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Abstract 
Alcohol and other substance use disorders (ASUDs) are complex, multifaceted, but treatable medical conditions with widespread medical, 
psychological, and societal consequences. However, treatment options remain limited, therefore the discovery and development of new 
treatments for ASUDs is critical. Glucagon-like peptide-1 receptor agonists (GLP-1RAs), currently approved for the treatment of type 2 
diabetes mellitus, obesity, and obstructive sleep apnea, have recently emerged as potential new pharmacotherapies for ASUDs. Following an 
overview of the epidemiology, biology, consequences, and treatments of ASUDs, this review provides a summary of the emerging role of 
GLP-1RAs in the treatment of ASUDs by elucidating their interactions with various neurobiological pathways involved in addiction. We also 
highlight existing gaps in research, future directions, and broader implications related to the potential use of GLP-1RAs for addiction treatment.
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Alcohol and other substance use disorders (ASUDs) represent 
chronic but treatable medical conditions that lead to several 
medical, psychological, and socioeconomic consequences. 
ASUDs are characterized by a constellation of symptoms and 
pattern of use in individuals who continue taking substances des
pite negative consequences [1]. According to the Diagnostic and 
Statistical Manual of Mental Disorders, 5th Edition (DSM-5), 
ASUDs are diagnosed based on 11 criteria (with the severity in
creasing as more criteria are met) that can be grouped into 4 cat
egories: physical dependence, risky use, social problems, and 
impaired control [1]. Diagnosis of ASUD requires at least 2 of 
the 11 symptoms listed on the criteria. In parallel, the 
International Classification of Diseases, 11th Revision, broadly 
defines “disorders due to substance use or addictive behaviors” 
as mental and behavioral disorders that stem from the use of cer
tain psychoactive substances, medications, or any “repetitive re
warding and reinforcing” behaviors [2]. In this review, the term 

ASUD is used broadly to encompass alcohol use disorder (AUD) 
along with other substance use disorders.

The term “addiction” is often used synonymously with 
ASUD, especially in moderate to severe cases, but a subtle differ
ence exists because the former refers to a nondiagnostic term 
that is used widely, including in clinical practice and research set
tings, whereas the latter is a diagnostic term that is defined by the 
previously mentioned criteria. Although the brain disease model 
of addiction is still somewhat controversial [3], there is science- 
based evidence supporting this model; this definition does not 
negate that similar to several other chronic diseases (eg, diabetes, 
obesity, hypertension), environmental factors, including psycho
social factors (eg, social support, network), play a pivotal role in 
the development and persistence of addiction [4].

The neurobiology of addiction is complex and involves 
mechanisms related to binge/intoxication, withdrawal/nega
tive effect, and preoccupation/anticipation. Multiple 
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neurotransmitters and neuromodulators are involved (eg, 
dopamine, opioid peptides, γ-aminobutyric acid [GABA], glu
tamate, serotonin, acetylcholine, and endocannabinoids) [5]. 
According to the 3-stage cycle of addiction, during the binge 
stage, there is an increase in dopamine and glutamine neuro
transmission that promotes impulsive drug-seeking behavior 
and habit formation [5]. This effect is diminished by the with
drawal stage, which facilitates release of corticotropin- 
releasing factor and dynorphin, activating the stress system, 
including hubs like the amygdala [5]. On the other hand, ex
cessive drug intake reduces executive function through dysre
gulated glutamatergic, GABAergic, and dopaminergic 
networks in the prefrontal cortex (PFC), which results in com
pulsive drug use [5]. The preoccupation/anticipation stage 
that follows increased sensitivity to substance-related cues 
alongside overactive stress and diminished reward processing, 
amplifies compulsive substance-seeking behavior [5]. For 
more comprehensive reviews of the neurobiology of addic
tion, see eg [5, 6].

Epidemiology of ASUD
According to the 2023 National Survey on Drug Use and 
Health, approximately 46.3 million adults aged 18 years 
and older and around 2.2 million adolescents aged 12 to 17 
years have ASUDs [7]. In this survey, the three most common 
substances of misuse following alcohol, are cannabis, pre
scription psychotherapeutics, and opioids. There is a higher 
prevalence among adult males and an opposite trend observed 
in adolescents with a higher prevalence among females. It is 
also worth noting that there was an increase in the ASUD 
prevalence among female adolescents and a decrease among 
male adolescents from 2022 to 2023 [7].

