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Abstract

Obesity is a highly complex, multifactorial disease influenced by dynamic interactions
among genetic, epigenetic, environmental, and behavioral determinants that explicitly
position genetics as the core. While advances in multi-omic integration have revolutionized
our understanding of adiposity pathways, translation into personalized clinical nutrition
remains a critical challenge. This review systematically consolidates emerging insights
into the molecular and nutrigenomic architecture of obesity by integrating data from large-
scale GWAS, functional epigenomics, nutrigenetic interactions, and microbiome-mediated
metabolic programming. The primary aim is to systematically organize and synthesize re-
cent genetic and genomic findings in obesity, while also highlighting how these discoveries
can be contextualized within precision nutrition frameworks. A comprehensive literature
search was conducted across PubMed, Scopus, and Web of Science up to July 2024 using
MeSH terms, nutrigenomic-specific queries, and multi-omics filters. Eligible studies were
classified into five domains: monogenic obesity, polygenic GWAS findings, epigenomic reg-
ulation, nutrigenomic signatures, and gut microbiome contributions. Over 127 candidate
genes and 253 QTLs have been implicated in obesity susceptibility. Monogenic variants
(e.g., LEP, LEPR, MC4R, POMC, PCSK1) explain rare, early-onset phenotypes, while FTO
(polygenic) and MC4R (monogenic mutations as well as common polygenic variants) repre-
sent major loci across populations. Epigenetic mechanisms, dietary composition, physical
activity, and microbial diversity significantly recalibrate obesity trajectories. Integration
of genomics, functional epigenomics, precision nutrigenomics, and microbiome science
presents transformative opportunities for personalized obesity interventions. However,
translation into evidence-based clinical nutrition remains limited, emphasizing the need
for functional validation, cross-ancestry mapping, and Al-driven precision frameworks.
Specifically, this review systematically identifies and integrates evidence from genomics,
epigenomics, nutrigenomics, and microbiome studies published between 2000 and 2024,
applying structured inclusion/exclusion criteria and narrative synthesis to highlight trans-
lational pathways for precision nutrition.
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1. Introduction
1.1. Global Epidemiological Landscape

Obesity is a highly prevalent, multifactorial, and biologically complex disease charac-
terized by deregulated energy balance, adipose tissue dysfunction, and impaired metabolic
homeostasis. Interconnected genomic, epigenomic, nutrigenomic, environmental, and
behavioral determinants shape it [1]. Recent global estimates indicate that over 2.5 billion
adults worldwide are overweight or obese, and obesity prevalence has nearly tripled since
1990, according to the Global Burden of Disease Report [2]. In the United States, the National
Health and Nutrition Examination (NHANES) reports an alarming 42.4% adult obesity
prevalence, with 9.2% of adults meeting criteria for class III obesity (BMI > 40 kg/m?) [3].
Middle Eastern, Australian, and Asian regions have also shown a two- to threefold surge
in obesity incidence over the last two decades, primarily due to rapid urbanization, ultra-
processed dietary patterns, and sedentary lifestyles [4]. While obesity is commonly defined
by a BMI > 30 kg/m?, reliance on BMI alone underestimates visceral adiposity-driven
cardiometabolic risks. Recent advances in genome-wide association studies (GWAS), func-
tional epigenomics, microbiome profiling, and nutrigenomic modeling have revolutionized
our understanding of energy homeostasis, fat distribution, and metabolic programming [5].

Figure 1 shows the trends in global obesity prevalence from 1990 to 2023, highlighting
a rapid acceleration in low- and middle-income countries due to urbanization, dietary
transitions, and sedentary lifestyles.
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Figure 1. Global Obesity Epidemic.

However, critical knowledge gaps persist:

e  Most genetic discoveries lack functional annotation, limiting clinical translation;

e  Population-specific obesity loci remain underexplored, especially in Asian and low-
income cohorts;

o  Theinteraction between genetics, diet, and gut microbiota composition requires deeper
integrative analysis.

Nutrigenomics is the study of how nutrients influence gene expression and metabolic
pathways; it offers a transformative framework for obesity management. It focuses on
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precision-based dietary interventions tailored to individual genetic backgrounds, inte-
grating nutrigenetic risk profiling, transcriptomic adaptations, and microbiome-driven
metabolic regulation.

Yet, clinical translation remains limited due to fragmented datasets, inconsistent
methodologies, and a lack of cross-ancestry studies.

1.2. Gene-Environment Framing

The genetic composition that governs energy balance, lifestyle, and perinatally im-
printed behavior is responsible for excessive fat storage and obesity. In this regard, en-
vironmental factors (such as unhealthy eating and exercise habits), fetal programming,
and even assortative mating may contribute to the obesity pandemic by creating a ge-
netic predisposition. Adverse maternal nutrition and perinatal environmental exposures
induce epigenetic reprogramming during fetal development, increasing lifelong obesity
susceptibility [6]. Living a physically active lifestyle is linked to a 40% decrease in the
genetic predisposition to common Obesity, according to a prospective study conducted on
20,000 men and women from EPIC-NORFLOK to determine the extent to which genetic
susceptibility may be attenuated by such a lifestyle [7]. Estimates of heritability for obesity
range from 40% to 70%, indicating a significant genetic component.

1.3. Objective

The objective of this review is to systematically consolidate and interpret evidence
on the molecular genetics of human obesity, spanning monogenic syndromes, poly-
genic susceptibility loci, and gene—environment interactions. We further contextualize
how epigenetic regulation, nutrigenomic responses, and microbiome dynamics influence
and modulate these genetic foundations, with emphasis on translational relevance for
obesity management.

Specifically, we aim to:

1.  Summarize key mechanisms underlying obesity susceptibility across monogenic,
polygenic, and nutrigenetic frameworks.

2. Explore diet-gene-microbiome interactions shaping adiposity and metabolic plasticity;

3. Highlight translational strategies for precision nutrition and individualized
obesity prevention.

By combining multi-omics integration, machine learning-based predictive analytics,
and personalized intervention frameworks, this review aims to bridge the gap between
discovery science and clinical application in precision nutrition.

2. Methodology
2.1. Literature Search Strategy

Before manuscript drafting, we designed and implemented a comprehensive and
systematic literature search across PubMed (National Center for Biotechnology Informa-
tion, Bethesda, MD, USA), Scopus (Elsevier, Amsterdam, The Netherlands), and Web of
Science (Elsevier, Amsterdam, The Netherlands) databases to identify studies relevant to
nutrigenomics, obesity genetics, and multi-omics metabolic regulation.

