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Abstract

Perivascular adipose tissue (PVAT) is a unique fat depot that is distributed around blood
vessels, contiguous with the vascular adventitia. Due to this proximity, it serves as a local
source of adipokines and vasoregulatory factors. Similar to other adipose depots, PVAT is
responsive to changes in metabolic state and, at least in mice, can transition to a thermo-
genic adipocyte phenotype depending on metabolic health. Cardiovascular disease risk is
highly correlated with metabolic health and increases substantially in individuals with obe-
sity or metabolic syndrome. Cardiovascular diseases, including atherosclerosis/coronary
artery disease, aortic aneurysm, hypertension, arterial stiffening, and heart failure, have
been associated with PVAT dysregulation. Understanding the cardiovascular protective
effects of healthy PVAT can provide ways to modify disease progression to re-establish
functional homeostasis. This review focuses on experimental studies that specifically define
a signaling axis between PVAT and the cardiovascular system that provide cardioprotection.
Our focus is primarily on the secreted contents of extracellular vesicles that initiate this
adipose signaling axis and regulation of extracellular vesicle release by the trafficking
molecule, RAB27a. We review the current literature on human and mouse studies and
major categories of PVAT-derived signaling components including microRNAs, lipids, and
proteins that contribute to cardiovascular homeostasis.
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1. Introduction

Cardiovascular disease (CVD) is a heterogeneous group of pathologies involving the
heart and vascular system, that collectively represent the leading cause of death in the
United States and increasing globally. Conditions ranked by level of mortality include
coronary artery disease (~40%), stroke (~18%), other CVD (~17%), hypertensive disease
(~14%), heart failure (~9%), and diseases of arteries (~3%). Behaviors and medical condi-
tions such as smoking, poor diet, inactivity, excessive alcohol consumption, high blood
pressure, high cholesterol, and obesity all increase the risk for CVD [1]. Communication
from the vascular microenvironment to the cardiovascular system is a key mediator of
tissue homeostasis. Perivascular adipose tissue (PVAT) has been identified as a source
of paracrine signaling factors that either protect the cardiovascular system or participate
in pathologic cellular dysregulation, increasing the risk for CVD. PVAT surrounds blood
vessels and is an important regulator of vascular tone by secreting cytokines which interact
with the blood vessel wall [2]. In conditions of cardiometabolic dysfunction and obesity,
PVAT secretes pro-inflammatory cytokines, such as leptin, MCP-1, and TNF-alpha, that
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lead to proatherogenic states, concepts which have been previously reviewed [3,4]. While
there is extensive literature associating disease-related adipose tissue phenotypes, this
review will focus on PVAT-derived factors that are considered cardioprotective, which
we define as having effects that suppress cellular changes associated with pathology. We
highlight PVAT-derived factors where evidence suggests they may be secreted through
signaling microvesicles released extracellularly.

The secretome of a cell or tissue is the combined array of bioactive factors released
extracellularly to induce autocrine or paracrine signaling [5]. The cellular secretome is reg-
ulated by metabolic state and is fundamental in the body’s ability to maintain homeostasis
by facilitating communication between major organ systems and tissues. These mediators
of communication can be proteins, peptides, RNA species such as mRNAs, microRNAs
and IncRNAs, lipids, hormones, and metabolites. The secretome can be further categorized
into free circulating factors or those packaged within extracellular vesicles. These vesicles
are characterized by size and biogenesis: exosomes (ranging from 30 nm to 100 nm) are
formed within the endosomal network and are released through the plasma membrane [6];
micro vesicles/microparticles (ranging from 200 nm to 1 pm) are directly shed from the
plasma membrane; and lastly, apoptotic bodies (ranging from 1 pm to 4 um) are released as
membrane blebs.

There are multiple proteins and processes involved in the formation and secretion
of exosomes from cells. Intracellular vesicles form larger multivesicular bodies that fuse
with the plasma membrane and result in the release of intraluminal vesicles as exosomes.
Sorting of cargo within these vesicles is complex and not well characterized; known
plasma membrane microdomain proteins, lipids, and structures involved include cave-
olae, clathrin, ceramide, lipid rafts, dynamin, neutral sphingomyelinase, small GTPases
(including RAB family members), and many other proteins related to the cytoskeleton
and plasma membrane [7]. Formation of intraluminal vesicles within the multivesicular
bodies occurs via at least two pathways—endosomal sorting complex required for transport
(ESCRT)-dependent or -independent. The ESCRT pathway contributes to the transport of
multivesicular bodies and sorting of exosomal cargo [8]. Interestingly, ceramide contributes
to the ESCRT pathway and ESCRT-independent intraluminal vesicle budding [9], which
also involve another RAB family member, RAB31 [10].

Exosomes and extracellular vesicles have been reviewed for their roles in cardiovas-
cular diseases as biomarkers and potential therapeutic targets [11-13]. Likewise, adipose
tissue-derived exosomes and their target tissues and organs have been widely defined
and reviewed in the recent literature [14-17]. We recently identified a novel connection be-
tween a member of the Rab GTPase family, RAB27A, and cardiac and vascular dysfunction
in vivo [18]. Despite the primary role of RAB27A in exosome biogenesis and secretion and
its requirement for metabolic homeostasis, very little is known about RAB27A function in
adipose tissue and its signaling functions. However, RAB27A is an interesting target as a
mediator of adipose—cardiovascular signaling, as described below.