Specific to AUD, 28.1 million adults aged 18 years and older 
and 757 000 adolescents aged 12 to 17 years had AUD in 2023 
[7]. These are alarming statistics, especially given the increase 
of approximately 4000 cases from the prior year [7]. The 
World Health Organization reported that in 2019, an estimated 
400 million people were diagnosed with AUD globally and 2.6 
million deaths were attributed to alcohol consumption [8].

The negative consequences of ASUDs impact individual, 
family, community, and societal health at large. For example, 
alcohol has been shown to be the most harmful drug, consid
ering consequences that extend beyond the individual (eg, re
lated car accidents, gun and domestic violence) [9]. An 
observational study that investigated the prevalence of emer
gency department visits and hospitalizations of adults with 
ASUDs showed that rising addiction rates negatively impacts 
both safety net and non-safety net hospital settings [10]. The 
rise in hospitalization rates in both types of hospitals suggests 
a wider public health crisis because of the rise in ASUD rates.

Despite the high prevalence and consequences of ASUDs, 
less than one quarter of people with ASUD received treatment 
in 2023 [7], with less than 2% receiving pharmacotherapy for 
AUD [11]. From a clinical perspective, patients seeking care 
from endocrinologists or other clinicians may not recognize 
that their symptoms stem from an underlying ASUD [12]. 
Therefore, it is important for clinicians from all specialties 
to understand the harmful effects of ASUDs and be familiar 
with evidence-based treatment options.

A particularly concerning medical problem relates to ASUD 
in adolescents, given that consequences of early substance use 
results in poor long-term health outcomes [8]. This age group 

is highly susceptible to ASUD. One study showed the risk of 
initiation of drug use peaks around age 18 years for cannabis 
and alcohol and age 20 years for cocaine [13]. A growing body 
of literature indicates that any level of alcohol consumption 
can have negative impacts on the body [8]. Given the highly 
alarming data, it is crucial that education efforts be imple
mented to inform parents and children from a young age 
about the negative short- and long-term consequences of alco
hol and substance misuse.

Addiction and Obesity
The World Health Organization reported that 890 million 
adults and 160 million children and adolescents aged 5 to 
19 were obese in 2022 globally [14]. Obesity is a chronic dis
ease defined by a body mass index (BMI) ≥ 30 kg/m2 [2, 14] 
mainly resulting from imbalanced energy intake and expend
iture, influenced by various psychosocial, genetic, and envir
onmental factors [14]. For example, the growing access to 
hyperpalatable and ultraprocessed food plays an important 
role in the cyclical hedonistic relationship between consump
tion of energy-dense food and development of obesity [15].

Although controversial, there is growing evidence showing 
that some forms of obesity may have phenotypic characteris
tics that resemble addiction, including neurocircuitry mecha
nisms. Pathways implicated in addiction also contribute to 
pathological overeating and obesity [16]. Several studies indi
cate that key brain regions implicated in addiction (eg, the 
ventral tegmental area [VTA], nucleus accumbens [NAc], 
the PFC, and the amygdala) also contribute to overeating 
and obesity [17]. A functional magnetic resonance imaging 
study compared people with obesity to healthy controls and 
found increased functional coupling of the bilateral VTA with 
regions of the ventral visual pathway that are specialized for 
perceiving food cues (the left and right ventral occipitotemporal 
cortex, including the fusiform and the lingual gyri), as well as 
decreased functional coupling of the bilateral VTA with the 
PFC (specifically the left inferior frontal gyrus), typically en
gaged in cognitive control [18]. This hypoconnectivity was in
versely associated with food craving. These findings likely 
reflect a stronger cue-reward association that favors food crav
ing in people with obesity and dysregulated cognitive control of 
food craving and behavior by the PFC. Elements of compulsive 
eating mirror ASUDs in that they both present with episodes of 
habitual overuse to help alleviate negative emotions despite the 
potential harmful consequences [16]. At the intersection of 
obesity and addiction lies binge eating disorder, whose 
DSM-5 criteria include uncontrolled eating larger amounts of 
food than most people would in a discrete period [19]. 
Investigating the shared neurobiological and behavioral mech
anisms underlying ASUDs and obesity may lead to the develop
ment of novel and more effective treatment strategies.

Neuroimaging evidence show that energy-dense palatable 
food can stimulate areas of the brain that are impacted by ad
dictive substances [20, 21]. Positron emission tomography im
aging studies have repeatedly shown similarities between 
changes in the dopamine receptor signaling in people with ad
diction and in those with obesity [20, 21]. Furthermore, meta
bolic biomarkers of clinical relevance in obesity medicine such 
as triglycerides have been linked to increased risk of AUD [22] 
and binge drinking [23].

