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Introduction
Polycystic ovary syndrome (PCOS) is one of the most 
common endocrine disorders among women of repro-
ductive age, affecting approximately 5%–18% of this 
population worldwide [1, 2]. It is primarily defined by 
the presence of hyperandrogenemia (HA), ovulatory dys-
function, and polycystic ovarian morphology (PCOM). 
The clinical manifestations of PCOS are notably diverse 
and are often accompanied by comorbidities such as glu-
cose and lipid metabolism disorders, obesity, cardiovas-
cular diseases, and other systemic conditions [3].

Obesity is notably prevalent among PCOS women, 
with an estimated 49%-80% of affected individuals being 
classified as overweight or obese [4–6]. It is both a com-
mon comorbidity and a significant pathogenic factor 
in PCOS [7, 8]. Clinical studies demonstrate that obese 
PCOS women (BMI ≥ 25 kg/m²) typically experience 
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Abstract
Polycystic ovary syndrome (PCOS) is a gynecological endocrine disorder affecting 5%–18% of women of 
reproductive age worldwide. It is characterized by hyperandrogenemia (HA), anovulation, and polycystic ovarian 
morphology (PCOM), severely impacting women’s reproductive and metabolic health. Obesity has become 
increasingly common among PCOS patients in recent years. Obesity can further exacerbate the metabolic and 
reproductive dysfunctions of PCOS through mechanisms such as insulin resistance (IR) and chronic low-grade 
inflammation. It may even have adverse effects on mental health. However, the specific pathogenesis and effective 
therapeutic targets of PCOS with obesity remain incompletely understood. This review presents a narrative 
review of recent research, focusing on the molecular mechanisms that drive autophagy in the context of obesity 
associated with polycystic ovary syndrome (PCOS), endoplasmic reticulum stress (ERS), gut microbiota imbalances, 
and disruptions in the hypothalamic-pituitary-ovarian (HPO) axis. It also explores corresponding therapeutic 
strategies. The aim is to provide fresh perspectives and insights for future mechanistic research and clinical 
interventions in this field.
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more severe endocrine disturbances, including HA, as 
well as greater abnormalities in glucose and lipid metabo-
lism, such as insulin resistance (IR), increased visceral fat, 
and reproductive dysfunction, compared to non-obese 
PCOS patients [9, 10]. The high prevalence of obesity 
in PCOS is unlikely to be coincidental; increasing evi-
dence suggests that it contributes actively to disease pro-
gression through intertwined metabolic and endocrine 
disruptions.

Mechanistically, visceral adipose tissue (VAT) is a key 
hub linking obesity to PCOS pathophysiology. Excessive 
release of free fatty acids (FFAs) from VAT induces sys-
temic IR [11, 12]. The subsequent hyperinsulinemia sup-
presses sex hormone-binding globulin (SHBG) synthesis, 
increasing circulating levels of free testosterone [13]. 
Furthermore, insulin and insulin-like growth factor 1 
(IGF-1) have been demonstrated to promote testosterone 
synthesis by activating insulin receptors and insulin-like 
growth factor 1 receptors (IGF-1R) on ovarian theca cells 
(TCs), which subsequently enhances the enzymatic activ-
ity of cytochrome P450c17α (CYP17A1) [14]. Elevated 
androgen levels further aggravate metabolic homeostasis 
by promoting the differentiation of preadipocytes into 
visceral adipocytes via androgen receptor (AR) signaling, 
while simultaneously inhibiting lipolysis in subcutaneous 
fat [10, 15]. This reciprocal interaction between HA and 
IR may synergistically promote visceral fat accumulation, 
forming a self-reinforcing cycle [16].

Obesity also disrupts neuroendocrine signaling, par-
ticularly the hypothalamic-pituitary-ovarian (HPO) axis. 
In adipose tissue, aromatase (CYP19A1) converts excess 
androgens into estrogens, which exert negative feedback 
on gonadotropin-releasing hormone (GnRH) secretion. 
This results in an altered luteinizing hormone (LH) to 
follicle-stimulating hormone (FSH) ratio, contributing to 
ovulatory dysfunction and menstrual irregularities.

