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Abstract

Obesity remains a dominant risk factor for cardiovascular disease, yet its classification con-
tinues to rely heavily on body mass index (BMI)—a metric that fails to capture individual
variability in fat distribution, metabolic health, and cardiometabolic risk. This narrative
review analyzes 35 articles published between 2018 and 2025 to explore the limitations of
BMI and outlines emerging strategies for obesity redefinition through a precision medicine
lens. Drawing from recent advances in imaging, metabolomics, and genomic profiling,
we highlight alternative metrics such as visceral adipose tissue (VAT), epicardial adipose
tissue (EAT), waist-to-hip ratio (WHR), and multi-omic phenotyping that provide superior
predictive value for cardiovascular outcomes. The review synthesizes data on metabolically
healthy and unhealthy phenotypes, emphasizes the pathophysiological role of EAT in heart
failure and arrhythmogenesis, and discusses the cardioprotective effects of pharmacologic
agents such as glucagon-like peptide-1 (GLP-1) receptor agonists. Clinical implications
include improved risk stratification, earlier disease detection, and individualized therapeu-
tic targeting. Despite current barriers to widespread implementation—such as imaging
cost, access to omics, and lack of guideline integration—this paradigm shift holds promise
for refining cardiovascular prevention strategies. Redefining obesity using biologically
informed, phenotype-based models is indispensable for aligning clinical practice with the
complexities of modern cardiometabolic disease.

Keywords: BMI; obesity phenotypes; cardiometabolic risk; visceral adiposity; precision
medicine; body composition; metabolic health; cardiovascular disease

1. Introduction

Since its introduction in the early 1970s, Body Mass Index (BMI) has served as the
cornerstone for defining and classifying obesity in clinical and public health contexts. Orig-
inating from the work of Ancel Keys and colleagues, BMI offered a convenient, population-
level proxy for body fat content, enabling cross-national comparisons and epidemiological
surveillance with minimal resources [1]. The metric was rapidly adopted by global health
authorities, most notably the World Health Organization (WHO), which formally endorsed
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BMI-based cut-offs for overweight (>25 kg/m?) and obesity (>30 kg/m?) in its 2000 tech-
nical report—cementing its status as the global standard [2]. Owing to its simplicity and
reproducibility, BMI has been widely used to monitor trends, guide interventions, and
assess risk stratification across diverse populations. However, as pointed out in subsequent
critiques, its utility at the individual level remains limited, as it fails to distinguish between
lean and fat mass or account for ethnic and sex-based differences in body composition [3].
These limitations are particularly pertinent in the context of modern precision medicine,
which demands more nuanced and physiologically relevant markers for cardiometabolic
risk assessment.

Despite its widespread adoption, BMI has increasingly come under scrutiny for its
inability to reflect individual variability in cardiometabolic health. Individuals with iden-
tical BMI values may exhibit markedly different physiological profiles—ranging from
insulin sensitivity and lipid levels to inflammatory markers and visceral fat accumulation—
resulting in distinct levels of cardiovascular risk [4]. This heterogeneity has led to the
recognition of divergent obesity phenotypes, including the so-called metabolically healthy
obese (MHO) and metabolically unhealthy normal weight (MUNW) individuals. While
the former present with a high BMI but favorable metabolic profiles, the latter may have
normal BMI values despite harboring significant metabolic dysfunction. Such phenotypes
illustrate the disconnect between BMI and actual health status, emphasizing the metric’s
limited discriminative capacity in both clinical and preventive cardiology [5].

Emerging evidence from large-scale population studies supports the use of metabolic
profiling and multi-omic analysis to uncover risk patterns that BMI alone cannot detect.
These approaches have revealed that some individuals within the same BMI category may
exhibit drastically different lipidomic and proteomic signatures, correlating with divergent
cardiometabolic trajectories. Moreover, the reliance on BMI as a universal metric fails
to account for population-specific factors, including ethnic differences in fat distribution,
muscle mass, and inflammation—all of which modulate cardiovascular risk independently
of total body weight [6,7]. Clinical guidelines have increasingly emphasized the importance
of evaluating fat distribution—particularly visceral and ectopic fat—as these are more
closely linked to cardiovascular outcomes than BMI-defined obesity alone [8]. As such, a
paradigm shift is underway toward more granular, phenotype-based models of obesity
classification that better align with the goals of precision medicine.

Advances in precision medicine have highlighted the biological complexity hidden
within BMI-defined obesity. Polygenic risk scores (PRSs), derived from genome-wide associ-
ation studies, have shown that genetic predisposition to obesity involves distinct pathways:
central nervous system genes often influence appetite regulation and overall adiposity,
while adipose tissue-related genes shape fat distribution and metabolic outcomes [9].

In parallel, metabolomic profiling reveals extensive biochemical variation among
individuals with similar BMI. Up to one-third of the human plasma metabolome is altered
in obesity, yet the direction and intensity of these changes differ across individuals, enabling
the identification of metabolically distinct subtypes [10]. Tools such as metabolomic BMI
(mBMI) can differentiate between metabolically unhealthy normal-weight individuals and
metabolically healthy obese individuals with higher clinical accuracy than anthropometrics
alone. While PRSs offer limited predictive power in isolation, integrating genetic and
metabolomic data enhances cardiometabolic risk stratification [11].

The emergence of advanced imaging technologies has revealed that total body weight
alone is a poor predictor of cardiometabolic risk. Instead, regional fat distribution—
particularly the accumulation of visceral adipose tissue (VAT)—has been shown to be
more strongly associated with adverse cardiovascular outcomes than subcutaneous fat or
BMI-defined obesity. VAT is a metabolically active depot, characterized by a higher density
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of proinflammatory immune cells and increased insulin resistance, contributing to an en-
docrine environment conducive to atherogenesis, hypertension, and insulin resistance [12].

Cross-sectional modalities such as MRI, CT, and DEXA scans allow for precise quan-
tification of VAT and other ectopic fat depots, offering superior risk stratification in both
obese and normal-weight individuals [13]. Notably, VAT drains into the portal circulation,
directly affecting hepatic metabolism and promoting dyslipidemia, glucose intolerance,
and systemic inflammation. This direct link accentuates its pathophysiological relevance in
the progression of cardiovascular disease (CVD). Moreover, imaging studies have identified
that VAT volume correlates more robustly with adverse outcomes—such as left ventricular
hypertrophy, arterial stiffness, and coronary calcification—than BMI or waist circumference.
Recent advances in artificial intelligence have enabled the development of deep learning
models that combine chest radiographs with clinical variables to estimate VAT with high
accuracy, potentially democratizing access to precision cardiometabolic risk profiling. Such
approaches may outperform traditional anthropometric methods and provide actionable
insight into patient-specific fat phenotypes [14]. As precision medicine becomes increas-
ingly central to cardiology, VAT quantification is poised to become a routine component of
cardiovascular risk assessment.

