect: protective at physiological levels, but may cause oxidative 

stress, lipid accumulation, and progression of disease when in excess. 
Mounting evidence suggests that balanced trace mineral homeostasis, particularly for zinc, magnesium, iron, and selenium, 
is crucial to the prevention and progression of hepatic steatosis, insulin resistance, and fibrosis. However, the therapeutic 
efficacy and safety of supplementation strategies require confirmation in rigorously controlled clinical studies. 

5.4. Role of Herbal Supplements
5.4.1. Milk Thistle

Silymarin is a plant seed extract with antioxidant, anti-inflammatory, and antifibrotic
properties. This extract is a complex mixture of six significant flavonolignans and other
minor polyphenolic compounds derived from the plant Silybum marianum [198]. The
therapeutic effects of silymarin on MASLD have been extensively studied. Silymarin’s hep-
atoprotective effects are attributed to its antioxidant activity, modulation of inflammatory
pathways, antifibrotic properties, and regulation of lipid and glucose metabolism [199]. Its
primary active component, silybin, interacts with nuclear receptors such as the farnesoid
X receptor (FXR), influencing bile acid metabolism and insulin sensitivity [200]. Multiple
studies have shown improvements in AST and ALT levels [201,202], and some enhance-
ment of liver fibrosis with silymarin supplementation [203]. However, in a randomized trial
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of 99 patients, silymarin supplementation (700 mg, given three times daily for 48 weeks)
did not reduce NAS by 30% or more in a significantly higher proportion of patients with
MASH compared to placebo [198]. A randomized, double-blind, placebo-controlled trial
involving 78 patients also found no significant reduction in NAS with silymarin therapy
compared to placebo [204]. A recent systematic review and meta-analysis of 26 RCTs
reported significantly decreased levels of total cholesterol, triglycerides, LDL, and HOMA-
IR, along with increased HDL levels with silymarin administration. Additionally, they
observed reductions in AST, ALT, fatty liver score, and hepatic steatosis with silymarin
supplementation [205].

5.4.2. Turmeric

Turmeric belongs to the ginger family. Its primary biologically active component
is curcumin. It is thought to offer medicinal benefits due to its strong antioxidant, anti-
inflammatory, and metabolic regulatory properties [206,207]. Curcumin can help reduce in-
flammation by modulating nuclear factor kappa B (NF-κB), a group of transcription factors
that control genes involved in various inflammatory responses. This is significant because
inflammation plays a key role in the development of steatohepatitis [208]. Furthermore,
curcumin improves gut health by encouraging the growth of beneficial bacteria and releas-
ing antioxidant, anti-inflammatory, and anti-tumor metabolites during metabolism [209].
Research indicates that curcumin decreases insulin resistance (IR) in mice fed a high-fat
diet [210]. One study reported notable improvements in glucose disposal in the liver and
fat tissue with curcumin supplementation [211]. Another found that oral curcumin inhibits
fat tissue lipolysis, which reduces free fatty acid flow toward the liver and thus reduces
hepatic IR [210]. A recent meta-analysis revealed significant improvements in fasting blood
glucose, insulin resistance, triglycerides (TG), total cholesterol, LDL cholesterol, weight,
and BMI [212]. A different meta-analysis showed similar results, including better fasting
blood glucose levels, reduced insulin resistance, decreased waist circumference, and lower
serum levels of ALT, AST, total cholesterol, and LDL. However, serum levels of TG, LDL,
HbA1c, body weight, and BMI remained unchanged with curcumin supplementation [213].

5.4.3. Garlic

Garlic is a commonly used herb in cooking. The main active compound is S-
allymercaptocysteine (SAMC), an antioxidant that reduces inflammation [214,215], as
shown in animal studies. A meta-analysis of four studies found that garlic supplementation
was associated with improvements in ALT, AST, total cholesterol, LDL cholesterol, triglyc-
erides, and fasting blood sugar levels compared to a placebo [216]. Another meta-analysis
reported similar results, with significantly lower levels of ALT, AST, LDL cholesterol, and
total cholesterol after garlic supplementation [217].

5.4.4. Basil, Lavender, Peppermint, Oregano, and Rosemary

Most aromatic herbs, such as rosemary, peppermint, basil, lavender, and oregano,
contain ursolic acid [218]. Carnosic acid is found explicitly in rosemary [219]. In animal
studies, both of these compounds demonstrate anti-inflammatory and antioxidant prop-
erties [218,220]. However, there is a lack of definitive human studies confirming similar
clinical benefits.

5.4.5. Ginger

Ginger has anti-lipogenic, anti-inflammatory, and antioxidant properties, as observed
in animal studies [221]. An RCT involving 44 patients who received either two grams of
ginger supplement daily or a placebo found that the ginger group experienced significant
improvements in ALT, inflammatory cytokines, insulin resistance, and hepatic steatosis
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grade compared to the placebo group [222]. A meta-analysis of 17 in vivo experiments and
three clinical trials concluded that ginger supplementation was linked to improvements
in total cholesterol, LDL cholesterol, HDL cholesterol, TG, ALT, and AST levels [223].
However, there is not enough data to suggest any significant clinical benefits of MASLD.

5.4.6. Gingko Biloba

Ginkgo Biloba reduces oxidative stress, improves liver enzyme levels, and decreases
hepatic steatosis and inflammation, as shown in animal studies [224,225]. Ginkgo biloba
extract was associated with better insulin resistance (IR), glucose intolerance, lipid accumu-
lation, and hepatic steatosis in the high-fat diet mouse model [226].

5.4.7. Ginseng

Ginseng is a herb with antioxidant and anti-inflammatory properties that protect
against steatosis, hepatic inflammation, and fibrosis by modulating liver enzyme levels
in MASLD, as seen in animal studies [227–229]. Other traditional Chinese herbs like Goji
Berry, Lotus, Astragalus, and Ciruwujia are being studied in animal models, but clinical
studies have not been conducted with these herbs.

5.4.8. Licorice

Licorice has been linked to improved levels of AST and ALT and is suggested to
support lipid balance [230]. In an RCT, women who took 1 g of licorice root powder daily
for 12 weeks showed significant improvements in ALT, insulin, insulin resistance, and
ultrasonographic liver steatosis compared to the placebo group [231].

5.4.9. Rosa Damascena, Plantago Major

Rosa damascena is a plant cultivated in Iran and traditionally used in Persian herbal
medicine. This herbal remedy is thought to have hepatoprotective effects due to its bioactive
compounds, including phenolic acids and flavonoids. In a 12-week randomized controlled
trial (RCT), where participants took 3 g of Rosa damascena capsules, there was a significant
reduction in ALT, lipid profile (except HDL), weight, BMI, waist circumference, diastolic
blood pressure, and MASLD grade on ultrasound [232]. Plantago major is another herb
with potential liver health benefits. In a randomized, double-blind, placebo-controlled
clinical trial, patients received 2 g of Plantago major seeds compared to a placebo and were
monitored for 12 weeks. Results showed a significant decrease in serum levels of ALT, AST,
TG, and waist circumference in the treatment group compared to the control group [233].

5.4.10. Berberine

Berberine is an isoquinoline alkaloid derived from medicinal plants like Berberis.
Berberine has been suggested to help prevent gut microbiota-derived lipopolysaccharide
(LPS)-induced intestinal barrier dysfunction and reduce inflammation in metabolic dis-
eases [234,235]. This may improve glucose and lipid metabolism. In a meta-analysis,
Berberine showed improvements in body weight, HOMA-IR, AST, ALT, GGT, total choles-
terol, and LDL-C [236]. Additionally, Berberine has been shown to have anti-HCC effects
by regulating the cell cycle, promoting autophagy, and inducing cell death [237].
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Key Summary 
• Silymarin has antioxidant, anti-inflammatory, and antifibrotic activities; it improves liver en-

zymes and metabolic profile, although it has no consistent histologic benefit. 
• Curcumin modulates NF-κB and insulin sensitivity; improves glycemia, lipids, and liver en-

zymes; no proven histologic benefit. 
• Garlic lowers ALT/AST, cholesterol, and triglycerides. 
• Ginger improves liver enzymes, insulin resistance, and steatosis grade. 
• Licorice, Rosa Damascena, and Plantago major have shown minor improvements in liver en-

zymes, steatosis, and metabolic parameters; evidence is limited. 
• Berberine enhances glucose and lipid metabolism, reduces liver enzymes, and insulin resistance. 
• Other herbs (Ginkgo biloba, Ginseng, Rosemary, Peppermint, Oregano) show antioxidant and 

anti-inflammatory effects in animal studies only. 
 
The reported efficacy of bioactive therapies varies due to differences in study populations, dosages, combina-
tions, and clinical endpoints, making it challenging to draw consistent conclusions. Despite promising evi-
dence for agents like curcumin and silymarin, generalizability remains limited, mainly due to the lack of large, 
well-designed, multi-center trials. 

5.5. Role of Other Supplements
5.5.1. Probiotics

Imbalance in the gut microbiome is associated with the release of bacterial endotoxins
and the production of metabolites, which can contribute to obesity and MASLD. Changes
in the intestinal microbiota can affect the liver by transferring microbial products and
absorbing metabolites [238,239]. This leads to the endogenous production of ethanol,
activation of inflammatory cytokines through lipopolysaccharides, and changes in choline
and bile acid metabolism [124].

