

https://doi.org/10.1093/ndt/gfae251

Advance access publication date: 6 November 2024

Physical activity and cardiorenal health—from associations to interventional studies

Roseanne E. Billany 1, Alice C. Smith and Matthew P.M. Graham-Brown 1

- ¹Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- ²Department of Population Health Sciences, University of Leicester, Leicester, UK Correspondence to: Roseanne E. Billany; E-mail: r.billany@leicester.ac.uk

Watch the video of this contribution at https://academic.oup.com/ndt/pages/author_videos

ABSTRACT

Clustering of traditional and kidney-specific risk factors leads to elevated cardiovascular disease (CVD) risk across the trajectory of chronic kidney disease (CKD) and transplantation. As kidney function declines, the prevalence of CVD, cardiovascular events, and mortality increases. This review considers recent evidence for the association between physical activity (PA) and exercise and cardiorenal health, and the effectiveness of interventions for the prevention and management of cardiorenal decline across the CKD spectrum. Evidence supports a beneficial dose–response effect of PA in the prevention of incident CKD, and growing evidence in prevalent CKD patients for the attenuation of kidney function decline, and a reduction in CVD risk, morbidity, and mortality. Broadly speaking, across the trajectory of CKD, the literature supports the efficacy of exercise interventions for improving cardiorespiratory fitness and aspects of cardiorenal health. The mechanisms underlying improvements indicate differential effects on traditional and non-traditional risk factors for CKD progression and CVD. To date, there is limited transfer of these findings into clinical care, although the evaluation of available evidence has led to the development of the first detailed clinical practice guideline for exercise and lifestyle in CKD. There is a lack of large-scale multicentre randomized controlled trials, and trials exploring hard clinical outcomes and long-term effects of exercise on cardiorenal outcomes. However, research should also address the challenges of implementing programmes of exercise and PA as part of routine care in combination with addressing the shortfall in literature to improve cardiorenal outcomes in all patients with CKD.

Keywords: cardiorenal, chronic kidney disease, intervention, physical activity, transplantation

INTRODUCTION

As early as 1836, Robert Bright highlighted the intricate and interdependent relationship between the kidneys and the heart, specifically the notable cardiac structural deviations evident in patients with advanced kidney disease [1]. Fast forward to the present and significant progress has been made in elucidating the cardiorenal interrelationship; the heart and kidneys are essential for cardiovascular homeostasis and disease or dysfunction of one organ, may initiate, accentuate, or precipitate the same in the other [2]. There are also independent processes and diseases that may simultaneously affect both organs, including advanced age, hypertension, diabetes, atherosclerosis, and arteriosclerosis [2]. Whilst traditional risk factors for cardiovascular disease (CVD) are over-represented in patients with chronic kidney disease (CKD), they do not explain the high prevalence of CVD across the spectrum of CKD [3], including transplantation [4], or why CVD is a leading cause of mortality [5, 6]. It is clustering of traditional and kidney-specific risk factors that drives changes in cardiovascular structure and function that associate most closely with patient outcomes (Fig. 1) [3, 7]. Traditional risk factors such as hypertension, diabetes, and dyslipidaemia drive CVD in the early stages and later, as disease progresses, kidney-specific risk factors dominate [8]. This is reflected in the pathophysiology of CVD in CKD; as kidney function declines non-atherosclerotic cardiac events become more common and are the leading mode of death

in patients receiving haemodialysis [8]. After transplantation, although kidney function is in most cases improved and fatal cardiovascular events reduced, immunosuppressive medication regimes can have hypertensive, diabetogenic, and atherogenic effects, which tip the balance back towards 'traditional' risk factors (Fig. 1) [8]. The consequences of poor 'cardiovascular-kidney-metabolic' health are clear, with the most significant clinical implications being excess cardiovascular events and cardiovascular mortality [9].

Physical activity (PA) is any voluntary bodily movement produced by the skeletal muscle that requires expending energy. This can include occupational (e.g. activities at work), domestic (e.g. cleaning), transportation, or leisure-time activities (e.g. golf, cycling, walking). Exercise (or exercise training) is a sub-set of PA that is structured with the aims of sustaining or improving health and/or physical fitness (e.g. resistance training or running). We have long known the positive effects of being physically active on the prevention of CVD, even before a landmark study that showed the protective benefits of PA against coronary heart disease in active London bus conductors compared with their more sedentary driver colleagues [10]. Physical inactivity, or having a PA level that is insufficient to meet specific recommendations, is highly prevalent across the trajectory of CKD [11-13, 14]. Fatigue and muscle weakness are commonly experienced symptoms of CKD that can lead to a spiral of inactivity [15]. A large observation

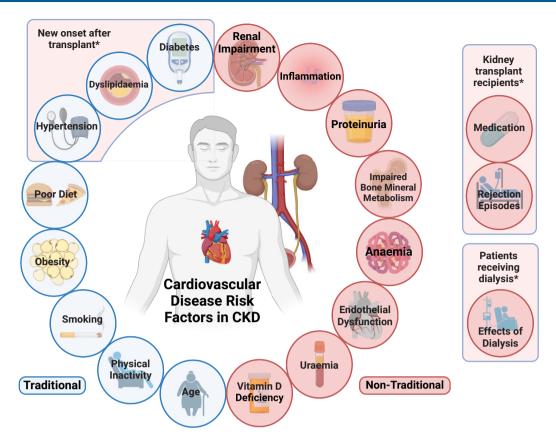


Figure 1: Cardiovascular disease risk factors in CKD. *Additional risk factors in named patient group. Created with BioRender.com.

cohort study reported up to 49% of 3926 people with prevalent mild-to-moderate CKD were inactive [14]. The most recent umbrella review and meta-analysis compiling 31 systematic reviews assessing the therapeutic effects of exercise training across the CKD trajectory reported moderate positive effects on cardiorespiratory fitness (CRF), muscle strength, and body composition [16]. They also reported minor positive effects on muscle endurance, cardiovascular risk factors, dialysis-related symptoms, and health-related quality of life (QoL).

This review considers the available recent evidence for the association between physical activity and exercise and cardiorenal health, and the evidence surrounding the effectiveness of interventions for the prevention and management of its decline across the spectrum of CKD.

EVIDENCE OF ASSOCIATIONS BETWEEN PHYSICAL ACTIVITY AND CARDIORENAL **HEALTH FROM OBSERVATIONAL STUDIES**

Physical activity and the risk of CKD in the general population

A recent meta-analysis of 12 published observation cohort studies including over 1.2 million people identified that in the general population, individuals who are the most physically active have a lowered risk of CKD compared with those who are not active or are the least physically active (pooled multivariable-adj. RR, 0.91 [95% CI, 0.85-0.97]) [17]. The authors noted, however, that the quality of the evidence was low. In a combined cross-sectional and prospective observational study of ~half a million adults in Spain, compared to physical inactivity, cross-sectional analyses at

baseline showed that regular PA (OR, 0.80 [95% CI, 0.79-0.81]), but not insufficient PA (1.02 [95% CI, 0.99-1.04]) was associated with lower CKD prevalence [18]. Prospective analyses in individuals without CKD at baseline did not confirm an inverse association between PA and the odds of developing CKD during the short 2-year follow-up. In the same study in those with CKD, regular PA was associated with a lower prevalence (-45% to -7%) and incidence (-38% to -4%) of all CVD risk factors [18]. Parvathaneni et al. (2020) reported that in middle-aged adults, exceeding the WHO recommendation for aerobic PA (>300 min/week) resulted in a CKD risk reduction of -11% compared with -7% in those meeting the recommendations (≥150 min/week) during a 24-year followup [19]. In 2668 participants with PA measured by the ActivPAL3 accelerometer, PA duration is inversely associated with endothelial dysfunction in those with and without CKD diagnosis [20].

Physical activity and cardiorenal health in non-dialysis-dependent CKD

Irrespective of PA levels, as kidney function declines, incidence of CVD, cardiovascular mortality, and cardiovascular events increases [3]. As CKD progresses, levels of PA decrease, and the number of patients categorized as inactive increases [11], leading to further increases in CVD risk. In a prospective cohort study of 3926 people living with mild-to-moderate CKD, those in the highest compared with the lowest quartile of self-reported moderate-to-vigorous PA (MVPA) had lower risk of atherosclerotic events (HR, 0.64 [95% CI, 0.51-0.79]), incident heart failure (HR, 0.71 [95% CI, 0.58–0.87]), and all-cause and cardiovascular death (HR, 0.54 [95% CI, 0.46-0.63] and HR, 0.47 [95% CI, 0.35-0.64], respectively) [14]. Those classified as 'inactive' (performing 0

minutes of MVPA per week) showed the lowest levels of kidney function compared with those who were 'active' and either not meeting or meeting recommended PA levels. A cross-sectional analysis of the same study showed peripheral artery disease (PAD) severity was not associated with PA defined by total metabolic equivalent (MET) hours per week (MET-h/week). However, PAD severity was significantly associated with walking activity and walking pace [21]. Kuo et al. (2022) concluded after a longitudinal cohort analysis of 4508 patients with CKD that PA of 7.5 to <15 MET-h/week is associated with lower risks of adverse cardiorenal outcomes and should be part of CKD care [22].