2. RAB27A Function in Exosome Regulation and Cardiovascular Health

The release of exosomes through membrane docking and fusion relies on protein
signal cascades. Rab GTPases, particularly RAB27A and RAB27B, play essential roles in
protein trafficking, mediating multivesicular endosome fusion with the plasma membrane,
and exosome release into the extracellular space [19-21]. In melanoma cells, loss of RAB27a
also changes the protein content of secreted extracellular vesicles or promotes the section of
a molecularly distinct sub-class of exosomes [22]. Human missense mutations in RAB27A
cause Griscelli syndrome type 2 [23-26], and affected individuals have variable levels and
onset [27] of impaired melanocyte trafficking, leading to albinism, silver/gray hair coloring,
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and impaired immune cell degranulation, often leading to neurological damage [26]. Lifes-
pan for individuals with Griscelli syndrome type 2 is short, with improved prognosis after
hematopoietic stem cell transplantation. Because many patients do not survive childhood,
age-associated conditions such as heart or vascular disease have not been associated with
this population. However, using human genetic data from the Common Metabolic Diseases
Knowledge Portal, genetic variants of human RAB27A were found to be associated with
body mass index, hypertension, and myocardial infarction [18]. These data suggest that in
humans, RAB27A function contributes to cardiometabolic homeostasis [28].

RAB27A is produced in human and mouse PVAT [18], and we found that suppression
of RAB27A by siRNA in human preadipocytes inhibited adipocyte differentiation [29].
While Rab27a generally has a wide expression pattern throughout the body, in the mouse it
is not expressed in the heart, while in blood vessels, it is expressed in PVAT, vascular smooth
muscle cells, and endothelial cells [18]. The importance of RAB27A in exosome release has
been established in loss of several Rab27a mouse strains. In one Rab27a-null mutant mouse
strain, bone marrow-derived endothelial progenitor cells lacking RAB27A had decreased
viability, proliferation, and reduced exosome release [30,31]. The cells lacking RAB27A did
not induce therapeutic improvement when transplanted after myocardial infarction, unlike
bone marrow-derived cells from wild type mice [20].

In a different, independently targeted Rab27a-null strain, global loss of RAB27A was
associated with age-related cardiovascular defects [18]. At eight weeks of age, Rab27a-
null male mice had increased vasoconstriction and reduced vasodilation. By 20 weeks of
age, the males exhibited a cardiomyopathy phenotype. These loss-of-function data show
that RAB27A has cardio- and vasculo-protective effects. RAB27A loss in male mice was
associated with delayed glucose clearance in a glucose tolerance test, suggesting changes in
insulin regulation or signaling [32,33]. It is possible that the absence of RAB27A may alter
the secretome, leading to downstream changes in the phenotype of targeted cells. The loss-
of-function phenotypes could be a primary effect of production within the heart and blood
vessels themselves or metabolic changes in other tissues that then regulate cardiovascular
function. As PVAT-derived molecules have been associated with protection against CVD,
we hypothesize that RAB27A plays a role in the release of these cardioprotective factors.

While RAB27a is a candidate regulator of extracellular vesicle signaling in the PVAT-
to-heart/vascular axis, it is important to note that this hypothesis needs further in vivo
testing. The components of the secretome or extracellular vesicles that are described below
have functional activity, and some have been validated as exosomal cargo. However, exact
mechanisms and regulation of these RNA, lipid, and proteins specifically by RAB27a-
mediated cellular release mechanisms in PVAT are currently under investigation. While
we developed a conditional, floxed RAB27a mouse strain [18], currently, there are no
PVAT-specific Cre strains that can distinguish RAB27a function in PVAT from other adipose
tissues. Ongoing studies are focused on the approach of ex vivo characterization of the
secretome of human PVAT.

3. Cardioprotective RNAs Secreted from PVAT

RNAs released in extracellular vesicles, including microRNAS (miR), long non-coding
RNAs, mitochondrial RNAs, and mRNAs, play key roles in communication between PVAT
and target cells. This communication impacts physiological and pathological vascular
development as well as homeostasis.

While PVAT-derived RNA species associated with the progression of cardiovascular
pathologies have been identified, new studies have begun to identify RNA contents attenu-
ating and protecting against disease (Table 1). A study by Sun et al. [34] aimed to identify
how miRNAs from adipose endothelial cells regulate gene expression and modulate the
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development and progression of cardiometabolic phenotypes. miRNA-181b expression in
endothelial cells in adipose tissue of obese mice was significantly reduced after 12 weeks
on a high-fat diet, and obese mice treated with miRNA-181b showed improved glucose
tolerance and insulin sensitivity. Further, the administration of miRNA-181b attenuated
endothelial dysfunction, enhanced the production of eNOS, and exerted anti-inflammatory
effects [34]. Another study by Liu et al. analyzed the effects of PVAT-derived extracellular
vesicles on vascular homeostasis and showed that miR-382-5p was expressed at lower levels
in PVAT-derived vesicles from patients with coronary atherosclerotic heart disease than in
healthy subjects. miR-382-5p reduced macrophage foam cell formation and increased the
expression of cholesterol efflux transporters ABCA1 and ABCG1 downstream of PPARYy,
consistent with a protective effect of this microRNA [35].