In light of the limitations of BMI and the growing body of evidence supporting a
biologically grounded classification of obesity, this review aims to re-examine how adiposity
is defined and measured—particularly in the context of cardiovascular risk. We explore
emerging alternatives to BMI, including multi-omic profiling, polygenic risk scoring, and
imaging-based fat distribution metrics, with a focus on their relevance to cardiology and
precision medicine. Special attention is given to the paradoxes of metabolically healthy
obesity and metabolically unhealthy normal weight, and how these phenotypes challenge
traditional assumptions about weight-related cardiovascular risk. By synthesizing recent
findings from genetic, metabolic, and imaging research, we advocate for a redefinition of
obesity that better aligns with pathophysiological mechanisms and individualized risk
stratification. The review concludes by highlighting future directions and the clinical
implications of adopting a precision-based approach to obesity in cardiovascular care.

2. Materials and Methods

This narrative review was conducted to synthesize current perspectives on the limita-
tions of BMI and the emerging role of alternative metrics in cardiometabolic risk assessment,
particularly within the context of precision medicine. To identify relevant literature, a
targeted search was carried out using PubMed, Scopus, and Web of Science databases. Ad-
ditional sources were identified through manual screening of the reference lists of selected
articles, ensuring that recent advances and influential studies not captured by automated
searches were also considered. The search was conducted in September 2025 and covered
literature published between January 2018 and September 2025.

The search strategy included terms and Boolean combinations such as “obesity pheno-

s i 7o

types,” “BMI limitations,” “visceral adiposity,” “metabolically healthy obesity,” “polygenic

s i

risk score,” “metabolomics,” “body composition imaging,” “cardiometabolic risk,” and
“precision cardiology.” These terms were chosen to reflect the review’s primary focus on
redefining obesity through multi-parametric approaches that integrate imaging, molecu-
lar, and genetic data, as well as the clinical implications of obesity-related phenotypes in
cardiovascular care.

Two reviewers independently screened titles and abstracts for relevance, followed by
full-text assessment of eligible articles. Discrepancies were resolved through discussion
and consensus. Although this is a narrative rather than a systematic review, efforts were

made to enhance methodological transparency by applying selected elements of systematic
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review reporting frameworks. Given the narrative nature of this review, a formal PRISMA
framework was not applied, and no standardized risk of bias assessment tools were used.
Formal quality appraisal tools were not appropriate due to the conceptual and exploratory
aims of this synthesis, which integrates heterogeneous evidence types (e.g., omics studies,
imaging protocols, and mechanistic models). Instead, emphasis was placed on concep-
tual integration, recency of evidence, and translational relevance to cardiovascular and
precision medicine.

The included studies were synthesized using a narrative, thematic approach. Articles
were grouped based on conceptual overlap into four major domains: (1) limitations of BMI
in cardiovascular risk stratification; (2) imaging-based assessments of adiposity; (3) omics-
driven obesity classification (including genomics and metabolomics); and (4) cardiological
implications of phenotype-based definitions. This allowed for integrative comparison of
evidence across methods and clinical contexts.

Studies were selected based on their relevance to adult human populations and
their contribution to understanding obesity’s role in cardiovascular disease beyond BMI
classification. Peer-reviewed original research articles, narrative reviews, and systematic
reviews were included, provided they were published in English and aligned with the
clinical and conceptual domains of interest. Articles focusing exclusively on pediatric
populations, surgical or bariatric interventions, or animal models were excluded, as were
case reports, editorials, and non-peer-reviewed materials.

A total of 35 articles were ultimately included in the review. The selected articles
were grouped thematically to reflect four overarching areas: the limitations of BMI in
cardiovascular risk stratification, imaging-based assessments of adiposity, omics-driven
obesity classification, and cardiological implications of phenotype-based definitions.

Because this review follows a narrative design, no formal meta-analysis or quality
appraisal tools were applied. Instead, emphasis was placed on conceptual integration,
recent evidence, and the translational relevance of findings to clinical cardiology. The
review aims to provide a comprehensive, yet focused synthesis of current knowledge,
offering a framework for redefining obesity in the era of precision medicine.

To enhance methodological transparency, a PRISMA 2020 flow diagram has been
included (Figure 1), summarizing the identification, screening, eligibility assessment, and
inclusion of articles. This diagram is presented to increase transparency of the literature
selection process, even though formal systematic procedures such as bias scoring and
meta-analysis were not performed.

Identification of studies via databases and registers ‘ ‘ Identification of studies via other methods
= Re%ﬁzgdenuﬁfﬂ 'f%"';) Records removed before
2 ages (0= screening (n =22) e -
i = PubMed (n=88) Duplicate records removed (n Reﬂ,’:és"‘:;:?zidgm
£ + Scopus (n=61) =17 Citation searching (n = 0)
H = Web of Science (n = Mon-English arficles (n=3)
3 38) Editorials (n = 2)
Registers (n=10)
l Records excluded (n = 97).
™ Irrelevant population (n = 34)
Records screened Not cardiometabalic focus (n =
(n = 165)

Review or opinion arficles (n =

)
l Lifestyle-only studies (n = 14)

Reports sought for retrieval i
B il Reports not retrieved Refons sought for refrieval RePorIs not retrieved
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| l
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Figure 1. PRISMA 2020 flow diagram detailing the study selection process.
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3. Results
3.1. Limitations of BMI in Cardiovascular Risk Prediction

Although BMI remains a cornerstone in defining obesity, it is a limited tool for as-
sessing cardiometabolic risk. It does not differentiate between fat and lean mass, nor does
it account for fat distribution—both of which are key contributors to the development
of CVD. Recent research highlights substantial heterogeneity in obesity-related health
outcomes, with some individuals exhibiting high BMI but low cardiometabolic risk. This
phenomenon, often described as the “obesity paradox” or “fit-fat paradox,” challenges
the assumption that excess body weight, as defined by BMI, uniformly predicts adverse
cardiovascular outcomes [15].

One of the clearest examples of this heterogeneity is the MHO phenotype. Individuals
classified as MHO meet BMI criteria for obesity yet do not exhibit metabolic disturbances
such as insulin resistance, dyslipidemia, or hypertension. Compared to their metabolically
unhealthy obese (MUO) counterparts, MHO individuals typically show preserved insulin
sensitivity, lower visceral and hepatic fat, and higher cardiorespiratory fitness [16]. How-
ever, MHO is not a stable condition. Longitudinal evidence suggests that many individuals
initially classified as MHO transition over time to a metabolically unhealthy state, with a
concomitant increase in CVD risk [16,17].