2.2. Databases and Keywords

The search covered studies published between January 2000 and July 2024, with
a specific focus on identifying the most recent five-year literature (2020-2024). Using
a combination of Medical Subject Headings (MeSH), nutrigenomic-specific keywords,
and Boolean operators to refine queries. Search strings included: “Obesity genomics”,

i Zaw

“nutrigenomics”, “multi-omics integration”, “GWAS”, “epigenomic regulation”, “gene—
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diet interactions”, “microbiome metabolic pathways”, and “precision nutrition”. This
structured approach ensured that the evidence base directly guided the organization and
interpretation of this review, rather than being applied retrospectively.

2.3. Eligibility Criteria
Studies were considered for inclusion if they:

e Investigated genetic, epigenetic, nutrigenomic, or microbiome-driven factors influenc-
ing obesity susceptibility;

e Reported findings from large-scale GWAS, epigenomic profiling, nutrigenetic studies,
or gut microbiome analyses;

e  Explored diet-gene interactions or nutrient-responsive molecular pathways;

e  Published in peer-reviewed, high-quality journals.

Exclusion Criteria:

e Non-original works are excluded unless they provide meta-analytical insights;
e Animal-only studies without human translational relevance;
e  Grey literature and preprints are not peer-reviewed.

2.4. Study Selection Process
The selection was conducted in two independent stages:

o  Title & Abstract Screening: Two independent reviewers screened all retrieved studies
based on predefined inclusion criteria;

o  Full-Text Evaluation: Articles meeting the initial screening were reviewed in detail to
extract key findings related to obesity-associated genes, nutrigenomic pathways, and
microbiome-modulated mechanisms.

2.5. Data Extraction and Synthesis
Data from eligible studies were extracted into a structured framework, including:

e  Study design, sample size, and demographic details;

e  Genetic loci, gene variants, and pathway-level findings;

e  Nutrigenomic outcomes, microbiome diversity indices, and epigenomic signatures.
e Reported diet-gene-microbiome interactions.

A narrative synthesis framework was applied, integrating cross-study findings using:

e  Functional pathway mapping to identify molecular convergence;
e  Gene-environment response profiling to analyze nutrigenomic interactions;
e  Cross-ancestry meta-analysis insights where available.

3. Genetic Basis of Obesity

Genetic factors influence metabolic set points, shaping how individuals regulate
body weight and respond to obesity interventions [8]. Hundreds of genes across multiple
biological pathways govern energy balance, lipid storage, and adiposity regulation, thereby
influencing weight gain and weight-loss responses [9].

As shown in Figure 2, obesity arises from a multifactorial interplay of genetics and
environment. Rather than acting independently, environmental exposures, including
diet quality, physical activity, socioeconomic conditions, and psychosocial stress, inter-
act with genetic predispositions (e.g., FTO, MC4R, LEP) to modulate obesity risk. This
interaction framework better reflects the dynamic nature of gene-environment pathways
underlying adiposity.
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Figure 2. Genetic and Environmental Factors in Obesity.

Animal models have been instrumental in mapping key obesity-related pathways,
with emerging human studies confirming several candidate genes. However, these can-
didate genes explain only a small fraction of heritability, suggesting obesity is primarily
a polygenic trait involving complex interactions among numerous loci [10]. Even with
strong genetic predisposition, environmental factors—such as diet quality, physical activity,
and socioeconomic context substantially modify obesity risk. Familial aggregation studies
reveal that individuals with two obese parents have a markedly higher likelihood of de-
veloping obesity compared to those with lean parents. Historical evidence dating back to
the 1960s supports a strong genetic contribution to body weight regulation. Adoption and
twin studies consistently demonstrate that body weight is more strongly correlated with
biological parents than adoptive ones, reinforcing the heritable basis of obesity [11].

Figure 3A illustrates the classification of genetic forms of obesity, categorized
into syndromic and non-syndromic types. Syndromic obesity includes chromosomal
rearrangement-related and pleiotropic disorders such as Prader-Willi syndrome, Bardet-
Biedl syndrome, and Cohen syndrome. Non-syndromic obesity is further subdivided into
monogenic and polygenic forms. Genes implicated in monogenic obesity include POMC,
LEP, LEPR, MC3R, and MC4R, while polygenic obesity involves variants in genes such as
FTO, UCP1-3, MC4R, ADRBI1-3, and SLC6A14. Figure 3B Schematic representation of the
leptin-melanocortin signaling pathway.

3.1. Monogenic Obesity Syndromes
3.1.1. Discovery and Historical Context

Insights from rodent models have driven the discovery of several monogenic obesity
syndromes in humans [12]. Monogenic obesity arises from single-gene mutations that
disrupt energy homeostasis and typically follow Mendelian inheritance patterns, leading
to severe, early-onset obesity. The idea that a circulating factor may mediate energy
homeostasis was solidified with the subsequent development of multiple murine genetic
models of Obesity and their investigation in parabiosis experiments by Coleman [13].
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However, the molecular elements of an energy balance regulation network were not put
together until the 1990s, when the exact molecular foundation for the agouti, ob/ob, db/db,
and fat/fat mice appeared [14]. Several new monogenic diseases that cause Obesity in
humans have surfaced in recent years [15].

GENETICS OF OBESITY
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Figure 3. Molecular Genetics of Human Obesity (Leptin-Melanocortin Pathway). Leptin (LEP),
secreted by adipose tissue, binds to its receptor (LEPR) in the arcuate nucleus of the hypothalamus,
leading to activation (*) of POMC neurons and subsequent release of x-MSH. x-MSH binds to MC4R
receptors on paraventricular nucleus (PVN) neurons, promoting appetite suppression and increased
energy expenditure, and arrows (1) indicate the direction of signal transduction or biological effect.

3.1.2. Key Genes Implicated and Clinical Outcomes

Mutations in key genes, POMC, MC4R, LEP, LEPR, and PCSK1, have been strongly
associated with severe, early-onset obesity as shown in Table 1 [16]. Leptin, encoded by the
LEP gene, regulates appetite, energy expenditure, and adipose metabolism. Circulating
leptin levels are positively correlated with body fat percentage, showing elevated concen-
trations in obesity and reduced levels in cachexia or anorexia. Recent studies have shown
that leptin also modulates neuroendocrine pathways, influencing the secretion of FSH, LH,
ACTH, cortisol, and growth hormone [17]. The leptin gene on chromosome 7 (7q31.3) is
mutated in congenital leptin deficiency. This gene codes for a protein of 167 amino acids
and consists of three exons and two introns [18]. Recent pharmacogenomic studies have
further highlighted therapeutic opportunities for monogenic obesity, particularly through
MCH4R agonists and leptin replacement strategies [19].

Table 1. Key Monogenic Genes Linked to Severe Early-Onset Obesity.