Physical activity and cardiorenal health in patients receiving dialysis

Studies of the association between PA and health are limited and of relatively small sample sizes within dialysis populations. An analysis of 5763 patients receiving haemodialysis assessed via the Rapid Assessment of Physical Activity questionnaire, showed an inverse association between PA levels and mortality (adj. HR of death for very active vs never/rarely active, 0.60 [95% CI, 0.47-0.77]) [23]. In a cross-sectional analysis of 20 920 patients receiving haemodialysis, PA was assessed using a single-item questionnaire and mortality risk was lower for regular (equal to or more than once/week) versus non-regular (less than once/week) exercisers (adj. HR, 0.73 [95% CI, 0.69-0.78]) [24]. However, no significant association was found between regular exercise and hospitalizations except for those due to fractures [24]. Data in 2507 patients receiving peritoneal or haemodialysis found that regular exercise (between 2 and 3 and 4 and 5×/week) was associated with lower all-cause and cardiovascular mortality, although this benefit did not extend to those who reported daily exercise potentially indicating a shortfall in self-reported PA data [25]. However, in this study, patients who reported severe limitations in either moderate or vigorous PA experienced significantly increased cardiovascular mortality in multivariable analysis (RR, 1.59 [95% CI, 1.27–1.99; RR, 1.47 [95% CI, 1.10–1.97], respectively) [25].

Physical activity and cardiorenal health in patients with a kidney transplant

Research examining the association between PA and outcomes in kidney transplant recipients (KTRs) is limited but consistent. In a study of 4034 participants, KTRs in the lowest tertiles of PA, using modified summary scores from the Yale Physical Activity Survey, were more likely to be obese/overweight, have diabetes mellitus, and/or have prevalent CVD [26]. Independent of age, self-reported PA was inversely associated with metabolic syndrome, history of CVD, fasting insulin, and triglyceride concentration when examined in 540 KTRs [27]. The mortality of the least active group in this study was 24%, while the most active had a mortality rate of only 1.7% over 5.3 (4.7–5.7) years of follow-up. Longitudinal analysis of cardiovascular risk factors in active and sedentary KTRs showed stable allograft function in those who were active and worsening serum creatinine levels and proteinuria over time (~3 years) in those who were sedentary [28]. In this study, there was also an amelioration of all blood pressure indices, reduction in fasting blood glucose and triglyceride levels in those who were active.

Sedentary behaviour and cardiorenal health

Research has begun to focus on sedentary behaviour as a separate concept to PA: 'any waking behaviour with an energy expenditure of \leq 1.5 METs, while in a sitting or reclining posture' [29]. The WHO recommends that adults limit sedentary time and in the case of high sedentary time, undertake more than the recommended volume of PA [30]. Extended periods of sedentary behaviour are becoming recognized as an independent determinant of poor outcomes [31]. In a cohort analysis of 132 122 middle-aged and older adults in China, increased sitting time was significantly associated with the risk of kidney function decline (aHR, 1.136 [95% CI, 1.036-1.247]) [32]. Greater television watching time was related to a higher CKD occurrence and lower kidney function in an analysis of 329 758 UK Biobank participants [33]. In almost half a million adults in Taiwan, prolonged occupational sitting was significantly associated with a higher risk of CKD (OR, 1.26 [95% CI, 1.21-1.31]), end stage kidney disease (HR, 1.19 [95% CI, 1.03-1.38]), and kidneyspecific mortality (HR, 1.43 [95% CI, 1.07-1.91]) compared with mostly standing participants after controlling for PA and other risk factors [34]. Crucially, even a minimal level of PA of 15 min/day (90 min/week) of moderate intensity, was associated with a reduction in these risks [34]. These findings are supported by a study by Oh et al. (2023) who showed that the harmful effects of high sedentary time on the occurrence of CKD are mitigated by high levels of PA [35]. Sedentary time was associated with a small longitudinal decline in kidney function in 7134 adults without CKD; however, in stratified analyses, each 1-hour increase in sedentary time was associated with a significant decline in kidney function in women but not men [36]. In a small prospective cohort study, extended sedentary time increased the risk of new cardiovascular or kidney events and/or all-cause mortality in patients with diabetic kidney disease [37]. In CKD, longer sedentary bouts measured by accelerometery associated with endothelial dysfunction [20].

Summary

Table 1 presents an overview of the included studies. There is evidence to support a beneficial dose-response effect of PA in the prevention of incident CKD and growing evidence in those with prevalent CKD for the attenuation of kidney function decline, and the reduction in CVD risk, morbidity, and mortality. Larger volumes of sedentary behaviours associate with an increased risk of CKD, a faster decline in kidney function, and in those with CKD, an increased risk of CVD and mortality. Emerging observational data suggest that even in patients with high levels of sedentary behaviours, some of the detrimental effects are mitigated by even small increases in PA levels. The key disparities in these studies that make coherent interpretation and evidence synthesis difficult are the large and differing methods that have been used to determine PA and sedentary behaviours. Generally, subjective methods that infer more bias (e.g. self-reported questionnaires) are more commonly used, and ideally more studies with objective methods (e.g. device-measured) are required. Observational studies alone cannot infer causality, and commonly, people with less poor health are more active overall. Therefore, it is important to follow up these studies with rigorous interventional studies.

PHYSICAL ACTIVITY AND EXERCISE INTERVENTIONS TARGETING CARDIORENAL OUTCOMES

There is an abundance of interventional studies across the trajectory of CKD that examine a broad array of exercise interventions (aerobic, resistance, balance, etc.), targeting different behaviours (increasing PA, reducing sedentary time, and increasing specific exercise), in a variety of locations and methods of delivery (e.g. supervised vs unsupervised, and in-centre, community-based, or home-based), assessing a wide range of outcome measures. Peak

Table 1: Characteristics of included observational studies.

Key outcome(s)	The pooled multivariable-adjusted RR [95% CI] of CKD comparing the most vs the least physically active groups was 0.91 [0.85–0.97]. 9% lower risk of CKD in the most vs least active groups Low quality of evidence reported	Compared with physical inactivity, cross-sectional analyses at baseline showed that regular PA (OR, 0.80 [95% CI, 0.79–0.81]), but not insufficient PA (1.02 [0.99–1.04]) was associated with lower CKD prevalence. Prospective analyses (short 2-yr follow-up) failed to confirm this association (P > 0.1). CKD was associated with a higher prevalence of hypertension (+3%) and diabetes (+5%) at baseline and with a greater incidence of hypertension at follow-up (+37%). In prevalent CKD, regular PA was associated with a lower prevalence (-45% to -7%) and incidence (-38% to -4%) of all CVD risk factors	Higher categories of PA were associated with lower risk for CKD compared with the inactive group (HRs for insufficiently active, 0.95 [95% CI, $0.88-1.02$]; active, 0.93 [95% CI, $0.86-1.01$]; highly active, 0.89 [95% CI, $0.81-0.97$]; P for trend = 0.007). Median follow-up 24 yrs	After adjustment for clinicodemographic covariates, higher total PA was associated with a significantly lower endothelial dysfunction score both among participants with normal (model 3, β : –2.68 [95% CI, –4.07 to –1.30]) and impaired (model 3, β : –4.42 [95% CI, –7.98 to –0.87]) kidney function	Compared with participants in the lowest MVPA quartile, the highest quartile had lower nisk of atherosclerotic events (HR, 0.64 [95% CI, 0.51–0.79]), incident heart failure (HR, 0.71 [95% CI, 0.58–0.87]), and all-cause and cardiovascular death (HR, 0.54 [95% CI, 0.46–0.63], and HR, 0.47 [95% CI, 0.35–0.64], respectively). Findings were similar for analyses evaluating recommended level of PA. Median follow-up 13.4 yrs	In a multivariable linear regression model, PAD severity was not associated with PA defined by total MET-h/wk in men or women ($P = 0.432$). However, PAD severity was significantly associated with walking activity ($P = 0.037$), although this relationship did not differ by sex ($P = 0.130$). Similarly, PAD severity was significantly associated with walking pace ($P < 0.001$), although this relationship did not differ by sex ($P = 0.086$). In contrast, there was an independent association between PAD severity and SF-12 (physical function, $P = 0.018$), with a significant interaction by sex ($P < 0.001$)
	The pooled mi the least ph 9% lower risk Low quality o	Compared wit showed tha (1.02 [0.99–1 Prospective ar (P > 0.1). CKD was asso diabetes (+! follow-up (+ prevalence		After adjustm associated v among part and impaire		딥
Physical activity/sedentary behaviour measure	Multiple Self-report: 12/12 studies	Self-report: undefined questionnaire	Self-report: modified Baecke Physical Activity Questionnaire	Objective: ActivPAL3 accelerometer	Self-report: Multi-Ethnic Study of Atherosclerosis; Typical Week Physical Activity Survey	Self-report: Multi-Ethnic Study of Atherosclerosis; Typical Week Physical Activity Survey
Sample size	1281727 (from 12 observational cohort studies)	517 917	15792	2668	3926	3543
Population	al population Adult, general population	Adults (18–64 yrs)	Adults (45–64 yrs, Black or white)	Adults (40–75 yrs)	Adults (21–74 yrs) Adults (21–74 yrs) with eGFR 20– 70 mL/min/1.73m²	Adults (21–74 yrs) with mild-to- moderate CKD as defined by eGFR
Study type	risk of CKD in the gener Systematic review and meta-analysis	Prospective cohort and cross-sectional	Prospective cohort	Cross-sectional	liorenal health in non-di Prospective cohort study	Cross-sectional
Author Year Country (Data origin) Study	Physical activity and the risk of CKD in the general population Seidu et al. Systematic Adult, gene 2023 review and populatic Multiple meta-analysis	Castillo-Garcia et al. 2024 Spain N/A	Parvathaneni et al. 2021 USA ARIC	Bellos et al. 2023 Netherlands Maastricht Study	Physical activity and cardiorenal health in non-dialysis-dependent CKD Bruinius et al. Prospective Adults (21–74 yrs) 2022 cohort study with eGFR 20–USA 70 mL/min/1.73m ² CRIC	Wang et al. 2016 USA CRIC