Probiotics contain various beneficial bacteria (e.g., Bifidobacterium and Lactobacillus
spp.) and fungi (e.g., Saccharomyces spp.). The bioactive components produced by these live
microorganisms benefit human health [240]. According to a study by Mohamad et al., probi-
otic supplementation with Lactobacillus and Bifidobacterium species reduced intestinal perme-
ability, thereby decreasing blood endotoxin levels and supporting MASLD treatment [241].

In a double-blind clinical RCT, consuming a tablet containing 500 million Lactobacillus
bulgaricus and Streptococcus thermophilus bacteria improved serum AST and ALT levels in
patients with MASLD [240]. The study found that probiotics lowered IHTG and serum
AST levels but did not cause significant changes in anthropometric measures compared to
standard care. Patients with MASLD who took Bifidobacterium longum with fructooligosac-
charides alongside lifestyle modifications showed notable reductions in inflammatory
markers, including TNF-α and CRP, as well as serum AST and endotoxins. These im-
provements also included reductions in insulin resistance, hepatic steatosis, and the MASH
activity index [242]. A recent systematic review and meta-analysis of 41 RCTs by Rong
et al. reported significant improvements in liver steatosis, AST, and ALT with probiotic
treatment [243]. Additionally, an RCT demonstrated that probiotic yogurt intake in MASLD
patients improved insulin resistance, ALT, and hepatic fat fraction [244].
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Synbiotics, which combine prebiotics and probiotics, have also shown promise. In
an RCT, consuming synbiotic yogurt improved liver enzyme levels and reduced hepatic
steatosis in patients with MASLD [245]. However, current evidence does not confirm any
benefits regarding liver fibrosis or slowing the progression of liver disease.

5.5.2. Caffeine

Several research studies examining the effects of coffee on patients with MASLD
suggest that coffee may have a protective effect on MASLD. Coffee contains antioxidant
and anti-inflammatory properties [246]. According to data from a meta-analysis on coffee
and tea, it is suggested that coffee and tea consumption are less likely to be associated
with the development of metabolic syndrome [247]. An improvement in levels of AST
and ALT was reported in patients at risk for liver disease after coffee consumption and is
inversely related to the progression of steatohepatitis in MASLD patients [248]. Drinking
two regular cups of coffee daily has been linked to reductions in hepatic steatosis and
fibrosis [246,249]. A study involving 1326 patients with MASLD and a median follow-up
of 11.6 years found that those who consumed ≥2 and <3 cups of coffee per day had a
significantly lower risk of developing advanced liver fibrosis [250]. Coffee consumption
may also have chemoprotective effects. One study revealed that coffee was 44% more
effective in reducing the risk of HCC in individuals who consumed more than three cups
daily [251]. A meta-analysis of 13 studies on liver cancer risk concluded that there was
a significant inverse correlation between coffee intake and the risk of liver cancer [252].
Furthermore, the benefits of coffee consumption could extend to gut microbiota, as it has
been linked to an increase in Bifidobacterium spp., a known human probiotic [253,254]. While
regular coffee intake is beneficial, recommendations should be personalized, considering
other health conditions.

5.5.3. Green Tea

Green tea has antioxidant and anti-inflammatory properties. The primary components
responsible are epigallocatechin-3-gallate (EGCG) and polyphenols. Supplementing with
green tea extract modulated liver enzymes in patients with MASLD [255]. It decreased
hepatic steatosis and insulin resistance, as demonstrated in animal studies [256]. A meta-
analysis found that green tea lowered levels of AST and ALT enzymes in patients with
MASLD; however, in healthy individuals, a slight but significant increase in liver enzymes
was noted [257]. An RCT investigating the effects of green tea extract on liver function and
fat showed that supplementation reduced ALT levels and liver fat content. Nonetheless, it
is important to mention that this RCT involved a small sample size of 17 individuals with
MASLD [258].

5.5.4. Low-Calorie Sweeteners

Low-calorie sweeteners (LCSs) are optional sugar substitutes approved by the FDA.
Over the past twenty years, medical research has examined several safety concerns re-
garding their health risks, such as an increased risk of developing metabolic syndrome,
type 2 diabetes, significant weight gain, cardiovascular disease, and disruption of the gut
microbiome [259]. The American Heart Association and the American Diabetes Association
recommend limiting the use of LCSs because there is no solid evidence about their effects
on body weight and cardio-metabolic risk factors [260].

5.5.5. Resveratrol

Resveratrol, a phytoalexin polyphenol chemically known as trans-3,5,4′-trihydroxystilbene,
is found in red grapes and red wine, showing strong antioxidant and anti-inflammatory
effects. Studies have demonstrated that resveratrol lowers oxidative stress, hepatic steatosis,
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and inflammation by activating the AMPK-SIRT1 pathways [261,262]. Some RCTs investi-
gating the effect of daily resveratrol supplements reported improvements in AST, ALT, and
insulin resistance [263,264]. However, there is not enough evidence to confirm whether
it benefits hepatic fibrosis [265], and small sample sizes limit current studies. Resver-
atrol did not improve cardiovascular disease risk factors, such as lipid profiles, serum
atherogenic indices, liver enzymes, waist-to-hip ratio, or blood pressure, nor hepatic steato-
sis [266,267]. Although it is associated with some improvements in inflammatory markers,
these changes have not led to clinically significant outcomes for managing metabolic
dysfunction-associated steatotic liver disease (MASLD) [268].

5.5.6. Choline

Choline is found in certain foods, such as fish and mushrooms, and is also available as
a dietary supplement. It resides in membrane phospholipids, which are essential for various
biochemical and metabolic processes, including lipid transport, lipid-derived signaling,
cholinergic neurotransmission, and the methylation of metabolites. Additionally, it helps
maintain the structural integrity of cell membranes [269]. Metabolically, gut microbes
break down choline into trimethylamine (TMA), which, upon absorption, is oxidized to
trimethylamine-N-oxide (TMAO) by liver enzymes [270].

The choline-deficient diets, which reduce TMAO levels in the serum, are linked to
MASLD/MASH. In contrast, high serum TMAO levels are associated with CVD and
chronic kidney disease. Several studies show that altering the microbial community (micro-
biome) can cause intestinal dysbiosis through choline-deficient diets, impacting microbiota
diversity [270,271]. Therefore, while excessive choline intake may raise TMAO concerns,
controlled supplementation could be suitable in specific MASLD phenotypes, especially
where choline deficiency is confirmed.

5.5.7. Fish Oil

Fish oil contains omega-3 PUFAs, specifically EPA and DHA. Daily intake of omega-
3 PUFAs has been linked to a favorable plasma lipid profile, improved TG, LDL, and
ALT levels, and reduced steatosis [272]. One meta-analysis reported a similar decrease in
liver fat content and improvement in hepatic enzyme parameters; however, significant
heterogeneity was observed between studies [88]. A recent RCT showed a notable reduction
in weight and liver fat with 3.6 g/day of n-3 PUFAs [273]. Conversely, another recent RCT
found no change in liver fat content, serum AST, ALT levels, or visceral adiposity with daily
omega-3 PUFAs supplementation in overweight men [274]. It is important to note that
this may be due to higher baseline liver fat levels in other groups [272], compared to this
cohort [274]. An ongoing RCT is evaluating the impact of fish oil supplementation on liver
fibrosis in patients with metabolic dysfunction-associated liver disease (MASLD) [275].

5.5.8. Co-Enzyme Q10

Co-enzyme Q10 supplementation in MASLD patients showed a non-significant re-
duction in lipid profile and liver enzymes [276]. However, further research on appropriate
dosing, clinical benefits, and adverse effects is needed through large prospective trials
involving patients with MASLD.
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Key Summary 
• Probiotics and synbiotics improve liver enzymes, steatosis, and inflammatory markers; however, there is no 

proven effect on fibrosis. 
• Consuming ≥2 cups of coffee per day is consistently associated with reduced steatosis, slower fibrosis progression, 

and lower risk of HCC. 
• Green tea enhances liver enzymes and reduces steatosis. 
• Resveratrol acts as an antioxidant, leading to some improvements in enzymes and inflammation; clinical out-

comes remain inconclusive. 
• Omega-3 PUFAs decrease triglycerides and liver fat. 
• Choline deficiency worsens steatosis; targeted supplementation might be beneficial for certain phenotypes, but 

excess intake increases TMAO-related cardiovascular risks. 
 
Emerging evidence suggests that bioactive nutrients and functional foods, including probiotics, coffee, green tea, resveratrol, 
omega-3 fatty acids, and choline—may enhance liver enzyme levels, reduce fat buildup, and enhance metabolic health in 
MASLD/MASH. However, their impact on liver fibrosis and long-term outcomes has not yet been definitively established in clini-
cal trials. 