Nevertheless, elevated cardiometabolic risk is not limited to individuals with obesity.
Those with normal BMI but poor metabolic profiles—referred to as MUNW-—may face
comparable or even greater cardiovascular risk than MHO individuals. This phenotype
is often characterized by increased visceral fat, impaired insulin sensitivity, and elevated
proinflammatory markers despite a “normal” BMI [17]. Thus, BMI alone cannot reliably
differentiate between cardiometabolically benign and high-risk phenotypes.

A summary of the clinical and metabolic features associated with MHO, MUOQO, and
MUNW is presented in Table 1.

Table 1. Key Characteristics of Obesity Phenotypes: MHO, MUO, and MUNW.

Feature MHO MUO MUNW
BMI >30 kg/m? >30 kg/m? 18.5-24.9 kg/m?
VAT Low (<120 em?) [15] High (>160 cm?) [15,16] High (>130 cm?) [17]
Subcutaneous Leg Fat High (qualitative; protective) [15,17] Low [15,16] Low [17]
Hepatic Steatosis Low (<5% liver fat) [15] High (>5% liver fat) [15,17] High (>5% liver fat) [17]
Insulin Sensitivity Preserved (HOMA-IR < 2.5) [15,17] Impglg‘i‘; g){[?g/[l‘;‘] R> Impaired [17]
Inflammatory Markers Low (hsCRP < 1.0 mg/L) [15] Elevated (hsCRP > 3.0 mg/L) [15,16] Elevated [17]
Blood Pressure Normal (<130/85 mmHg) [15,16] Elevated (>130/85 mmHg) [15,16] Elevated [17]
Cardiorespiratory Higher (VO, max > Lower (VO,; max < .
Fitness 30 mL/kg/min) [16] 25 mL/kg/min) [16] Variable [17]
. . . o High (>20% ASCVD risk or . o s
Cardiovascular Risk Moderate (ASCVD risk 10-20%) [15] Framingham score) [15,17] High (>20% risk) [17]
Phenotype Stability Transient (6-16% remain stable over Persistent [16] Variable, often unstable [17]

time) [17]

Abbreviations: MHO—Metabolically Healthy Obesity; MUO—Metabolically Unhealthy Obesity; MUNW—
Metabolically Unhealthy Normal Weight; BMI—Body Mass Index; VAT—Visceral Adipose Tissue; HOMA-IR—
Homeostatic Model Assessment of Insulin Resistance; hsCRP—High-Sensitivity C-Reactive Protein; VO, max—
Maximal Oxygen Uptake; ASCVD—Atherosclerotic Cardiovascular Disease.

The limitations of BMI become particularly evident when considering its inability
to differentiate between lean and fat mass or capture central adiposity. This is critical
in cardiovascular risk prediction, where visceral fat, rather than total body weight, is a
stronger determinant of adverse outcomes [18]. Individuals with similar BMI values may
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differ substantially in their visceral fat content, which directly influences insulin resistance,
lipid metabolism, and systemic inflammation.

A large-scale meta-analysis evaluating the discriminatory capacity of anthropomet-
ric indices for CVD found that both waist circumference (WC) and waist-to-hip ratio
(WHR) outperformed BMI in predicting cardiovascular events. The pooled area under
the curve (AUC) for BMI was 0.66, whereas WC and WHR had AUCs of 0.69 and 0.71,
respectively—particularly among women—indicating superior predictive capacity for cen-
tral adiposity markers [19].

BMI'’s application across diverse populations is further complicated by ethnic and sex-
based differences in body composition. For instance, individuals of Asian descent may develop
obesity-related complications at lower BMI thresholds, while those with greater muscle mass,
such as athletes, may be misclassified as obese. In older adults, age-related muscle loss may
lead to underestimation of adiposity using BMI alone, thereby obscuring risk [18].

Beyond these technical limitations, framing obesity solely through BMI has broader
clinical implications. BMI neither measures fat distribution nor accurately estimates body
fat percentage and fails to capture the metabolic, genetic, and physiological diversity of
obesity [20]. Consequently, BMI may overlook MUNW, while misclassifying some MHO
individuals as high-risk despite a favorable metabolic profile.

In response to these shortcomings, updated diagnostic frameworks have emerged.
The Commission on Clinical Obesity proposes categorizing obesity into “preclinical” and
“clinical” stages based on the presence of functional impairments and organ-specific dys-
function. In this model, BMI serves only as an initial screening tool. Diagnostic con-
firmation requires further assessment through direct adiposity measurements—such as
dual-energy X-ray absorptiometry (DEXA) or bioelectrical impedance analysis (BIA)—or
waist-based anthropometric indices [21]. This shift prioritizes physiological relevance over
rigid weight-based thresholds.

In order to illustrate the conceptual shift from conventional obesity assessment to
a precision-based approach, Figure 2 compares the traditional BMI model with a multi-
dimensional, phenotype-driven framework for cardiometabolic risk evaluation.

01. OBESITY CLASSIFICATION BASED ON:

01. OBESITY « Phenotypes (MHO, MUO, MUNW)
CLASSIFICATION « Visceral vs. Subcutaneous Fat
Based solely on BMI - Organ-specific fat (EAT, VAT)
thresholds - Genetic & Metabolic Markers
« Fitness, Inflammation, Insulin Sensitivity Tools:
02. LIMITATIONS DEXA, BIA, WC, WHR, PRS
d
« Doesn’t distinguish fat /
vs. lean mass
« Ignores fat distribution o1 o1
(visceralvs. .. .. . . -
subcutaneous) . 0 A O
« Cannot capture Tez - S5 o° s 02
metabolic health / b S
« Ethnic/sexvariationis  * Phenotype-
not accounted for . Traditional VS Based
« Proneto % BMI Model Precision
misclassification Q e Model

03 . . . ./ 03

distribution
| » Better prediction of
CVD risk

Cardiovascular Risk
04. OUTCOME

‘‘‘‘‘‘‘‘‘ ‘
03. 04 © l03. ADVANTAGES
ASSUMPTION |'e captures fat quality &
Higher BMI » Higher ‘

« Accurate « Differentiates true
04. RISK Cardiometabolic high-risk from
MISCLASSIFICATION Risk Stratification metabolically healthy
MHO: High BMI but low risk * Enables Precision * Supports tailored
MUNW: Normal BMI but high risk Treatment Planning inrenvahtions

Figure 2. Conceptual Comparison of Obesity Classification Models.