-	τ	7
	ã	
	ř	
	_	-
	۶	
•	Ε	
	Ξ	
	۲	
	0	•
(1	۱
	_	1
	•	
,	•	
,		
,	1	
,		
	0	
,	0	
	0	
	0	

Author Year Country (Data origin) Study	Study type	Population	Sample size	Physical activity/sedentary behaviour measure	Key outcome(s)
Kuo et al. 2022 Taiwan N/A	Longitudinal cohort	Adults (>20yrs) with pre-dialysis CKD: Stage 1-3A CKD patients with >1g/d of proteinuria or Stage 3B–5 CKD patients	4508	Self-report: National Health and Nutrition Examination Survey (NHANES)	Highly active group had the lowest chance of all study outcomes, followed by low-active and inactive groups (P < 0.001). Multivariable Cox regression showed that only highly active group was independently associated with lower risks for all-cause mortality (HR, 0.62 [95% CI, 0.53–0.74]), ESKD (HR, 0.83 [95% CI, 0.72–0.96]), and MACE (HR, 0.63 [95% CI, 0.71–0.76]) compared with the inactive group. The risks of MACE did not further decrease once PA surpassed 15 MET-h/wk, indicating a U-shaped association. Median follow-up 686 d
Physical activity and car Lopes <i>et al.</i> 2014 Multiple DOPPS	diorenal health in Prospective cobort study	Physical activity and cardiorenal health in patients receiving dialysis Lopes et al. Prospective Prevalent in-centre HD 2014 cohort patients (>17 yrs) Multiple study DOPPS	5763	Self-report: Rapid Assessment of Physical Activity	CVD was the main reported cause of death: 33.3% for patients infrequently or never/rarely active and 36.0% for patients sometimes to very active. An inverse association was seen between aerobic PA level and mortality. Compared with never/rarely active patients, the extensively adjusted HR was 0.89 [95% CI, 0.72–1.10] for infrequently active, 0.84 [95% CI, 0.67–1.05] for sometimes active, 0.81 [95% CI, 0.68–0.96] for often active, and 0.60 [95% CI, 0.47–0.77] for very active (P for trend < 0.001) patients. Median follow-up 1.6 yrs
Tentori et al. 2010 Multiple DOPPS	Cross-sectional	Prevalent in-centre HD patients (>17 yrs)	20920	Self-report: unnamed questionnaire	In models extensively adjusted for demographics, comorbidities and socioeconomic indicators, mortality risk was lower among regular exercisers (HR, 0.73 [0.69–0.78], P < 0.0001) and at facilities with more regular exercisers (0.92 [0.89–0.94], P < 0.0001 per 10% more regular exercisers). No significant association was found between regular exercise and hospitalizations except for those due to fractures
Stack et al. 2005 USA DMMS Wave 2	Cross- sectional	PD or HD (>15 yrs)	2507	Self-report: unnamed questionnaire	Mortality risks were greatest for those with severe limitations in either moderate (RR, 1.72 [95% CI, 1.44–2.05]) or vigorous physical activities (RR, 1.51 [95% CI, 1.20–1.90]) compared with those reporting minimal or no limitations. Conversely, mortality risks were lower for patients who exercised 2 to 3×/wk (RR, 0.74 [95% CI, 0.58–0.95]) or 4 to 5×/wk (RR, 0.70 [95% CI, 0.47–1.07]), whereas no advantage was associated with daily exercise (RR, 1.06 [95% CI, 0.86–1.30])
Physical activity and car Kang et al. 2019 Multiple FAVORIT	diorenal health in Cross- sectional	Physical activity and cardiorenal health in patients with a kidney transplant Kang et al. Cross- Adult KTRs ≥6 mo 4034 2019 sectional post-transplant Multiple (35–75 yrs)	nsplant 4034	Self-report: Yale Physical Activity Survey (YPAS)	More participants in the 'low' PA tertile were overweight/obese, had a history of prevalent diabetes and/or CVD, compared with more active participants (all $P<0.001$)
Zelle et al. 2011 Netherlands N/A	Prospective cohort	Adult KTRs > 1 yr post-transplant	540	Self-report: Tecumseh Occupational Activity Questionnaire and the Minnesota Leisure Time Physical Activity	Cardiovascular mortality was 11.7, 7.2, and 1.7%, respectively, according to gender-stratified tertiles of physical activity (P = 0.001). All-cause mortality was 24.4, 15.0, and 5.6% according to these tertiles (P < 0.001). In Cox regression analyses, adjustment for potential confounders including history of CVD, muscle mass, and traditional risk factors for CVD did not materially change these associations.

Table 1: Continued

Author Year Country (Data origin) Study	Study type	Population	Sample size	Physical activity/sedentary behaviour measure	Key outcome(s)
Totti et al. 2020 Italy N/A	Observational cohort	Stable adult KTRs (45–51 yrs)	54	Self-report: interview	Graft function was stable in active KTRs, while it showed a decline over time in sedentary KTRs, as indicated by the rise in serum creatinine levels (P = 0.006) and lower eGFR (P = 0.050). There was an amelioration of all blood pressure indices, reduction in fasting blood glucose and in triglyceride levels in those who were active. Three follow-ups over 3-yr period
Setentary Denaviour and Cardiorena meaning Yu et al. Prospective 2023 cohort China CCDCC	Prospective Cohort	Adults (>40 yrs)	132123	Self-report: International Physical Activity Questionnaire (IPAQ)	Longer sitting time was significantly associated with the risk of kidney function decline (aHR, 1.136 [95% CI, 1.036–1.247, $P=0.007$, comparing participants with baseline sitting time in the lowest quartile with those in the highest quartile) after adjustment for potential confounders. Mean follow-up 3.8 yrs
Park et al. 2022 UK UK Biobank data	Observational cohort	Adults (40–69 yrs)	329758	Self-report: unnamed questionnaire	Those with a longer time spent watching television had significantly higher odds of CKD (aOR 1.091 [95% CI, 1.072–1.111]) and lower eGFR values. Using computer and driving were also inversely associated with the eGFR after adjustment for age and sex. However, computer use was not significantly associated with CKD and driving was associated with lower odds of CKD
Tsai et al. 2022 Taiwan N/A	Prospective cohort	Adults (>20 yrs)	455506	Self-report: unnamed questionnaire	Occupational sitting was significantly associated with a higher risk of CKD (OR, 1.26 [95% CI, 1.21–1.31]), ESKD (HR, 1.19 [95% CI: 1.03–1.38]), and kidney-specific mortality (HR, 1.43 [95% CI, 1.07–1.91]) compared with mostly standing participants after controlling for PA and other risk factors. A minimal level of PA of 15 min/d (90 min/wk) of moderate-intensity, was associated with a reduction in these risks.
Oh et al. 2023 South Korea KoGES	Prospective cohort	Adults (40–69 yrs)	7988	Self-report: unnamed questionnaire	Relative to the low-sedentary time, the coefficients of annual eGFR decline were (-0.07 [59% CI, -0.19 to 0.05], $P = 0.236$) and (-0.14 [95% CI, -0.28 to -0.01], $P = 0.039$) in the moderate- and high-sedentary time groups, respectively. Incident CKD was higher with lower PA (HR: high-PA 1.00, moderate-PA 1.13 [1.00, 1.28, $P = 0.056$] and low-PA 1.25 [1.11, 1.24, $P < 0.001$]) and higher sedentary time (HR: low-sedentary time 1.00, moderate-sedentary time 1.04 [0.94, 1.16, $P = 0.440$] and high-sedentary time 1.19 [1.05, 1.34, $P = 0.007$]). The high-PA reduced the risk for the CKD development irrespective of the amount of sedentary time.
Hannah et al. 2021 USA HCHS/SOL	Prospective cohort	Adults (18–74 yrs)	7134	Objective: Actical version B-1	On multivariable analysis, each 1-h increase in sedentary time was associated with a longitudinal decline in eGFR (-0.06% per year [95% CI, -0.10 to -0.02]). There was a significant interaction with sex, and on stratified analyses, higher sedentary time was associated with eGFR decline in women but not men.

