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Abstract

Background/Objectives: Skeletal muscle—-derived myokines have emerged as pivotal medi-
ators of the muscle-brain axis, linking peripheral metabolic regulation with central nervous
system function. These molecules may influence skeletal muscle maintenance, neuroplastic-
ity, neuroinflammation, and cognitive performance, and their dysregulation is increasingly
associated with metabolic and cognitive impairment. In obesity (OB) and type 2 diabetes
mellitus (T2DM), dysregulated myokine profiles characterized by reduced levels of irisin,
brain-derived neurotrophic factor (BDNF), and cathepsin B (CTSB) have been reported and
may contribute to the development of both sarcopenia and cognitive impairment. This
review aims to summarize current evidence on myokine alterations in OB and T2DM and
to evaluate how exercise- and nutrition-based interventions may modulate the muscle—
brain axis to support metabolic and cognitive health. Methods: This narrative review
synthesizes experimental, clinical, and translational studies examining (1) alterations in
circulating myokines in OB and T2DM, (2) associations between myokines, skeletal muscle
function, and neurocognitive outcomes, and (3) the modulatory effects of exercise and
specific nutrients on myokine-mediated muscle-brain communication. Results: Available
evidence indicates that OB and T2DM are frequently accompanied by reduced circulating
levels of beneficial myokines such as irisin, BDNF, and CTSB, which may impair skeletal
muscle integrity and contribute to cognitive decline. Restoring favorable myokine signaling
through physical activity appears to enhance skeletal muscle maintenance, neuroplasticity,
and metabolic homeostasis. Emerging data further suggest that selected nutrients can
mimic or potentiate some exercise-induced myokine responses, thereby supporting both
muscle and brain function. Collectively, these findings imply that combined exercise and
nutrition strategies may exert synergistic or additive effects by reinforcing inter-organ
communication along the muscle-brain axis. Conclusions: This review outlines current
evidence on myokine alterations observed in OB and T2DM and discusses how exercise-
and nutrition-based approaches may modulate the muscle-brain axis to mitigate metabolic
dysfunction and preserve cognitive health. Targeting beneficial myokine pathways through
tailored lifestyle interventions represents a promising avenue to support both skeletal
muscle and neurocognitive function in individuals with metabolic disease.
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1. Introduction

Obesity (OB) and type 2 diabetes mellitus (T2DM) are major global health burdens,
characterized by chronic metabolic dysregulation, systemic inflammation, insulin resis-
tance, and mitochondrial dysfunction [1-3]. These conditions often coexist and are inter-
connected through shared mechanistic pathways, constituting a progressive metabolic
continuum [1-3]. In this context, skeletal muscle wasting and cognitive impairment are
increasingly recognized as important comorbidities associated with chronic metabolic
disease. Sarcopenia contributes to reduced metabolic capacity, impaired glucose utilization,
and elevated systemic inflammation, while metabolic dysfunction and neuroinflammation
have been implicated in accelerated cognitive decline. These clinical observations highlight
the broad systemic consequences of metabolic disease across both peripheral and central
tissues [4,5].

Despite the clinical significance of sarcopenia and cognitive decline, there are currently
no approved cures for these conditions. Therapeutic approaches for cognitive impairment
remain limited, largely due to challenges such as the impermeability of the blood—brain
barrier (BBB) and the poor absorption and limited therapeutic effects of central nervous
system (CNS)-targeted drugs. Similarly, no pharmacological agents for sarcopenia have
been approved by Food and drug administration (FDA), highlighting the urgent need for
alternative therapeutic strategies.

Emerging research suggests that structured exercise and targeted nutritional strategies
can enhance the secretion of muscle-derived factors known as myokines, which play key
roles in neurogenesis, synaptic plasticity, and inflammation, thereby supporting the func-
tional relevance of the muscle-brain axis [6-8]. While myokines may play a contributory
role, this bidirectional relationship also involves classical neuroendocrine factors such as
hypothalamic appetite regulation, peripheral insulin resistance, and limbic reward process-
ing, indicating that myokines represent only one facet of a broader regulatory network [9].
Importantly, heterogeneous findings across studies indicate that myokine regulation may
vary depending on metabolic context, disease severity, and physiological status [10]. By
modulating myokine profiles, lifestyle-based interventions may exert additive or even
synergistic benefits on both metabolic and cognitive health.

This review highlights the emerging possibility that myokines act as key contributors
to muscle-brain communication in metabolic diseases, particularly OB and T2DM. The
regulation of muscle-derived signaling is influenced by complex neuroendocrine and
metabolic interactions. Based on current evidence, this review summarizes heterogeneous
and still-uncertain alterations in myokine expression in OB and T2DM, and discusses their
potential mechanistic relevance to both muscle and brain function within this broader
regulatory network.

In addition, we address exercise- and nutrition-based interventions that may modulate
myokine secretion or signaling as part of integrated strategies to support metabolic and
cognitive health [11-17].

2. Muscle and Brain Alterations in OB and T2DM

OB and T2DM represent a progressive metabolic continuum driven by chronic low-
grade inflammation, insulin resistance, and mitochondrial dysfunction [18]. Systemic
alterations contribute to pathological dysfunction in multiple organs, including skeletal
muscle and the brain, two key regulators of whole-body energy homeostasis [19,20].

Skeletal muscle, the primary site of insulin-stimulated glucose uptake, is one of the
earliest tissues affected by metabolic overload. As OB progresses to T2DM, impairments in
insulin signaling, mitochondrial respiration, and protein turnover lead to muscle atrophy
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and reduced functional capacity [21]. These changes accelerate sarcopenia and further
exacerbate metabolic deterioration.