Administration of microRNAs through neutrophil membrane-engineered extracellular
vesicles (NVEVs) provide therapeutic benefits. Wei et al. engineered NVEVs through
the fusion of PVAT-derived extracellular vesicles with neutrophil membrane nanovesi-
cles, resulting in superior targeting to regions of inflamed vasculature. miR-206-3p in
NVEVs promoted regression of atherosclerotic plaques through ABCA1 cholesterol ef-
flux and favorable vascular remodeling. Furthermore, administration of the NVEVs in
rat models of atherosclerosis significantly attenuated inflammation, stabilized vascular
architecture, and reduced macrophage infiltration [36]. The identification and study of
protective PVAT-derived microRNAs provide potential therapeutic targets to re-establish
cardiovascular homeostasis.

Long non-coding RNAs are another emerging area of interest, although few studies
exist on non-coding RNAs specifically in the relationship between PVAT and the cardio-
vasculature. A study by Xie et al. identified promising findings on the expression of
LINCO01180, an immune-related IncRNA, as a potential protective factor against the de-
velopment of atherosclerosis in patients [37]. In this study, LINC01180 was among eight
other long non-coding RNA with immune-related functions that were elevated in PVAT
from individuals with coronary heart disease. Expression of LINC01180 was found to be
associated with the instability of atherosclerotic plaques, suggesting that this is a promising
target. Despite the minimal research presently available, long non-coding RNAs are another
promising avenue for future RNA studies that may provide important insights into the
development and protection against disease.

Table 1. PVAT-derived cardioprotective RNA species.

RNA

Effects Reference

miRNA-181b

miR-382-5p

miR-206-3p

Exerts anti-inflammatory effects; enhances
production of endothelial NO synthase [33]
(eNOS); attenuates endothelial dysfunction
Reduces macrophage foam cell formation
by mediating upregulation of cholesterol [34]
efflux transporters, ABCA1, and ABCgl
Enhances cholesterol efflux via
miR-206-3p-ABCA1-dependent signaling
and upregulation of cholesterol efflux
transporters, ABCA1, and ABCgl

(35]

LINC01180

Protective factor against the progression

of atherosclerosis [37]
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4. Cardioprotective Lipids Derived from PVAT

The field of lipidomics is fairly young, and there were only limited reports charac-
terizing the lipid content of extracellular vesicles in healthy and diseased states at the
time this review was written (Table 2). Studies to date have focused on the links between
lipidomic profiles and the development of diseases such as cancer, specifically prostate and
ovarian malignancies, and cardiometabolic diseases [38]. Membrane lipids are an integral
component of exosomal vesicles generated intracellularly by the budding and fission of
multivesicular endosomes [39]. Extracellular vesicles are enclosed by a lipid bilayer with a
specific lipid composition of cholesterol, sphingolipids, and phospholipids; however, the ex-
tent of this specific enrichment can vary by cell type and metabolic state [39]. Extracellular
vesicles thus contribute to carrying lipid cargo between cells, tissues, and organs.

Table 2. Lipid species with evidence for cardiovascular protective activities and/or exosome localiza-
tion of the major lipid class [40,41].

Lipid Class Example Species Cardioprotective Action References
Triacylglycerides (TAGs) Anti-inflammatory PUFA
containing polyunsaturated TAG(18:1/18:1/22:6), supply; improve endothelial [42]
fatty acids NO signaling
Prostaglandins contalmr.lg Prostaglandin E2-EP4 Protection from ischemic events [43]

polyunsaturated fatty acids
Phosphatidylcholines (PC) and rotection rom ichermic everts
phosphatidylethanolamines (PE) ~ PC(22:6-n3) PE(22:6-n3) p linked with better ! [44]

with n3-PUFA chains .
vascular/metabolic outcomes
. PIsPE(16:0/22:6), Anti-oxidant; protect
Plasmalogens (ether-linked Pls) PIsPC(18:0/20:5) endothelial NO [42]
Enhances NO production,
Sphingosine-1-phosphate (S1P) S1P(d18:1) endothelial barrier, and survival [45,46]
signaling
. HexCer(d18:1/16:0), Inverse association with CVD
Hexosylceramides (HexCer) HexCer(d18:1/24:0) risk in some cohorts [47]
Unsaturated N .
lysophosphatidylcholines Lyso-PC(18:2), Some species linked Wlth better [48]
Lyso-PC(20:4) vascular function
(Lyso-PCs)
Sphingomyelins (SM, SM(d18:1/24:1) Some species inversely [49,50]

long-chain unsaturated)