Additionally, obesity contributes to ovarian dysfunc-
tion through multiple molecular mechanisms. Within the 
ovary, the interplay between HA and IR initiates a series 
of pathological events, including endoplasmic reticu-
lum stress (ERS) and autophagy dysfunction in ovarian 
granulosa cells (GCs). These cellular alterations culmi-
nate in GC dysfunction and apoptosis, ultimately impair-
ing folliculogenesis [17–19]. The excessive accumulation 
of adipose tissue contributes to a systemic inflammatory 
response and disrupts the composition of the gut micro-
biota. These alterations, mediated by the secretion of var-
ious adipokines, synergistically exacerbate metabolic and 
reproductive dysfunctions in PCOS [16, 20].

Collectively, obesity is increasingly recognized as a 
major contributor to PCOS progression. However, the 
downstream pathways—such as aberrant autophagy, ER 
stress, chronic inflammation, gut dysbiosis, and HPO 
axis disruption—remain to be fully elucidated. Although 

modern medicine and traditional Chinese medicine 
(TCM) show therapeutic complementarity, elucidating 
their shared molecular targets is a prerequisite for devel-
oping precision interventions.

This narrative review is based on literature retrieved 
from PubMed, Web of Science, and CNKI between 2018 
and 2025, using keywords including “PCOS,” “obesity,” 
“autophagy,” “endoplasmic reticulum stress,” “inflamma-
tion,” “gut microbiota,” “HPO axis,” and “traditional Chi-
nese medicine”. Relevant preclinical and clinical studies 
were included to provide mechanistic and therapeutic 
insights into obesity-related PCOS. In this review, we 
summarize the underlying mechanisms and therapeutic 
strategies, aiming to offer new insights into the individu-
alized treatment of obesity-associated PCOS.

Pathogenesis mechanism
Autophagy
Autophagy is a cellular process essential for maintain-
ing homeostasis by degrading damaged organelles and 
proteins via lysosomes. It encompasses three primary 
types: macroautophagy, microautophagy, and chaperone-
mediated autophagy (CMA). Macroautophagy is par-
ticularly important in the ovary, where it plays a pivotal 
role in regulating oocyte development, follicular growth, 
and atresia. In PCOS, especially in the context of obesity, 
dysregulated autophagy disrupts GCs and TCs function, 
contributing to follicular arrest and anovulation [21]. 
Notably, this dysregulation is cell-type specific: excessive 
autophagy is often observed in GCs, while autophagic 
impairment is more common in TCs [22–27].

IR is tightly linked to altered autophagy in PCOS, par-
ticularly in GCs. In PCOS patients, reduced ATG7 levels 
correlate negatively with HOMA-IR, indicating disrupted 
autophagy [28]. IR promotes mitochondrial dysfunction 
and oxidative stress, activating mitophagy via the mito-
chondrial unfolded protein response (UPR^mt). This 
leads to GC dysfunction and premature ovarian aging 
[29]. Conversely, excessive autophagy activation—espe-
cially via high mobility group box 1 (HMGB1)—nega-
tively regulates insulin signaling by suppressing IRS-1 
and inhibiting the PI3K/AKT pathway, creating a self-
perpetuating loop between IR and imbalance between 
autophagic activation and degradation [30, 31]. This bidi-
rectional interaction is a critical driver of metabolic and 
reproductive dysfunction in obese PCOS.

HA also induces excessive autophagy in GCs via mul-
tiple converging molecular mechanisms. It suppresses 
the PI3K/AKT/mTOR axis and promotes ROS accumu-
lation—two key pathways known to trigger autopha-
gic activation [32–34]. These changes are consistently 
observed in clinical and animal models, evidenced by 
elevated LC3-II/LC3-I ratios and reduced p62 expres-
sion [23–25]. Additionally. BORC complex subunit 
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BOP1 (BOP1) overexpression triggers a nucleolar stress 
response, further inhibiting mTOR signaling via p53, 
thereby exacerbating autophagic activity [23]. In paral-
lel, CISD2 upregulation suppresses mitophagy, leading to 
ROS buildup and mitochondrial dysfunction, which dis-
rupts GC survival [35]. Wnt5a has emerged as a potential 
modulator capable of restoring autophagic homeostasis 
in HA-induced PCOS. By downregulating PI3K/AKT/
mTOR signaling, Wnt5a attenuates excessive autophagy 
and alleviates GC dysfunction in experimental models 
[36]. Although most evidence centers on GCs, HA dis-
rupts autophagy in peripheral metabolic tissues. In skele-
tal muscle cells, HA impairs glucose uptake by inhibiting 
the mTORC1-autophagy axis, resulting in impaired glu-
cose uptake and aggravated IR [37]. Additionally, the 
mitophagy-related gene MAP1LC3A is positively corre-
lated with serum testosterone in PCOS patients and may 
serve as a biomarker of ovulatory dysfunction [38]. These 
findings underscore the role of HA in disrupting both 
canonical autophagy and mitophagy across multiple tis-
sues, thereby promoting both ovarian and metabolic dys-
function in obese PCOS.