5.6. Role of Alcohol, Cannabis, and Tobacco
5.6.1. Alcohol

Regular and heavy alcohol consumption can harm the liver. Cross-sectional studies
show that drinking light to moderate amounts of alcohol is linked to benefits in MASLD
patients; however, it may also be associated with confounding factors like a low BMI in
moderate drinkers [277,278]. In a longitudinal analysis of liver biopsies in MASH patients
not on medication, the average alcohol intake improved AST levels. It also decreased the
likelihood of MASH resolution compared to non-drinkers [279]. Currently, there is no
clear recommendation to use moderate alcohol consumption for MASLD benefits. Alcohol
and metabolic dysfunction together may worsen liver disease [280–282], and recent data
suggest that even light drinking could increase MASLD progression [283]. Another cross-
sectional study involving participants with hepatic steatosis from the Framingham Heart
Study found a strong link between alcohol use and hepatic steatosis, even after excluding
heavy drinkers. This suggests alcohol is a risk factor for MASLD progression [284]. It is
also important to consider the type of alcohol consumed, as a study of 1072 participants
concluded that those who only drank liquor or cocktails were at higher risk for fibrosis [285].
Any alcohol use, including light drinking, has been independently linked to an increased
risk of HCC in MASLD patients [282,286,287]. HCC mainly develops in patients with
chronic liver disease. A large study of 4406 reported HCC cases found that MASLD
was the underlying disease in 59% of cases [288,289]. A few studies have evaluated
the effects of alcohol on the population regarding all-cause mortality. A data review
showed that only excessive alcohol use was associated with higher overall mortality
compared to non-excessive consumption after an average follow-up of 20 years [290]. A
prospective cohort study demonstrated that moderate and heavy alcohol consumption were
independently linked to lower and higher all-cause mortality, respectively [291]. Numerous
factors complicate the determination of an advisable level of alcohol intake in patients with
MASLD, because patients often underreport their alcohol consumption and clinicians find
it challenging to estimate lifetime intake. High-quality longitudinal studies are needed to
investigate the adverse effects of mild to moderate alcohol consumption and its impact on
cardiovascular and liver outcomes in MASLD patients.
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5.6.2. Cannabinoids

With increasing legalization and availability, cannabinoid use is rising among various
populations. Observational studies have noted a lower prevalence of MASLD among
cannabis users [292,293], though therapeutic implications remain uncertain. Cannabinoid
receptors—type 1 (CB1) and type 2 (CB2)—are widely present in mammalian tissues, in-
cluding hepatic and immune cells. CB1 receptors, found in hepatocytes, hepatic stellate
cells (HSCs), and liver sinusoidal endothelial cells (LSECs), promote lipogenesis, gluconeo-
genesis, insulin resistance, and hepatic steatosis when upregulated, as shown in high-fat
diet rodent models. CB2 receptors, mainly localized to Kupffer cells (KCs) and HSCs,
appear less involved in metabolic injury [294]. In humans, receptor expression patterns
in MASLD and cirrhosis suggest a potential role in disease progression, but clear mech-
anistic links are lacking. A Mendelian randomization study found no causal connection
between cannabis use and MASLD risk [295], while cross-sectional analyses of NHANES
data (1988–1994 and 2005–2014) indicated that active marijuana use might have a protec-
tive effect [293]. Conversely, a large nationwide cohort identified a relationship between
cannabis use and a higher prevalence of ascites in individuals with MASLD [296]. These
conflicting results, along with limited mechanistic data in humans, highlight the need for
more focused research.

5.6.3. Tobacco

Although a direct causal link between tobacco use and MASLD has not been defini-
tively established, evidence suggests a strong association between smoking and disease
progression. A large-scale national study found that smoking significantly increases the
risk of hepatocellular carcinoma and cardiovascular disease in patients with MASLD [297].
Mechanistically, nicotine has been shown to induce oxidative stress, inflammation, and dys-
biosis of the gut microbiota—key pathways involved in the development of MASLD [298].
Additionally, sex-specific cohort analysis indicates that smoking nearly doubles the risk of
mortality in MASLD patients, especially in women, highlighting the importance of smoking
cessation as a critical intervention in disease management [299].

 
 
 
 
 
 
 
 
 

 

  

Key Summary 
• Light alcohol consumption may accelerate steatosis, fibrosis, and HCC risk. 
• Cannabis might reduce MASLD prevalence; however, current evidence remains inconclusive. 
• Tobacco use is strongly associated with disease progression, oxidative stress, and increased risk of HCC 

and CVD. 
• Abstaining from alcohol and tobacco is crucial for MASLD management. 

 
Scientific evidence shows that alcohol and tobacco use both speed up liver injury, fibrosis, and cancer. risk in MASLD, 
while early data suggest potential cannabis benefits; for optimal liver health, abstinence from alcohol and tobacco remains a 
key clinical recommendation. 

In order to provide a comprehensive perspective, this section ends with a synthesis
of all nutrients mentioned above. Table 2 presents these nutrients in a structured format,
highlighting their proposed roles in MASLD management. While these herbal supplements
and other bioactives have demonstrated improvement of MASLD in small-scale, population-
specific trials, large randomized controlled trials are needed to confirm their efficacy and
safety in broader MASLD populations.
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Table 2. Summary of currently available nutritional data in MASLD. Effects of micronutrients,
minerals, herbal supplements, and other components in human (H) and animal (A) studies.

Summary of Current Nutritional Data in MASLD
H = Human, A = Animal

Calories Daily restriction of 500–1000 kcal results in an improvement in insulin
resistance and hepatic steatosis (H) [9,48]

MACRONUTRIENTS
SFAs (found in dairy products, vegetable oils, desserts, and red meat)
increase intrahepatic triglycerides and plasma ceramides, impairing
insulin sensitivity (H). RCTs show increased liver fat and ceramides

with high SFA diets, with a strong link to fibrosis progression.

[72–78]

Increased intake of MUFAs (found in olive oil, avocados, and nuts) is
associated with a healthier lipid profile (lower LDL cholesterol,

triglycerides, and a reduced total cholesterol/HDL ratio), decreased
lipotoxicity, and improved insulin sensitivity (H). Olive oil, a key

component of MD, has antioxidant, anti-inflammatory, and
antithrombotic properties, which help improve steatosis and reduce

cardiovascular risk (H).

[79–85]

Omega-3 and -6 PUFAs are essential fatty acids obtained solely
through diet. Increasing intake of Omega-3 PUFAs (found in chia and
flax seeds, walnuts, salmon, and dietary supplements) lowers hepatic

triglyceride levels, reduces hepatic steatosis, and enhances insulin
sensitivity (H). They have anti-inflammatory and anti-fibrotic

properties.

[86–95]

Increased intake of Omega-6 PUFAs (found in vegetable oils) is linked
to a higher risk of CVD, cancer, inflammation, and autoimmune

diseases. Omega-6 PUFAs are associated with inflammation if their
ratio to Omega-3 is high.

[86–95]

Fats

Increased intake of trans-fats (found in baked and refrigerated foods)
has a pro-oxidative effect, leading to increased insulin resistance,

obesity, and systemic inflammation, and is associated with an
increased risk of developing MASLD in animal studies (A). Human

evidence is limited. Clinical Guidance supports strict avoidance.

[68,96–100]

Carbohydrates are the most abundant macronutrients and can be
classified as simple or complex. The dietary source of carbohydrates
plays a crucial role in determining its effect on patients with MASLD.
Simple carbohydrates (found in sugar-sweetened beverages) pose a

high-risk factor for MASLD patients (H).

[67,102]

Refined and added carbohydrates lead to an increase in glycemic load,
causing hyperinsulinemia, insulin resistance, increased DNL, visceral
adiposity, and hepatic fat. Observational and interventional studies

show strong links with MASLD prevalence and progression.

[102–107,113–118]

RCTs and cohort studies have linked fructose intake to steatosis,
MASH, and fibrosis progression, and higher serum fructose levels

have been correlated with MASLD risk.
[108–118]

Carbohydrates

Lack of dietary fiber (a type of carbohydrate) in the diet has been
linked to MASLD. Prebiotic fibers and non-digestible carbohydrates

(e.g., resistant starch) modulate gut microbiota and significantly
improve serum AST, ALT, insulin, and IHTG levels, while also

reducing inflammation (H). A protective association has been observed
between reduced steatosis and metabolic risk in cohort and dietary

intervention studies.

[105–
107,119,120,127]
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Table 2. Cont.

Summary of Current Nutritional Data in MASLD
H = Human, A = Animal

Excessive consumption of red meat, especially processed meat, raises the
risk of MASLD, T2DM, CVD, and death in patients by fostering insulin

resistance (H).
[129–131,300–302]

Processed meat is strongly linked to MASLD and all-cause mortality. It
is high in sodium, nitrates, and preservatives, and it worsens metabolic

and inflammatory pathways.
[129,130,300–302]Proteins

Fish, eggs, and plant-based proteins provide high-quality protein,
along with omega-3 fatty acids and choline. This leads to decreased

steatosis, as well as anti-inflammatory and antifibrotic effects.
[105,128,300,301]

MICRONUTRIENTS

Vitamin E Daily supplementation of Vitamin E (800 IU) in non-diabetic patients
improved histologic features of MASH (H). [47,48,144]

Vitamin C
Daily supplementation with a combination of Vitamin C and E (1000
mg and 1000 IU, respectively) is inversely related to the severity of

MASLD and shows improvement in fibrosis scores (H).
[152]

Vitamin D
Vitamin D supplementation may exert antifibrotic, anti-inflammatory
effects (H). Vitamin D deficiency is associated with increased IR and

may predispose to MASLD (H).
[156,160,161]

Vitamin A Vitamin A deficiency in patients with MASLD may be associated with
the progression of MASLD (H). [169]

Vitamin B3 Vitamin B3 reduced IHTG (H). Niacin treatment showed improvement
in TGs, VLDL, and insulin sensitivity (H). [174,179]

Vitamin B6 Vitamin B6 supplementation (90 mg daily) significantly ameliorated
hepatic fat accumulation (HFA). [182]

Vitamin B9
Vitamin B9 deficiency was considered an independent risk factor in

MASLD (A). Folate supplementation ameliorates hepatic steatosis and
reduces pro-inflammatory cytokines (A).