Of note, medications used to treat people with ASUD often af
fect appetite and weight. Naltrexone is Food and Drug 
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Administration (FDA) approved for the treatment of AUD and 
opioid use disorder (OUD) and is also used as an antiobesity 
medication in the extended-release form when combined with 
bupropion [24]. Topiramate is used for weight loss and is also 
used off-label and endorsed by the American Psychiatric 
Association as a second-line treatment for AUD [25].

In summary, there is evidence from basic neuroscience, hu
man neuroimaging, and clinical research and practice indicat
ing mechanistic and phenotypic overlaps between ASUDs and 
obesity. That said, it is important to note that although both 
ASUDs and obesity are chronic conditions influenced by com
plex gene-environment interactions, there are distinct differ
ences between the two. For example, a recent study found a 
significant polygenic overlap between AUD and BMI; how
ever, the shared genetic variants associated with AUD and 
BMI had opposing effects [26].

Medical Consequences From Alcohol and Other 
Substance Use Disorders
Alcohol has a widespread and negative effect on a variety of 
organ systems and is associated with myriad chronic medical 
conditions. A few examples include alcohol-associated liver 
disease, chronic pancreatitis, hypertension, cardiomyopathy, 
diabetes, cancer, Korsakoff syndrome, dementia, and de
pression [27]. Similarly, opioids have significant acute 
(eg, respiratory depression) and chronic (eg, constipation, oth
er gastrointestinal effects) medical consequences [28]. 
Stimulants like cocaine and methamphetamine generally acti
vate the sympathetic nervous system, leading to significant 
cardiovascular complications including increased risk of ath
erosclerosis, arrhythmias, and myocardial infarction [28]. 
Therefore, ASUDs can be seen as multisystem medical disor
ders that may lead to severe, acute, chronic, and “acute on 
chronic” (eg, acute pancreatitis on top of chronic pancreatitis) 
complications.

Stigma
An important factor to consider in ASUD and obesity is the in
fluence of stigma in the effectiveness and quality of prevention 
and treatment [29]. Cultural biases and negative stereotypes 
contribute to stigma, which undermine patients’ emotional 
well-being and often the care received. Stigma can either be 
an implicit attitude or an explicit form of expression reflecting 
overt negative beliefs, of which the latter is more commonly 
observed when it comes to individuals with ASUD and/or obes
ity [30]. There can also be self-stigma or internalized stigma, 
triggered by negative experiences, which can lead to reluctance 
to seek adequate care and treatment. Identifying the causes of 
stigma and educating the public about the associated conse
quences may help equip communities with more effective so
cial skills to combat these pervasive and harmful attitudes 
and ultimately improve prevention and treatment endeavors 
[31, 32].

Current Treatments for ASUDs
There is a range of treatments for ASUDs, including behavior
al treatments (eg, brief interventions, contingency manage
ment, motivational interviewing, motivational enhancement 
therapy, cognitive behavioral therapy), as well as pharmaco
logical treatments. The number of approved medications is 
limited, however, and their penetrance in clinical practice is 

dramatically low. This underutilization is due to a variety of 
barriers at the patient, clinician, and organizational levels. 
Among these factors, stigma (see previous section) plays a sig
nificant role in the reasons why people with ASUDs are under
treated. Consequently, current treatments for ASUD fall short 
of addressing public health needs [11].

Disulfiram, a longstanding medication approved to treat 
AUD works by causing an irreversible pharmacological block
ade of the enzymatic process that metabolizes acetaldehyde 
(produced by the partial oxidation of alcohol via the alcohol 
dehydrogenase) to acetate [33]. Acetaldehyde accumulation 
leads to discomforting symptoms, such as flushing, nausea, 
vomiting, headache, and tachycardia. As a deterrent, disulfir
am has demonstrated maximal effectiveness when strong sup
port systems are in place for patients who are already 
abstinent and are highly motivated to maintain abstinence 
[33]. Acamprosate, whose mechanism of action involves 
modulating the glutamate system, is also approved to treat 
AUD. It helps prevent relapse in abstinent people, although 
it is also used for people who want to reduce alcohol drinking 
[33, 34]. Finally, naltrexone (oral and intramuscular) and nal
mefene are opioid antagonists that are approved for AUD 
treatment with the latter approved in Europe only and on an 
“as-needed” basis for AUD (of note, nalmefene, as well as na
loxone, are approved in the United States for opioid overdose) 
[33, 34]. Naltrexone promotes reduction in heavy drinking ra
ther than total abstinence, whereas acamprosate’s effects are 
stronger in preventing return to drink in already abstinent 
people [33]. Meta-analyses show that both naltrexone and 
acamprosate are effective medications for AUD [35]. Other 
medications that are often used off-label to treat AUD include 
gabapentin, topiramate, baclofen, varenicline [36 , 37], and sev
eral other medications and targets are under investigation [38].