FFAs in obesity-related PCOS disrupt autophagy 
homeostasis in both TCs and GCs, worsening follicu-
lar and metabolic dysfunction. In TCs, FFAs impair 
autophagosome–lysosome fusion, leading to p62 accu-
mulation. This suppression is associated with upregu-
lated CYP17A1 and PAI-1 expression, which enhance 
androgen production via ROS/p38 and JNK signaling 
[22]. In GCs, FFAs stimulate the secretion of adipokine 
chemerin, which excessively activates autophagy in GCs 
by inhibiting the PI3K/Akt/mTOR pathway [39–41]. The 
resulting excessive autophagy activation leads to mito-
chondrial damage and cellular stress, thereby impairing 
folliculogenesis. This pathophysiological axis links lipid 
metabolism, autophagy dysregulation, and ovarian dys-
function. Together, FFAs induce divergent autophagic 
phenotypes—suppressed flux in TCs and excessive acti-
vation in GCs—via distinct molecular pathways. These 
effects collectively disrupt follicular integrity and con-
tribute to reproductive and metabolic abnormalities of 
obese PCOS.

In patients with PCOS and obesity, autophagy is pri-
marily marked by excessive activation of ovarian GCs and 
impaired autophagy in TCs. This dysregulation is driven 
by several factors, including IR, HA, and abnormal lipid 
metabolism. These factors contribute to abnormalities in 
follicular development and a cycle of metabolic dysfunc-
tion. Future research should aim to dissect cell-specific 
autophagic pathways and develop targeted interventions 
to restore autophagic balance and improve reproductive-
metabolic outcomes in PCOS.

Chronic low-grade inflammation
Chronic low-grade inflammation (CLGI), characterized 
by the persistent elevation of pro-inflammatory media-
tors such as CRP, IL-6, and TNF-α, is a defining feature 
of obesity-associated PCOS [42–47]. Compared with 
non-obese patients with PCOS, those with obesity dem-
onstrated more severe inflammatory responses, including 
increased levels of IL-6, TNF-α, neutrophil-to-lympho-
cyte ratio (NLR), high-sensitivity C-reactive protein (hs-
CRP), and mean platelet volume (MPV) levels [48, 49]. 
These systemic alterations reflect a sustained inflamma-
tory milieu driven by both metabolic stress and endo-
crine perturbations.

At the molecular level, CLGI in PCOS is orchestrated 
by aberrant immune cell activation, inflammasome sig-
naling, and tissue-specific inflammatory responses. In the 
liver, overnutrition suppresses AMP-activated protein 
kinase (AMPK) activation, leading to activation of the 
NLRP3 inflammasome and IL-1β maturation—key events 
in initiating hepatic inflammation. Simultaneously, IRS1 
Ser307 phosphorylation further links metabolic stress 
to immune dysregulation [50]. In the endometrium, the 
reduced abundance of CD56+ NK cells and CD163+ M2 
macrophages compromises local immune tolerance, 
favoring a pro-inflammatory microenvironment [51, 52]. 
In ovarian GCs, inflammatory stimuli such as advanced 
glycation end-products (AGEs) and high glucose activate 
the p38 MAPK pathway, enhancing secretion of IL-6 and 
TNF-α and impairing follicular development [53].

In addition to canonical immune pathways, endocrine-
immune crosstalk reinforces the inflammatory state. 
While IR and HA are known to contribute to inflamma-
tion, emerging evidence suggests that inflammation may 
independently drive metabolic and reproductive dys-
function in PCOS. For example, elevated IL-15 levels in 
patients and animal models activate p38 and JNK signal-
ing in GCs, stimulating pro-inflammatory cytokine pro-
duction and exacerbating steroidogenic imbalance [54]. 
Furthermore, adipokines such as chemerin accumulate in 
the follicular fluid and directly impair oocyte competence 
by disrupting intracellular signaling [40, 41, 55].