associated with atherosclerosis

4.1. Sphingolipids

Similar to their cells of origin, exosome membranes are asymmetrical, with the outer
leaflet enriched in sphingomyelin and the inner leaflet higher in phosphatidylserine species;
however, changes in cell membrane lipid organization can influence the distribution of
these lipids in the exosomes they secrete [51]. Exosomes are particularly enriched in sphin-
golipids due to the necessity of forming a membrane with tight curvature, which requires
small, conic-shaped lipids. Sphingolipids also function as lipid rafts, essential platforms
that support the function of membrane-bound proteins and provide a sorting mechanism
for vesicle flow from the Golgi apparatus to the plasma membrane for release [52,53].
One well-designed study by Mahmoud et al. [54] compared extracellular vesicles from
healthy, lean individuals to obese individuals and found that those from healthy indi-
viduals were characterized by higher levels of sphingomyelin and phospholipids and
lower levels of ceramide and free fatty acids. Previous work has already suggested that
sphingomyelin and ceramides are markers of cardiovascular disease, and studies have
shown a link between circulating ceramides and tissue damage in cardiometabolic dis-



Int. J. Mol. Sci. 2025, 26, 10173

6 of 20

eases [55-57]. Circulating subclasses of sphingolipids, including sphingomyelin, ceramides,
and sphingosine-1-phosphate, have been directly linked to the concurrence of diabetic
cardiomyopathy, dilated cardiomyopathy, myocardial ischemic heart disease, hypertension,
and atherogenesis [49,58].

While most available literature focuses on the link between circulating lipids and the
progression of disease, new evidence has emerged on their role in maintaining cardio-
vascular homeostasis. Sphingosine-1-phosphate can protect the heart against ischemia
and reperfusion injury when released together with adenosine [59-61]. Evidence suggests
that vesicular sphingolipids and their metabolic enzymes, such as sphingomyelinases
and ceramidases, contribute to extracellular vesicle signaling and action by influencing
recipient cell sphingolipid levels, potentially contributing to the development of these
diseases. The finding that extracellular vesicles contain enzymes that metabolize lipids into
molecules with different biological activity [62] expands their metabolic significance. In
addition to sphingomyelinases and ceramidases, exosomes contain phospholipase enzymes
and cyclooxygenases, allowing cells to compartmentalize the production of bioactive fatty
acids [63].

Exosomes are also enriched in glycosylated sphingolipids such as hexosylceramides,
which can be associated with pathology [64-66]. In the heart, hexosylceramides are pro-
tective against the deleterious effects of ceramide accumulation [67] and they change the
biophysical properties of membranes by increasing fluidity.

4.2. Palmitic Acid Methyl Ester

A study by Lee et al. identified the role of PVAT-derived palmitic acid methyl ester
(PAME) on vascular tone, an important mediator for the progression of vascular disease [68].
Their study found that PAME, a PVAT-derived relaxing factor, induced vessel vasorelax-
ation via the opening of K+ channels in vascular smooth muscle cells. In addition, they
discovered that a reduction in the release of PAME alongside an increase in angiotensin Il in
PVAT was associated with hypertension, suggesting PAME as a cardiovascular protective
lipid [68].

4.3. Phosopholipids

The cardioprotective effects of phospholipids containing polyunsaturated fatty acids
vs. monounsaturated or saturated fatty acids have been well established. Recent reviews of
this topic provide an in-depth review of the cardioprotective effects of these lipids, includ-
ing the anti-inflammatory properties of specific omega-3 and omega-6 polyunsaturated
fatty acids [69,70]. However, more work is needed to clarify the role of polyunsaturated
and monounsaturated fatty acid-containing lipids in exosomes and how exosomes may
contribute to the distribution of cardioprotective lipids.

4.4. Plasmalogens

Several reports have shown that exosomes contain plasmalogens [71-73], which are
ether lipids important for membrane fusion [74] and have strong anti-oxidant and anti-
inflammatory functions [75,76]. The content of plasmalogens in exosomes of various origins
is estimated to be up to 50% of all lipids. The plasmalogen content of exosomes released
from PVAT is unknown and requires further study. However, considering the important
biological roles of plasmalogens, we anticipate that they will prove to be an important
aspect of cardioprotection in the PVAT—cardiovascular axis.

5. Protective PVAT-Derived Protein Secretome

Several secreted proteins are released from PVAT-derived cells; these are summarized
in Table 3.
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Table 3. PVAT-derived cardioprotective secreted proteins.

Protein

Effects

Species

References

Adiponectin

Endothelial Nitric Oxide
Synthase (eNOS)

Omentin-1

An anti-inflammatory adipokine.

Human

(771

Protects against vascular neointima
lesion formation.

Mice

[78]

Decreased adiponectin induced
inflammatory pathophysiological
conditions.

Mice

[79]

Reversed molecular interactions associated
with CAD, such as the adhesion of THP-1
cells to endothelial cells and reduced
expression of intercellular

adhesion molecules.

Human

(80]

Reduced expression in obese PVAT; absence
contributes to NO inhibition in obesity.

Human

[81]

An anti-inflammatory adipokine;
potentially elicits beneficial effects in the
pathogenesis of CAD

Human

(82]

Contributes to myocyte hyperpolarization;
releases NO to induce vasorelaxation

Mice

(83]

Reduced pro-inflammatory cytokines like
TNF-o and IL-6; acts as an
anti-inflammatory, and anti-atherogenic.