In parallel, the brain becomes increasingly vulnerable to metabolic stress. Impairments
in cerebral glucose metabolism, neuroinflammation, and disruption of BBB integrity have
been reported in both OB and T2DM [22,23]. Moreover, neuroendocrine circuits governing
appetite, sleep, and reward behavior show dysregulation, reflecting the substantial neu-
rological and behavioral components of metabolic disease [24]. Structural and functional
impairments in key regions such as the hippocampus and hypothalamus contribute to
cognitive decline and altered energy regulation [22].

Sarcopenia and cognitive impairment, two common complications of OB and T2DM,
frequently develop in parallel, suggesting interconnected pathological mechanisms beyond
age-related decline [4,25]. These dual impairments result in reduced mobility, quality of
life, and elevated risk of neurodegenerative disease.

3. Potential Role of Myokines in Muscle-Brain Connectivity in OB
and T2DM

Epidemiological and meta-analytic evidence consistently showed that individuals
with sarcopenia are at a significantly higher risk of cognitive dysfunction [26,27]. Recent
research supports the concept of a bidirectional communication network between skeletal
muscle and brain, often referred to as the muscle-brain axis [4,5]. The inter-organ axis is
thought to be mediated in part by muscle-derived myokines that may influence neural plas-
ticity, neuroinflammation, and cognitive performance. In particular, irisin, brain-derived
neurotrophic factor (BDNF), and cathepsin B (CTSB) enhance neurogenesis, synaptic plas-
ticity, and anti-inflammatory responses, while myostatin and interleukin (IL)-6 are involved
in proteolytic and catabolic processes [4,5]. Notably, irisin and CTSB can cross the BBB and
exert direct effects on brain physiology [28,29].

In addition to myokines that directly modulate neural tissue, several muscle-derived
or muscle-regulated factors such as apelin, meteorin-like (METRNL), and myonectin have
been proposed to indirectly influence brain function by improving systemic metabolic
homeostasis, enhancing glucose oxidation, modulating vascular function, and regulating
inflammation [30]. Although the direct contribution of these factors to neurocognitive
outcomes remains less well established, they represent emerging candidates within the
broader muscle-brain communication network and warrant further investigation.

In metabolic disease such as OB and T2DM, muscle-brain connectivity may be al-
tered, resulting in decreased expression of neuroprotective myokines and elevated levels of
pro-inflammatory mediators [31]. Molecular alterations associated with metabolic stress
and myokine dysregulation may contribute to impaired muscle-brain communication.
Importantly, these changes may interact with coexisting metabolic disturbances including
insulin resistance, chronic inflammation, and vascular dysfunction to exacerbate functional
deterioration in both systems [5,25,32]. Given the limited effectiveness of pharmacologi-
cal treatments for either sarcopenia or cognitive impairment, the muscle-brain axis has
emerged as a potential therapeutic target. Understanding how this axis is altered across
disease progression provides a foundation for the development of integrated interventions
to protect both muscle and brain health in metabolic disorders. To better clarify thera-
peutic opportunities, the following sections examine alterations in myokine expression in
OB and T2DM, with particular emphasis on the potential role of interventions aimed at
enhancing myokine secretion and signaling (Table 1). Such interventions may not only
contribute to the prevention of disease onset but also offer therapeutic benefits by restoring
muscle-brain communication and attenuating the pathophysiological consequences of
metabolic dysregulation.
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Table 1. Overview of muscle/liver-derived endocrine signals involved in the periphery-central crosstalk.
Circulating Factor Origin Target Organ Effects on the Brain Mechanisms of Action Main
8 (Expression Trend) 8 8 References
. . Skeletal muscle . Long-term potentiation and synaptic plasticity 1
Brain-derived . ! Hippocampus, 5 P L ynapue p y PI3K and ERK signaling pathwa
. brain Neuronal differentiation and cell survival 1 518 &p y [33-38]
neurotrophic factor =1 skeletal muscle Hippocampal function PKB-CREB signaling
Skeletal 1 . i i
Irisin hfp;gcms:’ Hippocampus, Neuronal proliferation and differentiation 1 ggBN;ns(;lfftIl?: S?;gnahng pathway [39-41]
keletal ! i i
(+— 1) skelelal museie Synaptic function and memory f PKA-cAMP-CREB signaling
Liver, Hvpothalamus Physical activity
Fibroblast growth factor 21 skeletal muscle, AZIIF ose tissue Neurogenesis and neuronal survival 1 PKB-CREB-mediated BDNF [42-46]
(FGF21) adipose tissue skelthal muscle, Insulin resistance expression
=9 Energy expenditure 1
: Neurogenesis, memory, learning 1
Skeletal 1 H
CTSB e ? i;nusc € kql)po?ampus, Neuronal survival and anti-amyloidogenic activity 1 BDNF synthesis [4,47]
skeletal muscle )
Clearance of x-synuclein 1
Skeletal muscle, Neuroprotection and cognitive enhancement 1 L ?thV /ast;l;iT and AMPK pathway
adipose tissue, liver . Synaptic remodeling 1 . .
) Hippocampus, .2 Modulation of glutamatergic and 12
IL-6 (Kupffer cells), skeletal musclo Lor}g-term potentiation 1 - GABAergic transmission [48-50]
macrophages Maintenance of neuronal excitability 1 . .
) Cognitive dysfunction Interaction with BDNF
Neuroplasticity regulation
Inhibition of myogenic genes
(Myod, Myt5) via Akt/mTOR and
Skeletal muscle Brain (cortex, Cognitive impairment associated with sarcopenia 1 FOXO1 pathway
Myostatin hippocampus), Memory deficits in AD model 1 Impaired muscle regeneration and [51-55]