Gene Encoded Protein Primary Function Clinical Impact References

Regulates appetite &
energy balance

Congenital leptin deficiency

LEP Leptin — severe hyperphagia

[14]

Mediates leptin
signaling

Impaired satiety,

LEPR early-onset obesity

Leptin receptor [15]

Melanocortin-4 Controls food intake &  Accounts for ~5% of severe
MC4R . . [12]
receptor energy expenditure early-onset obesity

Variants associated with
obesity phenotypes

Melanocortin-3
receptor

Regulates energy

MC3R balance

[20]
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Table 1. Cont.
Gene Encoded Protein Primary Function Clinical Impact References
Mutations cause extreme
Pro- Precursor for «-MSH, .
POMC opiomelanocortin binds MC4R hyperphagia & adrenal (171
dysfunction
Activates .
PCSK1 Prohormone appetite-regulating Loss-of-function — [17]

convertase 1

peptides defective energy regulation

Adipocyte (Leptin)

Furthermore, it has recently been demonstrated that leptin affects the control of FSH,
LH, ACTH, cortisol, and GH concentrations in addition to its effects on food intake and
energy expenditure [21]. The LEP gene on chromosome 7 (7q31.3) is mutated in congenital
leptin deficiency. This gene codes for a protein of 167 amino acids and consists of three
exons and two introns [22]. Three members of a consanguineous family were identified
with a leptin receptor mutation.

Figure 4 visualizes the regulatory role of leptin, LEPR, MC4R, and downstream neu-
roendocrine pathways in controlling appetite, energy expenditure, and fat storage.

Leptin-Melanocortin Axis Dysregulation

POMC/CART
__— Neuron

Appetite 1
Energy expenditureT

MC4R
(Downstream)

-_— .

Figure 4. Genetic and Molecular Factors in Obesity: Leptin-Melanocortin Axis Dysregulation:
Schematic representation of the leptin—-melanocortin signaling pathway and its dysregulation in
obesity. Leptin, secreted from adipocytes, binds to leptin receptors (LEPR) in the hypothalamus.
This interaction activates pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated
transcript (CART) neurons, while simultaneously inhibiting neuropeptide Y (NPY) and agouti-related
peptide (AgRP) neurons. The cascade subsequently activates the downstream melanocortin-4 receptor
(MC4R), leading to reduced appetite (|) and increased energy expenditure (7).

A mutation that truncates the receptor before the transmembrane domain was found
to be homozygous in affected individuals. Despite having a normal birth weight, leptin
receptor-deficient individuals gained weight quickly in the first few months of life, dis-
playing significant hyperphagia and hostile behavior when food was refused [23]. Food
intake and energy balance are significantly impacted by MC4R, which is also expressed
in the hypothalamus [24]. Severe Obesity, severe hyperinsulinemia, increased lean body
mass, and linear growth of the five known melanocortin receptors are clinical character-
istics of mutant carriers; MC4R has been most closely associated with regulating energy
balance in rats [25,26]. A unique role for the MC4-R in the control of energy balance is
defined by the obesity syndrome that results from its absence, which is very similar to the
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Agouti disease. This suggests that the underlying cause of the agouti obesity syndrome is
abnormal antagonism of the MC4-R. An alternate explanation for the finding that MC4-R
signaling directly affects food and metabolism is that deletion of the MC4-R gene may cause
a malfunction in the development of the hypothalamus, which would lead to hyperphagia
and hypometabolism. For instance, Obesity is linked to abnormalities in the ventromedial
hypothalamus’s function in humans and rats [27]. MC4R mutant individuals exhibit higher
lean mass and increased fat mass, which is not observed in leptin insufficiency.

Figure 5 depicts MC4R-associated variants and their role in hypothalamic regulation
of feeding behavior, lean mass accrual, and energy balance.

MC4R
Expression in
Hypothalamus

1

PAUtaticorn
Tﬂ.—’ Leads 1o
Y Savere

Obesity
@ ST Dﬂt,ﬂ 1”:.“.“.”“' o LArear
Hyperinsulinemia :v:.:l.r.l-.“(:-tl'h’ Growith
Raogulaticr

[
] of Energy
Balance

L
(= e |

l 1

Agouti Ty Hyperphagia amd
. - = o
k. Obesity it Hypometabolismm

Syndronme

Figure 5. MC4R Expression and Energy Homeostasis.

3.2. Polygenic Obesity and GWAS Findings

Unless explicitly stated otherwise, all figures and tables in this section refer to human
genetic association data (e.g., polymorphisms) rather than experimental knockdown mod-
els. Obesity is increasingly recognized as a neuroendocrine-driven condition, arising from
complex gene—environment interactions. Recent large-scale molecular studies demonstrate
that most obesity risk arises from the cumulative effects of numerous common variants [28].

Figure 6 provides a schematic summary of the most consistently replicated BMI-
associated GWAS loci, including FTO, MC4R, TMEM18, NEGR1, SEC16B, BDNF, GNPDA2,
and MAP2K5-SKORI1. These loci, also detailed in Table 2, represent the most robust poly-
genic contributors to obesity risk across populations. While FTO is exclusively polygenic,
MCA4R represents a unique case: rare mutations cause monogenic obesity, whereas common
polymorphisms act as major polygenic risk factors. Polygenic variation refers to small-effect
alleles across multiple loci, collectively influencing quantitative traits such as BMI and fat
distribution. Individuals carrying multiple risk alleles have a significantly higher probabil-
ity of developing obesity compared to those with fewer or no variants [29]. Within MC4R,
two well-characterized polymorphisms, Ile251Leu and Val103lle, have protective associa-
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tions, demonstrating reduced obesity risk among carriers [30]. Recent GWAS identified
1517782313, located 188 kb downstream of MC4R, as one of the strongest BMI-associated
variants, highlighting its central role in obesity susceptibility. A comprehensive overview
of both major polygenic loci identified through GWAS and key appetite-regulation genes
implicated in obesity susceptibility is provided in Table 2. This integrated summary high-
lights the convergence between common variants influencing adiposity and monogenic
pathways affecting appetite regulation.

Polygenic Risk and Obesity Susceptibility
(BMlI-associated GWAS Loci)

MAP2K5-SKORI(15q23)

SECI6B (1q25),

NEGRI (1p31)

MC4R(18q21)

BMI/Obesity Risk

GNRDAZ2 (4b12) FTO (16q12)

TMEN18 (2p25) BDNF(11p14)

Figure 6. Polygenic Risk and Obesity Susceptibility.

Table 2. Key Genetic Loci and Appetite Regulation Genes Associated with Obesity Susceptibility.

