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The role of exercise and
nutrition in modulating
inflammatory cytokines activity
for obesity management
Sara Sobreviela Sánchez, Ravi Giusfredi Quevedo,
Tiago Fernandes and Guilherme Wesley Peixoto da Fonseca*

School of Physical Education and Sport, University of São Paulo, São Paulo, SP, Brazil
Obesity is recognized as a systemic disease characterized by chronic, low-grade

inflammation. The persistent inflammatory state can be driven by secretion of

cytokines from adipose tissue, also known as adipokines. In patients with obesity,

adipose tissue releases elevated levels of pro-inflammatory cytokines that can

have an autocrine and paracrine function. The main cytokines involved in this

process include tumor necrosis factor alpha (TNF-a), interleukin-6, and

interleukin-1 beta (IL-1b). These molecules actively contribute to metabolic

dysregulation by interfering with insulin signaling pathways and facilitating the

infiltration of immune cells into adipose tissue. Thus, a vicious cycle can be

established in which inflammation perpetuates metabolic disturbances,

increasing the risk of developing cardiovascular disease, type II diabetes

mellitus, and other chronic conditions. On the other hand, physical exercise

can release myokines with anti-inflammatory properties, such as interleukin-6

and irisin, which can positively modulate immune response. Regular physical

activity and healthy eating patterns emerge as essential tools to counteract low-

grade inflammation. A diet rich in bioactive compounds, such as antioxidants and

polyunsaturated fatty acids, may also regulate cytokine expression, reinforcing

the role of nutrition as a therapeutic strategy for obesity management. In

conclusion, the role of inflammatory cytokines in obesity is central and

managing their activity through non-pharmacological interventions, combining

exercise and nutrition, represents a powerful tool to prevent long-term

complications. However, more studies are needed to elucidate the exact

molecular mechanisms by which nutrition and exercise modulate inflammation

in obesity, in order to develop more effective interventions.
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Introduction

Adipose tissue was historically considered a passive reservoir for

energy storage; however, it is now recognized as an active endocrine

organ. Adipsin (1), one of the first adipokines discovered, was

shown to modulate the immune system and energy metabolism,

suggesting that the secretory capacity of adipose tissue could

influence human health (2). The regulation and signaling of

adipose tissue, as an endocrine organ, has recently gained

significant attention for the management of obesity, a condition

marked by chronic low-grade inflammation and altered

adipokine secretion.

Obesity is a condition characterized by excessive accumulation

of adipose tissue, affecting approximately 16% of the global adult

population as of 2022, according to World Health Organization

(WHO) data (3). The risk associated with obesity may be related to

the function of adipose tissue via releasing pro-inflammatory

cytokines. Moreover, secretion of several pro-inflammatory

cytokines contributes to the development of obesity-associated

comorbidities, such as insulin resistance, metabolic syndrome,

cardiovascular diseases, and sarcopenia (4).

Regular physical activity has been proposed as an effective

strategy to mitigate these adverse effects of obesity. Exercise

training, beyond promoting weight loss, stimulates the release of

myokines by skeletal muscle, such as interleukin-6 (IL-6), which

engage in bidirectional crosstalk with adipose tissue and other

organs modulating systemic inflammation (5, 6). Thus, physical

exercise is an important tool to effectively manage obesity in

clinical practice.

On the other hand, several nutrients, when incorporated into

the diet, have been shown to modulate inflammation, including

omega-3 fatty acids, polyphenols, and dietary fiber, which modulate

immune responses through gut microbiota and inflammatory

pathways (7). Dietary patterns can also provide health benefits, as

reported with the Mediterranean diet (8). Furthermore, these

benefits can be particularly important for obesity management, as

obese patients may present elevated levels of inflammation,

increasing the risk of metabolic diseases (9). However, few studies

integrate exercise and nutritional interventions to modulate

inflammatory cytokines activity.