Q)

skeletal muscle

Sarcopenia-induced neurodegeneration *

satellite cell activation
Muscle wasting-mediated
neurodegeneration

Arrows indicate expression trends of myokines in (OB) and T2DM. ‘I — |’ represents a biphasic response pattern characterized by an initial increase followed by a later decline under
chronic metabolic stress, ‘}” denotes sustained reduction, and “1” sustained elevation.
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3.1. Biphasic Regulation of Myokines Across Disease Progression

A subset of myokines shows context-dependent or biphasic changes during the pro-
gression from OB to T2DM [9,10]. In early metabolic overload, transient increases in
certain myokines may reflect adaptive responses that help preserve mitochondrial function,
metabolic flexibility, and neuromuscular homeostasis. However, with prolonged insulin
resistance and chronic inflammation, these compensatory responses become blunted or dys-
regulated, which may contribute to impaired muscle-brain communication and increased
susceptibility to metabolic and cognitive decline [9,10].

Among the affected factors, BDNE irisin, and FGF21 are noteworthy because they
participate in both skeletal muscle metabolic regulation and neural processes relevant to
cognition. Their ability to cross or influence the BBB suggests potential neuro-modulatory
functions in metabolic disease. Although growing experimental and clinical evidence
supports their role in the muscle-brain axis, direct links between their modulation and
measurable cognitive outcomes in OB and T2DM remain under active investigation [56-58].

Given their dual metabolic-neurological actions and dynamic regulation across disease
progression, these myokines represent promising candidates for biomarker development
and therapeutic intervention. The following subsections describe their biological properties
and disease-associated alterations in more detail.

3.1.1. BDNF

BDNF, a member of the neurotrophin family, is indispensable for neuronal survival,
synaptic plasticity, and cognitive function [33]. While its primary source is the CNS, skeletal
muscle has emerged as an additional site of BDNF production, particularly under contractile
or metabolic stimuli [33]. Muscle-derived BDNF promotes mitochondrial biogenesis,
enhances fatty acid oxidation, and regulates myoblast differentiation through activation of
AMPK signaling [34].

Beyond these metabolic functions, BDNF has been explored as a potential contribu-
tor to communication between muscle and brain [35]. Circulating BDNF may cross the
BBB under certain physiological conditions and may influence hippocampal neurogenesis
and plasticity [33]. Although the contribution of skeletal muscle to circulating BDNF re-
mains uncertain, increased muscular expression of BDNF during exercise could potentially
enhance this signaling pathway, supporting the concept of a muscle-brain connection.

In metabolic disorders, BDNF expression exhibits vulnerability to chronic stress and
disease progression [36]. Reductions in muscle- and brain-derived BDNF have been con-
sistently observed in both experimental models and clinical studies, with lower levels
correlating with insulin resistance, cognitive decline, and sarcopenia [33,36-38]. Our pre-
vious findings demonstrated that diabetic mice displayed markedly reduced BDNF in
skeletal muscle, plasma, and hippocampal tissue, indicating systemic impairment across
the muscle-brain axis [59]. Chronic metabolic stress and neuroinflammation may also im-
pair BDNF-TrkB signaling in the CNS, contributing to reduced responsiveness despite the
presence of circulating BDNF [58]. Such alterations could attenuate downstream pathways
such as CREB activation and thereby weaken neuroplastic adaptations [58,60].

From a translational perspective, these features make BDNF a compelling biomarker
for monitoring metabolic-neurocognitive deterioration, as well as a therapeutic target. In-
terventions such as physical activity and nutritional strategies that support BDNF signaling
are under investigation, but further mechanistic and longitudinal studies are required to
establish their translational value in OB and T2DM.



Nutrients 2025, 17, 3615

6of 21

3.1.2. Irisin

Irisin, a cleaved fragment of fibronectin type III domain-containing protein 5 (FNDC5),
has been identified as a key exercise-induced myokine with pleiotropic metabolic and
neurocognitive functions [61]. In skeletal muscle, irisin facilitates mitochondrial biogenesis,
promotes fatty acid oxidation, and drives the browning of white adipose tissue, thereby
enhancing systemic energy expenditure and glucose homeostasis [39,40]. Through activa-
tion of PGC-1x-dependent pathways, irisin also regulates myogenic differentiation and
preserves muscle metabolic flexibility [40].

Beyond these peripheral actions, irisin exerts significant effects on the CNS. Impor-
tantly, irisin crosses the BBB and induces hippocampal BDNF expression, leading to en-
hanced synaptic plasticity, neurogenesis, and memory performance [41,62]. This capacity
to couple muscle activity with higher-order cognitive function positions irisin as a critical
effector of the muscle-brain axis [8].

Clinical and experimental evidence indicates that circulating irisin levels are reduced
under metabolic stress, including OB and T2DM, with declines correlating with insulin
resistance, sarcopenia, and cognitive dysfunction [62,63]. Conversely, exercise and certain
nutritional interventions restore irisin expression, linking its modulation to both metabolic
resilience and neuroprotection [41,64,65]. However, conflicting clinical findings have also
been reported [66]. For example, higher circulating irisin levels have been associated
with early cognitive deficits in patients with poorly controlled T2DM, suggesting that
elevated irisin may, in some cases, reflect compensatory responses rather than protective
activity [66]. Such heterogeneity underscores the complexity of interpreting circulating
irisin as a biomarker.