FDA-approved medications for OUD include methadone, 
buprenorphine, and naltrexone. These medications help re
duce cravings and reduce the risk of relapse [39]. 
Naltrexone (intramuscular formulation) is approved for those 
who are not actively using opioids to prevent relapse [34]. 
Methadone is a full mu-opioid receptor agonist and is 
associated with better retention in treatment with dosing 
slowly increased over time [39]. Compared to methadone, bu
prenorphine may offer some advantages, which in part ex
plains its expanding use for OUD treatment. It has fewer 
side effects and has been shown to help improve depressive 
symptoms commonly observed in people with OUD [39]. 
Buprenorphine is administered in a formulation with nalox
one because the latter efficiently blocks the addictive effects 
of buprenorphine to prevent misuse [39].

Approved pharmacological treatments for tobacco use dis
order include nicotine replacement therapies (NRTs), vareni
cline, and bupropion [34]. NRTs are used as patches, gums, 
lozenges, or sprays [40]. Varenicline is a partial agonist of the nic
otinic cholinergic receptors that modulates reward processing 
and reduces nicotine craving [40]. Bupropion is a tetracyclic anti
depressant that helps reduce dopamine uptake and works best 
when combined with NRT and counseling [40].

There are currently no medications approved for the treat
ment of cannabis or stimulant use disorders [34]. It should 
also be noted that in addition to medications, behavioral inter
ventions play a critical role in management of ASUD, as stated 
previously, and a combination of behavioral and pharmaco
logical treatment often yields better outcomes than single mo
dality treatments [41].
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Current Treatments for Obesity
Lifestyle changes that reduce caloric consumption and in
crease physical activity can significantly improve one’s overall 
health [29]. Although several weight loss programs involving 
lifestyle interventions exist, their success rates remain limited, 
with about one half of people regaining the weight they lost 
within 2 years [42]. Medications for weight loss may enhance 
the effect of behavioral therapies and other weight loss pro
grams. FDA-approved drugs for the treatment of obesity in
clude phentermine, phentermine-topiramate, bupropion- 
naltrexone, liraglutide, semaglutide, and tirzepatide. Their 
mode of action includes regulating homeostatic hunger con
trolled mainly by the brainstem and hypothalamus, hedonic 
feeding via corticolimbic structures, and functions in the per
iphery such as delaying gastric emptying [43].

Bariatric surgery is also an effective treatment for obesity; 
these include adjustable gastric banding, sleeve gastrectomy, 
and Roux-en-Y gastric bypass [29]. It is important to highlight 
that bariatric surgery, especially Roux-en-Y gastric bypass, 
has shown to increase the incidence of alcohol use and hence 
the potential to develop AUD [44]. As such, screening for 
AUD risk should be integrated into the preoperative and post
operative care for patients considering these procedures. 
Tailored pharmacological and surgical treatments should be 
combined with evidence-based lifestyle and behavioral modi
fications for weight loss to help patients maintain and sustain 
a healthy lifestyle.

GLP-1 Therapies
Glucagon-like peptide-1 (GLP-1) is an insulinotropic incretin 
hormone released from the L cells present in the intestines, 
pancreatic α cells, taste buds, and the hindbrain nucleus trac
tus solitarius (NTS) [45]. The action of GLP-1 is mediated by 
the GLP-1 receptor (GLP-1R), a G-protein coupled receptor 
widely distributed throughout the body, including pancreatic 
islets, kidneys, gastrointestinal tract, pituitary gland, thyroid 
gland, and various parts of the peripheral and central nervous 
systems [46]. GLP-1, alongside the glucose-dependent insuli
notropic polypeptide hormone, is responsible for most of 
the insulin release after consuming a meal. Incretin hormones 
produce the so called “anti-diabetogenic” effects such as in
hibition of gastric emptying and suppressing glucagon secre
tion [47]. GLP-1R agonists (GLP-1RAs), unlike the 
endogenous GLP-1, are engineered to resist degradation by 
the enzyme dipeptidyl peptidase-4 (DPP-4) resulting in longer 
half-lives and sustained pharmacological activity to exert 
therapeutic effects [48]. Figure 1 provides an overview of 
the physiology and roles of GLP-1 and GLP-1RAs. The intro
duction of GLP-1RAs has revolutionized the treatment of 
metabolic disorders like type 2 diabetes mellitus (T2DM) 
and more recently obesity, with even more labels recentyl ap
proved and more potential indications on the horizon.