[187,188]

Vitamin B12 Low levels of vitamin B12 are associated with increased severity of
MASH (H). [188]

Calcium and
Phosphorus

High serum calcium and phosphorus levels may be associated with
MASLD (H). [194]

Magnesium A high intake of magnesium may be associated with a reduced risk of
MASLD (H). [195]

Zinc and Selenium In animal studies, zinc and selenium supplementation improved
serum AST, ALT, triglycerides, and total cholesterol in MASLD (A). [196]

Iron Iron was associated with worsening steatohepatitis in animal
models (A). [197]

HERBAL SUPPLEMENTS

Milk Thistle
Silymarin (milk thistle plant extract) has been shown to have

antioxidant, anti-inflammatory, and antifibrotic effects (H). It reduces
oxidative damage, hepatic steatosis, and IR in MASLD (H).

[199,200,203,205]

Turmeric

Curcumin, an active ingredient of turmeric, has anti-inflammatory (H)
and antioxidant properties (A). It has been shown to reduce IR in mice

(A). This active ingredient significantly reduces ALT, AST, total
cholesterol, LDL, fasting blood glucose, and insulin resistance (H).

[206,207,211–213]

Garlic

In animal studies, SAMC (active ingredient) has been linked to
alleviating inflammation and insulin resistance (A). In human studies,
garlic supplementation has been associated with improved levels of
ALT, AST, total cholesterol, LDL cholesterol, TG, and fasting blood

glucose (H).

[214–217]
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Table 2. Cont.

Summary of Current Nutritional Data in MASLD
H = Human, A = Animal

HERBAL SUPPLEMENTS
Basil, Lavender,

Peppermint, Sage,
Oregano, and

Rosemary

Ursolic acid (found in rosemary, peppermint, basil, lavender, and
oregano) and carnosic acid (found in rosemary) have

anti-inflammatory, antioxidant, and anti-apoptotic effects in animal
studies (A).

[218,220]

Ginger

In animal studies, ginger has been associated with anti-lipogenic,
anti-inflammatory, and antioxidant properties (A). In human trials,

ginger supplementation has been shown to significantly improve ALT,
AST, total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides,

insulin resistance, and hepatic steatosis (H).

[221–223]

Gingko Biloba Ginkgo Biloba reduces oxidative stress and improves liver enzymes,
hepatic steatosis, inflammation, and IR, as seen in animal studies (A). [224–226]

Ginseng
Ginseng has been shown to improve liver enzyme function, thereby

preventing hepatic inflammation, fibrosis, and steatosis in MASLD, as
observed in animal studies (A).

[227–229]

Licorice Chamomile and red clover may have hepatoprotective effects (A).
Licorice is associated with improved IR and ALT levels (H). [230,231]

Plantago major
Daily supplementation with 2 g of Plantago major seeds resulted in a
substantial reduction in serum levels of ALT, TGs, and LDL, as well as

alleviation of hepatic steatosis, compared to the placebo (H).
[233]

Berberine

Berberine (BBR) is an isoquinolone found in various medicinal plants;
BBR improves intestinal barrier function and reduces inflammation

caused by gut microbiota-derived LPS in metabolic diseases. This may
improve glucose and lipid metabolism (H) (A). It has improved weight,

HOMA-IR, AST, ALT, GGT, total cholesterol and LDL (H).

[234–236]

OTHERS

Probiotics
Yogurt may improve IR, ALT, and hepatic fat in patients with MASLD.
Probiotic/symbiotic use in MASLD may enhance liver steatosis, AST,

ALT, endotoxins, and IR (H).
[241–244]

Caffeine
A Moderate amount of caffeine-containing coffee consumption (2–3

cups/day) decreased the severity of hepatic fibrosis and was
associated with reduced risk of advanced liver fibrosis in MASLD (H).

[250–252]

Green tea Daily supplementation with green tea extract may improve liver
enzymes in patients with MASLD. [255]

Low-calorie
Sweeteners

The American Heart Association (AHA) and the American Diabetes
Association (ADA) recommend reducing the consumption of
sweeteners due to their adverse effects on body weight and

cardiometabolic risk factors (H).

[260]

Resveratrol in red wine has been shown to reduce oxidative stress,
liver fat accumulation, and inflammation, as seen in animal

models (A).
[261,262]

Some randomized controlled trials examining the effect of daily
resveratrol supplements indicated improvements in AST, ALT, and

insulin resistance (H).
[263,264]Resveratrol

Although it is associated with some improvement in inflammatory
markers, it does not impact the overall management of MASLD (H). [268]

Choline Choline-deficient diets lead to intestinal dysbiosis and may be linked
to MASH (H). [270,271]

Fish oil
Daily fish oil supplementation (3 capsules each containing 0.315 g of

omega-3 PUFAs) improved lipid profile, the function of liver enzymes,
and steatosis (H).

[272]
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Table 2. Cont.

Summary of Current Nutritional Data in MASLD
H = Human, A = Animal

OTHERS

Co-enzyme Q10 Co-enzyme Q10 daily supplementation (100 mg) is associated with
reduced AST, GGT levels (H). [276]

Heavy alcohol use (4 standard drinks/day or greater than 14
drinks/week in men or greater than three drinks/day or seven

drinks/week in women as defined by NIAAA) is not recommended in
patients with MASLD.

http://
rethinkingdrinking.
niaaa.nih.gov/How-
much-is-too-much
(accessed on 29 July

2025)
Alcohol

Substantial evidence is not available to safely recommend light to
moderate alcohol use in MASLD patients (H). [277]

Cannabinoids A notably lower prevalence of MASLD is reported among cannabis
users, but more research is needed to confirm this effect (H). [292,293]

Tobacco
Although a direct relationship between tobacco use and MASLD has

not been found, it is considered a significant risk factor for HCC, CVD
(H).

[297,298]

Abbreviations: ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; HbA1C:
hemoglobin A1c; HDL: high-density lipoprotein; IHTG: intrahepatic triglycerides; IR: insulin resistance; LDL:
low-density lipoprotein; MUFA: Monounsaturated fatty acid; MASLD: metabolic dysfunction-associated steatotic
liver disease; MASH: non-alcoholic steatohepatitis; NIAAA: National Institute on Alcohol Abuse and Alcoholism;
PUFA: polyunsaturated fatty acid; SAMC: S-ally mercaptocysteine; SFA: saturated fatty acid; TG: triglycerides;
T2DM: type 2 diabetes mellitus; VLDL: very low-density lipoprotein.

6. Role of Various Dietary Patterns
Dietary patterns define a plan that involves consuming specific macro- and micronu-

trients while avoiding others. We have discussed the most relevant nutritional practices
commonly used to promote weight loss and address various aspects of metabolic syndrome.

6.1. Mediterranean Diet

People in the Mediterranean region eat a diet rich in plant-based foods that are high
in antioxidants and anti-inflammatory properties. Mediterranean dietary patterns and
lifestyles have been followed for centuries [303]. In traditional MD, a healthy diet includes
high MUFA-rich olive oil, moderate intake of nuts, fruits, legumes, vegetables, fish, and
wine, and low intake of processed meat, sugar, and dairy products. In MD, about 40%
of calories come from fats, mainly MUFAs and omega-3 PUFAs. The MD has a lower
omega-6:omega-3 ratio, which is linked to a healthier lipid profile and improved insulin
sensitivity [89,304]. Carbohydrate intake in MD provides 40% fewer calories than the
50–60% found in a typical low-fat diet (~60% of calories). Therefore, the EASL-EASD-EASO
Clinical Practice Guidelines recommend that the Mediterranean Diet (MD) is a beneficial
dietary pattern for patients with MASLD [48]. The MD also lowers the risk of CVD [305]
and T2DM [306], and improves overall metabolic health [307,308]. Similar results were
supported by an RCT, which demonstrated that the MD was associated with improved
LDL cholesterol levels and HbA1c [309].

PREDIMED reports indicated that the overall risk of T2DM can be reduced even
without calorie restriction [307]. A detailed meta-analysis showed that the MD benefits the
incidence of total CVD and myocardial infarction in individuals with T2DM. Additionally,
it revealed that the cohort adhering to the MD exhibited the lowest correlation with overall
CVD mortality [310].