Therefore, this narrative review aims to examine the interplay

between cytokines, physical exercise, and nutrition in the context of

obesity, with a focus on their mechanistic roles in modulating

inflammation and their practical implications for clinical

management. For this purpose, a comprehensive literature search

was conducted using PubMed, covering publications from 1995

to 2025.
Obesity and inflammation

Obesity is defined as the excessive accumulation of adipose

tissue, identified in patients with a body mass index (BMI) equal or

higher than 30 kg/m2 (10). Although BMI can be an easy

measurement to acquire in clinical practice using only body
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weight and height, BMI lacks sensitivity for detecting excess

adiposity, particularly in individuals with high muscle mass (11).

However, despite normal BMI, patients may have excessive adipose

tissue, a phenomenon known as normal weight obesity, and yet

present an increased risk of obesity-related comorbidities (12).

Thus, assessing body composition, especially percentage of fat

mass, can assist in analyzing health risks related to obesity.

Moreover, obesity is not always accompanied by other

comorbidities. Preclinical obesity refers to an early stage of

obesity where mild metabolic disturbance can occur, whereas

clinical obesity can be related to organ dysfunction (13).

Adipose tissue is an active endocrine organ that secretes

adipokine, cytokines and hormone-like substances involved in

metabolic and inflammatory regulation (14). The transition from

lean to obese is accompanied by a chronic low-grade inflammation

and immune dysregulation, as well as enhanced release of pro-

inflammatory cytokines, which can consequently promote obesity-

induced comorbidities. Moreover, pro-inflammatory cytokines can

contribute to skeletal muscle disorders, such as sarcopenia (15),

presenting similar elevated inflammatory markers as obesity, like

interleukin-1b (IL-1b), IL-6 and tumor necrosis factor alpha (TNF-

a) (16). Obesity can also lead to the infiltration of immune cells,

primarily macrophages, into skeletal muscle, reducing muscle

density and impairing muscle function (17).

Regulation of gut microbiota has been proposed as an

additional mechanism through which obesity can promote low-

grade inflammation (18). The microbiota of patients with obesity

seems to exhibit specific characteristics related to impaired diversity

and microbial composition, differing from individuals with normal

weight (19). In addition, there may be differences in the microbiota

depending on associated-comorbidities in patients with obesity,

suggesting an interplay between metabolic disorders and obesity

meditated by gut microbiota (20). It appears that the microbiota of

obese patients may provide more energy to the host, possibly

through enhanced fermentation of dietary substrates and altered

production of short-chain fatty acids (SCFAs), which influence

energy balance and appetite regulation (21).

Low-grade inflammation has been widely associated with

disruptions in glucose metabolism, commonly reported in

patients with obesity and type II diabetes mellitus (22).

Additionally, inflammation can increase the risk of cardiovascular

diseases, especially when other risk factors coexist (23). Therefore,

reducing low-grade inflammation caused by excessive adipose tissue

accumulation can be a strategy to manage obesity. In this context,

specific pro-inflammatory cytokines such as TNF-a, IL-1b, and IL-

6 have emerged as key players in the pathophysiology of obesity and

its complications.
Tumor necrosis factor alpha

Tumor necrosis factor alpha (TNF-a), a pro-inflammatory

cytokine secreted primarily by macrophages, has been associated

with the pathogenesis of autoimmune diseases (24). TNF-a plays a

central role in mediating inflammation by promoting apoptosis of
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damaged cells and increasing oxidative stress, contributing to

metabolic dysfunction when chronically elevated (25). Glucose

metabolism is also impaired with elevated TNF-a causing insulin

resistance (26). Increased level of TNF-a has shown to impair

intracellular insulin receptor signaling in adipocytes, hepatocytes,

and skeletal muscle cells by inhibiting insulin receptor substrate-1

(IRS-1) (27). Additionally, it has been reported that the

administration of TNF-a in human adipocytes reduces mRNA

expression of glucose transporter type 4 (GLUT-4) (28). GLUT-4,

a member of the glucose transporter family, translocates to the cell

membrane and allows influx of monosaccharide into the cell

cytoplasm, showing that the regulation of insulin signaling

pathway can be mediated by inflammation promoted by high

levels of adipose tissue (29).