3.2. Alternative Metrics of Obesity in Precision Medicine

WHR has emerged as a superior anthropometric marker of cardiometabolic risk, sur-
passing BMI and waist circumference in predictive power. Large cohort studies, including
the Northern Finland Birth Cohort and UK Biobank, demonstrated that WHR more effec-
tively captures risk related to 3-cell dysfunction, insulin resistance, and type 2 diabetes,
even when controlling for BMI and lifestyle factors [22-24]. Furthermore, WHR correlates
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with metabolomic markers of inflammation, dyslipidemia, and hepatic steatosis, reinforcing
its relevance in early detection and risk stratification [25,26].

It has to be noted that WHR offers enhanced discriminatory ability across sexes due
to its sensitivity to sex-specific adipose distribution patterns: gluteofemoral dominance in
women and abdominal accumulation in men [27]. In female cohorts with cardiovascular
disease, WHR-based phenotyping identified distinct metabolic profiles not reflected in BMI,
underlining its added clinical value [28].

VAT, distinguishable from subcutaneous adipose tissue (SAT), has an important role
in metabolic dysregulation, contributing to inflammation, insulin resistance, and athero-
genesis [29,30]. While WHR serves as a practical surrogate for central adiposity in large
populations, imaging modalities such as CT and MRI offer direct quantification of VAT and
SAT, enabling more precise phenotyping.

CT, due to its high resolution and Hounsfield unit-based tissue contrast, remains
the reference standard for VAT quantification but is limited by radiation exposure. MRI
provides radiation-free imaging with excellent anatomical detail, though its utility is
constrained by lower signal contrast and segmentation complexity. DEXA, while useful for
whole-body composition estimates, lacks the spatial resolution to differentiate VAT from
SAT. These technical distinctions should guide their use in research versus clinical settings.

Automated and semi-automated segmentation algorithms, particularly deep learning-
based models such as convolutional neural networks (CNNs), have shown high accuracy
in VAT and SAT segmentation. These approaches offer scalable solutions that reduce radiol-
ogist workload and improve reproducibility across sites. For example, a 2D U-Net applied
to water—fat MRI demonstrated excellent performance across multiple centers, with Dice
coefficients above 0.97 for VAT and SAT and quantification errors below 3% [31]. In another
study, a Cycle-GAN and U-Net pipeline enabled VAT segmentation from unannotated
MRI data by generating synthetic CT images, validated through radiologist ratings [32].
CT-based phenotyping using Al also showed that VAT distribution correlates more strongly
with type 2 diabetes risk than BMI, even among individuals with normal weight [33]. Com-
parison of VAT segmentation tools demonstrated high inter-model agreement (Cohen’s
k = 0.856), supporting the use of validated pipelines in clinical research workflows [34].

A detailed comparison of these Al-based adipose tissue segmentation studies is pre-
sented in Table 2.

Table 2. Summary of Al-Based Adipose Tissue Segmentation Studies.

Study ﬁg:glr:é AI Model ;; ;Selz:) Peri/({):f;;cnce Dataset/Population  Key Outcomes
Dice: VAT High accuracy;
[31] Langer 0.970 £ 0.015; SAT Multi-center (UK suitable for
etal., 20%9 Water—fat MRI 2D U-Net VAT, SAT 0.987 + 0.011; Error Biobank subset) large-scale
< 3% studies
Radiologist rating;: Enables VAT
[32] Masoudi ~ MRI (via Cycle-  Cycle-GAN + VAT, SAT VAT 3.80/5; SAT ’ NIH MRI (n = 34), segmentation
et al., 2020 GAN — sCT) U-Net ! 4' 54/ 5’ CT (n=131) without MRI
’ annotations
[33] Remedios Random Forest VAT, SAT, AUC =0.72-0.74 1728 adults from V.AT predl.cts
etal., 2025 ct + UMAP organs for T2DM Vanderbilt diabetes risk
N prediction better than BMI
Cohen’s k = 0.856 Internal tool
[34] Hou cT nnU-Net vs. To- VAT, SAT, (VAT); Dice: SAT SAROS dataset outperformed
etal., 2024 talSegmentator muscle 83.8 vs. 80.8; (n =900 scans) pertorm
public pipeline

Muscle 87.6 vs. 83.2

VAT = Visceral Adipose Tissue; SAT = Subcutaneous Adipose Tissue; sCT = synthetic CT; UMAP = Uniform
Manifold Approximation and Projection; T2DM = Type 2 Diabetes Mellitus.
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DEXA has been increasingly recognized as a more precise alternative to BMI in the

assessment of obesity and associated cardiometabolic risk. Evidence indicates that BMI

significantly underestimates obesity prevalence when compared to DEXA-derived body

fat percentage (BF%), particularly in populations with distinct ethnic and physiological
profiles [35]. It has been demonstrated that the BMI threshold of 30 kg/m? fails to accurately
reflect adiposity in some groups, and a lower BMI cut-off may be more appropriate when
DEXA is used as the reference standard. DEXA has also been validated for its ability to
reliably quantify VAT. Studies have confirmed that VAT measured via DEXA correlates

strongly with cardiometabolic biomarkers and provides reproducible estimates across

diverse body sizes [36]. Moreover, DEXA has proven useful in identifying phenotypes

such as NWO, characterized by normal BMI but excess VAT, which would otherwise go

undetected through traditional anthropometric indices [37]. Comparative studies between
DEXA and CT have demonstrated that while CT remains the gold standard for regional
adiposity, DEXA provides clinically acceptable estimates of VAT and lean mass with lower

cost, radiation exposure, and greater accessibility [38].

To contextualize the comparative utility of various obesity assessment tools in precision

medicine, Table 3 summarizes the general strengths, limitations, and clinical applications
of WHR, DEXA, CT, and MRI as phenotyping methods.

Table 3. Comparison of key obesity phenotyping methods used in precision medicine.