From a translational perspective, irisin represents both a biomarker for metabolic-
neurocognitive deterioration and a therapeutic target, where lifestyle or dietary strategies
aimed at sustaining irisin secretion may yield dual benefits in the prevention and man-
agement of OB and T2DM. Further longitudinal studies are required to clarify whether
changes in circulating irisin directly translate into cognitive benefits in humans.

3.1.3. FGF21

FGF21 is a stress-responsive hormone primarily secreted by the liver but also expressed
in skeletal muscle, where it functions as a metabolic regulator and myokine [67,68]. Within
muscle, FGF21 enhances glucose uptake, fatty acid oxidation, and mitochondrial biogenesis,
while simultaneously mitigating oxidative stress through AMPK/SIRT1 activation [42].
Importantly, in human skeletal muscle, FGF21 has been shown to directly promote glucose
uptake and improve insulin sensitivity, supporting its physiological relevance in metabolic
homeostasis [43]. These effects contribute to the preservation of metabolic homeostasis
under nutrient overload or stress conditions.

In addition to its peripheral roles, FGF21 penetrates the BBB and modulates neu-
ronal plasticity by activating IGF-1/CREB signaling, which subsequently induces BDNF
expression [44]. This crosstalk highlights FGF21 as a molecular integrator of muscle-brain
communication, linking energy metabolism with neurocognitive function [4].

Under metabolic disorders, FGF21 expression is paradoxically elevated in circulation
but often accompanied by FGF21 resistance, characterized by impaired signaling in target
tissues [45,46]. This resistance state correlates with insulin resistance, hepatic steatosis, and
cognitive impairment. Previous studies indicate that FGF21 expression and circulating
levels exhibit stage-dependent changes during metabolic disease progression [69-71]. In
early or compensatory stages of OB and insulin resistance, circulating FGF21 was upreg-
ulated as an adaptive response to metabolic stress or lipid overload [69,70]. However, in
more advanced stages such as overt T2DM, this increase is often accompanied by impaired
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downstream signaling referred to as FGF21 resistance resulting in diminished metabolic
and neuroprotective efficacy [71]. These findings suggest that the physiological impact of
FGF21 may vary according to disease stage, reflecting a shift from compensatory adaptation
to functional resistance.

Nonetheless, pharmacological FGF21 analogs and exercise-based interventions have
been shown to restore its metabolic and neuroprotective functions [44,67,72,73]. Collectively,
these findings underscore the dual potential of FGF21 as a biomarker of metabolic stress and
a therapeutic target, offering opportunities to simultaneously improve systemic metabolism
and cognitive health in OB and T2DM.

3.2. Persistent Dysregulation of Myokines in Metabolic Disease

Persistent and pathological dysregulation of specific myokines constitutes a critical
mechanism driving metabolic deterioration and disease progression. Among them, CTSB,
IL-6, and myostatin represent prototypical examples showing sustained or maladaptive al-
terations under chronic metabolic stress. While IL-6 and myostatin are persistently elevated,
contributing to systemic inflammation, insulin resistance, and muscle wasting, CTSB typi-
cally decreases in metabolic disorders such as OB and T2DM, which may potentially impair
lysosomal homeostasis and attenuate neuroprotective signaling along the muscle-brain
axis. Collectively, these dysregulated patterns reflect a shift from physiological to patholog-
ical myokine signaling, promoting both metabolic and neurocognitive decline.

3.2.1. Cathepsin-B (CTSB)

CTSB is a lysosomal cysteine protease traditionally recognized for intracellular protein
turnover, but more recently identified as an exercise-inducible myokine with implica-
tions for both muscle homeostasis and brain function [74,75]. In skeletal muscle, CTSB
contributes to mitochondrial quality control, autophagy, and inflammatory regulation,
particularly under conditions of metabolic overload [76]. Its upregulation with exercise
supports muscle remodeling and resilience against catabolic stress [76].

Strikingly, CTSB is capable of crossing the BBB, where it enhances hippocampal neu-
rogenesis and synaptic plasticity, partly through the induction of BDNF-related signaling
pathways [4]. Experimental studies have demonstrated that increased CTSB activity is
associated with improved memory and learning performance, linking its exercise-induced
secretion to neurocognitive benefits [47].

In metabolic disease, alterations in CTSB expression or activity have been reported
in muscle and brain, although the direction and magnitude of these changes remain
inconsistent across studies. Such dysregulation has been linked with impaired muscle
function, insulin resistance, and cognitive vulnerability [74,75]. Interventions such as
aerobic exercise and dietary modulation have been shown to increase CTSB levels, and
these responses may contribute to the maintenance of both muscle function and cognitive
health in metabolic disease. Nevertheless, additional mechanistic and longitudinal human
studies are warranted to determine whether CTSB could serve as a clinically informative
biomarker or therapeutic target in OB and T2DM.

3.2.2.IL-6

IL-6 was the first myokine to be identified and is known for its diverse biological activi-
ties, displaying both pro- and anti-inflammatory properties depending on the physiological
context [77]. Under physiological conditions, it is predominantly secreted by contracting
skeletal muscle during exercise, where it promotes glucose uptake via GLUT4, enhances
fatty acid oxidation, and stimulates myogenic differentiation through PI3K/AMPK activa-
tion [48,49]. Importantly, muscle-derived IL-6 can cross the BBB, where it interacts with
neurons and glial cells to facilitate synaptic plasticity, BDNF-related neurotrophic signaling,
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and cognitive enhancement [4]. These transient elevations are thus considered adaptive
and beneficial responses to metabolic stress.