Excessive release of TNF-a can also affect lipid metabolism.

Patients with dyslipidemia have shown to have higher levels of this

cytokine, which is associated with increased concentrations of

triglycerides (TG) and low-density lipoprotein (LDL) (30). TNF-a
can also inhibit the activity of lipoprotein lipase (LPL) in adipose

tissue, an enzyme responsible for hydrolysis of triacylglycerol

present in chylomicrons and very low-density lipoprotein (VLDL)

(28). Although anti-TNF-a antibody therapy may play a role in

obesity-related comorbidities, the inflammatory response observed

in obesity is more likely a consequence of excess adiposity rather

than its primary cause (31). On the other hand, if TNF-a inhibitors

may cause an increase in body weight by impairing lipolysis,

blocking TNF-a signaling could become a new strategy to treat

skeletal muscle disorders with severely reduced weight loss, such as

cancer cachexia (32).

Elevated TNF-a levels have been also associated with

endothelial dysfunction and increased arterial stiffness, both key

contributors to hypertension and atherosclerosis (33). Endothelin-1

can be involved in vasoconstriction of vascular smooth muscle cells,

reducing the lumen of blood vessels that may lead chronically to

persistent increases in blood pressure. These changes in vascular
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response through elevated secretion of TNF-a may become more

severe with aging (34).

Exercise has shown to improve TNF-a levels in mice in a high-

fat diet, suggesting that exercise may be a strong regulators of TNF-

a (35). Several types of exercise have shown to modulate TNF-a
levels, such as light-intensity walking (36), even though other

studies have not demonstrated significant impact of exercise on

reducing TNF-a (37, 38). These conflicting results may be related to

the maintenance or transitory increase in pro-inflammatory

cytokines in response to muscle damage caused by intense and

prolonged bout of exercise (39, 40).

Nutritional strategies also play a crucial role in modulating

TNF-a. The consumption of natural soy products seems to have

positive effects on reducing plasma levels of TNF-a (41), which

may be due to the effect of isoflavones as antioxidants (42). The

combinat ion of omega-3 fa t ty ac ids wi th curcumin

supplementation has shown to reduce TNF-a expression and

serum levels in patients with migraines (43). In patients with

sarcopenia, protein supplementation, whether soy or whey

protein, was also capable of decreasing serum TNF-a
(Table 1) (44) . Moreover, other compounds, such as

coenzyme Q10 (45), or tannins (46), also seem to have an

anti-inflammatory effect and significantly reduce TNF-a
levels, due to its antioxidant capacity.

In summary, TNF-a is a pro-inflammatory cytokine secreted by

macrophages in a healthy environment, but it can also be secreted

by adipose tissue in obesity, showing strong association with health

issues such as insulin resistance, dyslipidemia, sarcopenia and

cardiovascular conditions. Low-intensity exercise and several

bioactive compounds, including omega-3 fatty acids and

antioxidants, can modulate inflammation through TNF-a
(Figure 1). However, more studies are necessary to determine the

impact of different training variables (i.e., intensity and volume), as

well as the combination of exercise with nutritional strategies, on

modulating TNF-a in patients with obesity.
TABLE 1 Effect of nutritional interventions on inflammatory profile and obesity-related comorbidities.

Nutritional intervention Cytokine modified Outcomes

Omega-3 fatty acids (fish oil, flaxseed oil, DHA, and
n-3 PUFA)

TNF-a, IL-1, IL-1b, and IL-6

Reduces serum levels and expression of TNF-a and IL-1 in patients with type II
diabetes mellitus and coronary artery disease. Inversely correlated with plasma
IL-6. Improves wall shear stress, left ventricular function, and blood pressure in
pre-clinical studies.