Metric WHR DEXA CT MRI
Phenotyping Central fat distribution =~ Total body fat, lean mass, =~ Compartment-specific High-resolution
focus (ratio-based) estimated VAT VAT /SAT quantification VAT /SAT mapping
Good predictor of . . . Gold standard for VAT; Provides detailed fat
- L . Differentiates obesity . . e .
Clinical metabolic risk, especially strong association with distribution profiles;
. . phenotypes; correlates : . .
relevance when combined with . ) cardiometabolic useful for mechanistic
with metabolic markers .
BMI outcomes studies
Radiation None Low High None
exposure
Cost and Very low; globally Moderate; widely used in ~ High; limited to research High; less available in
accessibility scalable clinical practice and specialized centers routine care
. Requires advanced
Segmentation . L . . .
. Automated or manual High precision; supports  segmentation algorithms;
and Manual, anthropometric . . : . .
. . via device software Al-driven segmentation supports deep learning
interpretation tools
Does not assess visceral Limited resolution for Ionizing radiation; less Time-intensive; low
Limitations fat directly; affected by suited for frequent contrast between fat and

Best use case

body proportions

Population screening,
low-resource settings

VAT vs. SAT separation

Individual risk
stratification and fat
distribution profiling

monitoring
Research or clinical
validation of adiposity
metrics

soft tissue
Exploratory studies or
advanced metabolic
phenotyping

While numerous studies support the prognostic value of EAT volume, important

methodological limitations remain. Imaging protocols vary considerably across studies—

CT, MRI, and echocardiography each introduce unique biases, limiting comparability.
Cut-off values for “high-risk” EAT or VAT differ widely and are not yet standardized or
validated across diverse populations. Moreover, echocardiographic assessment of EAT

is highly operator-dependent and lacks consistent measurement protocols, leading to

limited reproducibility. Additionally, the predictive performance of VAT and EAT may

vary by age, sex, ethnicity, and comorbid conditions, which are often underrepresented in

existing cohorts. These factors highlight the need for greater harmonization in imaging

methodology and more inclusive validation efforts.
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3.3. Integrating Genetics and Multi-Omics

The integration of multi-omics approaches has provided critical insights into the
complex molecular architecture of obesity. While genome-wide association studies (GWAS)
have identified numerous loci associated with BMI, the functional interpretation and
clinical translation of these findings remain limited. Multi-omics strategies combining
genetic, transcriptomic, epigenomic, and proteomic data offer a more comprehensive
framework for identifying molecular determinants of obesity and refining cardiometabolic
risk stratification.

Recent advances in multi-omics research are redefining our understanding of the
molecular architecture underlying obesity. Rather than treating obesity as a homogenous
condition defined solely by BMI, integrative genomic approaches now allow for the dissec-
tion of tissue-specific and pathway-specific mechanisms. For instance, a large genome-wide
multi-omics meta-analysis by Tang et al. [39], which combined GWAS, transcriptome
wide (TWAS), and epigenome wide (EWAS) data from over 350,000 individuals, identified
195 genes significantly associated with BML. Among these, 21 were linked to adipose tissue
networks and 53 to brain-specific networks, with 11 genes overlapping both. This dual
enrichment pinpoints the role of the brain—adipose axis in regulating energy balance and
body weight.

Immune and inflammatory signaling within adipose tissue have also emerged as key
contributors to obesity pathogenesis. Li et al. [40] employed transcriptomics and single-
cell RNA sequencing (scRNA-seq) to identify TREM2 and CXCR4 as central regulators
of macrophage-driven inflammation and fibrosis in obese adipose tissue. Their work
demonstrated that TREM2 is selectively expressed in lipid-associated macrophages and
was reproducibly validated across both murine and human datasets, implicating it in
obesity-induced immune dysfunction.

Beyond identifying single-gene drivers, multi-omics profiling is now uncovering
molecular phenotypes that diverge from traditional anthropometric indicators. As high-
lighted by Hu and Jia [41], individuals with similar BMI may exhibit markedly different
molecular signatures, particularly in lipid metabolism, inflammatory tone, and insulin
responsiveness. This observation has been further supported by Aleksandrova et al. [42],
who argued that omics-based classification strategies can reveal metabolically unhealthy
individuals who are misclassified as low-risk based on BMI alone. Their findings also
accentuate the limitations of BMI as a universal risk metric and highlight the need for
individualized, biology-driven assessments.

The translational potential of these insights is perhaps most evident in obesity-related
comorbidities such as non-alcoholic fatty liver disease (NAFLD). Using a targeted multi-
omics approach, Diels et al. [43] identified paraoxonase-1 (PON1) as a key determinant of
hepatic steatosis severity. Reduced expression and activity of PON1 were linked to oxidative
stress, lipid dysregulation, and liver inflammation. As their results imply, integrating
proteomic and imaging data improved early detection of NAFLD and suggested that PON1
may serve as both a biomarker and therapeutic target in obesity-associated liver disease.

Epigenetic regulation also appears to play a dynamic role in obesity risk and progres-
sion. In a multi-omics analysis, Zhang et al. [44] showed that histone methylation patterns
in genes such as PPARG, LEPTIN, and TNF are closely associated with adiposity, adipocyte
hypertrophy, and inflammation. These modifications were found to be tissue- and context-
specific, suggesting their utility in disease staging and metabolic risk stratification.

At a systems level, obesity is increasingly being conceptualized not as a single pheno-
type but as a spectrum defined by distinct biological axes. Odoemelam et al. [45] proposed a
four-axis model—encompassing general adiposity, hepatic fat, systemic inflammation, and
muscle composition—derived from integrative imaging and multi-omics data. Each axis re-
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flects unique molecular signatures that align with specific cardiometabolic risk trajectories,
offering a more granular alternative to BMI-based classification.

All of these insights are not limited to risk stratification but are beginning to inform
personalized intervention strategies. Woldemariam et al. [46] demonstrated that integrating
genomic, transcriptomic, metabolomic, and microbiomic profiles can stratify individuals
into discrete molecular endotypes. These endotypes, characterized by features such as mito-
chondrial dysfunction, branched-chain amino acid metabolism, and chronic inflammation,
are now being explored as the basis for tailoring lifestyle and pharmacologic interventions
to the patient’s unique molecular profile.

All the studies mentioned illustrate the promise of multi-omics approaches in re-
defining obesity as a heterogeneous, biologically stratified condition—moving beyond
weight-centric paradigms toward a framework grounded in metabolic function and molec-
ular pathophysiology.