Mice

[84]

Produces NO that is anti-atherogenic, by
controlling vascular smooth muscle
proliferation, inhibiting platelet aggregation,
leucocyte adhesion, and

vascular inflammation.

Mice and Humans

[85,86]

Produces NO; Uncoupling of eNOS
increases ROS production, leading to
oxidative stress and inflammation;
Obese/metabolic syndrome mice had
higher eNOS uncoupling.

Mice

[79]

Uncoupling contributes to generation of
superoxide and impairs tonic NO release;
Obese tissue has decreased NO.

Human

[81]

Uncoupling of eNOS diminishes superoxide
production; Uncoupling is a function of
arginase induction and l-arginine deficiency;
Diet-induced obesity leads to L-arginine
and NO deficiency, and eNOS uncoupling.

Mice

(87]

Recovers anti-contractile action; Improves
pro-inflammatory and pro-oxidant PVAT
phenotype; Restores NO and inhibits
oxidative stress.

Rat

(88]
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Table 3. Cont.

Protein

Effects Species References

Indoleamine
2,3-dioxygenase metabolite
(IDO)

Downregulated in atrial fibrillation; Inhibit
TGF-betal-induced cardiac fibroblast Human [89]
activation; Antifibrotic adipocytokine.

Decreased in patients with coronary artery
disease; Decreased in fat next to coronary Human [90]
stenotic segments.

Increased expression in epicardial adipose
in patients with coronary artery disease; Human [91]
plays cardioprotective role.

Increased expression in response to cold
(brown fat). Mild cold-induced PVAT
activation attenuates age-dependent and
obesity-induced endothelial dysfunction.

Mice [92,93]

Caused a relaxation response in vessels. Mice [94]

Enzymes primarily in brown fat
surrounding the thoracic aorta; Depresses Rats [95]
aortic contractility.

5.1. Adiponectin

Adiponectin is highly secreted from adipose tissue. It can be secreted in exosomes
and also regulates exosome secretion. PVAT-derived adiponectin is an important mediator
in the promotion of vascular health and the maintenance of homeostatic conditions in
the cardiovascular system [96,97]. PVAT adiponectin acts as an anti-atherogenic factor
by reducing vascular O2-, a free radical that can cause vascular damage, and increasing
PI3/Akt-mediated eNOS phosphorylation, which increases the production of vasorelaxing
factors [80]. It also attenuates the secretion of inflammatory factors through AMP-activated
protein kinase inhibition of the NF-kB signaling pathway, leading to decreased cardiac
inflammation and atherosclerosis. In an aging model of cardiovascular deletion of the
endonuclease ERCC1, vasodilation was decreased due to decreased NO production and
loss of endothelium-derived hyperpolarization. PVAT under these conditions was shown to
partially compensate for decreased vasorelaxation through its secretion of adiponectin [96].
In lean human models, PVAT secretes adiponectin as a mean of protecting against the
development of hypertension and diabetes by reducing peripheral vascular resistance
and improving nutrient uptake into tissues [98,99]. PVAT adiponectin plays many cardio-
vascular protective roles by maintaining homeostasis, decreasing cardiac inflammation,
inhibiting cardiomyocyte hypertrophy, regulating fibrosis, and suppressing the develop-
ment of atherosclerosis [100].

The release of adiponectin is mediated by fatty acid-binding protein 4 (FABP4), a
nuclear ligand importer, and its targeted receptor, peroxisome proliferator-activated factor
(PPAR~y) [101,102]. Activation of the PPAR- y-signaling cascade in PVAT has been shown
to upregulate the adiponectin gene in response to vascular oxidative stress to protect
against injury and inflammation [103]. Interestingly, the literature describing the expression
of PPAR- vy and FABP4 in PVAT from mice fed high-fat or high-cholesterol diets reports
some discrepancies. In a study by Chatterjee et al., mice fed a high-fat diet for two weeks
expressed lower levels of adiponectin, PPAR-y, and FABP4 as compared to chow-fed
mice [77]. However, Irie et al. found that mice fed a high-cholesterol diet had upregulated
PPAR-y and FABP4 expression in PVAT at the end of 12 weeks when compared to chow-fed
mice [84]. It is possible that two weeks of a high-fat diet was not long enough to induce
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adipocyte differentiation, as FABP4 and PPAR-y are important regulators of differentiation
and adipocyte phenotype determination.

The expression of adiponectin has been reported to change based on metabolic status.
Multiple studies have found an association between obesity and metabolic syndromes,
and reduced levels of PVAT-derived adiponectin in comparison to non-obese individuals.
Greif et al. investigated the relationship between pericardial fat volumes and CVD risk
factors such as serum adiponectin, inflammatory biomarkers, and the morphology and
quantity of coronary atherosclerosis. Elevated pericardial adipose tissue volumes, such
as in obesity, were associated with low adiponectin levels, low high-density lipoprotein,
elevated TNF-alpha levels, and increased atherosclerotic lesions [104]. Decreased levels
of periadventitial adipose tissue has been associated with disease progression. High-fat,
high-sucrose feeding in mice was associated with inflammatory changes and decreased
adiponectin expression in periadventitial adipose tissue. These inflammatory changes and
decreased adiponectin levels were associated with enhanced neointima formation after
endovascular injury. Adiponectin-deficient mice showed increased neointima formation in
injured blood vessels [105].