GLP-1RAs and ASUDs: What We Know
In addition to controlling glucose homeostasis and inhibitory 
effects on gastrointestinal motility, GLP-1 has key functions in 
the central nervous system (CNS). Among many pleiotropic 
effects, GLP-1 reduces apoptosis, restores neuronal growth, 
and promotes neurogenesis [49]. GLP-1R activation within 
the CNS regulates homeostatic feeding by modulating appe
tite and satiety. The “feeding center” hypothalamus has 
been well studied in relation to GLP-1’s effects on feeding 

[50]. The anorectic effects of GLP-1 appear to be mediated 
largely by the hypothalamic arcuate nucleus, which contains 
anorexigenic pro-opiomelanocortin and orexigenic neuro
peptide Y/Agouti-related peptide (AgRP) neurons [51]. 
GLP-1 binding to the GLP-1R promotes satiety by up and 
down regulating pro-opiomelanocortin and neuropeptide 
Y/Agouti-related peptide, respectively. Beyond homeostatic 
regulation, current evidence also supports the role of GLP-1 
in hedonic feeding, which is driven by palatability rather 
than physiological need [52], and involves neurobiological 
pathways related to mesolimbic dopamine transmission and 
mechanisms related to reward processing [53]. GLP-1Rs are 
widely expressed in areas of the mesolimbic reward pathway 
(eg, VTA) that receive direct projections from the NTS [49]. 
GLP-1 exerts its effect on VTA and striatal dopamine levels 
by regulating hedonic hunger [54]. Activation of GLP-1Rs 
in these regions reduces consumption of palatable food and 
drug seeking and consummatory behaviors [53]. Next, we 
provide a summary of the growing literature on the promise 
of GLP-1 therapies for ASUDs. For a more comprehensive re
view, please see [55].

The effects of GLP-1RAs on alcohol use have been studied 
extensively. Preclinical studies in rodents and nonhuman pri
mates show that exendin-4 (EX-4), and other GLP-1RAs (eg, 
dulaglutide, liraglutide, semaglutide) reduce alcohol intake 
and other alcohol-related outcomes in different rodent models 
and paradigms [55]. For example, a study showed that EX-4 
suppressed alcohol-induced locomotion, accumbal dopamine 
release, voluntary alcohol consumption, and seeking behavior 
in mice [56]. Liraglutide, a longer acting GLP-1RAs, has also 
shown promising results in terms of reductions in alcohol in
take, self-administration, and alcohol preference in rats [57, 
58]. More recent studies have examined semaglutide and 
showed a dose-dependent reduction in alcohol intake in both 
dependent and non-dependent male and female mice and rats 
[59, 60]. Exenatide, liraglutide, and semaglutide have also 
shown to reduce alcohol consumption in non-human primates 
[61, 62], further supporting the potential of GLP-1RAs in 
treating AUD.

There have also been anecdotal human reports of reduced al
cohol use posted on social media by patients using GLP-1RAs 
for other indications [63-65]. Furthermore, pharmacoepide
miological studies have examined electronic health records to 
explore associations between GLP-1RAs prescriptions and 
alcohol-related outcomes. A national cohort study conducted 
in Denmark showed a reduction in risk of alcohol-related 
events in those receiving GLP-1RAs [66]. Cohort studies have 
also shown promising results with GLP-1RAs in terms of alco
hol intoxication, hospitalization, and AUD incidence/recur
rence [67-69]. A recent pharmacoepidemiological study 
found that receipt of GLP-1RAs was associated with reduced 
Alcohol Use Disorder Identification Test Consumption scores, 
whereas DPP-4 inhibitors, another class of antidiabetic medica
tions that increase endogenous GLP-1 levels (see Figure 1), had 
no effect of alcohol intake [70]. The latter observation was 
back-translated in a mouse model of alcohol binge-like drink
ing and in a rat model of alcohol dependence; in both cases, un
like GLP-1RAs, DPP-4 inhibitors did not reduce alcohol intake 
[70].