Dysregulated lipid metabolism further exacerbates 
CLGI by altering adipose tissue homeostasis and immune 
balance. PCOS patients frequently exhibit dyslipidemia, 
typified by elevated triglyceride (TG) and low-density 
lipoprotein cholesterol (LDL-C) levels alongside reduced 
high-density lipoprotein cholesterol (HDL-C). These 
lipid abnormalities positively correlate with inflamma-
tory markers such as CRP and the systemic immune-
inflammation index (SII) [56, 57]. Increased leukocyte 
counts and immune cell activation further reflect this 
link [58]. Notably, compensatory mechanisms may exist. 
In PCOS mouse models, the peptide hormone adro-
pin promotes M2 macrophage polarization and eNOS/
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PPARγ-mediated browning of white adipose tissue, 
thereby mitigating inflammation and restoring metabolic 
homeostasis [59].

Obesity may exacerbate CLGI in PCOS through the 
promotion of HA, IR, and lipid metabolism disorders, 
which in turn aggravate metabolic dysfunction. How-
ever, inflammation may also function as an independent 
pathogenic factor in PCOS, potentially contributing to 
disease heterogeneity between obese and non-obese 
patients. Future research should focus on clarifying 
causal relationships and developing therapeutic strategies 
targeting the metabolism-inflammation axis.

Endoplasmic reticulum stress
Endoplasmic reticulum stress (ERS) is a cellular adap-
tive response triggered by disruptions in ER homeostasis, 
affecting protein folding, calcium balance, and lipid pro-
cessing. Moderate levels of ERS are essential for oocyte 
maturation [60]. However, excessive or sustained ERS has 
been demonstrated to significantly exacerbate the patho-
logical progression of PCOS [61].

Clinical and experimental studies have consistently 
demonstrated heightened ERS in PCOS, particularly 
in ovarian GCs. Elevated levels of ERS markers, such as 
glucose-regulated protein 78 (GRP78) and activating 
transcription factor 4 (ATF4), have been identified in 
the GCs of PCOS patients [62, 63]. Animal models fur-
ther corroborate these findings, showing the activation of 
key ERS pathways, including inositol-requiring enzyme 
1α (IRE1α) and protein kinase RNA-like endoplasmic 
reticulum kinase (PERK), correlating with increased GC 
apoptosis and impaired follicular development [61, 64].

A primary upstream trigger of ERS in PCOS is meta-
bolic overload, particularly FFA accumulation associated 
with obesity. Elevated FFAs activate PERK and IRE1α 
signaling in GCs, inducing apoptosis and steroidogenic 
dysfunction. Simultaneously, FFAs upregulate CYP17A1 
and PAI-1 via the ROS/p38 and JNK axes, enhancing 
androgen synthesis and amplifying ERS. Inflammatory 
cytokines released from adipose tissue, such as IL-6 and 
TNF-α, further intensify ER stress signaling, indicating 
cross-talk between metabolic and immune perturbations 
[61–63, 65, 66].

Hyperglycemia and glucose toxicity, frequently 
observed in insulin-resistant PCOS patients, represent an 
additional ERS trigger. Persistent high glucose conditions 
exacerbate oxidative damage and upregulate ERS mark-
ers such as ATF4 and XBP1 in GCs, promoting apopto-
sis and compromising follicular integrity [65, 67]. This 
hyperglycemia-induced ERS further disrupts systemic 
insulin sensitivity, creating a detrimental feedforward 
loop that aggravates metabolic dysfunction.

HA exacerbates ERS through oxidative and inflamma-
tory mechanisms. Androgen excess activates the NOX4/

ROS axis, leading to sustained PERK–ATF4 signaling 
and induction of the LINC00173–HRK apoptotic path-
way, while concurrently inhibiting PI3K/Akt-mediated 
survival signaling [64, 68]. In parallel, HA enhances the 
IRE1α-TXNIP-NLRP3 inflammasome activation, lead-
ing to pyroptosis and local inflammation in GCs [69, 70]. 
Additionally, HA promotes lipid peroxidation and ferrop-
tosis in GCs, while systemically inducing ERS in uterine 
smooth muscle, impairing contractility and implanta-
tion, and in pancreatic β-cells, driving hyperinsulinemia 
[71–74].

In conclusion, ERS in PCOS represents a critical down-
stream effector of integrated metabolic and endocrine 
insults. By disrupting GC survival, steroidogenesis, and 
tissue homeostasis, sustained ERS contributes to fol-
licular arrest, chronic inflammation, and systemic dys-
function. Therapeutic strategies targeting ERS-related 
pathways may offer novel avenues for restoring reproduc-
tive and metabolic balance in PCOS.