Ū
ı
Ċ
-H
$\overline{}$
\overline{c}
Ŭ
\vdash
Φ
ㅈ
g
_

Author Year Country (Data origin) Study	Study type	Population	Sample size	Physical activity/sedentary behaviour measure	Key outcome(s)
Chuang et al. 2024 USA N/A	Retrospective cohort	Adults (20–79 yrs) with reduced kidney function (eGFR <60 mL/min/1.73m² or receiving dialysis)	1419 m²	Self-report: National Health and Nutrition Examination Survey (NHANES)	The crude analysis showed that individuals with sedentary lifestyle have higher risk of all-cause and CVD-related but not cancer-related mortality compared with the non-sedentary population. After adjusting for potential confounders, we showed that all-cause mortality and CVD-related mortality were 1.64-fold [95% CI, 1.26-2.12] and 1.66-fold [95% CI, 1.03-2.67] higher, respectively, in the sedentary population compared with the non-sedentary population. Median follow-up 99 mo
Bellos et al. 2023 Netherlands Maastricht Study	Cross-sectional	Adults (40–75 yrs)	2668	Objective: ActivPAL3 accelerometer	Positive association of endothelial dysfunction score with sedentary bout duration (β : 43.72 [95% CI, 9.85]; 77.59)

Abbreviations: CKD, chronic kidney disease; CVD, cardiovascular disease; d, day(s); eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; h/wk, hours/week; KTR, kidney transplant recipient; MACE, major adverse cardiac event; MET, metabolic equivalent; min, minutes; mo, month(s); MVPA, moderate to vigorous physical activity; PA, physical activity; PAD, peripheral artery disease; yr(s), year(s)

oxygen consumption (VO_{2peak}) derived from cardiopulmonary exercise testing (CPET) is the gold standard measure of CRF and both its prognostic links with clinical outcomes and CVD risk in CKD have been rigorously explained [38]. However, a maximal exercise test is often unattainable in elderly, frail, and/or symptomatic patients and is a resource-intensive investigation in larger trials. The 6-minute walk test (6MWT) is well correlated with VO_{2peak} in clinical populations and is well used in randomized controlled trials (RCTs) [39, 40]. Herein we present the most recent and largest studies of exercise interventions across CKD groups and a summary is provided in Table 2.

Interventions in non-dialysis-dependent CKD

In early CKD development, traditional CVD risk factors are of predominant importance in therapeutic intervention due to their contribution to atherosclerotic vascular disease development and their detrimental impact on the vessels of the kidney leading to progression of functional decline [3]. The RENEXC trial was one of the largest self-monitored exercise trials in 151 non-dialysisdependent (NDD) CKD patients (G3-5) combining aerobic exercise with either resistance training or balance training over 12 months [41]. Both groups experienced improvements (increased effect sizes) in physical performance: 6MWT distance (31 m and 24 m, P < 0.001), 30-second sit-to-stand test (both: 1 rep, P < 0.001); quadriceps strength (right/left: strength 1.2/0.8 kg*m, P < 0.003; balance 0.6/0.9, P < 0.01); and functional reach (both: 2 cm, P < 0.01) [41]. In a sub-study analysis of 112 patients, blood pressure, triglycerides, total cholesterol, high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), IL6, CRP, and albumin were all unchanged [42]. The AWARD study was a multicentre RCT assessing the effects of 12 months of predominantly centrebased (thrice weekly in-centre for 6 months and 1 home-based and 2 centre-based for the remaining 6 months) supervised combined aerobic and resistance exercise versus education showed positive changes in CPET measured CRF at 6 months (17.9 \pm 5.5 vs. 15.9 ± 7.0 mL/kg/min, P = 0.03) although this difference was not maintained at 12 months [43]. No significant changes were found in HbA1c, blood pressure, or body mass index (BMI). A systematic review and meta-analysis of 13 RCTs of predominantly aerobic exercise therapy showed increases in kidney function, decreases in BMI, and decreases in systolic and diastolic blood pressure compared with controls [44]. Caution has been advised for the adoption of exercise purely on the basis of delaying the decline in kidney function, as the mechanisms remain unclear [45]. It is likely that the positive effects observed have been due to improvements in disease progression risk factors such as blood pressure, glucose regulation, and BMI [45], all of which double as CVD risk factors, highlighting the importance of being active in this patient group even in early stage CKD.

Interventions in patients receiving dialysis

The CYCLE-HD RCT assessed the effects of a 6-month programme of structured intra-dialytic cycling in 130 patients showing improvements in prognostically important measures of cardiovascular structure and function assessed with cardiac MRI, including reduced left ventricular mass, myocardial fibrosis, and aortic stiffness compared with standard care [46]. However, the trial reported no change in PA levels. Whilst the PEDAL multicentre trial showed no effect of 6 months of intra-dialytic cycling combined with resistance training [47], the DiaTT trial of 12 months of similar exercise in 1211 patients did show improvements in the 6MWT and sit-to-stand 60 [48]. The increased

Table 2: Characteristics of included interventional studies.

Author Year Gountry (Data origin) Study	Study type Inclusion/Exclusion criteria	Sample size	Intervention	Main outcome(s)
Interventions in non-dialysis-dependent CKD Zhang et al. Systematic review a 2019 meta-analysis Multiple RCTs RCTs Adults (>18 yrs) Non-dialysis CKD (Studies describing t exercise. Exclusion: Non-randomized tr Dialysis Inappropriate statis Data not mean ± Si	Systematic review and meta-analysis inclusion: RCTs Adults (<18 yrs) Non-dialysis CKD (stage 2-5) Studies describing the effects of exercise. Exclusion: Non-randomized trials Dialysis Inappropriate statistical methods Data not mean ± SD	421 (from 13 RCTs)	Multiple	Compared with the controls, exercise therapy brought an increase in eGFR (MD = 2.62 [95% CI, 0.4-4.82], P = 0.02, 12 = 22%), and decreases in SBP (MD = -5.61 [95% CI, 0.4-8.99 to -2.23], P = 0.001, 12 = 44%), DBP (MD = -2.87 [95% CI, -3.65 to -2.08], P < 0.00001, 12 = 16%) and BMI (MD = -1.32 [95% CI, -3.365 to -2.08], P < 0.00001, 12 = 16%) and BMI (MD = -1.32 [95% CI, -2.39 to -0.25], P = 0.02, 12 = 0%). Exercise therapy of short-term (<3 mo) decreased triglyceride (TG) level (P = 0.0006). However, exercise therapy did not significantly affect SCr, TC, HDL, or LDL in non-dialysis CKD patients
Hellberg et al. 2019 Sweden RENEXC	nclusion: ≥18 yrs No contraindication for regular exercise. Exclusion: Severe orthopaedic or neurologic disorders, unstable CVD, uncontrolled hypertension, severe anaemia, severe electrolyte disturbances, inability to communicate in Swedish, inability to understand oral instructions, expectation to	151 (76 strength group; 75 balance group)	Both groups: 150 min/wk of self-administered exercise training for an intervention period of 12 mo. In both groups, 60 min of endurance training was part of the prescription and was combined with 90 min of either strength training (strength group) or balance training (balance group)	Endurance, measured with the 6MWT, increased after 4mo in the strength group and after 12 mo in the balance group; stair climbing increased after 12 mo in both groups. There was a significant decrease in mGFR of 1.8 ml/min/1.73 m² in both groups after 12 mo, with no interaction effect. U-ACR decreased significantly in the strength group at 12 mo and was unchanged in the balance group, with a significant interaction effect. There were no significant interaction effects (treatment*time) between the strength group and the balance group for estimated effects for any of the physical performance measures after 12 mo of intervention
Zhou et al. 2020 Sweden RENEXC (sub-study)	As above	112 (53 strength group; 59 balance group)	As above	After 12 mo of exercise training, the abdominal aortic calcification score increased significantly in both groups; mGFR and lipoprotein (a) decreased significantly in both groups; parathyroid hormone and 1,25(OH) ₂ D ₃ increased significantly only in the strength group; fetuin-A increased significantly only in the balance group. Plasma triglycerides, TC, HDL, LDL, FGF23, phosphate, calcium, IL6, CRP, albumin were unchanged