Antioxidant–rich compounds (natural soy products,
curcumin, coenzyme Q10, tannins, vitamin C and
E)

TNF-a and IL-6
Reduces plasma levels of TNF-a. Reduces plasma and muscle-derived IL-6 after
moderate exercise.

Protein supplementation (soy or whey protein) TNF-a, IL-1b, and IL-6
Decreases serum TNF-a in patients with sarcopenia. Useful for reducing plasma
IL-6 levels after moderate exercise. Reduces levels of TNF-a, IL-1b, and IL-6.

Vitamin D supplementation TNF-a and IL-1b
Decreases serum levels of IL-1b and TNF-a in patients with type II diabetes
mellitus.

Gut microbiota modulators (prebiotics and
probiotics)

TNF-a and IL-6
May improve gut microbiota, reducing both systemic and intestinal
inflammation.

Mediterranean diet TNF-a, IL-1, IL-1b, and IL-6
Suppresses pro-inflammatory cytokines. Associated with improved biomarkers
related to obesity comorbidities. Reduces low-grade inflammation.
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Interleukin-1

The interleukin-1 family comprises 11 cytokines that play a

central role in regulating immune and inflammatory responses.

Interleukin-1 (IL-1) is a pro-inflammatory cytokine essential for

regulating immune response against infections. IL-1a and IL-1b are

the most studied members as they possess strong pro-inflammatory

effects. IL-1 works via innate immune response activating

macrophages and neutrophils, while can enhance activation of T

and B cells in adaptive immune response (47). Moreover, IL-1

induces local histamine release from mast cells, stimulating early

vasodilation and increasing vascular permeability (48). IL-1 has

shown to act synergistically with TNF-a through promoting cell

death (49). As TNF-a, IL-1 can also be secreted by adipose tissue

under pathological conditions.

Glucose metabolism is also affected by IL-1. It has been reported

that blocking IL-1 can preserve pancreatic cell mass and function,

while IL-1b can promote apoptosis of pancreatic beta cells in

hyperglycemic conditions (50). The risk of atherosclerosis may

also be increased in the presence of IL-1, since IL-1 is involved in

vascular wall inflammation, via activation of monocytes and

expression of adhesion molecules (51). Additionally, IL-1 in

adipose tissue can promote macrophage infiltration and release of

other pro-inflammatory cytokines, which creates a vicious cycle in

the progression of obesity (52).

Interleukin-18 (IL-18), another pro-inflammatory cytokine

belonging to the IL-1 family, can be considered essential in the

inflammatory state of patients with obesity. Plasma levels of IL-18

are positively correlated with insulin resistance and may be related

to the development of type II diabetes mellitus (53). Moreover, the
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contribution of IL-18 to chronic inflammation can be associated

with facilitating formation of atherosclerotic plaques and

endothelial dysfunction that can promote the development of

cardiovascular diseases (54).

Interestingly, physical exercise can be a key strategy when it

comes to reducing IL-1 family cytokine levels (Figure 1). It has been

shown that physical exercise reduces IL-1b gene expression in

patients with heart failure (55), which in turn may improve

exercise capacity of these patients (56). In experimental studies

with diabetic rats, swimming significantly reduced the expression of

inflammatory cytokines, such as IL-1b (57). However, as of TNF-a,
plasma levels of IL-1 may increase after intense exercise as a

physiological response to strenuous muscle effort (58), making it

difficult to assess the isolated impact of physical activity on IL-1.

Vitamin D and calcium supplementation through a drinkable

yogurt has been associated with a decrease in serum levels of IL-1b
and TNF-a in patients with type II diabetes mellitus (59). In

addition, when supplemented only calcium no significant effects

on inflammation were reported, suggesting that the anti-

inflammatory effect may be specific to vitamin D (Table 1).