In contrast, during chronic OB and progression to T2DM, IL-6 expression becomes
sustained and increasingly derived from adipose tissue, liver (Kupffer cells), and im-
mune cells [50,61]. This persistent elevation shifts IL-6 toward a pro-inflammatory phe-
notype, driving low-grade systemic inflammation, insulin resistance, and skeletal muscle
catabolism [77,78]. Mechanistically, chronic IL-6 suppresses insulin signaling by down-
regulating GLUT4 and IRS-1, while impairing neuronal excitability and synaptic integrity,
thereby contributing to muscle wasting and neurodegenerative processes [50].

Taken together, IL-6 exemplifies a dual-function myokine: acutely elevated and muscle-
derived IL-6 supports metabolic and neurocognitive health, whereas chronically elevated
and systemically derived IL-6 fosters metabolic deterioration and neuroinflammation. This
dichotomy highlights the importance of source- and context-dependent IL-6 signaling
when considering therapeutic targeting strategies.

3.2.3. Myostatin

Myostatin, a member of the TGF-f3 superfamily, is a well-established negative reg-
ulator of skeletal muscle growth and regeneration [54]. Under physiological conditions,
basal levels of myostatin play a critical role in maintaining muscle homeostasis by con-
straining excessive hypertrophy and ensuring balanced turnover of muscle fibers [51].
This regulatory role is essential for preserving muscle quality and preventing aberrant
energy expenditure.

However, in the context of chronic OB and T2DM, myostatin expression is markedly
elevated in skeletal muscle and circulation, where it exerts deleterious effects on metabolic
and neurocognitive health [52,53]. Elevated myostatin inhibits Akt/mTOR signaling,
suppresses protein synthesis, and promotes ubiquitin—proteasome-mediated protein degra-
dation, thereby accelerating muscle wasting and sarcopenia [51,54]. In addition, myostatin
impairs insulin signaling by downregulating IRS-1 and GLUT4 expression, aggravating
insulin resistance and glucose intolerance [55]. Beyond skeletal muscle, myostatin has been
shown to affect the CNS by reducing neurogenesis and synaptic plasticity, contributing to
cognitive decline observed in metabolic disease [79,80].

On the other hand, emerging evidence suggests that the role of myostatin may be
more complex and context-dependent. For instance, higher circulating myostatin levels
were associated with a lower amyloid burden in older adults, possibly through autophagy-
mediated amyloid clearance [81]. Similarly, increased myostatin levels have been observed
in physically active or non-frail individuals after exercise, suggesting that transient ele-
vations may reflect adaptive muscle signaling rather than purely catabolic processes [82].
These findings indicate that myostatin may exert different effects depending on metabolic
and neurodegenerative context, warranting further investigation into its dual roles in the
muscle-brain axis.

Thus, basal myostatin appears to support homeostatic regulation, whereas chronically
elevated myostatin in metabolic stress conditions may contribute to muscle atrophy and
metabolic dysfunction [52-55,79-82]. Understanding this context-dependent regulation
may help identify optimal strategies for targeting myostatin to preserve muscle mass and
cognitive function in metabolic disease.

Taken together, currently available evidence suggests that myokines may exert context-
dependent effects during metabolic disease progression. Some myokines show biphasic
actions—promoting metabolic and neurocognitive benefits under physiological or transient
stress, but leading to pathological outcomes when chronically elevated or secreted from
extra-muscular tissues [59,62,67,74]. In contrast, other myokines act predominantly as
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pathological mediators, contributing to sustained inflammation, insulin resistance, and
neurodegeneration irrespective of disease stage of OB and T2DM [50,52].

The dual role of myokines underscores those therapeutic strategies must be tailored to
the biological properties of each factor, including its cellular origin, temporal pattern of
secretion, and the stage of disease progression. Such precision is essential for harnessing
their protective potential while minimizing the detrimental consequences of myokine
dysregulation in OB and T2DM.

While the current review highlights myokines with proposed direct effects on the CNS,
various other muscle-derived factors may indirectly influence brain function. Myokines in-
cluding apelin, myonectin, meteorin-like, and SPARC may modulate systemic metabolism,
appetite control, and sleep regulation, potentially contributing to muscle-brain cross-talk
through metabolic and endocrine pathways [83]. However, their contribution to neural
outcomes remains less clearly defined, and further research is needed to determine whether
these myokines exert meaningful effects on the muscle-brain axis in metabolic diseases
such as OB and T2DM.

4. Therapeutic Strategies to Enhance Myokine Signaling in the
Muscle-Brain Axis During Metabolic Disease

4.1. Exercise

Exercise plays a crucial role in maintaining skeletal muscle function and enhancing
cognitive health [84,85]. Both aerobic and resistance training stimulate the secretion of
beneficial myokines, including BDNF, irisin, and CTSB, which facilitate communication
between skeletal muscle and the brain. These myokines promote neurogenesis, synaptic
plasticity, and cognitive resilience, thereby contributing to overall brain function [86].

Recent meta-analytic evidence supports the beneficial effects of exercise on cognitive
function in older adults with mild cognitive impairment. These findings suggest that exer-
cise type and intensity may differentially modulate the release of myokines that influence
brain function through metabolic and neurotrophic pathways [87].

Aerobic exercise enhances energy metabolism and mitochondrial function through
activation of AMPK/PGC-1o pathways [88]. This metabolic enhancement promotes the re-
lease of myokines such as irisin and BDNF, which have been shown to support hippocampal
neurogenesis and cognitive function by enhancing synaptic plasticity [86].