Gut microbiota dysbiosis
Gut microbiota plays a central role in host metabolic 
homeostasis, immune regulation, and endocrine signal-
ing. Through fermentation of dietary fibers, it produces 
short-chain fatty acids (SCFAs), maintains intestinal 
barrier integrity, and regulates tryptophan and bile acid 
metabolism. These microbial metabolites serve as signal-
ing molecules that regulate systemic inflammation, glu-
cose metabolism, and hormonal balance.

In obese PCOS patients, gut dysbiosis is a common 
feature, marked by reduced α-diversity, depletion of ben-
eficial microbes (e.g., Bacteroidetes, Firmicutes), and 
increased abundance of pro-inflammatory taxa (Proteo-
bacteria, Fusobacterium, Prevotella) [75, 76]. The decline 
in butyrate-producing bacteria and reduced SCFA levels, 
weakening the intestinal barrier and facilitating lipo-
polysaccharide (LPS) leakage into the circulation. LPS 
activates the TLR4/NF-κB pathway, inducing CLGI. 
Moreover, SCFAs deficiency promotes epitranscriptomic 
changes, such as m6A methylation of FOSL2, which 
activates the NLRP3 inflammasome and enhances IL-1β 
secretion [49].

In parallel, the altered microbial composition impairs 
lipid and bile acid metabolism. Enrichment of Megamo-
nas and Dialister further contributes to IR via disruptions 
in fatty acid and sphingolipid signaling pathways [77]. 
Additionally, a decrease in secondary bile acids, such as 
GDCA and TUDCA, impairs IL-22 secretion, exacerbat-
ing local ovarian inflammation and metabolic imbalance 
[78].

Importantly, HA aggravates gut dysbiosis through 
AR-mediated regulation of the FKBP5 gene, promoting 
DNA hypomethylation and microbial imbalance. This 
HA-microbiota feedback loop further impairs metabolic 
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homeostasis. Androgens also reshape bile acid profiles 
and intestinal immunity, further shifting microbial ecol-
ogy toward pro-inflammatory taxa [79]. This creates a 
vicious cycle wherein gut dysbiosis and HA reinforce 
each other, jointly driving endocrine and metabolic 
dysfunction.

In summary, gut microbiota dysbiosis in obese PCOS 
is both a cause and consequence of metabolic imbalance, 
mediated through disrupted SCFA and bile acid metab-
olism, loss of barrier integrity, and androgen-induced 
microbial shifts. These findings highlight the potential of 
microbiota-centered therapies—such as probiotics, pre-
biotics, and fecal microbiota transplantation—to restore 
host–microbiota homeostasis and break the pathophysi-
ological cycle of obesity-related PCOS.

Hypothalamic-pituitary-ovarian (HPO) axis
The HPO axis plays a central role in regulating reproduc-
tive function by orchestrating the secretion of LH and 
FSH through the pulsatile release of GnRH. This process 
coordinates follicular development and sex hormone syn-
thesis. Under physiological conditions, estradiol exerts 
positive feedback to induce a preovulatory LH surge, 
while negative feedback maintains hormonal homeosta-
sis [80].

In PCOS, the frequency of GnRH pulses is pathologi-
cally elevated, preferentially enhancing LH secretion 
over FSH. This disrupts the FSH-mediated induction 
of CYP19A1 (aromatase), impairing the conversion of 
androgens to estrogens, and resulting in HA and follicu-
lar arrest—core features of PCOS pathophysiology [81].

Obesity exacerbates neuroendocrine dysregulation 
through multiple interrelated mechanisms. Leptin resis-
tance and chronic hyperleptinemia overstimulate GnRH 
neurons via kisspeptin signaling, promoting excessive LH 
release and subsequent androgen overproduction [80, 
82, 83]. Concurrently, hyperinsulinemia activates AgRP 
neurons and increases the expression of neuropeptide 
Y (NPY) and GABA, which synergistically upregulate 
hypothalamic kisspeptin and GnRH expression, further 
aggravating LH hypersecretion [84–86]. Altered gut 
microbiota—characterized by reduced levels of second-
ary bile acids such as glycodeoxycholic acid (GDCA) 
and tauroursodeoxycholic acid (TUDCA)—impair the 
bile acid-IL-22 signaling axis, diminishing hypothalamic 
sensitivity to androgen feedback and accelerating GnRH 
pulse generation [78].

These convergent pathways disrupt the LH/FSH ratio, 
amplify ovarian androgen output, and impair follicu-
logenesis. Ultimately, obesity-induced neuroendocrine 
reprogramming intensifies HPO axis dysfunction, con-
tributing to anovulation and reproductive failure in 
PCOS.