Author Year Country (Data origin) Study	Study type Inclusion/Exclusion criteria	Sample size	Intervention	Main outcome(s)
Weiner et al. 2023 USA AWARD	nclusion: Adults with CKD 15-45 mL/min/1.73. Exclusion: >185 min/wk exercise, prior disabling stroke, severe anaemia (haemoglobin <9 g/dL), uncontrolled diabetes (glycated haemoglobin >10%), vascular claudication impairing physical functioning, dementia or severe cognitive impairment, NYHA class III/IV heart failure, and acute cardiovascular event (stroke, myocardial infarction, decompensated heart failure, or coronary revascularization) <6 mo	(49 exercise group; 50 control group)	Exercise: 3x/wk in-centre for 6 mo. 1 to 3 sessions at home for the second 6 mo. Progressive aerobic exercise starting with 20 min at 50-60% heart rate reserve progressing to 40 min at 70-80%. Two 10-min strength routines per wk. Control: Group-based educational sessions modelled after the successful ageing intervention in the LIFE (Lifestyle Interventions and Independence for Elders) clinical trial in older adults. Weekly for 6 mo and monthly for the second 6 mo	At 6 mo, aerobic capacity was higher among exercise participants (17.9 ± 5.5 vs 15.9 ± 7.0 mL/kg/min, P = 0.03), but the differences were not sustained at 12 mo. 6MWT distance improved more in the exercise group (adjusted difference: 98 feet [P = 0.02; P = 0.03 for treatment-by-time interaction]). The exercise group had greater improvements on the TUAG (P = 0.04) but not the SPPB (P = 0.8). No significant changes were found in HbA1c, blood pressure, or BMI
Interventions in patients receiving dialysis Graham-Brown et al. 2021 WCT Inclusion: WK Adults (>18 yrs) CYCLE-HD >3 mo Exclusion: Unable to partic programme, u MRI scan, unf according to A	receiving dialysis RCT Inclusion: Adults (>18 yrs) receiving maintenance haemodialysis for >3 mo. Exclusion: Unable to participate in exercise programme, unable to undergo MRI scan, unfit to exercise according to ACSM guidance	130 (65 exercise group, 65 control group)	Exercise: 6 mo intradialytic cycling 3×/wk. Aiming for 30 min continuous cycling at RPE 12–14. 1-mo 'run-in' period. Control: 6 mo usual care	Significant reduction in left ventricular mass between groups (-11.1 g; 95% CI –15.79 to –6.43), which remained significant on sensitivity analysis (missing data imputed) (-9.92 g; 14.68 to –5.16). There were significant reductions in native T1 mapping and aortic pulse wave velocity between groups favouring the intervention. There was no increase in either ventricular ectopic beats or complex ventricular arrhythmias as a result of exercise with no significant effect on physical function or QoL
Greenwood et al. 2021 UK PEDAL	RCT Inclusion: Adults (>18 yrs) receiving haemodialysis for >3 mo. Exclusion: Expected survival <6 mo, clinically unstable, bilateral lower limb amputation, severe cognitive impairment, pregnancy	(175 exercise group, 160 control group)	Exercise: 6 mo intradialytic cycling 3x/wk. 2x/wk lower extremity muscular conditioning (3 sets of 5 repetitions) Control: 6 mo usual care	Mean difference in change KDQOL-SF PCS (Kidney Disease Quality of Life Short-Form physical component summary) from baseline to 6 mo between exercise and control was 2.4 [95% CI, -0.1 to 4.8] arbitrary units ($P = 0.055$); no improvements were observed in VO_{2peak} or secondary outcome measures (arterial stiffness, physical activity, gait speed, STS-60). Participants in the intervention group had poor compliance (47%) and poor adherence (18%) to the exercise prescription

Author Year Country (Data origin)	Study type Inclusion/Exclusion criteria	Sample size	Intervention	Main outcome(s)
Anding-Rost et al. 2023 Germany DiaTT	RCT Inclusion: Adults (>18 yrs) receiving haemodialysis for >4 wks. Exclusion: Planned kidney transplant <12 mo, planned other dialysis <12 mo, participation in other exercise during dialysis (≥1 session/wk), unstable/uncontrolled conditions	1211 (578 exercise group, 633 control group	Exercise: Intradialytic exercise 3×/wk (60 min). Endurance exercise, 30 min cycling. Resistance exercise, 30 mins exercise bands, balls, and dumbbells (8 exercises, 2×1-min sets 12–13 RPE). Control: usual care	At 12 mo, the STS repetitions improved from 16.2 ± 7.6 to 19.2 ± 9.1 in the exercise group but declined from 16.2 ± 7.1 to 14.7 ± 7.9 in the usual care group (group difference, 3.85 repetitions; [95% CI, 2.22–5.48], P < 0.0001). The TUAG test (-1.1 seconds; [95% CI, -1.9 to -0.3]) and the 6MWT (37.5 m; [95% CI, 14.7–60.4]) also differed in the exercise group versus usual care group. The physical summary score and vitality subscale of the QoL questionnaire (i.e. the 36-item Short Form Health Survey) differed in the exercise group versus usual care group, but the other subscales did not change. Adverse events during dialysis sessions were similar in both groups. Median days spent in the hospital annually were 2 in the exercise group and 5 in the usual care group. Mortality and dialysis-specific adverse events were not affected
Manfredini et al. 2017 Italy EXCITE	RCT Inclusion: Adults (>18 yrs) on haemodialysis (>6 mo). Exclusion: Physical or clinical limitations to deambulation	296 (151 exercise group, 145 control group)	Exercise: 6 mo individualized, home-based, low-intensity personalized programme of walking exercise. Based on 6MWT performance and gradually increased throughout. Control: usual care	The distance covered during the 6MWT improved in the exercise group (mean distance \pm SD: baseline, 328 \pm 96 m; 6 mo, 367 \pm 113 m) but not in the control group (baseline, 321 \pm 107 m; 6 mo, 324 \pm 116 m; $P < 0.001$ between groups). Similarly, the five times STS test time improved in the exercise group (mean time \pm SD: baseline, 20.5 \pm 6.0 seconds; 6 mo, 18.2 \pm 5.7 seconds) but not in the control group (baseline, 20.9 \pm 5.8 seconds; 6 mo, 20.2 \pm 6.4 seconds; $P = 0.001$ between groups). The cognitive function score ($P = 0.04$) and quality of social interaction score ($P = 0.01$) in the kidney disease component of the KDQOL-SF improved significantly in the exercise arm compared with the control arm
Mallamaci et al. 2022 Italy EXCITE	Long-term observational (following above RCT) As above	227 (104 exercise group, 123 control group)	Observational period (36 mo) following the above RCT	The long-term risk for hospitalization or death was 29% lower (HR, 0.71 [95% CI, 0.50–1.00]), and in an analysis stratified by adherence to the walking exercise programme during the 6-mo trial, the subgroup with high adherence (>60% of prescribed sessions) had a 45% lower risk as compared with the control group (HR, 0.55 [95% CI, 0.35–0.87]). A Bayesian analysis showed that the posterior probability of a (HR, 0.71 [95% CI, 0.50–1.00]) for the risk of the composite outcome observed in the post-trial observational study was 93% under the conservative prior and 97% under the ontimistic prior
Interventions in patient Wilkinson et al. 2022 Multiple N/A	Interventions in patients with a kidney transplant Wilkinson et al. Systematic review and meta-analysis Multiple RCTs Multiple Adults ≥ 18 yrs Received or awaiting kidney transplant. Exclusion: Unpublished materials and abstracts Dialysis and non-dialysis CKD	827 (from 16 RCTs)	Multiple	Significant improvements were observed in cardiorespiratory function (VO _{2peak}) (3.21 ml/kg/min, P = 0.003), 6MWT (76.3 metres, P = 0.009), physical function (STS-60, 4.8 repetitions, P = 0.04), and HDL (0.13 mg/dL, P = 0.03). A moderate increase in maximum heart rate was seen (P = 0.06). A moderate reduction in creatinine was also observed (0.14 mg/dl, P = 0.05). Isolated studies reported improvements in strength, bone health, lean mass, and QoL. Overall, studies had high risk of bias suggestive of publication bias