Resistance training, which primarily targets muscular strength and endurance, also
improves mitochondrial function and activates autophagy in skeletal muscle [89]. It in-
creases IGF-1 secretion, which crosses the BBB and promotes neuronal survival, synaptic
plasticity, and memory [90]. Resistance exercise also upregulates BDNF through the CREB
and mTOR signaling pathways, supporting cognitive function and neuroprotection [91].

Both aerobic and resistance exercises share core benefits, including enhanced skeletal
muscle function, improved insulin sensitivity, and reduced inflammation. These effects
are particularly relevant for individuals with metabolic diseases such as OB and T2DM,
where sarcopenia and muscle insulin resistance are prevalent [92]. Exercise also improves
systemic metabolic homeostasis by enhancing glucose uptake, increasing mitochondrial
efficiency, and reducing chronic low-grade inflammation [93,94]. In terms of cognitive
health, regular physical activity promotes neuroplasticity and protects against cognitive
decline through the upregulation of neurotrophic factors, notably BDNF and irisin [95].

In individuals with metabolic diseases, regular exercise either aerobic or resistance
offers a dual approach to combating sarcopenia and cognitive decline [95]. The synergistic
effects of different types of exercise, particularly when combined with nutritional interven-
tions, offer a comprehensive therapeutic approach to improve muscle function and brain
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health [96]. By targeting distinct yet interconnected physiological pathways, exercise serves
as a fundamental component in the management of OB, T2DM, and related complications.

Importantly, the type and intensity of exercise should be tailored according to both the
stage of metabolic disease progression and the individual’s age [97]. In younger or middle-
aged adults at early stages of OB or T2DM, structured aerobic and resistance training can
effectively enhance muscle mass and strength, maintain favorable myokine profiles, and
provide long-term protection against sarcopenia and cognitive decline [97].

In contrast, in older adults or patients with advanced diseases, the feasibility of high-
intensity exercise may be limited due to frailty, comorbidities, or increased susceptibility
to exercise-induced oxidative stress [98]. In such cases, lower-intensity physical activity
combined with targeted nutritional interventions may be more appropriate, helping to
preserve muscle function and neurocognitive health while minimizing physiological stress.

4.2. Dietary Intervention

Nutritional interventions may function either as primary therapeutic strategies or as
complementary approaches to exercise.

The following subsections summarize specific dietary components proposed to en-
hance myokine secretion or signaling, which could in turn contribute to improved muscle
and brain function.

4.2.1. Vitamin A

Vitamin A, particularly in its bioactive form all-trans retinoic acid (ATRA), plays a
regulatory role in cellular differentiation, lipid metabolism, and mitochondrial function [79].
In the context of OB and metabolic dysregulation, ATRA has been shown to modulate
adipogenesis and improve systemic energy balance [99,100]. Notably, ATRA enhances the
expression of irisin in myoblasts, suggesting a potential link to muscle-derived endocrine
activity. However, further in vivo and clinical studies are required to determine its relevance
to sarcopenia [100].

On the other hand, vitamin A also exhibits neuroprotective effects by supporting
synaptic plasticity and attenuating neuroinflammatory processes [101]. Animal and human
studies indicate that vitamin A supplementation may improve memory performance and
prevent OB-related cognitive decline [101].

These findings collectively highlight its potential to alleviate metabolic complications
through modulation of the muscle-brain axis.

4.2.2. Vitamin D

Vitamin D deficiency is commonly observed in individuals with OB and T2DM, and
has been associated with insulin resistance, systemic inflammation, and impaired muscle
function [14,102]. Beyond its classical role in calcium homeostasis, vitamin D is now recog-
nized as a key modulator of skeletal muscle health and inter-organ communication [103].

Experimental studies have shown that vitamin D supplementation attenuates muscle
atrophy by downregulating proteolytic markers such as atrogin-1 and MuRF1, thereby
preserving muscle mass and strength in metabolic disease models [15]. Importantly,
vitamin D also modulates the expression of myokines, which are critical mediators of
muscle-brain crosstalk.

In T2DM mouse models, vitamin D supplementation has been shown to increase the ex-
pression of irisin, a myokine known to promote mitochondrial function, fatty acid oxidation,
and BDNF production in the brain [65]. Consistently, clinical trials have demonstrated that
six months of vitamin D supplementation elevates circulating irisin levels in humans [104],
suggesting a conserved role for vitamin D in enhancing myokine-mediated signaling.
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In the CNS, vitamin D exerts neuroprotective effects by supporting glial cell function,
maintaining synaptic integrity, and enhancing hippocampal signaling [105]. Vitamin
D insufficiency has been linked to increased risk of cognitive impairment in both aging
populations and individuals with metabolic disorders [16]. Moreover, higher concentrations
of vitamin D in brain tissue have been correlated with better cognitive performance in older
adults [106].

Collectively, current evidence suggests that vitamin D supplementation may help
attenuate sarcopenia and cognitive decline associated with metabolic diseases. These
effects are proposed to be partly mediated through modulation of myokine expression,
although direct causal relationships remain to be established.

4.2.3. Polyunsaturated Fatty Acids (PUFAs)

PUFAs, particularly omega-3 fatty acids, have been reported to exert anti-inflammatory
effects and are associated with improvements in various metabolic parameters [107]. Nu-
merous studies have demonstrated the beneficial impact of PUFA intake on metabolic
disorders, including enhanced insulin sensitivity, reduced systemic inflammation, and
improved lipid profiles [11,108].