Likewise, supplementation with flaxseed oil, a source of linolenic

acid, significantly improved the expression levels of IL-1 and TNF-

a in patients with diabetes and coronary artery disease (Table 1)

(60). Dietary intake of docosahexaenoic acid (DHA) in mice has

been shown to reduce wall shear stress, improve left ventricular

function, and lower blood pressure compared to controls,

suggesting that reduced local IL-1b expression can mediate these

adaptations (61). These last two studies reaffirm the anti-

inflammatory capabilities of omega-3 fatty acids and their benefits

on obesity-related comorbidities.
FIGURE 1

The vicious cycle of chronic inflammation in obesity and its modulation by lifestyle strategies. This diagram illustrates that obesity increases adipose
tissue, which secretes pro-inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-a), and interleukin-1 (IL-1). These
cytokines, in turn, contribute to insulin resistance, metabolic dysfunction, oxidative stress, and tissue damage, which physical exercise and diet with
anti-inflammatory components can work synergistically or independently to counteract the chronic inflammation and obesity-related complications.
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The IL-1 family plays a critical role in regulating both innate

and adaptive immune responses. Despite triggering low-grade

inflammation, IL-1 has been linked to obesity-related

comorbidities such as atherosclerosis and endothelial dysfunction.

Supplementation of omega-3 fatty acids stands again as clinical

strategy to modulate inflammation, while low-intensity exercise can

modulate several isoforms of IL-1. Nonetheless, more studies are

needed to understand the role of IL-1 family in the context of

exercise and nutritional interventions in patients with obesity.
Interleukin-6

Interleukin-6 (IL-6) is a cytokine with both pro-inflammatory

and anti-inflammatory properties (Figure 2) (62). Under normal

conditions, IL-6 is required not only for inflammatory processes,

but also for hematopoiesis, bone metabolism and coagulation (63),

as well as for facilitating glycemic control and providing cross-talk,

linking tissues such as intestinal L cells and pancreatic islets (5).

Mechanistically, two main signaling pathways can be activated

by IL-6. In the classical signaling pathway, IL-6 binds to its

membrane receptor (IL-6R), followed by dimerization of

glycoprotein 130 (gp130) and activation of the JAK/STAT,

MAPK and PI3K/AKT pathways (64). Through the trans-

signaling pathway, IL-6 can also bind to molecules of the soluble

IL-6 receptor (sIL-6R), which are generated through ectodomain

release by metalloproteases (ADAM-10 and ADAM-17) (65). The

expression levels of IL-6 receptor subunits vary among cell types

and determine whether IL-6 classical signaling pathway, which

primarily induces anti-inflammatory responses, or IL-6 trans-
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signaling pathway, generally associated with pro-inflammatory

responses, is triggered (66). Moreover, the presence of other

cytokines may modulate IL-6 response (67).

As mentioned before, low-grade inflammation in obese patients

impacts negatively in insulin signaling pathways and causes insulin

resistance, with IL-6 playing an important role in this process (68). In

pre-clinical studies, IL-6 knockout mice developed obesity, associated

with a disturbed carbohydrate and lipid metabolism (69). Indeed,

these data were subsequently supported indicating increased body

weight, impaired glucose tolerance and exacerbated insulin resistance

in IL-6 knockout mice (70). In regards to lipid metabolism, IL-6 has

been linked to the development of dyslipidemia and a massive

mobilization of fatty acids that may lead to lipid accumulation in

the myocardium, potentially causing cardiac lipotoxicity (71). In

addition, IL-6 has been associated with increase risk of several

types of cancer, including breast, liver, and colon cancer (72).