5.2. Endothelial Nitric Oxide Synthase

Endothelial nitric oxide synthase (eNOS) in PVAT regulates the production of nitric
oxide (NO), a key vasoprotective element. Uncoupled eNOS can no longer produce NO,
but instead creates superoxide, a reactive oxygen species (ROS) that causes tissue damage
and inflammation. Reduced bioavailability of NO can lead to endothelial dysfunction
associated with atherogenesis. This pathological mechanism has been shown in obesity,
where uncoupled eNOS in PVAT results in excess ROS by NAD(P)H oxidase activation,
leading to a decrease in NO production [85,87]. A study by Gil-Ortega et al. measured the
expression of eNOS and NO bioavailability in mesenteric PVAT of mice fed with a high-fat
diet and found undetectable expression. Conversely, superoxide levels were increased in
the PVAT of obese mice, and mesenteric endothelial-dependent relaxation was significantly
impaired in the high-fat diet group compared to the control [106]. Thus, PVAT eNOS
plays a critical role in maintaining cardiovascular health by protecting against harmful
ROS. However, the mechanism of how eNOS expression in PVAT is regulated is not fully
understood and requires additional research.

5.3. Omentin-1

Omentin-1 is encoded by the gene intelectin-1 (ITLN1), and its expression in PVAT
protects against cardiovascular disease by targeting the immune system to reduce pro-
inflammatory mediators [107]. Omentin-1 is an antifibrotic adipocytokine that inhibits
transforming growth factor (TGF)-f3, a key pro-inflammatory activator of cardiac fibroblasts
in epicardial adipose tissue [89]. It decreases the levels of pro-inflammatory and pro-
oxidant C-reactive protein and nitrotyrosine in PVAT and exerts endothelial beneficial
effects by restoring NO levels and inhibiting oxidative stress in animal models of type 2
diabetes [88]. The cardiovascular protective effects of omentin-1 have further been modeled
by its administration in disease states. Hiramatsu et al. demonstrated a reduction in
lipid droplets, macrophage accumulation, atherosclerotic lesion formation, and mRNA
expression of pro-inflammatory mediators, tumor necrosis factor-alpha, IL-6, and monocyte
chemotactic protein-1, after omentin-1 administration in mice [107]. Furthermore, omentin-
1 restored the anti-contractile action of PVAT that was lost in diabetic mice [88].

Consistent with its cardioprotective effects, some studies have found decreased
omentin-1 levels in cardiovascular disease. Chen et al. observed that in patients with
atrial fibrillation, omentin-1 was downregulated in epicardial adipose tissue and the right
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atrial appendages, while TGF-b1 was upregulated [89]. In patients with coronary artery
disease, omentin-1 levels in circulation and epicardial adipose tissue were decreased and
was exaggerated in fat tissue directly next to coronary stenotic segments [90]. Thus, local
levels of omentin-1 are not always inversely correlated with disease state. Another example
of this is the report that omentin-1 expression was increased in the epicardial adipose tissue
of non-obese patients with coronary artery disease [91]. It is likely that the overall metabolic
health of individuals, as well as local tissue pathology, contributes to omentin-1 production
at different sites within the cardiovasculature.

5.4. Fibroblast Growth Factor-21

Fibroblast growth factor-21 (FGF-21), an anti-inflammatory adipokine, is secreted in
large amounts by the liver and adipose tissue, but is expressed in lower amounts in the
aorta and PVAT [92]. There is limited information on the role of FGF21 from PVAT on
vascular homeostasis. A study by Mestres-Arenas et al. aimed to characterize whether
expression of bioactive factors known to be produced in brown adipose tissue were secreted
in PVAT surrounding the thoracic or abdominal aorta. In the mouse, PVAT surrounding
the thoracic aorta resembles brown adipose tissue, whereas PVAT close to the abdominal
aorta has a mixture of white adipose tissue and fewer brown-like adipocytes. Cytokines
typically produced in brown adipose tissue were higher in the thoracic region and lower in
the abdominal region [92], corresponding to their cellular morphology.

Circulating FGF21 has anti-atherosclerotic effects; it reduces lipid and cholesterol pro-
files, inhibits macrophage migration, inhibits foam cell formation, alleviates oxidative stress
by ROS, and reduces the expression of inflammatory cytokines [108-110]. Furthermore,
FGF21 promotes the secretion of adiponectin, which results in the reduction in endothelial
dysfunction and inhibition of smooth muscle cell proliferation and foam cell formation. As
a whole, these effects come together to contribute to FGF21 resistance to the progression of
CVD [111,112]. FGF21 is a potential target that, when released from PVAT, could contribute
to PVAT’s cardioprotective effects.