Author Year Country (Data origin) Study	Study type Inclusion/Exclusion criteria	Sample size	Intervention	Main outcome(s)
Painter et al. 2002 USA N/A	Inclusion: Received kidney transplant <2 mo. Exclusion: Transplant rejection Psychiatric or neurological disorder Orthopaedic/other limitations to exercise. Contraindications to exercise in line with ACSM guidelines	167 97 completed follow-up (54 exercise group, 43 control group)	Exercise: 12 mo home-based aerobic exercise that consisted of walking/cycling 4×/wk for at least 30 min (intensity set at 60–65% maximum HR, progressed up to 75–80%).	At 1 yr 67% of the exercise group were exercising regularly compared with 36% of the control group ($P=0.01$). Compared with the control group, the exercise group had significantly greater gains in VO _{2peak} ($P=0.01$), per cent age-predicted VO _{2peak} ($P=0.03$), and muscle strength ($P=0.05$), and a trend towards higher self-reported physical functioning ($P=0.06$). There were no differences between the groups in changes in body composition
Zhang et al. 2023 China N/A	Inclusion: Adults >18 yrs Undergoing first kidney transplant Smartphone access No experience of resistance training Participating in no other research. Exclusion: Cognitive or mental disability Skeletal muscle issues hindering exercise Transplant rejection Haemodynamic instability	108 (54 exercise group, 54 control group)	Exercise: 6 mo total nurse-led programme. Pre- and post discharge. Non-ambulatory to ambulatory (after passing TUAG test). Daily combined aerobic and resistance training. Once discharged participants sent daily video to nurse. Dumbbells for resistance training	Compared with the control group, the intervention group had less fatigue and more motivation to be active in primary outcomes. Patients in the intervention group had a higher phase angle, a longer 6MWT distance, more 30-second chair stand times and decreased anxiety and depression levels in secondary outcomes. There were no significant differences in all dimensions of the QoL questionnaire between the intervention and the control group
Greenwood et al. 2015 UK	RCT Inclusion: Adults ≥ 18 yrs Kidney transplant < 12 mo. Exclusion: Pregnancy Ambulatory support < 50 m Unstable conditions Structured exercise participation < 6 mo prior Psychiatric illness	60 (20 aerobic group [AT], 20 resistance group [RT], 20 control group [C])	Exercise: 12 wks of AT or RT 3x/wk. AT consisted of stationary bike, treadmill and elliptical trainer, 80% HR maximum, RPE 13–15. Training duration was progressed to 60 min/session. RT intensity set at 80% 1-RM for both upper and lower body exercises. Frequency built to 3 sets of 8–10 repetitions (bench press, latissimus pulldown, bicep curl, triceps pull down, leg press, knee extension, hamstring curl, and calf raises). AT group were provided with a HR monitor and the RT were provided with therabands, ankle weights and free weights. Control: usual care not referred to any exercise pathway	Analyses of covariance, adjusted for baseline values, age, and dialysis vintage pre-transplantation, revealed significant mean differences between AT and usual care in pulse wave velocity of –2.2 ± 0.4 [95% CI, –3.1—1.3] m/s (P, 0.001) and between RT and usual care of –2.6 ± 0.4 [95% CI, –3.4—1.7] m/s (P, 0.001) at 12 wks. Secondary analyses indicated significant improvements in VO _{2peak} in the AT group and in VO _{2peak} . STS 60, and isometric muscle force in the RT group compared with usual care at 12 wks

Abbreviations: ACSM, American College of Sports Medicine; BMI, body mass index; CKD, chronic kidney disease; CRP, C-reactive protein; CVD, cardiovascular disease; DBP, diastolic blood pressure; eCFR, estimated glomerular filtration rate; HbA1c, haemoglobin A1c; HDL, high-density lipoprotein; HR, heart rate; IL-6, interleukin 6; KRT, kidney replacement therapy; LDL, low-density lipoprotein; mo, month(s); MRI, magnetic resonance imaging; NYHA, New York Heart Association; PA, physical activity; QoL, quality of life; RCT, randomized controlled trial; RPE, rating of perceived exertion; SBP, systolic blood pressure; SCr, serum creatinine; SPPB, short physical performance battery, STS, sit-to-stand; TC, total cholesterol; TUAG, timed up-and-go; U-ACR, unine albumin-creatinine ratio; VO_{2peak}, peak oxygen uptake; wk(s), week(s); year(s); 6MWT, 6-minute walk test.

duration and sample size of the DiaTT study could likely account for the observed differences between trials, especially as both studies recruited similarly older and frailer patients. Additionally, longer programmes of exercise may be needed to elicit changes in this population. There is increasing high-quality evidence for the effectiveness of intra-dialytic exercise programmes on cardiovascular health, and no indications of harm. However, these programmes are neither accessible nor acceptable to all patients and examples of effective translation into clinical care are limited, largely due to cost and complexity [49]. The EXCITE trial reported a personalized 6-month home-based walking programme improved 6MWT result [50], and reduced the risk of hospitalization, the latter of which was maintained for up to 36 months [51]. Furthermore, there are non-cardiac benefits of exercise in patients receiving dialysis that attenuate the common development of heart failure, such as reduced oxidative stress and inflammation, release of micro-RNAs from contracting muscle, improved cardiorespiratory and muscle function, and neurohormonal control [52]. Recently preliminary evidence suggests that intra-dialytic exercise may even reduce (1-year) mortality risk [53].

Interventions in patients with a kidney transplant

There has been an increase in trials assessing the effects of exercise training in KTRs. A recent systematic review and metaanalysis of 16 studies demonstrated the positive effect of exercise on physical fitness (CRF, strength, and physical function), and some markers of dyslipidaemia with no detrimental effects or safety concerns [54]. However, BMI, body weight, and glycaemic control remained unaffected and studies were highly heterogenous in sample size, duration, intervention content, outcome measure choice, and methods. An early home-based exercise trial of personalized cardiovascular exercise (walking or cycling) in 167 new KTRs showed that VO_{2peak} was significantly higher in exercise versus control at 12 months [55]. Zhang et al. (2023) reported significant improvements compared with control in fatigue, motivation, 30-second chair stands, and 6MWT results after an immediate post-transplant programme of exercise that was continued remotely after discharge (follow-up at 6 months, n = 106) [56]. Greenwood et al. (2015) reported improvements in VO_{2peak} in both aerobic and resistance training groups compared with control after 12-weeks of exercise training shared between centre and home-based locations [57], with mirrored improvements in pulse wave velocity.

Summary

Broadly speaking, across the whole trajectory of CKD, the literature supports that exercise interventions are effective for improving CRF and aspects of cardiorenal health. The mechanisms by which improvements are achieved appear to be different with differential effects on traditional and non-traditional risk factors for CKD progression and CVD. In dialysis, exercise interventions have shown improvements in CRF and cardiac structure and function, whilst in KTRs, interventions improve measures of physical fitness and markers of dyslipidaemia. To date, there is limited transfer of these findings into clinical care, although the evaluation of available evidence has led to the development of the first detailed clinical practice guideline for exercise and lifestyle in CKD [58]. There is a lack of large-scale multicentre RCTs, and trials exploring hard clinical outcomes, or long-term effects of exercise on cardiorenal outcomes.

CURRENT SITUATION, IMPORTANT BARRIERS, AND FUTURE PERSPECTIVES

Cardiovascular disease, CVD-related morbidity and mortality, and kidney function have well-established associations with PA and sedentary behaviour and the importance of maintaining an active life in CKD management is clear. Increasingly evidence supports the use of exercise interventions to improve CRF and cardiorenal health across the spectrum of patients with CKD. Patients with CKD are recommended to aim for 150 min of moderate intensity PA per week (or 75 min of vigorous activity or a combination of the two) with the addition of 2 days per week of activities aimed at improving muscular strength, balance, and flexibility in NDD-CKD patients, and that exercise is structured and individualized in KTRs with the aim of increasing CRF, muscle strength, and physical function [58]. These broad-reaching aims do not address the differences in CVD risk exhibited during the different stages of CKD and transplantation. We have limited understanding of the mechanisms through which exercise elicits beneficial cardiorenal effects across different populations; although potential mechanisms underlying the overall physiological benefits have been recently summarized [59]. A deeper understanding could allow for optimization of therapies to appropriately stratify patients and make best use of the limited resources available. A 2024 Clinical Consensus Statement of the European Association of Preventative Cardiology (of the European Society of Cardiology [ESC]) and the European Association of Rehabilitation in CKD with the aim of raising awareness of the importance of exercise training in CKD amongst cardiologists, nephrologists, and other healthcare professionals is timely, particularly as we begin to understand the interconnection between diseases as the number of patients presenting with multiple long-term conditions rises [52]. Whilst we have guidelines in place around the volume and broadly the intensity of exercise that patients should be achieving, we have limited evidence of how best to prescribe this whilst taking into account a plethora of concomitant risk factors and other health conditions. It is advised that whilst evidence is growing, prescription of exercise should be tailored utilizing the existing ECS 2020 Guidelines on sports cardiology and exercise in patients with CVD. Whilst it is not CKD-specific, it takes into account the presence of CVD, other conditions, and frailty, which are all likely to be present in patients living with CKD [52]. These guidelines place importance on risk stratification prior to exercise prescription with effective clinical evaluation of functional limitations to minimize the risk of harm in patients exhibiting cardiovascular risk factors.