Only two randomized controlled trials (RCTs) with 
GLP-1RAs in the context of alcohol use have been published 
so far. The earlier RCT showed no significant effect of exena
tide on alcohol consumption in people with AUD, although a 
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secondary analysis indicated reduced alcohol intake in the 
subgroup with AUD and comorbid obesity [71]. In addition, 
exenatide lowered dopamine transporter availability (ob
served via single-photon emission computed tomography) 
and reduced reactivity to alcohol cues in the ventral striatum 
and septal area, as observed via functional magnetic reson
ance imaging [71]. A more recent RCT showed that low-dose 
semaglutide reduced laboratory alcohol self-administration, 
as well as drinks per drinking days and craving, in people 
with AUD [72]. In a subgroup analysis, semaglutide also re
duced number of cigarettes smoked per day in the subgroup 
of people with AUD who were also smokers.

In terms of opioid addiction, several GLP-1RAs have been 
shown to reduce self-administration and reinstatement of 
drug-seeking behavior for heroin, fentanyl, and oxycodone 
in rodent models [73-76]. Some studies, however, have pro
duced negative results. For example, EX-4 had no effect on 
abuse-related effects of morphine and remifentanil in mice 
[77]. Although no RCTs have been published to date on the 
topic, pharmacoepidemiological data support the potential 
benefits of GLP-1RAs for people with OUD. Specifically, 
two separate analyses using electronic health records show 
that prescription of GLP-1RAs is associated with lower rates 
of opioid overdose [69, 78].

With regard to nicotine, preclinical data show that 
GLP-1RAs reduce nicotine self-administration, reinstatement 

of nicotine seeking, and other nicotine-related outcomes in ro
dents [56, 79, 80]. One study using pharmacological manipu
lations, as well as chemogenic/optogenetic stimulations, 
found a significant role of GLP-1 neurons in the habenula 
and its projections to promote nicotine avoidance [80]. A 
study that analyzed social media posts showed that around 
23% of posts about nicotine reported a cessation in use in con
junction with GLP-1RAs [63]. A retrospective pharmacoepi
demiological study analyzed electronic health records from 
people with comorbid T2DM and tobacco use disorder found 
that semaglutide, compared with other antidiabetic medica
tions, was associated with improved smoking-related out
comes, including lower rates of medical encounters, 
smoking cessation prescriptions, and counseling [81]. The first 
RCT in the nicotine field tested exenatide as an adjunct to 
nicotine patch. Compared to placebo, exenatide promoted 
smoking abstinence, reduced nicotine craving and withdraw
al, and attenuated postcessation weight gain [82]. A second
ary analysis from this study found stronger effects of 
exenatide in heavy smokers, those normal blood glucose levels 
and/or weight, no/minimal depressive symptoms, and a specif
ic nicotinic acetylcholine receptor genotype [83]. Another 
RCT tested dulaglutide as an adjunct to varenicline. 
Although dulaglutide did not promote smoking abstinence 
in this study [84], it did reduce alcohol intake [85]. 
Secondary analyses from this study found that dulaglutide 

Figure 1. Overview of the effects of GLP-1 and GLP-1RAs. GLP-1 is mainly produced by the L cells in the intestines and the NTS in the brain. Endogenous 
GLP-1 is rapidly degraded by the enzyme DPP-4. GLP-1RAs are engineered to resist degradation by DPP-4, resulting in longer lasting and more potent 
effects of the drug. Peripheral targets include the pancreatic islets, gastrointestinal tract, thyroid, kidneys, and the heart, among others. GLP-1Rs are 
widely distributed in brain regions involved in reward processing, stress, satiety, and appetite regulation such as the VTA, NAc, ARC, PFC, and the 
hypothalamus. GLP-1-induced appetite suppression is not only mediated by interactions with GLP-1R in the hypothalamus, but also via the vagus nerve 
and the dorsal vagal/NTS complex. Activation of the GLP-1Rs expressed in these peripheral and central organs and tissues modulate various physiological 
pathways, thus promoting glucose regulation and weight loss. Furthermore, GLP-1RAs have the potential for treating ASUDs, as discussed in this review. 
Abbreviations: ARC, arcuate nucleus; ASUDs, alcohol and other substance use disorders; DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like peptide-1; GLP-1R, glucagon-like 
peptide-1 receptor; GLP-1RA, glucagon-like peptide-1 receptor agonist; NAc, nucleus accumbens; NTS, nucleus tractus solitarius; PFC, prefrontal cortex; VTA, ventral tegmental area.
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attenuated postcessation weight gain in the short-term 
(3 months of active treatment) [84], but not in the long term 
(12 months posttreatment) [86].