A key principle of the MD is to reduce processed, high-sugar foods containing AGEs.
AGEs can cause insulin resistance (IR), which may lead to T2DM and other metabolic
syndrome conditions, such as high blood pressure and abnormal cholesterol or triglyceride

http://rethinkingdrinking.niaaa.nih.gov/How-much-is-too-much
http://rethinkingdrinking.niaaa.nih.gov/How-much-is-too-much
http://rethinkingdrinking.niaaa.nih.gov/How-much-is-too-much
http://rethinkingdrinking.niaaa.nih.gov/How-much-is-too-much
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levels [311]. Consistently following the MD also slightly decreases IR, lowers the chance of
progressing to advanced liver disease in MASLD patients, and reduces the risk of severe
steatosis and steatohepatitis [312]. A prospective randomized trial using nutritional inter-
vention based on the MD found that patients with high adherence to the MD experienced
reductions in waist circumference, BMI, and intrahepatic fat content compared to those
with low adherence [313]. Studies have shown that the MD is associated with notable
improvements in hepatic steatosis [304,314–316], insulin sensitivity, liver enzyme profiles,
weight loss, and reductions in BMI [304,314].

An RCT assessed the impact of MD (MD group or MDG) or Mediterranean lifestyle
(MLG—which includes increased vigorous exercise along with MD) on weight loss in
patients with MASLD. Both MDG and MLG showed more significant weight loss compared
to the control group. Furthermore, MLG exhibited notable improvements in liver enzyme
function and liver stiffness, suggesting that combining additional lifestyle modifications
with MD may offer greater overall health benefits for patients with MASLD [317]. Another
RCT found that combining MD with an intensive weight loss lifestyle intervention led to
greater reductions in triglycerides (TG), fasting glucose levels, and BMI compared to MD
alone [318]. In a different RCT, where participants followed both MD and a low-fat diet,
results indicated that combining these diets alleviated hepatic steatosis to a similar extent
as MDG. However, serum levels of total cholesterol, TGs, HbA1C, and the Framingham
risk score were more favorable in the MDG group, reducing all-cause mortality, CVD, type
2 diabetes, cancer, and obesity [314,319]. Researchers have also explored modifications
to the MD, such as the green Mediterranean diet (green MD). This variation emphasizes
increased intake of green plant-based proteins and polyphenols, found in Mankai, green
tea, and walnuts, along with reduced consumption of processed or red meat. The green MD
achieved a twice as high intrahepatic fat loss compared to the average MD in an RCT [320].

Overall, MD has strong evidence indicating improvements in insulin resistance (IR),
metabolic syndrome, hepatic steatosis, and anthropometric measures such as BMI. It is
likely to have a positive influence on cardiovascular risk factors. However, there is no
substantial evidence supporting the idea that it improves the histologic features of MASH,
which is a key predictor of liver-related mortality.

6.2. Diet Approach to Stop Hypertension Diet

The DASH (Diet Approach to Stop Hypertension) is a diet low in saturated fats, trans
fats, and added sugars, but rich in fruits, vegetables, and low-fat dairy products [321].
A case–control study examined the link between following the DASH diet and the risk
of metabolic dysfunction-associated liver disease (MASLD). The results indicated that
patients who followed the DASH diet had a 30% lower risk of MASLD [322]. Likewise, a
cross-sectional study found an inverse association between DASH adherence and MASLD.
Participants with the highest compliance to DASH showed a lower risk of MASLD [323].
An RCT conducted among overweight and obese patients with MASLD showed that
following the DASH diet had beneficial effects on weight, BMI, liver enzymes, triglycerides,
markers of insulin metabolism, and inflammatory markers [324,325]. A calorie-controlled
DASH diet results in greater weight loss in overweight and obese adults compared to
low-calorie diets. The DASH diet is similar to the Mediterranean (MD) diet. However,
there is no evidence that the DASH diet improves fibrosis.

6.3. Low-Carbohydrate Diet

A low-carbohydrate diet has been used as a weight-loss strategy since the early 20th
century. Such a diet reduces the total daily carbohydrate intake. The low-carbohydrate
diet is classified into four groups: (i) Very low-carbohydrate diet (VLCD, less than 10%
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carbohydrates, or 20–50 g per day), (ii) Low-carbohydrate diet (LCD, 26% carbohydrates
or less than 130 g per day), (iii) Moderate-carbohydrate diet (MCD, 44% carbohydrates or
200 g per day), and (iv) High-carbohydrate diet (HCD, more than 44% carbohydrates) [326].
Some VLCDs, like Atkins’ diet, restrict carbohydrate intake to less than 20 g per day while
allowing sufficient fat and protein consumption [327]. When carbohydrate intake is below
50 g, ketosis occurs due to glycogenolysis.

The exact mechanism of an LCD remains unclear. However, it is proposed that this
approach relies on the carbohydrate-insulin model [328–330], which suggests that reducing
insulin levels improves cardiometabolic health and aids in weight loss [329].

A study evaluated the effects of carbohydrate restriction by comparing a combination of
low-fat plus HCD with LCD. An LCD resulted in more weight loss than a conventional diet,
but this difference was not significant after one year [331]. An RCT with 609 participants
compared the effects of a healthy low-fat diet and a healthy low-carbohydrate diet, finding
that the low-carbohydrate group lost more weight than the low-fat group. However, this
difference was not statistically significant [332]. Another study showed similar results,
indicating that a prolonged hypocaloric LCD had the same effect on reducing intrahepatic
lipid accumulation as a low-fat hypocaloric diet [333]. One limitation of this diet is that
people on VLCD, high-fat, and high-protein diets (e.g., the Atkins diet) often cannot stick to
it for a long time [334].

Low-carbohydrate diets, primarily composed of animal-based protein and fat, such
as lamb, beef, pork, and chicken, have been linked to higher mortality rates. In contrast,
diets high in plant-based protein and fat, such as nuts, vegetables, and whole grains, are
associated with lower mortality, suggesting that the food source significantly influences the
relationship between carbohydrate intake and mortality [335].

It is essential to acknowledge the various side effects associated with LCD and VLCD.
Several meta-analyses have shown that carbohydrate intake of less than 40% may increase
the risk of mortality [335,336]. However, a similar risk has been observed with high
carbohydrate intake [337]. According to the Institute of Medicine, Americans are advised
to consume 45 to 65% of their calories from carbohydrates [326].

6.4. Ketogenic Diet

Humans have evolved to develop metabolic flexibility and the ability to utilize alterna-
tive energy sources, such as those beyond exogenous glucose, for optimal function. Instead
of relying solely on glucose metabolism, the body activates a metabolic pathway called
ketogenesis, which produces ketones from fat in the liver [338]. This pathway, involving the
production of ketone bodies, is triggered after glycogen stores are depleted during fasting,
low-carbohydrate intake, intense exercise, or starvation. Nutritional ketosis can also be
induced by a ketogenic diet, which restricts carbohydrate intake. This diet deliberately
increases ketone production, reduces insulin release, and stabilizes blood sugar levels [338].
The goal of this process is to minimize the harmful anabolic effects of insulin. A ketogenic
diet typically consists of 5–10% carbohydrates (<20–50 g/day), protein (1–1.5 g/kg/day),
and fats until satiety. In the early 1900s, a ketogenic diet was developed to treat seizure
disorders [339]. By the 1960s, very low-carbohydrate ketogenic diets (VLCKD) became
a standard approach for obesity treatment. The primary purpose of a ketogenic diet is
to induce ketosis and stabilize insulin levels, as unstable insulin can disrupt metabolic
pathways and lead to insulin resistance [340,341].

The significant changes in lipid biomarkers showed a clear reduction in plasma TG
levels and total cholesterol, along with increased HDL levels [339,342]. VLCKD also
significantly lowered HbA1C, which indicates overall glycemic control [343,344]. The
VLCKD has been effective in achieving long-term reductions in body weight, TGs, and
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diastolic blood pressure, but was not effective in improving HDL and LDL cholesterol
levels compared to a low-fat diet [345].

A study comparing the effectiveness of VLCKD to a standard low-calorie diet found
that patients in the VLCKD group experienced greater weight loss, along with significant
reductions in visceral adipose tissue and liver fat fraction, compared to those on the
standard low-calorie diet [346]. According to another study, a low-carbohydrate, ketogenic
diet (hypocaloric) resulted in a more rapid reduction of liver fat and metabolic abnormalities
compared to a standard diet [347]. Dysregulated lipid metabolism caused by mitochondrial
dysfunction is linked to increased inflammation and oxidative stress, which can lead to
hepatocyte death and the progression of MASLD. The ketogenic diet has been shown to
reduce oxidative stress and enhance mitochondrial function [348]. A pilot study testing
the effects of a low-carbohydrate, ketogenic diet in five patients found it caused significant
biopsy-proven histological improvements in MASLD [349]. However, current studies are
inconclusive due to small sample sizes and short follow-up periods. Given this limited
evidence, it is still difficult to recommend a ketogenic diet as a beneficial treatment for
patients with MASLD.