However, IL-6 can be somewhat paradoxical, as both harmful

and beneficial effects have been reported. For instance, muscle-

derived IL-6 has beneficial effects unlike that secreted during

inflammation, despite being the same molecule. One explanation

for this paradox lies in the duration of IL-6 exposure. Although

chronic elevations are associated with insulin resistance, acute

elevations may enhance insulin sensitivity (73). IL-6 also has

regenerative, anti-inflammatory and anti-diabetogenic functions,

when secreted as myokine by skeletal muscles during physical

exercise. IL-6 released from skeletal muscle during exercise has

been associated with improved glucose uptake and fat oxidation

(74), suggesting that IL-6 has a crucial role in energy mobilization,

even though IL-6 release from adipose tissue may not have the same

effect (Figure 2).
FIGURE 2

Dual role of interleukin-6 (IL-6) released from skeletal muscle and adipose tissue in metabolism and inflammation. This diagram illustrates the
contrasting effects of IL-6 depending on its source and signaling pathway involved. On the left, physical exercise stimulates skeletal muscle to
release IL-6, which primarily signals through the classical signaling pathway, producing anti-inflammatory effects. On the right, obesity leads to
increased IL-6 secretion from adipose tissue, predominantly activating the trans-signaling pathway that is associated with chronic inflammation and
metabolic dysregulation.
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Muscle contraction has been linked to an increase in plasma IL-

6 levels, which is related to exercise intensity (75). IL-6 is one of the

pathways through which physical activity improves insulin

sensitivity, as it enhances GLUT-4 expression (76). Moreover, IL-

6 can stimulate lipolysis and fat oxidation in humans without

causing hypertriglyceridemia, which can have significant benefits

for patients with metabolic syndrome (77). However, administering

IL-6 exogenously as a mimetic for physical exercise is not an

appropriate strategy, since elevated blood levels of IL-6 are still

associated with inflammation (78), despite anti-inflammatory

properties of muscle-derived IL-6.

The concentration of IL-6 has been inversely associated with

25-OH-D levels in older adults (79), suggesting that maintaining

adequate 25-OH-D levels may reduce inflammation. A cohort study

of over 5000 women and men found that n-3 PUFA intake was

inversely correlated with plasma IL-6 levels (80). Two experimental

studies examined the effect of whey protein or vitamin C and E

supplementation on post-exercise inflammation. Both strategies

were found to be useful in reducing plasma and muscle derived

IL-6 levels, respectively, after moderate exercise (81, 82). Therefore,

these results may be primarily due to a reduction in muscle rather

than systemic inflammation.

IL-6 may present pro-inflammatory properties when derived

from adipose tissue, but also anti-inflammatory effect derived from

skeletal muscle. More studies are necessary to understand this

paradoxal relationship of IL-6 and its impact on obesity management.
System impact of physical exercise on
inflammation

Physical exercise can be extremely helpful in managing

inflammation and comorbidities associated with obesity. Exercise

can significantly alleviate type II diabetes mellitus, as it promotes

insulin sensitivity through various pathways, such as the reduction

of plasma ceramides (83), enhancement of pancreatic b-cell
function (84), and increased skeletal muscle capillarization (85).

Exercise also improves lipid profile and cardiovascular health (86).

Moreover, like adipose tissue, muscle tissue also acts as a secretory

organ, releasing myokines to counteract inflammation and obesity-

related comorbidities. Aerobic exercise can significantly decrease

the level of inflammatory cytokines, when performed from

moderate to high intensity with session lasting between 30 to 60

minutes in a frequency of 2 to 3 times per week (87).

Muscle-derived IL-6 can inhibit the production of

inflammatory cytokines such as TNF-a and IL-1b, while

promoting secretion of anti-inflammatory cytokines like

interleukin-10 (IL-10) (88), thereby improving inflammatory

profile in patients with sarcopenic obesity. The improved profile

can attenuate age-related inflammation (inflammaging) and,

consequently, improve glucose metabolism in skeletal muscle

(89), as well as suppressing activation of macrophages, IL-2, and

interferon-gamma (IFN-g) (88).
Other myokine, such as irisin, are also associated with

improvement of obesity-related conditions. Irisin is secreted by
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muscle and can induce white adipose tissue browning, which