Even with specific guidelines in mind, exercise prescription should be based on the evidence of association between small increases in PA being beneficial for the improvement of cardiorenal outcomes, and the process should involve shared decision-making between healthcare professionals and patients to aid long-term engendered changes [52]. The proposed targets may be unattainable for many patients, as in reality in a clinical setting, many patients are frail, elderly, have multiple long-term conditions, and are physically deconditioned. A knowledge of optimal therapies will inform staff and lead to correctly individualized exercise prescription. Enhanced patient motivation and behaviour change could then be supported with specific goal setting and management of expectations.

There are several further areas of missing information that limit our ability to move forward in this field. There is no single accepted way to monitor PA levels in a clinical setting, which is a fundamental starting point to exercise prescription. How adaptions to exercise training interact with baseline PA status is largely unknown. This may be helpful to identify differential responses between patient groups and to help guide personalized prescription. Additionally, we must establish the optimal modalities and doses to target specific cardiovascular and renal outcomes for different patient groups to support this aim. There is a lack of large-scale multicentre RCTs, particularly in transplantation and NDD-CKD, and trials exploring hard clinical outcomes and long-term effects of exercise on cardiorenal outcomes across all stages. However, we must also start to address the challenges of implementing programmes of exercise and PA into routine care to begin bridging the gap between research and clinical services. Without this, optimizing cardiovascular outcomes for patients with CKD will not be possible.

ACKNOWLEDGEMENTS

This research is funded by the National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

FUNDING

R.E.B., A.C.S., and M.G.B. are funded by the Stoneygate Trust, and supported by the NIHR Leicester Biomedical Research Centre (BRC).

AUTHORS' CONTRIBUTIONS

R.E.B., A.C.S., and M.G.B. wrote this manuscript. All authors reviewed the content and approved the final version of the manuscript.

DATA AVAILABILITY STATEMENT

No new data were created or analysed for this review.

CONFLICT OF INTEREST STATEMENT

None to declare.

REFERENCES

- 1. Bright R. Cases and observations illustrative of renal disease accompanied with the secretion of albuminous urine. Guy's Hosp Rep 1836;1:336.
- Boudoulas KD, Triposkiadis F, Parissis J et al. The cardio-renal interrelationship. Prog Cardiovasc Dis 2017;59:636-48. https://doi. org/10.1016/j.pcad.2016.12.003
- Jankowski J, Floege J, Fliser D et al. Cardiovascular disease in chronic kidney disease. Circulation 2021;143:1157-72. https://doi. org/10.1161/CIRCULATIONAHA.120.050686
- 4. Devine PA, Courtney AE, Maxwell AP. Cardiovascular risk in renal transplant recipients. J Nephrol 2019;32:389-99. https://doi.org/ 10.1007/s40620-018-0549-4
- Thompson S, James M, Wiebe N et al. Cause of death in patients with reduced kidney function. J Am Soc Nephrol 2015;26:2504–11. https://doi.org/10.1681/ASN.2014070714
- Navaneethan SD, Schold JD, Arrigain S et al. Cause-specific deaths in non-dialysis-dependent CKD. J Am Soc Nephrol 2015;26:2512-20. https://doi.org/10.1681/ASN.2014101034
- Matsushita K, Ballew SH, Coresh J. Influence of chronic kidney disease on cardiac structure and function. Curr Hypertens Rep 2015;17:70. https://doi.org/10.1007/s11906-015-0581-x

- Dounousi E, Duni A, Marinaki S et al. Framing and managing cardiovascular risk in chronic kidney disease: from native to transplanted kidney. Continuing Cardiol Educ 2017;3:70-77. https://doi.org/10.1002/cce2.52
- Ndumele CE, Rangaswami J, Chow SL et al. Cardiovascularkidney-metabolic health: a presidential advisory from the American Heart Association. Circulation 2023;148:1606-35. https://doi. org/10.1161/CIR.0000000000001184
- Paffenbarger RS, Jr, Blair SN, Lee I-M. A history of physical activity, cardiovascular health and longevity: the scientific contributions of Jeremy N Morris, DSc, DPH, FRCP. Int J Epidemiol 2001;30:1184-92. https://doi.org/10.1093/ije/30.5.1184
- 11. Wilkinson T, Clarke A, Nixon D et al. Prevalence and correlates of physical activity across kidney disease stages: an observational multicentre study. Nephrol Dial Transplant 2021;36:641-9. https://doi.org/10.1093/ndt/gfz235
- 12. Beddhu S, Baird BC, Zitterkoph J et al. Physical activity and mortality in chronic kidney disease (NHANES III). Clin J Am Soc Nephrol 2009;4:1901-6. https://doi.org/10.2215/CJN.01970309
- 13. Johansen KL, Chertow GM, Ng AV et al. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int 2000; 57:2564-70. https://doi.org/10.1046/j.1523-1755.
- 14. Bruinius JW, Hannan M, Chen J et al. Self-reported physical activity and cardiovascular events in adults with CKD: findings from the CRIC (Chronic Renal Insufficiency Cohort) study. Am J Kidney Dis 2022;80:751-761.e1. https://doi.org/10.1053/j.ajkd.2022.
- 15. Moore C, Santhakumaran S, Martin GP et al. Symptom clusters in chronic kidney disease and their association with people's ability to perform usual activities. PLoS One 2022;17:e0264312. https://doi.org/10.1371/journal.pone.0264312
- 16. Zhang F, Bai Y, Zhao X et al. Therapeutic effects of exercise interventions for patients with chronic kidney disease: an umbrella review of systematic reviews and meta-analyses. BMJ Open 2022;12:e054887. https://doi.org/10.1136/bmjopen-2021-054887
- 17. Seidu S, Abdool M, Almaghawi A et al. Physical activity and risk of chronic kidney disease: systematic review and meta-analysis of 12 cohort studies involving 1,281,727 participants. Eur J Epidemiol 2023;38:267-80. https://doi.org/10.1007/ s10654-022-00961-7
- 18. Castillo-García A, Valenzuela PL, Saco-Ledo G et al. Physical activity, chronic kidney disease, and cardiovascular risk: a study in half a million adults. Scand J Med Sci Sports 2024;34:e14557. https://doi.org/10.1111/sms.14557
- Parvathaneni K, Surapaneni A, Ballew SH et al. Association between midlife physical activity and incident kidney disease: the Atherosclerosis Risk in Communities (ARIC) study. Am J Kidney Dis 2021;**77**:74–81. https://doi.org/10.1053/j.ajkd.2020.07.020
- 20. Bellos I, Marinaki S, Lagiou P et al. Association of physical activity with endothelial dysfunction among adults with and without chronic kidney disease: the Maastricht Study. Atherosclerosis 2023;383:117330. https://doi.org/10.1016/j.atherosclerosis.2023.
- 21. Wang GJ, Shaw PA, Townsend RR et al. The associations between peripheral artery disease and physical outcome measures in men and women with chronic kidney disease. Ann Vasc Surg 2016;**35**:111–20. https://doi.org/10.1016/j.avsg.2016.02.010
- 22. Kuo CP, Tsai MT, Lee KH et al. Dose-response effects of physical activity on all-cause mortality and major cardiorenal outcomes in chronic kidney disease. Eur J Prev Cardiol 2022;29:452-61. https://doi.org/10.1093/eurjpc/zwaa162