6.5. Low-Fat Diet

Consuming less than 30% or 20% of total daily calories from fat sources is considered
a low-fat diet (LFD) or a very low-fat diet (VLFD), respectively [350]. Several studies have
compared LCD with LFD to assess their effects on patients with MASLD. In a clinical trial,
the Diet Intervention Examining the Factors Interacting with Treatment Success (DIETFITS),
found that LCD and LFD were equally effective for weight loss [332]. However, a meta-
analysis of 53 randomized clinical trials indicated that the long-term impact of LCD on
weight loss was slightly greater than that of LFD [351]. Conversely, a systematic review of
15 clinical trials demonstrated that LFD was highly effective in reducing liver enzymes [352].
Both diets have similar effects on features of metabolic syndromes, such as weight loss and
reductions in HbA1C [353]. While this evidence suggests that significant weight loss can be
achieved with both LCD and LFD, there is insufficient data to determine which is superior.
Additionally, there is insufficient evidence to support their effectiveness in MASLD. A
meta-analysis evaluating the effect of LCD (<50% of total energy from carbohydrates)
showed that LCD reduced intrahepatic lipid content by approximately 11.52% in patients
with MASLD [354]. Ad libitum LFD decreased intrahepatic triglyceride content by 25%,
regardless of weight loss in adults [314]. When comparing these diets and their effects on
MASLD, data indicate that neither effectively reduces hepatic fat content nor improves
aminotransferases in MASLD patients.

6.6. Intermittent Fasting

Intermittent fasting (IF) is a new dietary approach that involves scheduled periods
of eating and fasting (calorie restriction), with complete or low-energy intake at regular
intervals [355]. According to a systematic review and meta-analysis, intermittent calorie
restriction is comparable to continuous calorie restriction for short-term weight loss in
overweight and obese adults [356]. A prospective observational study found that the safety
and effectiveness of periodic fasting led to a rapid and significant improvement in the fatty
liver index (the primary endpoint) in patients with or without type 2 diabetes mellitus
(T2DM) [357]. A systematic review and meta-analysis indicated that IF effectively reduces
BMI, body weight, fat mass, and total cholesterol in overweight adults [358]. Another
systematic review of fourteen studies, along with a meta-analysis of ten studies focusing on
individuals with MASLD, showed notable improvements in factors such as body weight,
waist-to-hip ratio, BMI, serum AST, serum ALT, and hepatic steatosis following fasting
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interventions [359]. A randomized controlled trial demonstrated that combining alternate-
day fasting with moderate-intensity aerobic exercise resulted in significant reductions in
body weight, waist circumference, ALT levels, and increased insulin sensitivity. These
improvements were not observed in the exercise-only group, highlighting the role of inter-
mittent fasting in achieving these benefits [360]. IF triggers a metabolic pathway that shifts
lipid and cholesterol synthesis and fat storage mechanisms toward fat mobilization through
fatty acid oxidation and ketone production. These processes help optimize physiological
functions, slow aging, and prevent disease progression [361]. A major challenge with IF
is maintaining long-term adherence to this dietary pattern. A clinical study evaluated
the effectiveness and adherence of 8 weeks of modified alternate-day calorie restriction
(MACR). In control subjects, implementing MACR showed lower MASLD activity com-
pared to usual diets, with reasonable adherence rates [362]. The positive effects of IF are
significantly enhanced when combined with aerobic exercise, leading to reductions in body
weight, fat content, waist circumference, ALT, and an increase in insulin sensitivity [360].
By promoting weight loss, IF can potentially have a beneficial impact on MASLD.

 

 

 

 

 

 

 

 

 

Key Summary 
• MD is consistently the most beneficial; it reduces hepatic steatosis, insulin resistance, BMI, and CVD risk, 

with additional benefits in T2DM. The green MD variant results in greater intrahepatic fat reduction. 
• The DASH diet is linked to lower MASLD risk and improvements in weight, BMI, liver enzymes, triglycer-

ides, insulin sensitivity, and inflammation. 
• LCKD promotes weight loss, improves triglycerides, glycemic control, and liver fat; long-term adherence is 

often challenging. 
• LFD can decrease IHTG and liver enzymes; overall effectiveness is similar to LCD. 
• Intermittent fasting (IF) enhances weight, BMI, liver enzymes, steatosis, and insulin sensitivity; effects are 

amplified when combined with exercise. 
 

Current evidence shows that the Mediterranean and DASH diets are both strongly linked to a lower prevalence and severity 
of MASLD, reductions in hepatic steatosis, improved liver enzymes, and better cardiovascular risk profiles. Low-carbohy-
drate, low-fat, and intermittent fasting approaches also offer metabolic and hepatic benefits, but results are less consistent, 
and maintaining long-term adherence is difficult. High variability in dietary patterns and definitions across studies limits 
meta-analyses and highlights the need for more rigorous clinical trials. 

7. Role of Physical Activity and Exercise
Regular physical activity is a fundamental part of MASLD management. Physical

inactivity is an independent predictor of MASLD, whereas exercise provides hepatic and
metabolic benefits beyond just weight loss [363]. A recent cross-sectional NHANES study
(2017–2018) found a prevalence of sarcopenia of 11.7% in MASLD patients compared to 3.8%
in those without MASLD. Importantly, individuals with sarcopenia who also had lower
physical activity levels faced a 7.91-fold higher risk of significant fibrosis, highlighting
exercise’s role in reducing muscle loss and fibrosis risk [364]. Sarcopenia, common in
MASLD, worsens disease progression and increases fibrosis risk. The importance of
skeletal muscle health is increasingly acknowledged. Beyond these effects, exercise exerts
multi-system benefits, which are detailed below and summarized in Figure 2.
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Figure 2. Adipose Tissues: A sedentary lifestyle and a high-calorie diet cause adipocyte enlargement,
which induces oxidative and ER stress, increases lipolysis, and leads to the spillage of FFA into the
circulation, resulting in cell death and inflammation in adipose tissue. Exercise, especially aerobic
exercise, reduces adipocyte size and mass, increases adiponectin, and decreases leptin, thereby lower-
ing systemic inflammation associated with metabolism. Exercise also promotes the initiation of WAT
and elevates protein uncoupling, leading to thermogenesis and greater energy expenditure. Skeletal
Muscles: Exercise enhances capillary density, mitochondrial function, and oxygen consumption
capacity in skeletal muscles by upregulating PPAR-γ and PGC1-α. It increases glucose uptake via
the GLUT-4 transporter, improving insulin sensitivity and boosting fatty acid uptake, oxidation,
and storage. Additionally, exercise enhances glycogen storage in muscles and influences myokines
such as irisin and myostatin. Irisin release is stimulated by exercise, promoting WAT formation and
upregulating PPAR-γ and FGF-21, which exert a direct anti-steatogenic effect on the liver. Conversely,
exercise reduces myostatin release, which has pro-fibrogenic effects through direct action on HSCs.
Liver: Exercise decreases SREBP-1c levels, reducing de novo lipogenesis, while increasing PPAR-γ
expression, which enhances hepatic mitochondrial fatty acid oxidation and reduces oxidative stress
by activating antioxidant defenses and increasing enzyme activity, such as catalase, superoxide
dismutase, and glutathione peroxidase. Exercise also exerts anti-inflammatory effects on the liver by
inhibiting the release of pro-inflammatory cytokines. It promotes hepatoprotective autophagy and
slows the progression of steatosis to steatohepatitis, fibrosis, and cancer. Gut Microbiota: Exercise di-
versifies gut microbiota by balancing the growth of Bacteroidetes, Euryarchaeota, and Actinobacteria.
It also helps preserve the intestinal barrier and maintain bile acid homeostasis. Abbreviations: BA:
bile acid; ER: endoplasmic reticulum stress; FFA: free fatty acids; FGF-21: fibroblast growth factor 21;
GLUT-4: glucose transporter type 4; HSC: hepatic stellate cells; IR: insulin resistance; OS: oxidative
stress; PGC1-α: peroxisome proliferator-activated receptor gamma coactivator 1 alpha; PPAR-γ:
peroxisome proliferator-activated receptor gamma; SREBP-1c: sterol regulatory element-binding
protein 1c; VAT: visceral adipose tissue; WAT: white adipose tissue.
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Exercise reduces liver fat and improves metabolic markers through various mech-
anisms, such as enhanced insulin sensitivity, adipose tissue remodeling, better muscle
metabolism, altered hepatokine signaling, improved mitochondrial function, and decreased
inflammation. Aerobic, resistance, or combined exercise types consistently improve hep-
atic steatosis and cardiometabolic health, supporting guidelines that recommend 150–300
min of moderate-intensity activity or 75–150 min of vigorous activity weekly. Resistance
training is particularly helpful for fighting sarcopenia, frailty, and age-related muscle loss
common in advanced disease [365].

Large cohort and prospective studies confirm that exercising more than five times a
week significantly reduces the risk of hepatic steatosis and promotes resolution, indepen-
dent of weight loss [366]. Physical activity shows an inverse, dose-dependent relationship
with MASLD severity, cardiovascular risk, and mortality [367–372]. Emerging evidence
suggests that even concentrated exercise patterns, such as the ‘Weekend Warrior’ approach
involving one or two sessions per week, provide similar protection against MASLD and
mortality [373]. Conversely, sedentary behavior is a strong risk factor for MASLD and
all-cause mortality [369,374–377].