In summary, obesity-driven alterations in metabolic, 
endocrine, and microbial pathways converge to intensify 
HPO axis dysfunction in PCOS Figure 1. Further eluci-
dation of the molecular crosstalk between adipokines, 
central neuronal circuits, and peripheral metabolites may 
reveal novel targets for neuromodulatory interventions 
aimed at restoring reproductive endocrine homeostasis 
in obese PCOS patients.

Treatment
The treatment of obesity-associated PCOS requires 
a comprehensive, multi-targeted strategy due to the 
complexity of its pathophysiology. Current therapeutic 
approaches aim to restore metabolic and reproductive 
homeostasis by modulating autophagy, alleviating ERS, 
reducing chronic inflammation, remodeling gut micro-
biota, and regulating the HPO axis. Integrative therapies 
that combine TCM and Western medicine have shown 
synergistic benefits in improving metabolic profiles and 
ovarian function Table 1. However, the underlying mech-
anisms remain incompletely understood, and further 
research is essential to support their clinical translation.

Autophagy modulation
Dysregulated autophagy contributes to follicular arrest 
and metabolic dysfunction in obesity-associated PCOS. 
Preclinical studies suggest that pharmacological agents, 
TCM, and acupuncture modulate key autophagy-related 
pathways, potentially restoring cellular homeostasis.

Pharmacological therapy
Melatonin promotes mitophagy via upregulation of 
Clock genes, while the combination of clomiphene and 
dexamethasone attenuates GC apoptosis by targeting the 
ROS–JNK/MAPK–p21 axis and restoring autophagic 
flux [87, 88].

Chinese herbal formulas and monomers
Chinese herbal interventions modulate autophagy via 
multiple signaling pathways in both GCs and endometrial 
cells. Cangfu Daotan Decoction and Guizhi Fuling Wan 
(GFW) inhibit autophagy via the FOXK1/Wnt/β-catenin 
and PI3K/AKT/mTOR axis, respectively [30, 89–91]. 
Bushen Huoluo Decoction and Yishen Jianpi Yangxue 
Tongli Formula restore autophagy balance by targeting 
exosomal miR-30a-5p/SOCS3/mTOR and PI3K/AKT1/
FOXO1 pathways [92, 93]. Chaonangqing Formula tar-
gets GATA3 and MYCT1 to regulate both apoptosis and 
autophagy in GCs [94]. Monomers such as berberine, 
curcumin, and protocatechuic acid restore autophagy 
and alleviate insulin resistance via AMPK/mTOR and 
NF-κB pathways [95–97]. Naringenin and morin enhance 
both apoptosis and autophagy markers in endometrial 
cells, alleviating hyperplasia [98]. These compounds offer 
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Fig. 1  Mechanisms underlying obesity-associated PCOS. (A) Autophagy dysregulation: Obesity-induced IR and HA promote oxidative stress, impairing 
autophagic flux in GCs and disrupting follicular development. (B) Chronic low-grade inflammation: Adipocyte-derived pro-inflammatory cytokines (e.g., 
TNF-α, IL-6) activate immune pathways such as NF-κB and NLRP3 inflammasome, contributing to ovarian inflammation and androgen excess. (C) ER stress: 
Obesity and metabolic imbalance lead to ER stress, triggering unfolded protein response (UPR) and exacerbating cellular apoptosis, hormone imbalance, 
and inflammation. (D) Gut microbiota dysbiosis: High-fat diet-induced obesity alters gut microbial composition and reduces SCFA production, increas-
ing intestinal permeability and LPS translocation, which enhances systemic inflammation and insulin resistance. (E) HPO axis disruption: Obesity impairs 
GnRH pulsatility and disrupts LH/FSH secretion, resulting in abnormal folliculogenesis and anovulation, further aggravating PCOS symptoms
The Fig. 1 is by Figdraw (https://www.figdraw.com)
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Category Intervention Mechanism Evidence 
Level

Autophagy 
modulation

Pharmacological Melatonin ↑Mitophagy via Clock gene regulation Preclinical

Clomiphene + Dexamethasone ↓Apoptosis/autophagy via ROS-JNK/MAPK-P21 Preclinical
TCM Formulas Cangfu Daotan Decoction ↓Autophagy via FOXK1/Wnt/β-catenin Preclinical