Encoded . . .
Gene/Locus Chromo.somal Protein/Gene Blologlcal Assoaated Replication/References
Location Function Trait/Relevance
Name
Fat mass and Epigenetic Strone. multiple
FTO 16q12 obesity-associated regulation of BMLI, fat deposition & P
. populations [31,32]
protein energy balance
Melanocortin-4 Regulates appetite BMI, obesity, and Strong, replicated across
MC4R 18q21 & energy . .
receptor . appetite control ancestries [33]
expenditure
Melanocortin-3 Regulates ener. Moderate, Caucasian and
MC3R 20q13.2-13.3 & 18y BMI, obesity Hispanic populations
receptor homeostasis
[20,34]
Transmembrane . N
TMEM18 2p25 protein 18 Body fat storage BMI Consistent replication [35]
Regulation of
NEGRI 1p31 Neuronal growth ad1p051.ty and .BMI, waist Strong [36]
regulator 1 waist circumference
circumference
Visceral fat BMI, fat .
SEC16B 1925 SEC16 homolog B regulation distribution Consistent [37]
. . Satiety and
BDNF 11p14 Bram—derlved neuronal BML extreme European cohorts [38]
neurotrophic factor . L obesity
differentiation
Glucosamine-6- Appetite . .
GNPDA2 4p12 phosphate modulation and BMI Moderate, replicated in

deaminase 2

obesity risk

Europeans [39]
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Encoded . . .
Gene/Locus Chromo.somal Protein/Gene B1010g}cal Assoaated Replication/References
Location Function Trait/Relevance
Name
MAP2K5- MAP kinase . .
SKOR1 15g23 pathway genes BMI regulation BMI Strong in Europeans [40]
Solute carrier Amino acid I
SLC6A14 Xq23 family 6, member  transport, nutrient Obesity FrenCh/FIESI]Sh cohorts
14 sensing
Proprotein Activation of
. convertase appetite- . . -
PCSK1 5q15-q21 subtilisin/kexin regulating BMI, obesity East Asian replication [8]
type 1 peptides
. . Modifies lipid Diet-gene . . .
APOA2 1923 Apohic_)ﬁrotem metabolism interaction Funct101;jllicrl1:r:1;genom1c
depending on diet (saturated fat)
. Congenital leptin
LEP 7q31.3 Leptin Regulates appetite deficiency, Disease-causing [16]
& energy balance h ;
yperphagia
. Mediates leptin Impaired satiety, . .
LEPR 1p31 Leptin receptor signaling early-onset obesity Disease-causing [20]
Pro- Precursor for Hyperphagia &
POMC 2p23.3 iomelanocortin «-MSH, binds adrenal Disease-causing [16]
optomelanoco MC4R dysfunction
Adenylate cyclase Hypothalamic Severe obesity .
ADCY3 2p23.3 3 cAMP signaling variants Associated [20]
Aryl hydrocarbon Hypothalamic
ARNT?2 15925 receptor nuclear neuronal Developmental Animal models [42]
. i role
translocator 2 differentiation
CPE 4q32.3 Carboxypeptidase NeuropePtlde Obe51ty-§1ssoc1ated [41]
E processing variants
Gastrin-releasing . . . .
GRPR Xq22 peptide receptor Satiety regulation Obesity variants [20]
POMC expression,
ISL1 5q11.2 ISL LIM home-box hypothalamic Developmental Linkage analysis
1 neuron role
differentiation
LDL Enhances
LRP2 2q31.1 receptor-related leptin-induced Obesity variants [20]
protein 2 STAT3
Myelin .
MYTIL 2p25.3 transcription factor Hypothalamic Obesity variants [20]
. development
1-like
NPY 7p15.3 Neuropeptide Y St1m1.11ates food Obesity variants [43]
intake
NTRK?2 9q22 BDNF receptor Hypothalamic Disease-causin: [20]
4 °p differentiation using
oTP 5q13.1 Orthopedic Hypothalamic Animal model [20]
home-box development
OXT 20p13 Oxytocin Appetite Hypothalamic [20]

regulation

circuit role
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Table 2. Cont.

Encoded . . .
Gene/Locus Chromo.somal Protein/Gene B1010g}cal Assoaated Replication/References
Location Function Trait/Relevance
Name
NEUROG3 104213 Neurogenin 3 Hypothalamic Developmental Animal model [42]
transcription factor role
POU class 3 Hypothalamic .
POUSE2 6q16-1 home-box 2 transcription factor CNV studies 201
SH2B1 l6p11.2 Sre homology.Z B Modu!ate.s lep t.m & Hyperphagla, Disease-causing [44]
adapter protein 1 insulin signaling obesity
Single-minded Hypothalamic . .
SIM1 6q16.3 homolog 1 differentiation Disease-causing [45]
Tubby Hypothalamic . .
rus 1pl5 transcription factor neuropeptides Syndromic obesity [44]

A multi-cohort GWAS meta-analysis involving 16,800+ European participants con-
firmed the variant’s strong association with BMI. After FTO, this SNP showed the second-
highest genome-wide significance, likely mediated by MC4R transcriptional regulation.
Findings were validated across >60,000 adults, 6000 children, and multiple family-based
cohorts, underscoring robust reproducibility. The average difference in BMI for each copy
of the rs17782313 C-allele was around 0.22 kg/m? (760 g). Overweight and Obesity odds
ratios rose by 8 and 12% with one copy of the C-allele, respectively; no discernible gender
differences were seen. Fat mass had a disproportionate impact on weight [46]. Cross-
ancestry comparisons enhance understanding of shared biological mechanisms and enable
fine-mapping of obesity-susceptibility loci with higher precision [47]. The latest edition
of the “Human Obesity Gene Map” provides an excellent summary of this; it includes
127 candidate genes, of which slightly less than 20% have been replicated by five or more
studies, 244 knockout or transgenic animal models, 50 loci linked to Mendelian syndromes
relevant to human Obesity, and 11 single gene mutations. Out of 61 genome-wide linkage
scans, 253 quantitative trait loci (QTL) for various obesity-related traits have been identified.
Just over 20% of them have several studies to support them [48]. Across diverse ancestries,
FTO and MC4R consistently emerge as the most replicated obesity loci, demonstrating
cross-population robustness. First discovered in Europeans, single-nucleotide polymor-
phisms (SNPs) in FTO and close to MC4R are obesity-susceptibility loci that extensively
replicate across various ancestries. According to SNP-to-SNP comparisons, individuals
of East Asian and European ancestry share almost half of the loci linked to the 36-body
mass index. Locus-wide investigations, however, suggest that the transferability may be
considerably greater [27].

Figure 7 Integrates structural, transcriptional, and functional evidence explaining how
FTO polymorphisms, as identified in GWAS and functional studies, modulate appetite
regulation and fat deposition. This figure reflects the effects of genetic variants rather than
FTO knockdown experiments.
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Figure 7. Proposed Mechanistic Role of FTO in Adiposity.

4. Epigenetic Modifications in Obesity

Beyond genetic variation, epigenetic mechanisms play a pivotal role in regulating
obesity risk by modulating gene expression without altering the DNA sequence. Epige-
netics encompasses DNA methylation, histone modifications, and non-coding RNAs that
dynamically influence transcriptional activity [49].