- 23. Lopes AA, Lantz B, Morgenstern H et al. Associations of selfreported physical activity types and levels with quality of life, depression symptoms, and mortality in hemodialysis patients: the DOPPS. Clin J Am Soc Nephrol 2014;9:1702-12. https://doi.org/ 10.2215/cjn.12371213
- 24. Tentori F, Elder SJ, Thumma J et al. Physical exercise among participants in the Dialysis Outcomes and Practice Patterns Study (DOPPS): correlates and associated outcomes. Nephrol Dial Transplant 2010;25:3050-62. https://doi.org/10.1093/ndt/gfq138
- 25. Stack AG, Molony DA, Rives T et al. Association of physical activity with mortality in the US dialysis population. Am J Kidney Dis 2005;45:690-701. https://doi.org/10.1053/j.ajkd.2004.
- 26. Kang AW, Garber CE, Eaton CB et al. Physical activity and cardiovascular risk among kidney transplant patients. Med Sci Sports Exerc 2019;51:1154-61. https://doi.org/10.1249/MSS. 000000000001886
- 27. Zelle DM, Corpeleijn E, Stolk RP et al. Low physical activity and risk of cardiovascular and all-cause mortality in renal transplant recipients. Clin J Am Soc Nephrol 2011;6:898. https://doi.org/ 10.2215/CJN.03340410
- 28. Totti V, Fernhall B, Di Michele R et al. Longitudinal analysis of cardiovascular risk factors in active and sedentary kidney transplant recipients. Medicina (Mex) 2020;56:183. https://doi.org/10. 3390/medicina56040183
- 29. Sedentary Behaviour Research Network. Letter to the Editor: Standardized use of the terms "sedentary" and "sedentary behaviours". Appl Physiol Nutr Metab 2012;37:540-2. https://doi.org/ 10.1139/h2012-024
- 30. World Health Organization. WHO guidelines on physical activity and sedentary behaviour. Geneva: World Health Organization,
- 31. Zhao Y, Zhang X, Yang L et al. Independent and interactive effect of sedentary time and physical activity on risk of all-cause mortality: a prospective cohort study. Scandinavian Med Sci Sports 2023;33:1168-76. https://doi.org/10.1111/sms.14346
- 32. Yu P, Zhao Z, Huang L et al. The impact of sedentary behavior on renal function decline in 132,123 middle aged and older adults: a nationwide cohort study. Med Sci Monit 2023;29:e941111. https: //doi.org/10.12659/msm.941111
- 33. Park S, Lee S, Kim Y et al. Causal effects of physical activity or sedentary behaviors on kidney function: an integrated population-scale observational analysis and Mendelian randomization study. Nephrol Dial Transplant 2022;37:1059-68. https: //doi.org/10.1093/ndt/gfab153
- 34. Tsai MK, Gao W, Chien KL et al. Associations of prolonged occupational sitting with the spectrum of kidney disease: results from a cohort of a half-million Asian adults. Sports Med-Open 2022;8:147. https://doi.org/10.1186/s40798-022-00542-8
- 35. Oh W, Cho M, Jung SW et al. High physical activity alleviates the adverse effect of higher sedentary time on the incidence of chronic kidney disease. J Cachexia Sarcopenia Muscle 2023;14:622-31. https://doi.org/10.1002/jcsm.13167
- 36. Hannan M, Ricardo AC, Cai J et al. Sedentary behavior and change in kidney function: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Kidney360 2021;2:245-53. https://doi.org/10.34067/KID.0006202020
- 37. Tamiya H, Tamura Y, Mochi S et al. Extended sedentary time increases the risk of all-cause death and new cardiovascular events in patients with diabetic kidney disease. Circ J 2020;84:2190-7. https://doi.org/10.1253/circj.CJ-20-0407
- 38. Lim K, McGregor G, Coggan AR et al. Cardiovascular functional changes in chronic kidney disease: integrative physiol-

- ogy, pathophysiology and applications of cardiopulmonary exercise testing. Front Physiol 2020;11:572355. https://doi.org/10. 3389/fphys.2020.572355
- 39. Andrade FP, Ribeiro HS, Benvenutti H et al. Six-minute walk test may be a reliable predictor of peak oxygen uptake in patients undergoing hemodialysis. Ren Replace Ther 2023;9:6. https://doi. org/10.1186/s41100-023-00460-9
- 40. Ross RM, Murthy JN, Wollak ID et al. The six minute walk test accurately estimates mean peak oxygen uptake. BMC Pulm Med 2010;10:1-9. https://doi.org/10.1186/1471-2466-10-31
- 41. Hellberg M, Höglund P, Svensson P et al. Randomized controlled trial of exercise in CKD-the RENEXC study. Kidney Int Rep 2019;4:963-76. https://doi.org/10.1016/j.ekir.2019. 04.001
- 42. Zhou Y, Hellberg M, Hellmark T et al. Twelve months of exercise training did not halt abdominal aortic calcification in patients with CKD-a sub-study of RENEXC-a randomized controlled trial. BMC Nephrol 2020;21:233. https://doi.org/10.1186/ s12882-020-01881-y
- 43. Weiner DE, Liu CK, Miao S et al. Effect of long-term exercise training on physical performance and cardiorespiratory function in adults with CKD: a randomized controlled trial. Am J Kidney Dis 2023;**81**:59–66. https://doi.org/10.1053/j.ajkd.2022. 06.008
- 44. Zhang L, Wang Y, Xiong L et al. Exercise therapy improves eGFR, and reduces blood pressure and BMI in non-dialysis CKD patients: evidence from a meta-analysis. BMC Nephrol 2019;20:398. https://doi.org/10.1186/s12882-019-1586-5
- 45. Davies M, Sandoo A, Macdonald J. The role of exercise training in delaying kidney function decline in non-dialysis-dependent chronic kidney disease. Kidney and Dialysis 2022;2:262-86. https: //doi.org/10.3390/kidneydial2020026
- 46. Graham-Brown MPM, March DS, Young R et al. A randomized controlled trial to investigate the effects of intra-dialytic cycling on left ventricular mass. Kidney Int 2021;99:1478-86. https://doi. org/10.1016/j.kint.2021.02.027
- 47. Greenwood SA, Koufaki P, Macdonald JH et al. Randomized trial—PrEscription of intraDialytic exercise to improve quAlity of Life in patients receiving hemodialysis. Kidney Int Rep 2021;6:2159-70. https://doi.org/10.1016/j.ekir.2021.05.034
- 48. Anding-Rost K, von Gersdorff G, von Korn P et al. Exercise during hemodialysis in patients with chronic kidney failure. NEJM Evidence 2023;2:EVIDoa2300057. https://doi.org/10.1056/ EVIDoa2300057
- 49. Zoccali C, Manfredini F, Kanbay M et al. Intradialysis exercise in haemodialysis patients: effective but complex and costly. Nephrol Dial Transplant 2023;39:7-9. https://doi.org/10.1093/ndt/ gfad178
- 50. Manfredini F, Mallamaci F, D'Arrigo G et al. Exercise in patients on dialysis: a multicenter, randomized clinical trial. JASN 2017;28:1259-68. https://doi.org/10.1681/asn.2016030378
- 51. Mallamaci F, D'Arrigo G, Tripepi G et al. Long-term effect of physical exercise on the risk for hospitalization and death in dialysis patients: a post-trial long-term observational study. CJASN 2022;17:1176-82. https://doi.org/10.2215/cjn.03160322
- 52. Kouidi E, Hanssen H, Anding-Rost K et al. The role of exercise training on cardiovascular risk factors and heart disease in patients with chronic kidney disease G3-G5 and G5D: a Clinical Consensus Statement of the European Association of Preventive Cardiology (EAPC) of the ESC and the European Association of Rehabilitation in Chronic Kidney Disease (EURORECKD). Eur J Prev Cardiol 2024;31:1493-515. https://doi.org/10.1093/eurjpc/ zwae130

- 53. Tabibi MA, Cheema B, Salimian N et al. The effect of intradialytic exercise on dialysis patient survival: a randomized controlled trial. BMC Nephrol 2023;24:100. https://doi.org/10.1186/ s12882-023-03158-6
- 54. Wilkinson T, Bishop N, Billany R et al. The effect of exercise training interventions in adult kidney transplant recipients: a systematic review and meta-analysis of randomised control trials. Phys Ther Rev 2022;27:114-34. https://doi.org/10.1080/10833196. 2021.2002641
- 55. Painter P, Hector L, Ray K et al. A randomized trial of exercise training after renal transplantation. Transplantation 2002;74: 42-48. https://doi.org/10.1097/00007890-200207150-00008
- 56. Zhang P, Liu S, Zhu X et al. The effects of a physical exercise programme in Chinese kidney transplant recipients: a

- prospective randomised controlled trial. Clin Kidney J 2023;**16**:1316. https://doi.org/10.1093/ckj/sfad065
- 57. Greenwood SA, Koufaki P, Mercer TH et al. Aerobic or resistance training and pulse wave velocity in kidney transplant recipients: a 12-week pilot randomized controlled trial (the Exercise in Renal Transplant [ExeRT] trial). Am J Kidney Dis 2015;66:689-98. https://doi.org/10.1053/j.ajkd.2015.06.016
- Baker LA, March DS, Wilkinson TJ et al. Clinical practice guideline exercise and lifestyle in chronic kidney disease. BMC Nephrol 2022;23:75. https://doi.org/10.1186/s12882-021-02618-1
- 59. Bishop NC, Burton JO, Graham-Brown MPM et al. Exercise and chronic kidney disease: potential mechanisms underlying the physiological benefits. Nat Rev Nephrol 2023;19:244-56. https:// doi.org/10.1038/s41581-022-00675-9