Guizhi Fuling Wan ↓Autophagy via H19/miR-29b-3p/mTOR Preclinical
Bushen Huoluo Decoction Regulates miR-30a-5p/SOCS3/mTOR/NLRP3 Preclinical
Chao Nang Qing ↑Autophagy/apoptosis via GATA3 Preclinical

TCM Monomers Berberine + Metformin AMPK/AKT/mTOR pathway regulatio Preclinical
Protocatechuic Acid PI3K-mediated ↓ROS/autophagy Preclinical
Nanocurcumin Modulates miR-223-3p/NF-κB autophagy Preclinical
Naringenin/Morin ↑Autophagic apoptosis Preclinical

Acupuncture Electroacupuncture ↓PI3K/AKT/mTOR pathway Preclinical
Regulation 
of Chronic 
Low-Grade 
Inflammation

Lifestyle 
Modification

Diet-induced weight loss ↓Inflammatory markers (CRP, IL-6, TNF-α) Clinical

Pharmacological EE/DRSP ↑Ferritin levels (potentially related to inflammation) Clinical
Atorvastatin ↓Adipose tissue dysfunction and inflammation markers 

(ASP, IL-6, MCP-1)
Clinical

Crocin ↓Inflammatory markers (IL-6, TNF-α) Clinical
(RCT)

TCM Formulas HeQi San ↓Inflammatory markers (IL-6, TNF-α) Preclinical
Bailing Capsule ↓intestinal-derived LPS-TLR4 inflammatory pathway Preclinical
Qi Gong Wan ↑Nrf2/HO-1/Cyp1b1 pathway Preclinical
Zishen Qingre Lishi Huayu 
Recipe

↓IL-6, IL-1β, and CRP Preclinical

Guizhi Fuling Wan combined 
with rosiglitazone

↓PI3K/AKT/NF-κB and ↑Nrf2/HO-1 pathways Preclinical

TCM Monomers Curcumin ↓TLR4/MyD88/NF-κB signaling pathway Preclinical
Osthole ↓Nrf2-Foxo1-GSH-NF-κB signaling pathway Preclinical
Resveratrol ↓NLRP3/GSDMD/Caspase-1-mediated pyroptosis Preclinical

Alleviation of 
Endoplasmic 
Reticulum Stress

Pharmacological adrenomedullin (ADM) ↑PI3K/Akt1 and PPAR-γ pathways Preclinical

TCM Formulas Bushen Huatan Granules and 
Kunling Wan

↓GRP78, C/EBP, p-IRE-I, ATF4 Preclinical

TCM Monomers Curcumin ↓IRE1α-XBP1 pathway Preclinical
astaxanthin ↓ GRP78, CHOP, XBP1, ATF4, ATF6 and DR5 Clinical

(RCT)
Gut Microbiota 
Remodeling

Lifestyle 
Modification

Nutritional Intervention ↓ B. vulgatus, F. prausnitzii, E. rectale, B. uniformis, and 
Roseburia intestinalis;
↑A. hadrus, F. plautii, Lactobacillus ruminis, Bifidobacterium 
breve, and Oligotropha carboxidovorans

Clinical

probiotics ↑Abundance of gut microbiota Clinical
Pharmacological Metformin ↑beneficial bacteria Clinical
TCM Formulas Buzhong Yiqi Prescription ↑[Eubacterium]_rectale_group, Escherichia-Shigella, and 

Fusicatenibacter
Clinical

Qi Gong Wan ↑the diversity of intestinal flora, ↑the number of intestinal 
probiotics

Clinical

TCM Monomers Antrodia cinnamomea polysac-
charide (ACP)

↑the α-diversity and modulated the abundance of phyla 
(Bacteroidetes, Firmicutes, and Verrucomicrobia) and gen-
era (Lactobacillus, Helicobacter, Akkermansia, Oscillospira, 
Coprococcus, Roseburia, Blautia, and Allobaculum)

Preclinical

Acupuncture Electroacupuncture Tenericutes at the phylum level and Prevotella_9 at the 
genus level

Preclinical

Table 1  Summary of therapeutic interventions for obesity-related PCOS
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multi-level regulatory effects on autophagy and repre-
sent potential adjunctive therapies for PCOS in obese 
individuals.

Acupuncture
Electroacupuncture (EA) dynamically adjusts autophagy 
by inhibiting or enhancing PI3K/AKT/mTOR signaling, 
improving hyperandrogenism and insulin sensitivity in 
PCOS models [99–102].

In summary, targeting autophagy represents a mecha-
nistic avenue for PCOS intervention. While diverse 
modalities converge on PI3K/AKT/mTOR and oxida-
tive stress-related pathways, current evidence is pre-
dominantly preclinical, and further clinical validation is 
essential.