regulates energy metabolism (90). In addition, irisin has also been

linked to beneficial effects on inflammation, neurodegeneration,

oxidative stress, diabetes mellitus, and sarcopenia (91, 92). Strength

training can play a role in activating mTOR and AMPK pathways

for the secretion of these myokines (93). Moreover, physical

exercise can also modify the composition of the gut microbiota

that may improve systemic inflammation (94). Therefore, through

several mechanisms, exercise can be used as an effective

intervention to improve chronic inflammation in patients with

obesity (95).
Systemic impact of nutrition on
inflammation

Dietary patterns are also essential for managing chronic low-

grade inflammation in patients with obesity. It has been reported

that high-fat diets, also described as Western diet, can be correlated

with increased inflammatory profile and gut dysbiosis (96). These

high-fat diets are mainly composed of ultra-processed foods, which

appear to promote a chronic pro-inflammatory state (97), whilst

diets with a higher content of whole, natural foods may reduce low-

grade inflammation in obesity, placing particular emphasis on

omega-3 polyunsaturated fatty acids, vitamins from vegetables

and fruits (98), and dietary fiber (99). Providing prebiotics along

with probiotics could also improve gut microbiota, reducing both

systemic and intestinal inflammation (100). Other alternative

supplements include branched-chain amino acids, calcium, and

vitamin D3, which may reduce levels of TNF-a, IL-1b, and IL-

6 (101).

The Mediterranean diet has been shown to improve several

aspects for the management and prevention of obesity (102). The

Mediterranean diet is characterized by increased consumption of

fruits, vegetables, legumes, whole grains, olive oil, moderate intake

of fish and dairy, and low intake of red meat. Moreover, the

Mediterranean diet has been associated with improved

biomarkers related to obesity comorbidities, such as glucose

metabolism, plasma lipids, and cardiovascular diseases (103, 104).

Therefore, following dietary patterns like the Mediterranean diet is

currently recommended for reducing low-grade inflammation

associated with obesity and sarcopenia (105, 106), as many of its

components individually exhibit anti-inflammatory effects.
Future perspective

This narrative review reinforces the view that obesity is a

complex, multifactorial disease, characterized not only by

excessive fat accumulation but also by chronic low-grade

inflammation mediated by dysregulated cytokine secretion.

Additionally, pro-inflammatory mediators such as IL-6, IL-1, and

TNF-a contribute to the pathogenesis of obesity-related

comorbidities including insulin resistance, cardiovascular disease,

sarcopenia, and dyslipidemia.
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Both physical exercise and evidence-based nutritional strategies

can improve the inflammatory profile of patients with obesity, and

consequently reduce the incidence of comorbidities. Exercise-

induced myokines such as IL-6, IL-10, and irisin promote anti-

inflammatory effects and improve metabolic outcomes. Moreover,

certain dietary patterns, such as the Mediterranean diet and

increased intake of nutrients with anti-inflammatory properties,

including omega-3 fatty acids, polyphenols and antioxidants, can

significantly reduce the secretion of pro-inflammatory cytokines

and improve the metabolic profile of patients with obesity.

Nevertheless, further research is needed to confirm the combined

or isolated effect of physical exercise and nutrition on the

management of obesity, especially longitudinal studies. Moreover,

an important limitation of this review is the heterogeneity among

studies, varying in outcomes assessed, intervention protocols, study

design and duration.

In conclusion, addressing inflammation as a key component of

obesity provides a more comprehensive approach to the treatment.

Strategies combining regular physical exercise with appropriate

nutritional interventions may offer a powerful tool to reduce

inflammatory complications caused by obesity and obesity-related

comorbidities. Investigations incorporating molecular biomarkers,

microbiota profiling and individualized responses to interventions will

becrucial for thedevelopmentofprecision therapies.Ultimately, treating

inflammation as a core component of obesity may enhance current

management strategies and improve long-term patient outcomes.
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Vargas-Alarcón G. Pro-inflammatory and anti-inflammatory markers in coronary artery
disease and acute ischemic coronary syndrome. Arch Cardiol Mex. (2009) 79:54–62.
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