3.4. Epicardial Adipose Tissue: A Cardiometabolic Biomarker in Obesity Redefinition

Recent findings suggest that the cardiovascular consequences of obesity extend be-
yond what is measurable by BMI, supporting a shift toward more nuanced definitions
based on metabolic function and ectopic fat distribution. Adipose tissue, particularly when
deposited viscerally and around the heart as epicardial adipose tissue, plays an active role
in cardiovascular remodeling. In obesity, hypertrophied adipocytes become metabolically
dysregulated, secreting elevated levels of inflammatory cytokines including TNF-«, IL-6,
and MCP-1, which contribute to systemic insulin resistance, endothelial dysfunction, and
myocardial fibrosis. These changes underpin the development of HFpEF, which is increas-
ingly linked to metabolic obesity, even in the absence of overt hyperglycemia or elevated
BMLI. The role of lipotoxicity has also gained attention, with excessive accumulation of lipid
intermediates such as ceramides and diacylglycerols within cardiomyocytes contributing
to cellular stress, apoptosis, and impaired contractility. These cardiometabolic effects are
further exacerbated in individuals with metabolically unhealthy phenotypes, regardless
of body size. Imaging-based studies confirm that increased EAT volume is independently
associated with left ventricular hypertrophy, subclinical diastolic dysfunction, and coronary
atherosclerosis, and may better predict cardiovascular risk than BMI or waist circumference
alone [47]. As a surrogate of visceral adiposity and metabolic risk, EAT is also modifiable,
and emerging pharmacologic strategies target this depot directly. Glucagon-like peptide-1
receptor agonists (GLP-1RAs), widely used for obesity and type 2 diabetes, have demon-
strated pleiotropic benefits that include reductions in systemic inflammation, improvement
of myocardial energetics, and attenuation of adverse structural remodeling. In patients with
HFpEF, GLP-1RAs were associated with improvements in symptoms, exercise tolerance,
and selected biomarkers of cardiac stress. These cardioprotective effects appeared to be at
least partially independent of weight loss or glycemic control, and were more pronounced
in individuals with concurrent obesity and metabolic dysfunction [48]. Recent evidence
from the STEP-HFpEF trial has solidified their role in obesity-related cardiac dysfunction.
In this randomized controlled study involving 529 patients with HFpEF and obesity, once-
weekly semaglutide significantly improved symptoms, physical function, and biomarkers
of cardiac stress—independent of glycemic status or weight loss alone. Patients receiv-
ing semaglutide experienced greater reductions in NT-proBNP (—21%), CRP levels, and
improved KCCQ-CSS scores (+16.6 points) compared to placebo. These cardiometabolic
improvements were more pronounced in those with visceral adiposity, supporting the
hypothesis that therapies targeting ectopic fat depots such as epicardial adipose tissue may
offer pleiotropic benefits in obesity-related HFpEF [49]. Nevertheless, variability in study
designs, heterogeneity in patient populations, and insufficient stratification by heart failure
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phenotypes limit definitive conclusions. The cardiometabolic benefits of GLP-1RAs are
supported by outcome trials showing a reduction in major adverse cardiovascular events
(MACE), particularly stroke and cardiovascular mortality, with modest effects on heart
failure hospitalizations. While these therapies may not yet be routinely applied for HF man-
agement, their favorable profile in obese individuals at risk of cardiovascular events stresses
the need to redefine obesity through a cardiocentric and phenotype-specific lens [50]. This
includes re-evaluating risk in those with metabolically healthy obesity or metabolically
unhealthy normal weight, who may harbor unrecognized subclinical myocardial changes
despite falling outside traditional BMI-based risk thresholds.

The role of EAT in cardiac structure and function is being redefined from a passive
fat deposit to an active endocrine organ influencing myocardial remodeling and electro-
physiological stability. Recent echocardiographic evidence in middle-aged adults shows
that incremental increases in EAT thickness are associated with graded changes in left
ventricular wall thickness, left atrial dilation, and impaired diastolic function, independent
of BMI, waist circumference, or blood pressure. This suggests a continuous rather than
threshold-based impact of EAT on cardiac morphology and function [51]. It is important to
note that these alterations occur even in younger populations, indicating that subclinical
remodeling related to visceral fat may begin decades before overt cardiovascular disease
becomes manifest. EAT appears to exert its effects via direct paracrine mechanisms due
to its unique anatomic proximity to the myocardium, lacking any fascial separation. In
elderly hypertensive patients, EAT thickness measured via transthoracic echocardiography
was found to predict the 2-year incidence of atrial fibrillation (AF) with high reproducibil-
ity. Each 1 mm increase in EAT was associated with a 62% greater risk of incident AF,
and a cut-off value of 6.5 mm effectively stratified high-risk individuals. This relationship
remained significant even after adjusting for traditional risk factors such as BMI, blood pres-
sure, diabetes, and atrial size, emphasizing the independent predictive value of EAT [52].
Furthermore, adding EAT to clinical risk models significantly improved discrimination,
calibration, and reclassification metrics. The presence of elevated EAT not only contributes
to atrial remodeling but also aligns with elevated inflammatory mediators and diastolic
filling abnormalities—early indicators of heart failure with HFpEF. Complementing this,
editorial perspectives stress the need for longitudinal studies and multi-omic profiling to
further elucidate the biological mechanisms linking EAT to myocardial disease, while also
highlighting ethnic variability and the modifying effects of pharmacologic agents such as
GLP-1 receptor agonists [53]. Taken together, these insights support a redefinition of obesity
that prioritizes fat distribution and metabolic behavior over crude anthropometric indices.
Integrating EAT measurement into routine echocardiographic evaluations may represent a
low-cost, high-yield strategy for early cardiovascular risk detection and precision-guided
intervention in obese and metabolically vulnerable populations.

To complement the narrative findings, Tables 4 and 5 provide an integrated summary
of the key clinical correlates and imaging-based metrics of EAT in the context of obesity-
related cardiac remodeling, as reported in recent studies [47-54].

Table 4. Clinical Correlates of EAT.

Clinical Feature

Key Findings Clinical Implications

EAT and Inflammation [48,50,55]

Neurohormonal

Activation [47,55]

Lipotoxicity [47]

Promotes endothelial dysfunction, CAD, and
fibrosis; involved in myocardial remodeling
and systemic inflammation in HF

Secretion of IL-6, TNF-&, MCP-1; low
adiponectin

Activates RAAS and TGF-3 pathways Promotes myocardial fibrosis in HFpEF

Contributes to arrhythmias and

EAT releases ceramides, DAGs, ROS . .
cardiomyocyte apoptosis
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Table 4. Cont.