Mechanistic studies indicate that exercise reduces hepatic inflammation by inhibiting
the MD 2-TLR 4 pathway and slows MASH progression by decreasing hepatic monocyte-
derived inflammatory macrophages and bone marrow precursor cells [378–380]. Systemic
effects include reduced adipocyte size, increased adiponectin levels, improved skeletal mus-
cle mitochondrial function and glucose uptake, enhanced secretion of beneficial myokines
(e.g., irisin), and better gut microbiota diversity and barrier integrity. These systemic
adaptations highlight why exercise is both therapeutic and preventive across the MASLD
spectrum, reinforcing the need to incorporate it into daily routines.

However, reports indicate that most patients with MASLD do not meet these exercise
recommendations [363,381], engaging in less moderate to vigorous exercise than their
healthy counterparts [382]. Exercise intensity significantly influences the reduction of CVD
and metabolic disease risk [383]. Vigorous activities can substantially lower CVD risk and
decrease overall body fat, visceral fat, and blood pressure in MASLD patients [370–372].
Physical activity has been shown to significantly reduce postprandial triglyceride levels
and improve post-meal fat oxidation [384]. Patients are encouraged to create a structured
exercise routine and stick to it strictly to fight MASLD. The FITT Principle (Frequency,
Intensity, Type, Time) offers a practical framework to tailor individual exercise plans and
enhance adherence. Supervision and structured support improve outcomes, although
excessive intensity may lead to higher dropout rates.

Aerobic and resistance exercises lower the risk of hepatic steatosis in patients with
MASLD. Combining both types of exercise is the most effective way to improve weight,
waist circumference, triglycerides, cholesterol, glucose, and insulin levels [385]. How-
ever, resistance exercises have significantly lower exercise intensity and energy consump-
tion [386]. Therefore, they are recommended for patients who are unable to participate in
vigorous aerobic exercises. While both exercise types offer benefits, it is wise to encourage
patients to start with any form they can consistently do on a daily basis.

7.1. Aerobic Exercise

Aerobic exercise (AE), defined as activity that requires increased oxygen consumption
compared to rest, improves blood flow, reduces hepatic steatosis, and enhances metabolic
health in MASLD [381]. Clinical studies demonstrate that AE can decrease fatty acid synthe-
sis and liver fat content by 2–50%, thereby helping to alleviate hepatic steatosis [387–389], a
finding that is notably independent of weight loss [390]. These benefits extend to modest
reductions in aminotransferases [388], improved insulin resistance (IR), better lipid profiles,
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and help preserve muscle mass [391]. A meta-analysis of 11 randomized controlled trials
(RCTs) evaluating AE’s effects on MASLD showed a significant reduction in triglycerides
(TGs), low-density lipoprotein (LDL), and an increase in high-density lipoprotein (HDL).
It also found reductions in AST and ALT levels [392]. A clinical trial found that 12 weeks
of aerobic training reduced fibrosis and hepatocyte ballooning by one stage in 58% of
patients [393]. Even relatively modest regimens, such as 135 min per week of moderate
aerobic activity, have been shown to reduce hepatic fat in MASLD.

At the cellular level, AE has been shown to decrease oxidative stress and reduce
inflammation by releasing anti-inflammatory cytokines [394]. It enhances cardiorespiratory
fitness, thereby lowering CVD risk and benefiting MASLD patients, who experience lower
mortality [395]. Moderate to vigorous exercise for 150 min per week has been studied
in the general population to evaluate its benefits in reducing hepatic steatosis or allevi-
ating steatosis. It was found to be effective regardless of weight loss in patients with
MASLD [371].

7.2. High-Intensity Interval Training

High-Intensity Interval Training (HIIT) is a structured form of aerobic exercise that
involves short bursts of high-intensity activity followed by brief recovery periods to in-
crease calorie burning. This method aims to fit intense workouts into a short amount of
time [396,397]. While HIIT can be challenging to perform, it allows for rapid calorie burn-
ing, muscle building, and weight loss. It also enhances cardiorespiratory fitness in a short
period more effectively than other exercises performed for longer durations [398]. This
intense exercise, characterized by short spurts, has been shown to improve hepatic steatosis
and cardiac function in MASLD patients [39]. However, high-intensity exercises do not
significantly reduce hepatic steatosis compared to moderate-intensity exercises [370,399].

However, vigorous-intensity exercises substantially boost aerobic fitness [400] and
decrease CVD risk in patients with MASLD [370,372]. It has also been shown to lead to a
greater reduction in postprandial TG and an increase in postprandial fat oxidation, which
reduces the risk of CVD and insulin resistance [384,401].

7.3. Resistance Exercise

Resistance exercise (RE), which involves repeated muscle contraction against a load,
enhances muscle strength, metabolic function, and skeletal health. RE modestly reduces
hepatic steatosis [402], improves glycemic control and HbA1C in patients with T2DM [403],
and increases insulin sensitivity by promoting GLUT-4 expression in skeletal muscles [404].
It helps delay skeletal muscle loss [405], boosts lean mass [406], decreases intramuscular
lipid buildup [407,408], and improves microvascular blood flow in skeletal muscles [409].

RE can serve as an alternative exercise option for patients with limited cardiopul-
monary capacity who cannot participate in moderate to vigorous aerobic exercises [410].
RE results in greater post-exercise metabolic activity and energy expenditure [411]. A
systematic review and meta-analysis found that resistance exercises were more effective in
reducing hepatic fat content, body fat, and metabolic syndrome, along with cardiovascular
risk factors. Conversely, aerobic exercise was more effective for BMI reduction [411].

In clinical practice, combining AE and RE provides complementary benefits, leading
to optimal improvements in hepatic and metabolic outcomes. Depending on their age,
medical co-morbidities, and cardiorespiratory capacity, they should also evaluate which
type of exercise best suits the patient’s individual needs. Physical activity and exercise are
most effective for MASLD patients when a personalized and tailored approach is used,
making RE essential for maintaining lean mass and reducing frailty in sarcopenic or older
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MASLD patients. Figure 3 shows the physiological effects of different workout types, while
a subgroup analysis of exercise data in MASLD patients is presented in Table 3.

Figure 3. Physiological effects of aerobic and resistance exercises: examples.

Table 3. Exercise recommendations for MASLD patients by subgroup: Summary of exercise-related
data in MASLD.

Patient Group Recommended Modality Target Dose (Duration/Intensity) Ref.

General Adults Aerobic, Resistance, or
combined

150–300 min/week moderate
aerobic (3–6 METs) OR 75–150 min

vigorous (>6 METs); 2–3 RE
sessions/week; Recommended

activities include walking, cycling,
jogging, swimming

[365,412]

Sarcopenia/Muscle loss Resistance ± Aerobic 2–3 RE sessions/ week (50–75%
1RM) [364]

Older adults Walking/treadmill,
low-moderate aerobic

~180 min/week (30 min/day ×
6 days) [413]

Women Moderate aerobic, lifestyle
activities ≥150 min/week [414]

Adolescents/Youth HIIT, aerobic sports ≥3 sessions/week [415,416]
Advanced

fibrosis/comorbidities Aerobic ± RE (Supervised) Individualized (≤moderate) [417–419]

“Weekend Warrior” Any 1–2 longer weekly sessions [373]
Abbreviations: METs: Metabolic equivalents of task; RE: resistance exercise; 1RM: one-repetition maximum.
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Key Summary 
• Physical inactivity is an independent predictor of MASLD progression, while regular exercise provides hepato-

metabolic benefits beyond weight loss. 
• Aerobic exercise (150-300 minutes of moderate or 75-150 minutes of vigorous activity weekly) improves lipid 

profiles and aminotransferases, and reduces liver fat, cardiovascular disease (CVD), and all-cause mortality. 
• HIIT is efficient in time and enhances cardiorespiratory fitness, though its effect on steatosis is not significantly 

better than moderate-intensity exercise. 
• Resistance training slightly reduces hepatic steatosis, improves glycemic control, counters sarcopenia, and is 

especially helpful for patients who cannot tolerate aerobic activity; combining aerobic exercise (AE) and re-
sistance exercise (RE) provides the most comprehensive benefits. 

• Despite proven benefits, most MASLD patients do not meet recommended activity levels, highlighting the need 
for tailored, sustainable exercise programs customized to age, comorbidities, and physical capacity. 
 

Regular physical activity is a key intervention for MASLD, providing significant improvements in liver fat, metabolic health, 
and cardiovascular risk, regardless of weight loss. Both aerobic and resistance training, including HIIT and moderate-intensity 
exercise, effectively reduce hepatic fat and improve liver enzymes; combining these approaches offers the greatest benefit, while 
the most suitable regimen is the one that promotes long-term adherence. Conversely, physical inactivity independently predicts 
disease progression and negative outcomes.  