6. Discussion, Limitations, and Future Directions

PVAT is now understood to mediate a variety of effects on cardiovascular health
and disease. There are several outstanding issues related to leveraging this knowledge
to promote vascular health in human populations. Firstly, most of the work studying the
molecular features in PVAT has occurred in rodent models, which are tractable for the
study of metabolic disease, cardiovascular disease and injury, and aging. It is not always
straightforward to translate genetic and signaling pathways from rodent models to human
disease, so validation is warranted. Molecular analysis of human adipose tissues and
comparisons to mouse adipose tissues have been driven through single-cell transcriptomics
studies, in particular, for white [113] and beige/brown adipose tissues [114]. More recently,
we have analyzed available data from human PVAT from unique cohorts of patients with
cardiovascular disease, in comparison to mouse PVAT [115,116]. While there are certainly
conserved phenotypes, especially in functionally mature adipocytes, we noted species
diversity, especially in adipose progenitor populations. At the morphological level, human
PVAT appear similar to subcutaneous white adipose tissue, although adipocyte size has
been reported to be smaller. Human PVAT also expresses thermogenic markers such as
FGF21, UCP-1, and PGC-1a in vivo [117], with a similar profile maintained when progenitor
cells from human PVAT were derived and differentiated in vitro, compared to progenitor
cells from human subcutaneous white adipose tissue [118].
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The overall landscape of secreted paracrine factors from PVAT, especially from human
tissue, remains an area of active study. Distinct from soluble paracrine factors, the pack-
aging of diverse molecular cargo in extracellular vesicles is expected to provide a longer
half-life and potentially allow cargo to be targeted to different organs [119]. There are
many categories and types of secreted microvesicles [120], and often it is unclear whether
specific molecules are packaged as vesicular cargo or have an association with vesicles.
The ExoCarta small extracellular vesicle protein, RNA, and lipid database [41] provides
a curated list of molecules experimentally associated with extracellular particles. Using
this resource, we have summarized the PVAT-derived cardioprotective factors discussed
as evidence of their localization in secreted extracellular vesicles (Figure 1). Of note, there
is experimental evidence that some components of extracellular vesicles are conserved
between rodents and humans. Adiponectin is an example of this, as it has been character-
ized in extracellular vesicles from adipocytes in rats [121] and from human bone marrow
mesenchymal cells [122]. However, other components of extracellular vesicles have only
been studied in one cell type or species and may not be broadly generalizable. There is also
expected to be some cell-type specificity in cargo release within vesicles.

PVAT cell-derived factors endothelial cells

miR-181b - insulin sensitivity

. omentin-1 - survival, anti-inflammation -- eNOS
stromal cells
" miR-382-5p - macrophage activity
Perivascular b . miR-206-3p - cholesterol efflux
adipose O 72 s 9 suppress inflammation
tissue ) O S }

immune cells
(]

LINC01180 - regulation of immune-
/ related pathways
. adipocytes
0 —. adiponectin
o FGF21

IDO

Extracellular vesicle-mediated transport

extracellular

secretion to heart
and blood vessels

. lipid classes
adiponectin

triacylglycerides

DO phosk g
N

phosphatidylethanolamines
sphingomeylins
lysophosphatidylcholines
microRNAs phospholipids
IncRNAs

PVAT-derived exosomes

Figure 1. Model of PVAT-derived extracellular vesicle cardioprotective factors. PVAT is contiguous
with the vascular adventitia, providing an anatomically linked mechanism for paracrine regulation
of vascular smooth muscle cells of blood vessels and the heart. Multiple cell types contribute to
the secretome of PVAT. For those molecules that are associated with extracellular vesicles, RAB27a
is a critical regulator of multivesicular body fusion with the cellular plasma membrane, allowing
for vesicular release. Several lipid classes implicated in cardioprotection have been reported to be
associated with extracellular vesicles, as have adiponectin, omentin-1, and IDO.
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We propose that RAB27a production in the cardiovascular microenvironment, in-
cluding in PVAT, is one molecular mechanism by which paracrine signaling occurs from
adipose tissue to the heart and blood vessels via extracellular vesicle trafficking [94,95].
Many factors, whether within exosomes or secreted in soluble form, may comprise this
adipose—cardiovascular signaling.

Limitations of our current knowledge include the fact that most PVAT studies have
been performed in rodent models. Genetic targeting with exosome labeling is being
characterized in mouse models [123-126], although it remains a challenge to target PVAT
selectively and distinguish it from other adipose depots. Several key studies using human
PVAT and PVAT-derived cells have been described, and continuing research in these areas
are required to discover whether PVAT-derived molecules identified in model organisms
are generalizable to human PVAT signaling capacity.

The role of PVAT-secreted cardioprotective molecules is a novel area of study that
provides a potential future target for the treatment of CVD. While PVAT proteins have
been heavily researched, there is a gap in knowledge of PVAT-derived RNAs and lipids.
Further investigation into RNA and lipid exosomal contents may allow the development of
a therapeutic platform for the use of endothelial cells to deliver these anti-inflammatory me-
diators [35]. Currently, there are emerging therapies, such as canakinumab and colchicine,
that target cardiovascular inflammatory pathways and have shown promise in preclinical
and clinical trials. However, these treatments are not target-specific, leading to systemic im-
munosuppression. This drawback can be eliminated using extracellular vesicle technology,
which recent studies have begun to demonstrate successfully [35].