In terms of stimulants, several preclinical studies have 
shown that EX-4 reduces cocaine seeking behavior, reinstate
ment, and other related outcomes [87-90]. Other studies have 
also found that GLP-1RAs reduce amphetamine use and 
amphetamine-induced hyperlocomotion in rodents [91-94]. 
Clinical research on the potential link between GLP-1 and 
stimulants remains limited. An experimental study showed 
that serum concentrations of GLP-1 reduced after intravenous 
cocaine administration in cocaine users [95]. The only study 
to date, to our knowledge, that examined a GLP-1RA in peo
ple with cocaine use disorder found no effect of exenatide on 
cocaine self-administration or subjective effects, albeit this 
study was limited by the fact that only a single dose of exena
tide was administered [96].

The endocannabinoid system plays an important role in 
regulating body weight and an inverse relationship between 
cannabis use and BMI in humans has been reported (for re
view, see [97]). The link between the endocannabinoid system 
and body weight regulation was the foundation for the devel
opment of the cannabinoid CB1 receptor inverse agonist ri
monabant as an effective medication in promoting weight 
loss in people with obesity. However, soon after its approval, 
rimonabant was removed from the market because of severe 
psychiatric side effects. As a consequence, more recent efforts 
have focused on the development of second- and third- 
generation CB1 receptor antagonists that are peripherally re
stricted and still produce the metabolic benefits of rimonabant 
in rodent models of obesity and diabetes without the central 
psychiatric side effects (for review, see [98]). Despite the 
breadth of knowledge on the role of the endocannabinoid sys
tem in appetite, body weight, and obesity, there is a paucity of 
preclinical or human studies on the link between cannabis use 
and GLP-1. A human laboratory study that involved oral, 
smoked, and vaporized cannabis administration found re
duced peripheral GLP-1 under cannabis compared to placebo 
[99]. An analysis of social media posts from people on 
GLP-1RAs showed mixed results in terms of cannabis use. 
Most posts, however, discussed the opposite effects of 
GLP-1RAs and cannabis on appetite and nausea [63]. A phar
macoepidemiological study found that semaglutide, com
pared to other non-GLP-1RA antiobesity and anti-T2DM 
medications, was associated with lower risks of incident and 
recurrent cannabis use disorder diagnosis [100].

In summary, preclinical studies have consistently demon
strated the potential of GLP-1RAs in reducing the consump
tion and rewarding properties of various substances, 
including alcohol, opioids, nicotine, and psychostimulants. 
Effects of GLP-1RAs appear to be mediated through the 
modulation of reward pathways, stress regulation, and cogni
tive function in the CNS, as well as a host of functions in the 
periphery. Although clinical studies remain limited for most 
substances, early results showing reductions in cravings, sub
stance use, and other related outcomes are encouraging. 

GLP-1RAs and ASUDs: Gaps and Future Directions
Despite promising evidence that supports the potential of 
GLP-1RAs in ASUD treatment, additional research is needed. 
On the basic science side, more studies are needed to unveil the 
mechanisms underlying GLP-1RAs in relation to addictive 

behaviors and substance use. On the clinical side, RCTs are 
critically needed to investigate the safety and efficacy of 
GLP-1RAs in patients with ASUDs [101, 102]. Based on the 
existing evidence, and pending further clinical and transla
tional research, GLP-1RAs have the potential to help people 
with polysubstance use, as well as those with medical co
morbidities—phenotypes that are more the norm than excep
tion in addiction medicine.

As the use of GLP-1RAs continues to rise, a thorough evalu
ation of their safety profile is essential. GLP-1RAs have certain 
side effects, mostly involving the gastrointestinal system, in
cluding nausea (the most frequently reported side effect), diar
rhea, constipation, dyspepsia, and vomiting [103]. It is also 
important to consider that long-term use of GLP-1R agonists 
may have adverse effects on muscle mass, composition, and 
function, and that many patients with ASUDs already have 
nutritional problems and/or sarcopenia [104].