Clinical Feature

Key Findings

Clinical Implications

Subclinical Cardiac
Remodeling [51]

AF Risk Prediction [52]

Cardiometabolic Disease in
Diabetes [50,55]

Therapeutic Modifiability [47,49]

Myocardial Ischemia and
MACE [54]

Graded Risk Effect [51]

Association with CAD and
Severity [54]

EAT thickness linked to 1 LV wall, LA
dilation, | diastolic velocities
EAT >6.5 mm = HR 5.1 for incident AF;
+1 mm =HR 1.62

EAT linked to insulin resistance, endothelial
dysfunction; correlates with T2DM in HFpEF

Liraglutide and semaglutide reduce EAT;
improve symptoms and CRP
OR 1.062 (ischemia), HR 1.040 (MACE) per
10 cm® EAT
Echocardiographic risk 1 across EAT

thickness deciles

Higher EAT volume and thickness in CAD
and severe CAD

Suggests early cardiac remodeling in midlife

Independent predictor of AF in elderly
hypertensive patients
Suggests EAT as a systemic metabolic risk
factor; guides comorbidity management
in HFpEF

Supports EAT as treatment target

Independent prognostic marker in
low /intermediate risk
EAT impact is continuous, not
threshold-dependent
Validates diagnostic and staging utility
of EAT

Abbreviations: AF, atrial fibrillation; CAD, coronary artery disease; CRP, C-reactive protein; DAGs, diacylglycerols;
EAT, epicardial adipose tissue; HFpEF- heart failure with preserved ejection fraction; HR, hazard ratio; IL-6,
interleukin-6; LA, left atrium; LV, left ventricle; MACE, major adverse cardiovascular events; MCP-1, monocyte
chemoattractant protein-1; RAAS, renin-angiotensin-aldosterone system; ROS, reactive oxygen species; TGF-3,
transforming growth factor-beta; TNF-o, tumor necrosis factor-alpha.

Table 5. Imaging Metrics for Epicardial Adipose Tissue (EAT) in Cardiovascular Risk Assessment.

Imaging Modality Key Findings Clinical Implications
EAT thickness predicts incident AF: 1 mm 7 in
EAT = HR 1.62 (cutoff 6.5 mm) [52]
. EAT tthkn?SS a ssoc1a,ted Wth Ly wal.l . Supports inclusion of EAT in echo protocols
thickness, LA dilation, | e’ velocities in midlife Enables early detection of subclinical cardiac
Echocardiography adults [51] y

Computed Tomography (CT)

Tissue Doppler Imaging (TDI)

SPECT/PET

EAT often misidentified as pericardial
effusion [47]
EAT thickness correlates with impaired GLS,
independent of BMI [48]
EAT volume > 125 cm? linked with 1 coronary
calcium score, plaque burden, and subclinical
atherosclerosis [48,50]; per 10 cm? increase in
EAT, OR for obstructive CAD = 1.055 and
MACE = 1.040 [54]

Severe CAD has higher EAT volume than
mild/moderate (SMD: 0.33; p = 0.0007) [53]
Detects diastolic dysfunction associated with
EAT accumulation [47]

SPECT imaging affected by fat artifacts; PET
provides better accuracy in EAT-laden
patients [47]

remodeling
Cutoff of 6.5 mm for AF risk stratification

CT quantifies EAT precisely for risk
stratification
May improve prediction of CAD, MACE, and
ischemia in low-risk populations

Useful for functional cardiac assessment in
EAT-related remodeling

Imaging protocols should be adjusted in obese
patients to account for EAT interference

Abbreviations: AF, atrial fibrillation; CAD, coronary artery disease; CT, computed tomography; EAT, epicardial
adipose tissue; GLS, global longitudinal strain; HR, hazard ratio; LA, left atrium; LAVi, left atrial volume index;
LV, left ventricle; MACE, major adverse cardiovascular events; PET, positron emission tomography; SMD, stan-
dardized mean difference; SPECT, single-photon emission computed tomography; TDI, tissue Doppler imaging.

4. Discussion
4.1. Summary of Key Findings

This review highlights the limitations of BMI as a universal marker of cardiometabolic
risk and underscores the need for a paradigm shift toward more biologically grounded,
phenotype-driven approaches. Emerging evidence consistently shows that metrics such
as VAT, EAT, WHR, and multi-omic biomarkers offer significantly greater predictive
power for cardiovascular outcomes than BMI alone [15-17,19,47]. Furthermore, the de-
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lineation of obesity phenotypes—such as MHO and MUNW-—demonstrates the inade-
quacy of BMI in capturing true metabolic risk [4,16]. Integrating advanced imaging, PRS,
and metabolomic profiling enables more accurate stratification and paves the way for
precision-guided interventions.

This narrative review expands upon the recent quantitative syntheses that support the
superior predictive value of WHR and VAT over BMI. For example, a meta-analysis [56]
of over 700,000 participants found that WHR is significantly associated with increased
myocardial infarction risk, especially in women and Asian populations (OR = 1.98, 95%
CI: 1.75-2.24). Similarly, a classical meta-regression [57] demonstrated that each 0.01 unit
increase in WHR is associated with a 5% higher risk of cardiovascular events, independent
of BMI. A more recent population-based imaging study [58] showed that VAT, but not
abdominal subcutaneous adipose tissue, was independently predictive of coronary heart
disease (HR per 1-SD VAT = 1.15, 95% CI: 1.09-1.22), and this association persisted even
after adjustment for waist circumference.

While the reviewed studies generally support the superiority of VAT, EAT, and omics-
based metrics over BMI, the evidence is not uniformly consistent. Some cohorts report
weaker associations in elderly or ethnically diverse populations, raising concerns about
generalizability. In addition, while certain studies emphasize the predictive strength of EAT
volume via CT, others using echocardiographic thickness report more modest associations,
reflecting methodological variability. These inconsistencies call for standardization across
imaging modalities and validation across demographic groups. Despite these differences,
the emerging consensus supports a shift away from BMI-centric frameworks toward a more
nuanced, phenotype-based understanding of cardiometabolic risk.

4.2. Clinical and Translational Implications

The clinical implications of these findings are substantial. Cardiologists and pri-
mary care providers must recognize that two patients with similar BMI may have differ-
ent risk trajectories due to differences in fat distribution, inflammation, and metabolic
flexibility [18,47]. Imaging-based assessments of VAT and EAT provide actionable,
non-invasive biomarkers that correlate more strongly with subclinical cardiac remod-
eling, atherosclerosis, and heart failure progression than traditional anthropometric in-
dices [12,50]. Importantly, pharmacologic agents like GLP-1 receptor agonists appear to
influence these fat depots independently of weight loss, offering new therapeutic angles
that transcend BMI-defined treatment pathways [48,49]. A recent meta-analysis [59] of
29 studies including 19,709 patients, confirmed that higher EAT measurements, quantified
either by CT-derived volume or echocardiographic thickness, are independently associated
with an increased risk of MACE. In adjusted analyses, each 1-SD increase in EAT volume
was associated with a 42% higher risk of MACE (aHR = 1.42; 95% CI, 1.22-1.65), and
individuals in the highest EAT volume category had more than double the risk (aHR = 2.64;
95% CI, 1.23-5.67). CT-derived EAT volume was more predictive (aHR = 1.74) than EAT
thickness by echocardiography (aHR = 1.20). Secondary outcomes also showed that ele-
vated EAT was associated with significantly increased odds of cardiac death (OR = 2.53),
myocardial infarction (OR = 2.63), coronary revascularization (OR = 2.99), and atrial fibrilla-
tion (aOR = 4.04). These important results reinforce the clinical utility of EAT quantification
as a non-invasive biomarker for cardiovascular risk stratification.