In particular, PUFAs influence the expression of muscle-derived signaling molecules,
such as irisin and FGF21 [64]. In a previous study, supplementation with 1250 mg of PUFAs
three times daily significantly increased serum irisin levels in patients with T2DM [64].
Furthermore, dietary intake of omega-3 (1n-3) PUFAs has been positively associated with
serum BDNF concentrations in adolescents, suggesting a potential link between PUFA
intake and neurotrophic support in the context of psychiatric and metabolic disorders.

These findings imply that PUFAs may influence the skeletal muscle-brain axis indi-
rectly through modulation of key myokines and neurotrophic factors, which could have
potential implications for the management of metabolic diseases.

4.2.4. Protein and Peptides

Adequate protein intake is fundamental for maintaining skeletal muscle mass and
function, particularly under metabolic stress conditions such as OB and T2DM [109].
Proteins rich in essential amino acids, particularly branched-chain amino acids (BCAAs),
activate the mTOR signaling pathway and stimulate muscle protein synthesis [110]. In
addition to supporting muscle anabolism, dietary proteins and their bioactive peptides
have emerged as important modulators of the muscle-brain endocrine axis, with potential
roles in regulating both metabolic and cognitive health [111].

Dietary protein not only enhances muscle protein synthesis but also facilitates the
release of specific myokines such as irisin, BDNF, CTSB, and IL-6, which are proposed
to mediate peripheral-to-central signaling along the muscle-brain axis [112,113]. These
myokines influence key aspects of brain function, such as mood regulation, hippocampal
neuroplasticity, and central energy homeostasis, all of which are frequently impaired in the
context of metabolic disease [111-113].

Beyond total protein intake, specific amino acids have been explored as modulators of
metabolic and neurocognitive health. BCAAs, particularly leucine, activate mTOR signaling
to support muscle maintenance and may enhance exercise-induced secretion of beneficial
myokines such as irisin and IL-6, linking them to improved metabolic capacity [110,114].
Notably, however, metabolic context appears to influence their physiological effects, as
chronically elevated BCAAs are associated with impaired mitochondrial metabolism and
insulin resistance in OB and T2DM [115].

Beyond BCAAs, additional amino acids with bioactive neurometabolic functions have
gained attention. Taurine, a sulfur-containing amino acid, supports muscle integrity by
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reducing oxidative and inflammatory stress and modulating catabolic myokines such as
myostatin [116,117]. These regulatory actions suggest a potential contribution to inter-organ
signaling relevant to muscle-brain communication.

Creatine enhances phosphocreatine-dependent ATP regeneration, improves insulin
sensitivity, and reduces myostatin signaling [118]. Notably, creatine has been shown to
augment exercise-induced increases in BDNF and neurocognitive performance, indicating
a potential role in enhancing muscle-derived neurotrophic pathways [119].

Similarly, 3-alanine supplementation increases intramuscular carnosine availability,
enhancing buffering capacity during exercise and supporting metabolic resilience [120].
Carnosine has also been implicated in neuronal protection and oxidative stress regulation,
offering a complementary mechanism that may intersect with muscle-derived endocrine
signaling [121].

Taken together, the amino acid composition of dietary protein could influence muscle
metabolism and systemic adaptations in a composition-dependent manner, potentially
acting through myokine-mediated pathways that affect metabolic and neural health. A
more nuanced understanding of these nutrient-specific effects could support precision
nutrition strategies tailored to individuals with OB and T2DM.

4.2.5. Polyphenols

Polyphenols, including resveratrol and curcumin, are bioactive compounds found
in various plant-based foods and have been extensively studied for their potent anti-
inflammatory and antioxidant properties [122]. They activate cellular signaling pathways
related to energy homeostasis such as AMPK/SIRT1 pathway, leading to the regulation of
myokine secretion that mediates muscle-brain crosstalk [122-124].

Resveratrol, a polyphenol primarily found in red wine, grapes, and certain berries, has
attracted considerable interest for its potential therapeutic effects in metabolic disorders
due to its anti-inflammatory and antioxidative properties [125,126]. It has been shown to
modulate the expression of myokines such as IL-6 and BDNF [125]. Specifically, resvera-
trol decreases IL-6 secretion, potentially enhancing muscle regeneration and improving
insulin sensitivity in various in vitro and in vivo studies [127]. Resveratrol also crosses the
BBB, where it can influence neuroplasticity and cognitive function [128]. By upregulating
neurotrophic factors such as BDNEF, resveratrol supports neuronal survival and offers neu-
roprotective effects, which may contribute to the prevention of neurodegenerative diseases,
including Alzheimer’s and Parkinson’s diseases [129].

Curcumin is the active compound found in turmeric and has long been recognized for
its potent anti-inflammatory, antioxidant, and neuroprotective properties [130,131]. It is
particularly effective in modulating inflammatory responses and supporting the health of
both skeletal muscle and the brain [132,133]. Curcumin has been shown to influence the
release of myokines such as irisin, thereby contributing to improved muscle metabolism
and regeneration [134]. Additionally, curcumin promotes the expression of neurotrophic
factors, including BDNEF, and attenuates neuroinflammation, which may enhance cognitive
performance and provide protection against neurodegenerative conditions [135,136]. Its
ability to modulate the gut-brain axis further reinforces its role in preserving brain function,
particularly under metabolic stress [137].