Like all adipose depots, PVAT alters its molecular and cellular phenotype with
metabolic imbalance, which is reversible. The predicted thermogenic capacity of hu-
man PVAT, based on levels of thermogenic markers, decreases with progressive weight
gain [117]. Thus, it is feasible that a variety of health interventions intended to promote
healthy inflammatory and metabolic profiles will impact the PVAT secretome. One example
includes the positive impact of exercise [127,128]. Indeed, one of the PVAT-derived targets
of interest, FGF21, may be regulated by aerobic and endurance exercise [129,130]. It is also
interesting to consider that protective effects of exercise could also be mediated by changes
in the cardiovascular system that sensitize heart or vasculature to PVAT-derived signaling
factors [131].

Lastly, future research is necessary to determine how intracellular exosome release
proteins modify the type of content released into extracellular space, especially in human
cells and tissues. RAB27a is a promising target, since it has already been identified to
protect against disease in mice and is associated with human disease-causing mutations.
However, it is unknown how the expression of RAB27a modifies the contents of cellular
secretions under conditions of metabolic stress. More detailed molecular study of human
PVAT in broader clinical populations will allow for the continued development of strategies
to promote cardiovascular health and decrease the risk of cardiovascular diseases.

7. Methods
7.1. Eligibility Criteria

The inclusion criteria utilized for the article search are as follows: 1. Subjects: mice
and human models; II. Exposure: proteins, RNA, or lipids derived from PVAT (mice and
human models); III. Outcome: protection against disease progression or upregulation in
healthy physiologic states; IV. Study type: case—control; V. Study question: what are the
PVAT-derived proteins, RNAs, or lipids that serve as a protective mediator against the
progression of cardiovascular disease?
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The exclusion criteria are as follows: I. Molecules not derived from any type of PVAT;
II. PVAT-derived molecules identified with the progression of CVD or were upregulated
during CVD states.

7.2. Search Strategy

The search strategy is summarized in Figure 2. A articles were gathered through
searches within Pubmed, Scopus, and Google Scholar. An advanced search strategy was
utilized for PubMed, utilizing MeSH terms. Separate searches were conducted for the three
molecule types.

p
Identification of studies via databases and registers ]
<
S
= Records identified from: Records removed before screening:
(&S]
b= Databases: (n = 1145) S Duplicate records removed (n = 0)
=
g Records marked as ineligible by automation tools (n = 0)
\ ) Records removed for other reasons (n = 0)
Records screened
—> Records excluded
(n=93)
(n =1052)
g R ieved
'g Reports sought for retrieval _— > eports not retrieve
5 (n = 66) (n=217)
n
Reports excluded:
Reports assessed for eligibility I. Molecules not derived from PVAT (n = 0)
—
(n=66) Il. PVAT-derived molecules identified with the
progression of CVD or were upregulated dur-
) .
ing CVD (n = 39)
5 Studies included in review
e}
= —
E (n=27)
= Reports of included studies (n = 0)
——

Figure 2. PRISMA flow diagram.

For the search of PVAT-derived proteins in PubMed, the search terms were as fol-
lows: ((PVAT) OR ((perivascular) AND (adipose) AND (tissue))) AND ((protein) OR
(proteins) OR (extracellular)) AND ((cardiovascular) OR (CVD) OR (atherosclerosis)
OR (cardiometabolic)).

For the search of PVAT-derived RNA, the search terms were as follows: (PVAT) OR
((perivascular) AND (adipose) AND (tissue))) AND ((RNA) OR (mRNA) OR (miRNA)
OR (EV)).

For PVAT-derived lipids, the search terms were as follows: ((PVAT) OR ((perivascular)
AND (adipose)) AND ((lipids) OR (sphingolipids) OR (phospholipids) OR (lipid)) AND
((secretion) OR (circulating) OR (blood) OR (plasma) OR (extracellular) OR (exosome)
OR (exosomal)).
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Searches in Scopus and Google Scholar yielded a much broader range of results
compared to the PubMed search. The same search parameters for PubMed were utilized in
both Scopus and Google Scholar search engines to identify relevant articles that were not
included in the PubMed results. Searches were conducted up to July 2025, and references
from relevant studies and review articles were included to ensure all relevant information
was included.

7.3. Selecting Studies and Data Extraction

Article search results matching the eligibility criteria were pooled into a master Mi-
crosoft Excel spreadsheet, which highlighted the publication year, author, title, summary of
key findings, background information, methods, biomarkers, and DOI Multiple tabs were
created to sort articles into their identified biomarker: proteins, RNAs, and lipid secretions.
Additional articles providing background information on relevant study results were also
included to help support and expand upon the importance of study conclusions.
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The following abbreviations are used in this manuscript:

CVD cardiovascular disease

eNOS endothelial nitric oxide synthase

ESCRT  endosomal sorting complex required for transport
FABP4  fatty acid-binding protein 4

FGF21 fibroblast growth factor 21

ITLN1 intelectin-1

NVEV  neutrophil membrane-engineered extracellular vesicles
PAME palmitic acid methyl ester

PPAR-y peroxisome proliferator-activated factor

PVAT perivascular adipose tissue

TGF transforming growth factor
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