8. Role of Circadian Rhythm in MASLD
Circadian rhythm disruption is increasingly recognized as a key factor in the develop-

ment of MASLD. When circadian cycles are misaligned, it disrupts neuroendocrine and
metabolic regulation, leading to liver damage. Zhang et al. demonstrated that social jetlag,
a form of circadian misalignment, disrupts prolactin rhythms and promotes the expression
of lipogenic genes, resulting in hepatic steatosis. Their research also emphasized the impor-
tance of chronopharmacology, showing that the effectiveness of drugs in MASLD depends
on the timing of administration [420]. Animal studies further indicated that circadian
disturbances could occur before visible liver changes, suggesting they could serve as early
diagnostic markers [421]. Human studies, including meta-analyses, support these findings
by linking poor sleep hygiene and circadian misalignment to increased risk of metabolic
disorders through changes in eating habits and gut microbiota imbalances [422]. Clinical
data from Schaeffer et al. show that MASLD patients often experience fragmented sleep,
with extended wakefulness during the night and reduced sleep efficiency, which worsens
features of metabolic syndrome [423]. Additionally, Jain et al. found that diet-induced
obesity alters mitochondrial composition, further disrupting circadian regulation and ex-
acerbating steatosis [424]. Altogether, these findings highlight a reciprocal relationship
between circadian rhythm and metabolic balance, making circadian alignment a promising
target for the prevention and treatment of MASLD.

9. Psychosocial Determinants
Psychological comorbidities are a vital yet often neglected factor that influences ad-

herence. Depression affects about 18% of individuals with MASLD and is independently
associated with lower quality of life, unhealthy lifestyle choices, and more severe histo-
logical features, including ballooning and fibrosis, especially in MASH. Anxiety is also
common, with a pooled rate near 37%, and may contribute to poorer quality of life and
more advanced histological problems, although these links differ by sex and disease stage.
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Stress, although less extensively studied, has been linked to metabolic dysfunction
and may independently raise the prevalence of MASLD. However, available data is limited
and varied, highlighting the need for further research [425].

These findings emphasize that effective lifestyle interventions in MASLD must en-
compass not just diet and exercise but also address psychological and social obstacles to
consistent treatment. Screening for depression, anxiety, and stress, combined with pro-
viding behavioral and psychological support, is essential for improving adherence and
sustaining long-term therapeutic benefits.

10. Barriers to Implementing Lifestyle Interventions
Changing routine dietary and lifestyle habits can be very challenging because it involves

recognizing what needs to change, making those adjustments, and maintaining the new be-
haviors over time. The first challenge in understanding MASLD is diagnosing it and grasping
the negative effects it has on health. Patients often say they receive insufficient information
and support about their diagnosis [426]. Therefore, using an empathetic approach and sim-
plifying complex information about the diagnosis and its clinical effects can help improve
understanding of the disease and its impact. Next, identifying what needs to change—such
as eating habits, inactivity, or substance use—is essential to achieving the desired outcomes.
Behavior change techniques are useful for guiding patients in deciding which aspects of their
behavior and lifestyle should be modified [427–429]. This may involve reviewing behavioral
goals, identifying barriers, and using follow-up prompts to track progress [427]. Encouraging
patients to self-monitor their daily activities and fitness routines with pedometers, smartphone
fitness apps, or by keeping an activity journal has proven effective in supporting long-term
adherence and consistency in physical activity and lifestyle changes [429].

11. Future Directions
The future of MASLD management lies in precision lifestyle medicine, where diet,

exercise, and technology work together to provide personalized care. While diet remains the
foundation, important questions still exist: which approach—Mediterranean, plant-based,
or intermittent fasting—offers the greatest benefit for specific patient groups? Nutrient-
specific effects are equally important. Fructose, saturated fats, trans fats, and alcohol
accelerate disease progression, whereas fiber, polyphenols, resistant starches, and omega-3
fatty acids provide protection. Many of these effects are mediated through microbiome-
derived metabolites that regulate fat storage, inflammation, and fibrosis. Future research
should compare nutrient-specific strategies, like fructose restriction, with broader dietary
patterns to determine which offers the most sustained hepatic and cardiometabolic benefits.

Skeletal muscle health is becoming an increasingly important focus. Myosteatosis
worsens insulin resistance, promotes steatosis, and heightens cardiovascular risk. Resis-
tance training, especially when combined with aerobic exercise, can counteract these effects
by enhancing mitochondrial function, increasing muscle mass, and improving glucose
disposal. Understanding the best type, timing, and intensity of exercise, along with how
muscle signals (myokines) influence the liver, will be essential. Targeting muscle–liver com-
munication through structured exercise may be as crucial as diet in MASLD management.
Additionally, recognizing sex-specific, age-related, and sarcopenia-related differences will
help refine exercise recommendations.

Beyond muscle, inter-organ communication involving adipose tissue, the liver, and
the gut microbiota offers new therapeutic possibilities. Microbiome profiling might al-
low for personalized use of probiotics, symbiotics, or targeted nutrition. Pharmacologic
innovations, such as GLP-1 receptor agonists, FGF21 analogs, mitochondrial enhancers,
and agents that promote adipose browning, are likely to work best when combined with
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lifestyle strategies. Multi-omics approaches, integrating genomics, epigenetics, microbiome,
and metabolomics, can help identify which patients will respond and stratify them effec-
tively. Hybrid trial designs that combine lifestyle, pharmacological, and microbiome-based
interventions could speed up the clinical application of these methods.

Technology will play a vital role in this development. Artificial intelligence can gen-
erate personalized diet and exercise plans, predict individual responses, and improve
adherence through adaptive feedback. AI-driven multi-omics integration might enable
“custom diets” tailored to each person’s genomic, metabolic, and microbial profiles. Wear-
able devices, continuous glucose monitoring, and mobile health apps can further support
self-care, especially in resource-limited or remote areas. However, issues like data privacy,
algorithm bias, and equitable access need to be addressed.

Future research should also examine factors beyond diet and exercise. Sleep quality,
circadian rhythm, and early-life exposures greatly influence metabolic health. Preventive
strategies for children, adolescents, and even during prenatal stages provide opportunities
to reduce lifetime disease risk. At the community level, tackling food insecurity, environ-
mental hazards, and health disparities is essential. Policy initiatives, community programs,
and behavioral interventions, such as motivational interviewing and family-based ap-
proaches, can foster lasting lifestyle changes.

Ultimately, MASLD research must go beyond histological endpoints. Long-term out-
comes, such as cardiometabolic risk reduction, the sustainability of interventions, and equi-
table access, should become primary goals. By integrating dietary optimization, exercise
science, microbiome research, pharmacological innovation, and AI-driven personaliza-
tion within a socioecological framework, MASLD care can move from a “one-size-fits-all”
approach to precise, scalable, and equitable solutions. Figure 4 illustrates how lifestyle
medicine can be integrated to achieve precision in MASLD.

Figure 4. Precision lifestyle medicine in MASLD. Diet, exercise, and technology form the foundation,
supported by sleep and social factors. Inter-organ communication and multi-omics profiling facilitate
patient stratification and the development of targeted treatments.
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12. Conclusions
Diet plays a crucial role in managing MASLD. Consuming excess calories, especially

from ultra-processed foods high in refined sugars and saturated fats, promotes de novo lipo-
genesis, visceral fat accumulation, and chronic inflammation, all of which lead to persistent
insulin resistance. Conversely, diets centered on whole foods, such as Mediterranean-style
eating patterns rich in fiber, polyphenols, and monounsaturated fats, improve insulin sen-
sitivity by reducing oxidative stress and promoting metabolic balance. Importantly, food
quality is just as vital as quantity, since additives and lower antioxidant intake can further
interfere with insulin signaling, and alcohol consumption can worsen liver inflammation
in these conditions.

Physical activity enhances the benefits of dietary efforts by increasing glucose uptake,
improving mitochondrial function, and strengthening the interaction between muscle and
liver metabolism—ultimately reducing insulin resistance. Aerobic exercise decreases liver
fat and systemic inflammation, providing cardiovascular benefits even without significant
weight loss. Resistance training helps maintain and rebuild lean muscle mass, improves
insulin-mediated glucose metabolism, and fights sarcopenia and muscle fat infiltration.
Combining aerobic and resistance exercises yields even greater improvements in metabolic
flexibility. Despite these benefits, maintaining lifestyle changes remains challenging. New
digital health tools—such as AI-driven meal planning, wearable devices, and behavior-
focused apps—offer personalized, scalable support to help follow targeted interventions
for insulin resistance.

Future MASLD treatments should go beyond generic advice. Strategies need to be
tailored based on individual metabolic profiles, comorbidities such as diabetes, dyslipi-
demia, sarcopenia, and genetic factors, especially PNPLA3 and TM6SF2 variants that affect
nutrient processing, fat storage, and antioxidant needs. Specific clinical frameworks are
also crucial for cases involving lean-MASLD and atypical fat distribution. Current research
faces limitations due to short study durations, lack of patient stratification, and reliance
on surrogate markers. Long-term trials examining macronutrient ratios, antioxidant sup-
plements, and combined exercise programs are essential to understand their impact on
disease remission, fibrosis progression, and cardiometabolic health outcomes. Additionally,
genotype-informed lifestyle interventions must be validated in populations at high risk of
the disease.

In summary, optimized MASLD care requires a precision medicine approach that
targets insulin resistance in the liver, fat tissue, and skeletal muscle. Improving dietary
quality, customizing exercise routines, and adding behavioral support with genetic and
digital tools are essential for reversing the underlying pro-inflammatory and insulin-
resistant processes that drive disease progression. Using mechanistic knowledge to develop
sustainable, personalized therapies will be crucial for future success.
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