Although these side effects typically present in a transient 
mild to moderate manner, they must be carefully evaluated 
if GLP-1RAs will be used in patients with ASUD, who often 
have complex medical comorbidities. As previously discussed, 
ASUDs carry their own complications and are associated with 
increased risk of multiorgan system complications. Alcohol is 
a major cause of pancreatitis, and GLP-1RA use also increases 
the risk of pancreatitis in some cases; however, the overall 
risks associated with alcohol use outweigh the comparatively 
low incidence of serious GLP-1RA-related adverse effects. 
Such considerations underscore the need to conduct a patient 
specific risk-benefit analysis to ensure that outcomes are in the 
best interest of the patients being treated.

There have been reports of rebound weight gain after stop
ping long-term GLP-1RA treatment. It has been speculated 
that stopping the GLP-1RA treatment can result in the loss 
of balance in appetite regulation, though the specific under
lying mechanisms remain unclear [105]. Furthermore, most 
patients who start treatment with GLP-1RA for obesity dis
continue treatment within 1 year because of side effects, 
high cost, or reaching a plateau in weight loss [106]. A similar 
trend could occur with the use of GLP-1RAs for ASUDs, al
though additional research is needed.

Although not conclusive, there have also been reports of de
pression in those who take GLP-1RAs, raising some concerns 
about potential increase in risks of self-harm and suicidality. 
However, the European Medicines Agency [107] and the 
FDA [108] have issued statements that current data do not 
support an association between the use of GLP-1RAs and in
creased suicidal ideation/behavior. A recent study applied the 
Bradford Hill criteria to investigate this potential association, 
while considering confounding variables; it showed that there 
was no evidence of a causal relationship between the 
FDA-approved GLP-1RAs and suicidality [109]. Yet, this is 
still a topic that requires further evaluation and monitoring.

Future research should also investigate the efficacy of com
bination therapies involving GLP-1RAs with existing 
FDA-approved treatments for ASUDs to better understand 
potential synergistic beneficial effects. Furthermore, future re
search should aim to develop personalized treatment proto
cols that optimize dosing and duration according to patient 
specific factors, such as severity of ASUD, comorbid condi
tions, and basal metabolic activity.

Several higher level factors must also be considered in the 
GLP-1RAs/addiction arena. First, the high cost of novel 
GLP-1RAs limits accessibility, especially for those from 
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underserved communities. Second, we need to further investigate 
the tolerability, safety, and effectiveness of these drugs in people 
with ASUD [101]. Finally, it is important to keep in mind that we 
are still in the early stages of understanding the potential role of 
GLP-1RAs in addiction treatment and more and larger RCTs 
are needed. Case in point, several RCTs are currently ongoing 
or close to begin testing GLP-1RAs, dual and poly-agonists (eg, 
tirzepatide, pemvidutide, cagrilintide) in ASUDs. The number 
of these trials keep growing and include RCTs in patients with 
AUD (NCT05895643, NCT06015893, NCT05891587, 
NCT05892432, NCT06994338, NCT06987513), and in pa
tients with AUD and comorbidities such as schizophrenia 
(NCT06939088), alcohol-associated liver disease (NCT 
06546384; NCT06409130) and Human Immunodeficiency 
Virus infection (NCT07040592). Ongoing RCTs in other sub
stance use disorders include studies in people with tobacco use 
disorder (NCT06924697, NCT06015893, NCT06986993, 
NCT06173778; U01DA064384), OUD (NCT04199728, 
NCT06639464, NCT06548490 and NCT06651177), and co
caine use disorder (NCT06252623), including an RCT in pa
tients with cocaine use disorder and Human Immunodeficiency 
Virus infection (NCT06691243).

Conclusions
GLP-1RAs, traditionally prescribed for glycemic control in 
T2DM and weight management in obesity, are emerging as 
promising therapies for ASUDs. Preclinical and early clinical 
investigations suggest that GLP-1RAs modulate neurobio
logical pathways underlying addictive behaviors, thereby po
tentially reducing substance craving and use while 
simultaneously addressing comorbid conditions. Despite 
these encouraging findings, the long-term efficacy and safety 
of GLP-1RAs and their potential role in addiction medicine 
needs to be explored further.

Considering the rising global prevalence and burden of 
ASUDs, future research should prioritize large-scale RCTs 
and real-world studies that encompass diverse populations. 
Although basic research should continue to explore the mech
anisms of GLP-1RAs in modulating addictive behaviors, hu
man research is needed to examine the safety and efficacy of 
GLP-1RAs, optimize dosing strategies, and evaluate their util
ity as part of combination therapies with established pharma
cological and behavioral interventions.
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