Figure 8 highlights the influence of DNA methylation, histone modifications, and
non-coding RNAs on transcriptional control of adipogenesis and energy homeostasis.
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Figure 8. Epigenetic regulation of genes related to Obesity. An illustration of the most prevalent
epigenetic modifications and targeted genes researched in the context of obesogenic versus healthy
lifestyle choices.

DNA methylation and histone modifications act as tissue-specific regulatory mark-
ers, influencing energy metabolism and adipocyte differentiation. Genomic imprinting
further regulates obesity-associated loci by controlling parent-of-origin—specific allele ex-
pression. In humans, there are two primary clusters of genomic imprinting: a region at
11p15 that contains many imprinted genes, including H19, KCNQ1, CDKN1C, PHLDA2,
and KVLQT1 (maternally expressed) and IGF2, INS, and KCNQ10T1 (LIT1) (paternally
expressed). At least seven imprinted genes, including MKRN3, MAGEL2, NDN, SNURF-
SNRPN (paternally expressed), and UBE3A, ATP10A (maternally expressed), are found
in the second cluster at 15q11-q12. Aberrant imprinting failures disrupt normal growth
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and differentiation pathways, predisposing individuals to early-onset obesity. For instance,
Prader—Willi syndrome arises from 15q11-q13 deletions or uniparental disomy, leading to
hyperphagia and severe obesity. A condition marked by hyperphagia (induced by satiety
center malfunction) and severe (often fatal) early-onset obesity [50]. Recent meta-analyses
demonstrate that LEP and ADIPOQ promoter methylation strongly associate with obesity
and weight-loss response. Moreover, miRNAs such as miR-33 and miR-103 modulate lipid
metabolism, while long non-coding RNAs like HOTAIR influence adipogenic differentia-
tion. Al-driven epigenomic profiling has recently uncovered novel methylation signatures
linked to metabolic plasticity in obesity, underscoring the translational potential of big-data
approaches [51].

5. Genetic Mechanisms Underlying Obesity
5.1. Appetite Regulation Genes

A complicated condition, Obesity is influenced by several hereditary and environmen-
tal variables. It has also recently been proposed that uncommon genetic variations with
potent effects may be the cause of Obesity. Monogenic Obesity is linked to gene mutations
related to the hypothalamic leptin-melanocortin signaling pathway. LEP, LEPR, POMC,
PCSK1, MC4R, MC3R, SH2B1, NTRK2, MRAP2, and TUB are some of these genes. New
genes linked to Obesity, as shown in Table 2, that are involved in the melanocortin pathway
or hypothalamic development have recently been discovered. These genes include ADCY?3,
MYTIL, POU3F2, GRPR, and LRP2 [20].

Cholecystokinin and other short-term hormonal, psychological, and neurological cues
from the gastrointestinal system regulate eating behavior. On the other hand, different
cues, including the newly identified hormone ghrelin, could trigger eating. Long-term
energy storage is indicated by circulating nutrients, insulin, leptin, and other hormones.
Low energy stores cause adipose tissue to produce less leptin, which lowers circulating
leptin concentrations. This results in a decrease in «-melanocyte-stimulating hormone
(«-MSH), cocaine, and amphetamine-regulated transcript (CART), as well as an increase in
hypothalamic neurotransmitters that strongly increase food intake, such as neuropeptide Y
(NPY), galanin, and agouti-related protein (AGRP). A 28-amino acid peptide called ghrelin
was extracted from the stomach of rats. The human stomach mucosa’s endocrine cells are
its primary source. However, it was also discovered in several other tissues, including
the kidney, placenta, ovary, testis, pituitary, hypothalamus, pancreas, lung, and immune
cells [43].

5.2. Fat Metabolism and Storage Genes

VAT and SAT were used to measure the gene expression of the VLDL receptor (VLDLR),
lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein
1 (LRP1), and fatty acid binding protein 4 (FABP4) in 28 morbidly obese patients with Type
2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese
patients with low IR, and 12 lean, healthy controls.

Figure 9 illustrates the comparative dysregulation of lipid storage, lipolysis, and fatty
acid mobilization pathways in obese versus lean phenotypes. The schematic highlights
differential gene expression (e.g., upregulation of NPY1R and CES1; downregulation of
CIDEA, APOE, and ABCA) observed in human adipose tissues. These differences represent
an altered regulatory balance between storage and mobilization processes, rather than
direct molecular dysregulation. Lipid storage begins with the introduction of FFA into the
adipocyte. Lipoprotein lipase (LPL) lipolyzes the triglycerides carried in triglyceride-rich
lipoproteins (TRL), such as chylomicrons and VLDL, to FFA, subsequently absorbed by
the adipocyte. LPL, attached to glycosaminoglycans at the luminal side of the capillary
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endothelium, catalyzes the rate-limiting step for triglyceride catabolism or FFA accumu-
lation in peripheral tissues, including adipose tissue. The main enzyme that controls the
entrance and esterification of FFA in adipose tissue is LPL [52]. Differential gene expres-
sion in subcutaneous abdominal adipose tissue samples from people with lean and obese
phenotypes was examined and validated using microarray and RT-PCR analysis [53]. The
findings include the following: When comparing obese and lean people, NPY1R and CES1
were upregulated, whereas several genes and transcripts implicated in lipolysis, including
AKAP1, PRKAR2B, Gi, and CIDEA, were downregulated. Similarly, transcripts linked to
lipoprotein and cholesterol metabolism were expressed differently in obese compared to
lean patients, with VLDLR rising and APOE and ABCA falling [31].
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Figure 9. Fat metabolism and storage disease underlying Obesity: Adipose Tissue Lipid Metabolism
Pathways.

5.3. Energy Expenditure Genes

It is well acknowledged that one of the variables contributing to the genesis of Obesity
is individual variability in energy expenditure. Energy expenditure is a complicated
phenomenon frequently examined concerning its many elements. These elements include
energy expenditure, the thermic impact of meals, resting and basal metabolic rates, and
activity-related energy expenses. The additive genetic impact, also known as heritability,
and the genotype-environment interaction effect are the two genetic effects that are often
considered [54,55]. We explicitly visualized these causal links in Figure 10 by arranging
panels (a—c) sequentially with directional flow, thus clarifying the upstream-downstream
relationships across genetic, mitochondrial, and systemic levels of energy regulation.