These findings also have potential implications for public health frameworks and clin-
ical policy. As evidence accumulates on the limitations of BMI in capturing metabolic risk,
international bodies such as the WHO and cardiology societies like the ESC and ACC may
consider revising obesity definitions and risk stratification tools to incorporate phenotype-
specific markers, including WHR, VAT quantification, and omics-based classifiers. It is
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important to note that regulatory interest in obesity-related metrics is growing. For instance,
recent FDA label expansions and clinical guidance have acknowledged the cardioprotective
effects of GLP-1 receptor agonists in patients with HFpEF, independent of weight loss.
This shows a broader shift in regulatory thinking—from weight-centric to cardiometabolic-
centric endpoints—which supports integrating more precise, mechanistically grounded
obesity metrics into clinical guidelines.

4.3. Limitations of Current Evidence

Despite these promising developments, several limitations persist in the existing lit-
erature. Many omics-based studies lack long-term follow-up, limiting their predictive
value for hard cardiovascular outcomes. Ethnic, sex-based, and age-related differences
in fat distribution are often underrepresented or underpowered in cohort studies, raising
concerns about generalizability [7,28]. Additionally, while deep learning-based tools for
VAT and EAT quantification show high accuracy in research settings, clinical implementa-
tion remains constrained by cost, infrastructure, and expertise [31,32]. The integration of
multi-modal data into electronic health records is another major bottleneck in translating
precision obesity metrics into everyday practice.

4.4. Challenges in Clinical Adoption

Adopting a phenotype-based model in clinical cardiology faces structural and educa-
tional hurdles. Clinicians remain trained in BMI-centric paradigms, and practice guidelines
have yet to fully endorse alternative metrics such as VAT, WHR, or PRS. In lower-resource
settings, access to MRI or DEXA may be limited, and omics data may not be readily avail-
able or interpretable. To mitigate these challenges, simplified clinical tools that approximate
VAT or EAT using accessible surrogates—like advanced echocardiography or Al-enhanced
radiographs—could serve as transitional steps toward full precision implementation [14,52].

4.5. Future Research and Policy Directions

Future studies should aim to standardize the measurement and interpretation of al-
ternative obesity metrics across populations and care settings. Longitudinal, multi-ethnic
cohort studies are needed to evaluate how combinations of imaging, omics, and anthro-
pometric data predict major adverse cardiovascular events over time. Additionally, the
development of integrated risk scores that include EAT thickness, metabolomic BMI, and
inflammatory markers could enhance risk stratification, particularly for MUNW individu-
als who are often overlooked in traditional frameworks [10,45]. At a policy level, redefining
obesity to include functional and distributional measures of adiposity could prompt a shift
in diagnostic thresholds and treatment eligibility criteria.

5. Conclusions

The continued reliance on BMI as a primary marker of obesity-related cardiovas-
cular risk is increasingly misaligned with advances in precision medicine. This review
emphasizes the inadequacy of BMI in capturing individual differences in fat distribution,
metabolic health, and genetic susceptibility. Phenotypes such as MHO and MUNW exem-
plify the disconnect between body size and cardiovascular risk, accentuating the urgent
need to redefine obesity beyond weight-based cutoffs.

Alternative metrics—WHR, VAT, EAT, and multi-omic biomarkers—offer more phys-
iologically relevant, predictive, and individualized assessments. Imaging modalities
and molecular profiling tools have demonstrated the ability to stratify cardiometabolic
risk more accurately, enabling early detection of subclinical disease and informing
personalized interventions.
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As cardiology increasingly embraces precision approaches, the clinical paradigm must
shift from a “one-size-fits-all” BMI model to an integrated framework that considers adipose
tissue distribution, function, and molecular signatures. Moving forward, redefining obesity
through a cardiocentric, multi-parametric lens will be essential to improving risk prediction,
optimizing treatment strategies, and aligning clinical practice with the biological realities of
metabolic disease. To bridge the gap between precision research and real-world cardiology,
future obesity assessment should integrate VAT and EAT quantification into standard
cardiovascular risk evaluations. Similarly, incorporating metabolic profiling—including
lipidomics, inflammatory markers, and polygenic risk scores—can enhance individualized
risk prediction. Emerging digital health tools and artificial intelligence-based imaging
platforms offer scalable solutions for phenotyping adiposity with greater accuracy and
lower cost. As these technologies become more accessible, clinicians will be better equipped
to implement phenotype-based obesity management strategies that move beyond BMI,
enabling earlier intervention and more targeted cardiometabolic care.

6. Strengths and Limitations

This review offers a timely and comprehensive synthesis of emerging obesity classifica-
tion models that transcend traditional BMI-based frameworks. By integrating findings from
multi-omics, imaging modalities, and population-level phenotype studies, the review pro-
vides a cohesive, translational narrative that bridges metabolic research and cardiovascular
practice. It incorporates recent high-impact literature (2018-2025), including genome-wide
association studies, advanced imaging analyses, and metabolomic profiling, making the
review particularly relevant for clinicians and researchers engaged in precision cardiology.

As a narrative review, this work does not apply formal meta-analytic techniques or
systematic bias assessments, which may limit the reproducibility of literature inclusion and
synthesis. Furthermore, narrative approaches are susceptible to selection and confirmation
biases, and may inadvertently reflect prevailing paradigms in the field. While omics-based
metrics hold great potential for refining cardiometabolic risk prediction, they remain limited
by methodological and translational challenges. These include small and often homogeneous
sample sizes, high inter-study heterogeneity, lack of assay and platform standardization,
elevated costs, and underdeveloped clinical pipelines for data interpretation.

The review primarily focuses on adult populations, with limited discussion of pediatric
obesity phenotypes or age-specific trajectories of metabolic risk. While it draws on diverse
global data sources, representation from low- and middle-income countries remains limited,
potentially constraining generalizability. Additionally, rapid technological developments
in omics and imaging may render certain conclusions provisional, pending broader clinical
validation and standardization.
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DEXA Dual-Energy X-ray Absorptiometry
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