Collectively, polyphenols such as resveratrol and curcumin exert antioxidant and
anti-inflammatory effects that counteract the pathophysiological mechanisms underly-
ing sarcopenia and cognitive impairment. In addition to their direct benefits on muscle
metabolism and neurotrophic signaling, these compounds may potentially enhance the
release of neuroprotective myokines, thereby strengthening muscle-brain crosstalk and
amplifying their therapeutic potential for metabolic and cognitive health in the context
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of obesity and T2DM. In summary, both exercise and dietary interventions have been
suggested as potential strategies to modulate myokine signaling within the muscle-brain
axis in metabolic disease. While preliminary findings indicate possible benefits, the cur-
rent evidence remains insufficient to demonstrate a direct causal relationship, particularly
in humans. Therefore, further mechanistic and well-controlled clinical studies are war-
ranted to determine whether such interventions can effectively preserve both metabolic
and cognitive health. Aerobic and resistance training stimulate the release of neurotrophic
and metabolically beneficial myokines, thereby counteracting sarcopenia and cognitive
decline. Complementarily, specific nutritional interventions including vitamins, PUFAs,
proteins, and polyphenols, further augment myokine secretion and support inter-organ
communication. Given the bidirectional communication between skeletal muscle and the
brain, lifestyle interventions including diet and exercise that attenuate diabetic muscle
atrophy may have the potential to indirectly support neurocognitive resilience by possibly
improving myokine signaling and reduced systemic inflammation. Importantly, the efficacy
of these approaches is highly dependent on age and disease stage, underscoring the neces-
sity of tailored interventions. When implemented in combination, exercise and nutrition
offer synergistic benefits that reinforce muscle and brain health, highlighting their poten-
tial as integrated therapeutic strategies for mitigating the metabolic and neurocognitive
complications of OB and T2DM.

Although several studies suggest that nutritional modulation can influence myokine
secretion and related pathways, evidence directly linking these changes to improvements
in muscle-brain communication remains limited. Further mechanistic and clinical studies
are needed to clarify their translational relevance in metabolic disease.

5. Future Directions and Limitations

Despite the increasing prevalence of sarcopenia and cognitive dysfunction, definitive
therapeutic options remain limited. Myokines have emerged as key mediators of muscle—
brain crosstalk, suggesting a potential therapeutic relevance in OB and T2DM, although
their functional contribution requires further clarification [138]. However, current evidence
insufficiently describes context-dependent changes in myokine signaling throughout dis-
ease progression. Further characterization of these alterations may support development
of targeted intervention.

Importantly, the optimal balance between exercise and dietary interventions may
vary among individuals [139-146]. In middle-aged individuals or early-stage disease of
OB and T2DM, resistance and aerobic exercise can effectively enhance muscle mass and
strength, thereby improving myokine profiles and potentially preventing later-life func-
tional decline [142]. Building and maintaining higher muscle mass and strength during
these earlier stages may provide a physiological reserve that helps delay or prevent func-
tional deterioration in older age or during advanced stages of disease progression [143].
While exercise confers substantial benefits to muscle and brain health, its implementation
must account for the potential exacerbation of oxidative and metabolic stress, especially in
susceptible populations including the elderly, patients with T2DM, or those with chronic
low-grade inflammation [144,145]. In this context, concurrent nutritional interventions en-
compassing sufficient protein intake alongside targeted antioxidant and anti-inflammatory
supplementation represent critical adjuncts that can enhance anabolic signaling, counteract
exercise-induced cellular damage, and sustain long-term functional outcomes [142,143].
In patients with older adults or advanced disease stages, where intensive exercise may be
challenging, dietary interventions often become the primary approach. Targeted nutritional
support can preserve muscle mass, attenuate oxidative stress, and sustain cognitive func-
tion, partly through modulation of myokine secretion and signaling. Integrative strategies
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not only support the independent improvement of muscle and brain health but may also
restore inter-organ communication mediated by myokines.

Myokine dynamics likely vary according to physiological and metabolic conditions
[8,59]. The modulatory effects of exercise and nutritional interventions also differ according
to the type, intensity, and timing of the applied strategy. Moreover, individual myokines
display distinct regulatory patterns and exert differential functional contributions to skeletal
muscle and brain physiology [10]. These findings collectively suggest that the muscle—
brain axis is governed not by isolated factors, but through the integrated and potentially
synergistic actions of multiple myokines. Elucidating these intricate mechanisms represents
an important direction for future research aimed at clarifying the role of myokine networks
in inter-organ communication.

Nevertheless, research on nutrition-driven modulation of the muscle-brain axis re-
mains in its infancy, and mechanistic pathways are yet to be elucidated. These findings
are largely supported by preclinical evidence, and direct causal proof in humans remains
limited. Therefore, the specific contribution of myokines to cognitive improvement requires
further confirmation in clinical studies. Furthermore, interindividual variability in disease
onset and progression complicates the standardization of interventions. Stage-specific
responsiveness of the muscle-brain axis must be taken into account when designing future
therapeutic approaches. Longitudinal and mechanistic studies using integrative methods

including omics technologies, animal models, and clinical trials are essential to clarify the
regulatory dynamics of myokines and to establish effective, personalized interventions for

preserving both metabolic and cognitive health.

6. Conclusions

This review highlights the growing recognition of myokines as important mediators of
muscle-brain communication in OB and T2DM. Altered myokine profiles may contribute to
both metabolic dysfunction and neurocognitive decline, suggesting that restoring muscle-
derived signaling could provide dual benefits. Although the precise mechanistic pathways
remain incompletely defined, exercise and dietary interventions represent promising strate-
gies to enhance myokine secretion and responsiveness (Figure 1). By supporting skeletal
muscle function and neuroplasticity, these approaches may offer synergistic or additive
effects through improved inter-organ connectivity. Continued clinical and mechanistic
research is required to establish how myokine-associated interventions can be effectively
translated into improved metabolic and cognitive outcomes in OB and T2DM.
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