To clarify the mechanistic continuum, Figure 10 is now arranged in a stepwise manner:
panel (a) illustrates thermogenesis-related genes as upstream drivers, panel (b) depicts mito-
chondrial regulators of basal metabolic rate as intermediate nodes, and panel (c) integrates
downstream systemic variability in energy expenditure. This sequential arrangement high-
lights how upstream genomic variants propagate through mitochondrial activity to shape
whole-body metabolic outcomes. Even after adjusting for the well-established concomitants
of energy expenditure, variations in human energy consumption can be partially attributed
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to the impact of the genotype, as shown in Figure 11. Evidence from classical twin studies,
adoption cohorts, and family aggregation analyses consistently demonstrates that genetic
factors explain approximately 35-45% of interindividual variance in resting metabolic rate,
the thermic effect of food, and energy cost of low-to-moderate intensity exercise [56]. More
recent genome-wide association studies (e.g., FTO, MC4R, UCP2, PPARG loci) and poly-
genic risk score analyses further corroborate this heritability estimate, confirming that both
traditional quantitative genetics and molecular approaches converge on a ~40% genetic
contribution [57].
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Figure 10. Energy Expenditure Genes Network: In this figure (* “Causal” indicates genetic variants
that have a direct biological effect on the phenotype, distinguishing them from variants that are only
correlated through genome-wide association studies (GWAS)).
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Figure 11. Gene’s energy expenditure: Schematic representation of the leptin—-melanocortin signaling
pathway, Leptin (LEP) binds to the leptin receptor (LEPR), activating downstream components such
as SH2B1 and TUB, which in turn stimulate pro-opiomelanocortin (POMC) expression. POMC
is processed by PCSK1 and CPE to produce «-MSH, which activates the melanocortin 4 receptor
(MC4R). MC4R signaling regulates food intake and energy expenditure through interactions with
GRPR, ADCY3, and neuronal factors such as SIM1, MYT1L, and BDNF via NTRK2. The right panel
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illustrates transcription factors (POU3F2, NEUROG3, ARTN2, OTP, ISL1) involved in hypothalamic
development and neuronal differentiation. Note: Solid arrows represent direct activation or signaling
relationships, while dashed arrows (e.g., between SIM1 and MYT1L) indicate indirect or transcrip-
tional regulation. The downward green arrow denotes decreased food intake, and the upward yellow
arrow indicates increased energy expenditure.

A significant genetic effect of habitual physical activity has also been reported in
Figure 11. The existence of a genotype-environment interaction has also been investigated.
Thus, in response to chronic overfeeding and negative energy balance, changes in the
components of energy expenditure exhibit significant identical twin pair resemblance.
Nutrient partitioning is emerging as a major determinant of individual differences in
metabolic rate responses to overfeeding or adverse energy balance conditions. Taken
as a whole, these observations consistently support the hypothesis that heredity plays a
significant role in the various components of energy expenditure in humans [58].

5.3.1. Gene Influencing Basal Metabolic Rate

According to quantitative genetics research, a large portion of the phenotypic variance
in BMR may be ascribed to an additive genetic component. This is mainly highlighted by
several genes with minor effects that code for protein structural polymorphism. Neverthe-
less, environmental influences and non-additive genetic factors, which most likely work by
modifying gene expression, account for an additional 40% of BMR variance [59].

5.3.2. Role of Physical Activity-Related Genes in Obesity Risk

The World Health Organization identified Obesity as the most significant risk to West-
ernized countries” health in 2000. Nearly 40% of adults in the US suffer from Obesity, which
causes more than 400,000 deaths annually. Even though Obesity may be controlled with
medication, diet, and exercise, rates have been rising. For instance, in the EPIC-Norfolk study
of 20,000 adults, physically active individuals with high-risk FTO alleles had a 40% lower
obesity prevalence compared to inactive carriers. Similar findings were replicated in Amish
and European cohorts, underscoring that exercise attenuates polygenic obesity risk [60].

According to earlier research, physical activity and genetic risks are inversely corre-
lated, meaning that increased physical activity might help reduce a greater genetic risk
for Obesity, as shown in Table 3. Daily step counts from fitness tracking devices were
used to quantify activity monitoring. A polygenic risk score (PRS) from a comprehensive
genome-wide association study (GWAS) of BMI was used to measure genetic risk. We
calculated the average number of steps per day required to compensate for the hereditary
risk of elevated body mass index [61].

Table 3. Gene development and obesity complications.

Function in the Development of Obesity

Gene/Mutation L References
Complications

Gene of adiponectin (variants rs1501299, . .
rs2241766, 1266729 and rs17300539) Marker of cardiometabolic risk [62]
SREBFI Res.ponsft?le for.the 1nc.reased risk pf coronary heart [63]

disease in patients with obstructive sleep apnea
Deletion of the long arm of chromosome 15 Prader-Willi syndrome—mcr.eased obstructive sleep [62]
apnea risk
R$926198 variant of t.he gene encoding Increased risk of cardiovascular disease in obesity [62]
caveolin-1

Genes of transcription factor TCF7L2 and Occurrence of type 2 diabetes mellitus in the obese [55]

PPAR-v2 recepto

T
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Table 3. Cont.

Gene/Mutation

Function in the Development of Obesity

. . R f
Complications eferences

Development of type 2 diabetes in the inhabitants of

SLCI6AIT gene variants Mexico and other Latin American countries (531

Gene encoding the amyloid A The size of the adipocytes increased in obese people [62]
PPPIRI5A, HADHA}LI;III\]HPI’ FOS, FOSB and Co-existence of osteoporosis, colon cancer, and Obesity [62]
Polymorphism Ala55Val of UCP?2 gene Weight loss in obese patients undergoing laparoscopic [55]

adjustable gastric banding

Over the past several decades, the incidence of Obesity has dramatically increased,
and higher levels of physical activity have been linked to lower levels of body fat and
metabolic risk. Genetic variables are also crucial in developing Obesity, according to genetic
epidemiology research, as shown in Table 4 [64].

Table 4. Examples of Obesity-Susceptible Loci Identified By GWAS.

Gene Chll;omo.somal Phenotype Population Studied References
ocation

FTO 16q12 BML; e‘:gje;rizto%zgf;tage; European, African, Asian [32]
MC4R 18qg21 BMI; WC; extreme obesity =~ European: Indian Asian [33]
MC3R 20q13.2-13.3 Obesity 13}‘12 (}:ﬁ‘;;zif‘cnp%‘;ﬁ?&? [34]
SLC6A14 Xq23 Obesity Finish, French [41]
POMC 2p23.3 BMI European [65]
BDNF 11p4 BMI; extreme Obesity European [38]
TMEM18 2p25 BMI; extreme Obesity European [35]
NEGRI1 1p31 BMI European [36]
PCSK1 5q15-q21 BMI East Asian [39]
GNPDA2 4p12 BMI European [66]
MAP2K5 15g23 BMI European [40]
SEC16B 1925 BMI European [37]

6. Gene-Environment Interaction in Obesity

Obesity represents a global health burden, predisposing individuals to cardiometabolic
and endocrine disorders. The rapid escalation of obesity prevalence reflects gene—
environment interactions, where genetic predisposition interacts with lifestyle, diet, and
socioeconomic determinants [67]. Over 60% of individuals in the United States are thought
to be overweight or obese. Similar increases have been seen in the proportion of kids and
teenagers who are overweight (i.e., >95th percentile) or at risk for being overweight (i.e.,
>85th percentile) [68].

Interaction Between Genetic Predispositions and Environmental Factors

The strong impact of the environment on an individual’s susceptibility to Obesity is
demonstrated by migration studies conducted on immigrants arriving in America using
data from the National Health Interview Survey [69]. Other comparisons of high-risk
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ethnic groups living in contrasting environmental settings [70], and randomized controlled
trials of weight loss interventions [71]. This evidence supports a model where genetic
susceptibility amplifies the effects of obesogenic environments, accelerating disease onset.
The impact of genes on Obesity has been the subject of much contemporary research.
Numerous genes have been connected to Obesity by scientists, indicating that genes play a
significant role in developing this illness. Numerous genes found by GWA scans, including
MC4R (melanocortin-4 receptor) and FTO (fat mass and obesity-associated), have been
firmly linked to the risk of Obesity in a variety of populations [72]. But when it comes
to Obesity, we still do not fully understand how genes impact how our bodies react to
dietary or energy changes. Nutrigenomic studies, as shown in Table 5 reveal that genetic
variants regulate dietary responsiveness, affecting lipid storage, appetite control, and
metabolic flexibility [73]. Numerous metabolic problems, including insulin resistance,
hyperglycemia, and dyslipidemia, are often linked to Obesity. Additionally, Obesity is
linked to an increased risk of coronary heart disease, type 2 diabetes, asthma, sleep apnea,
hypertension, some types of cancer, and other mortality [74].

Table 5. Nutrigenomic Variants and Diet-Gene Interactions.

Gene/SNP Dietary Modifier Metabolic Effect Phenotypic Impact References
High protein vs. Alters IRX3/IRX5 Protein-rich diets
FTO rs9939609 high carb expression mitigate BMI risk [75]
T High saturated fat
APOA2 CC genotype Saturated fat Modifies lipid intake an increase (1) [16]
storage
BMI
Enhances insulin [mproved glucose
PPAR«2 Prol2Ala Dietary fats nsitivit metabolism on high [58]
SENSTVY MUFA diets
. Refined Influences (-cell Modulates diabetes
TCF7L2 variants carbohydrate load function & adiposity risk [62]

Lipid and lipoprotein phenotypes have been used in most research on the relationship
between human genes and food. According to several assessments of these investigations,
the response to diet is modulated by genetic diversity in the LDL receptor gene, multiple
apolipoproteins, and LDL subclass phenotypes [76]. Physical activity improves insulin
sensitivity, lipid metabolism, and cardiometabolic outcomes across populations. However,
exercise response is highly genotype-dependent, with specific variants modulating fat
oxidation and energy expenditure [77]. In obese people, the relationship between genes
and nutrition is a complicated research topic. It entails comprehending how hereditary
variables impact how each person reacts to various food regimens, including metabolic
wellness and weight control.

Figure 12 demonstrates how lifestyle interventions, including diet and physical activity,
can attenuate or amplify genetically mediated obesity risk.

Increased physical activity may mitigate the negative consequences of FTO gene
variations, according to 2008 research on Amish people. The findings imply that physical
exercise might mitigate the elevated risk of Obesity caused by genetic vulnerability to FTO
mutations. These results highlight how important physical exercise is to public health
initiatives to fight Obesity, especially in those genetically predisposed to the condition [78].
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Figure 12. Genetic environmental factors: This diagram depicts the multifactorial relationships that
contribute to overall health status. Exercise influences gene expression and intermediate phenotypes
(e.g., metabolic rate, cardiovascular function), which in turn affect health outcomes. Genetic factors
interact bidirectionally with intermediate phenotypes, modulating the effects of both exercise and
environmental exposures. Note: Solid red arrows: Indicate direct effects or influences (e.g., exercise
directly affecting gene expression or health status). Thick black arrows: Represent strong causal
pathways or major determinants of health (e.g., genetic and environmental effects on health status).
Dashed arrows: Depict indirect or feedback interactions (e.g., how genes and intermediate phenotypes
mutually influence each other or how environmental factors affect gene-phenotype relationships).
Bidirectional arrows: Show reciprocal interactions where both components influence each other (e.g.,
gene—phenotype or gene—environment feedback loops).

7. Role of Gut Microbiota in Obesity

Numerous microorganisms, including bacterial, fungal, and protozoal, comprise our
microbiota and are found in the human body [79]. Managing gut microbiota has emerged
as a novel approach to treating Obesity [80]. Through several processes, gut microbes
may impact weight growth and fat deposition. Short-chain fatty acids, especially butyrate,
enhance GLP-1 and PYY secretion, improving satiety and glucose control. Conversely,
increased lipopolysaccharide-producing Gram-negative bacteria drive metabolic endotox-
emia, promoting chronic inflammation and obesity. One reason is the large intestine’s
microbes’ capacity to ferment ordinarily indigestible food ingredients to release energy.
The host indirectly obtains this energy through the absorption of short-chain fatty acids
generated by microbes [81]. Studies involving obese people following diets low in carbs or
diets containing various non-digestible carbohydrates have demonstrated that the species
composition of the gut microbiota varies with diet composition. The genera Methano-
bacterial, Lactobacillus, Bifidobacterium, and Akkermansia, as well as the family Christen
senellaceae, are typically regarded as probiotics, and Obesity is frequently inversely cor-
related with their relative abundance [82]. However, there is conflicting data about how
much the makeup of the gut microbiota varies between those who are obese and those who
are not [83]. The number of bacteria that break down fiber is linked to weight reduction,
whereas the presence of bacteria that break down protein and fat is linked to weight gain.
Numerous variables, including genetics, influence the gut microbiome; however, the func-
tional relationships between these factors are not as well-known due to the diversity of the
microbial community [84]. Numerous complicated human illnesses and host characteristics
have been connected to the microbiome. Human intervention trials published in recent
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years confirm that modulation of gut microbiota composition through dietary fibers or
probiotics directly influences adiposity outcomes [85].

Figure 13 visualizes the taxonomic shifts in microbial diversity linked to differential
energy extraction, metabolic flexibility, and inflammatory pathways.
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Figure 13. Gut microbiota composition impacts Obesity.

8. Genetic and Clinical Implications for Future Directions

Current pharmacotherapies primarily target central appetite regulation, gut-hormonal
pathways, adipose metabolism, and hepatic lipid processing. Emerging interventions—
including gene therapy, microbiome modulation, anti-obesity vaccines, and next-generation
drug delivery systems are under active investigation [86]. Advances in molecular genetics
have accelerated gene therapy approaches aimed at correcting obesity-linked metabolic
defects. These strategies aim to enhance energy expenditure, restore leptin—-melanocortin
signaling, and reprogram adipose metabolism. Delivering coding or non-coding gene
sequences can restore homeostatic protein networks, improving long-term metabolic regu-
lation. Many genes, including those that code for the proteins and enzymes involved in
food intake, lipogenesis, lipolysis, glucose metabolism, and fat storage in adipose tissue,
must work in concert and balance to maintain metabolic homeostasis. The metabolic
processes are also significantly influenced by the genes that control the expression of these
vital genes. Obesity may result from the over- or under-expression of one or more genes
necessary for metabolic balance [87]. Respect for autonomy in the context of genetic testing
and screening refers to a person’s right to make an educated, autonomous decision regard-
ing whether or not they want to be tested and whether or not they want to be told of the
specifics of the test’s results.

Figure 14 summarizes translational strategies, including gene therapy, microbiome
modulation, anti-obesity vaccines, and personalized pharmacogenomics.

Additionally, autonomy refers to the individual’s right to be in charge of their fate,
whether or not genetic information is involved, and to prevent others from interfering
with significant life decisions, whether or not they are influenced by genetic information.
The right to manage the future use of gene material submitted for analysis for a particular
purpose is another aspect of respect for autonomy. This includes the possibility of storing
the genetic material and the information derived from it for later analysis, such as in a
DNA bank or registry file [88]. Health disparities in obesity stem from the interaction of
genetic, environmental, and socioeconomic determinants. Precision medicine is becoming
feasible through advances in genomic profiling, multi-omics integration, and machine-
learning—based risk prediction. Nonbiological variables like socioeconomic position are
frequently the cause of health inequalities between white people and vulnerable social
groups like racial/ethnic minorities. Indeed, race is not a biological term; instead, it is a
societal construct. However, from the standpoint of health inequities, it is worthwhile to
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investigate how genetics contributes to the manifestation of common illnesses [75]. Inte-
grating genetic data into clinical practice remains limited, highlighting the urgent need for
translational pipelines connecting genomics to treatment decisions. Implementation science
might be utilized to address the obstacles and difficulties and investigate prospects and
optimal approaches for incorporating genetic data into standard clinical and public health
procedures [89]. Based on what is currently known about the biology and pathophysiology
of the illness, the candidate gene method is a hypothesis-driven strategy. This method
looks for a correlation between a characteristic of interest (like Obesity) and a variation or
mutation in or close to the candidate gene. The most recent translational pipelines lever-
age CRISPR-Cas9 genome editing and Al-based dietary prediction models to personalize
obesity therapy [90].

Exploring Multifaceted Approaches to Obesity Treatment

@@ Pharmacotherapeutics
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Obesity
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Strategies
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Figure 14. Obesity Treatment Strategies: Clinical Implications of Genetic Discoveries.

Genome-wide linkage studies examine whether certain chromosomal regions are
correlated with a disease or characteristic over generations and are dependent on the
relatedness of research participants. In genetics research, a genome-wide association study
is used to identify correlations between certain diseases or features and a large number
(usually hundreds of thousands) of distinct genetic variants, most often single-nucleotide
polymorphisms [91]. Numerous genes are connected to Obesity, according to genome-
wide association studies (GWASs). These discoveries provide insight into various unique
prospective weight-management therapies, such as genome editing. Given its capacity to al-
ter DNA or alter gene expression in eukaryotic cells, the state-of-the-art technology known
as clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated pro-
tein (Cas) surely helps us comprehend the genetic mechanisms underlying Obesity. It may
prove to be a helpful treatment tool [92].

According to the few molecular marker studies released thus far, several genes are
probably connected to human Obesity. This research has been given additional impetus by
recent advancements in animal genetics, transfection systems, transgenic animal models,
recombinant DNA technologies used in positional cloning, and techniques to discover loci
contributing to quantitative characteristics [93].

Figure 15 shows a comprehensive framework summarizing the integration of genetic,
epigenetic, and environmental determinants of obesity.

We anticipate that the integration of various data sources will not only make it possible
to identify a growing number of loci that contribute to obesity susceptibility but also
deepen our understanding of the pathogenetic mechanisms underlying these variants in a
field with quickly changing technologies and analytical methodologies. Ultimately, these
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developments will support a more thorough comprehension of Obesity as an illness and
enable the customization of upcoming treatment strategies [94].

Genetic Insights into Obesity Management
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Figure 15. Genetic Insights of Obesity Management.

9. Limitations and Strengths

Undertaking genetic research for complex diseases like Obesity offers numerous advan-
tages. Genetic technology has the potential to reveal new biological pathways and identify
fresh targets for intervention in preventing, treating, or curing diseases caused by multiple
factors. Furthermore, a better understanding of human genetics will enhance our knowledge
of the disease, improving prevention, diagnosis, and management. Nevertheless, there are
obstacles, such as the necessity for large sample sizes and the complexity of defining consistent
traits. Genetic research also encounters the challenge of heterogeneity, with limited genetic
findings on Obesity despite long-term studies. Even genome-wide association analyses have
yielded minimal results. It is evident that genetics plays a role in Obesity, but is not the sole
cause. Furthermore, translating genetic discoveries into clinical use is arduous, and ethical
considerations must be carefully observed when conducting genetic research on human
populations. While our systematic approach ensured methodological rigor, the exclusion of
non-English and grey literature may have led to selection bias.

10. Conclusions and Future Genetic Perspectives in Obesity

This review consolidates the molecular genetic basis of obesity as the primary deter-
minant, with additional modulation by epigenetic, nutrigenomic, and microbiome factors.
It also systematizes the genetic architecture of obesity, consolidating recent discoveries
across monogenic and polygenic loci. Building on this genetic foundation, we further
integrate epigenomic, nutrigenomic, and microbiome evidence to highlight translational
opportunities for precision nutrition. Obesity arises from a complex interplay of genetic
predisposition, epigenetic regulation, and environmental exposures, with hundreds of loci
identified through GWAS and multi-omics studies. Despite significant advances, critical
gaps remain in understanding variant functionality, gene—environment dynamics, and
population-specific risks.

Integrating genomic insights with epigenetic profiling, nutrigenomics, and Al-driven
risk modeling will accelerate the transition from discovery to precision-based clinical
applications. Leveraging these approaches will enable personalized prevention strategies,
targeted therapies, and predictive modeling of obesity susceptibility.

Future research should focus on:

e  Functional characterization of obesity-associated loci;

e  Cross-ancestry genomic mapping to address diversity gaps;

e Integrating multi-omics datasets with machine learning for risk prediction;

e Designing personalized interventions that optimize diet, physical activity, and
metabolic health.
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With advances in multi-omics integration, functional genomics, and artificial intelli-
gence, the field is moving toward a paradigm of predictive, preventive, and personalized
healthcare. A deeper understanding of the molecular mechanisms driving obesity will
transform its diagnosis, treatment, and long-term management.
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