Regulation of chronic low-grade inflammation
CLGI, driven by adipokines, IR, and oxidative stress, 
plays a central role in the pathogenesis of obesity-related 
PCOS. Targeting inflammatory pathways has demon-
strated potential in alleviating both metabolic abnormali-
ties and reproductive dysfunction.

Lifestyle interventions
Lifestyle interventions remain the first-line strategy. 
Caloric restriction and dietary changes lower proin-
flammatory cytokines, such as IL-6 and TNF-α, improv-
ing insulin sensitivity and ovulatory outcomes [103]. In 
severely obese patients (BMI ≥ 35 kg/m²), bariatric sur-
gery further reduces adipose inflammation and enhances 
reproductive function [104].

Pharmacological therapy
Several pharmacologic agents modulate inflammation 
by regulating lipid metabolism and suppressing cytokine 
production. EE/DRSP reduces ferritin levels, indirectly 
alleviating IR-related inflammation [105]. Crocin and 
atorvastatin improve lipid profiles and inhibit NF-κB-
mediated cytokine expression, restoring endocrine func-
tion [106, 107].

Chinese herbal formulas and monomers
TCM regulates inflammation and exerts anti-inflamma-
tory effects through multiple pathways. Heqi San, Bailing 

Capsule, and QGW suppress proinflammatory cytokines 
via inhibition of NF-κB or activation of the IRS1/PI3K/
AKT and Nrf2-HO-1 signaling [108–110]. Zishen Qin-
gre Lishi Huayu recipe and the combination of GFW and 
rosiglitazone also reduce CRP, IL-6, and IL-1β expression 
in ovarian tissues, although their precise mechanisms 
remain unclear [111, 112].

Among monomers, curcumin and ostiole inhibit 
NF-κB signaling through the TLR4/MyD88 pathway or 
the Nrf2–Foxo1–GSH axis, respectively [113, 114]. Res-
veratrol attenuates NLRP3-mediated pyroptosis to sup-
port follicular development [115]. Although Althaea 
officinalis extract and astaxanthin combined with cur-
cumin show additive anti-inflammatory effects, the pre-
cise mechanisms remain unclear [116, 117].

In summary, these herbal formulas and monomers 
converge mainly on the NF-κB and NLRP3 pathways, 
offering mechanistic insight into their anti-inflammatory 
potential in PCOS. Nonetheless, their efficacy requires 
confirmation in well-designed clinical studies to enable 
clinical translation.

Alleviation of endoplasmic reticulum stress
ERS contributes to the metabolic and reproductive dys-
functions in PCOS by promoting GC apoptosis and 
impairing follicular development. Therapeutic modu-
lation of ERS has emerged as a promising strategy for 
restoring ovarian homeostasis.

Pharmacological interventions
Pharmacological agents alleviate ERS in PCOS by tar-
geting unfolded protein response (UPR) pathways. Met-
formin downregulates ER stress markers such as CHOP, 
thereby reducing GC apoptosis and promoting follicu-
lar development [19]. Irisin inhibits IRE1α signaling to 
improve ovarian dysfunction [69], while adrenomedul-
lin (ADM) exerts anti-apoptotic and anti-inflammatory 
effects via PI3K/Akt and PPAR-γ activation [118]. These 
agents converge on UPR suppression and mitochondrial 
protection, highlighting their potential to restore GC 
homeostasis.

Category Intervention Mechanism Evidence 
Level

Regulation of the 
HPO Axis

Pharmacological Metformin Combined with 
Exenatide

↑HPO axis Clinical

TCM Monomers total flavonoids from Eucommia 
ulmoides Oliv. leaves

↓Kiss1/IGF-1/LEPR/AR in the HPO axis Preclinical

Crocetin ↑AVPV-kisspeptin, ↓ARC-kisspeptin Preclinical
Acupuncture cheek acupuncture Regulate HPO axis Clinical

Table 1  (continued) 
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Chinese herbal formulas and monomers
TCM interventions alleviate ERS through stress-related 
pathways. Bushen Jieyu Tiaochong Decoction and Kun-
ling Pill mitigate ERS-induced apoptosis by suppressing 
PERK/ATF4/CHOP and IRE1α pathways in GCs [119, 
120]. At the monomer level, curcumin blocks the IRE1α-
XBP1 axis while activating PI3K/AKT [119, 121]. Astax-
anthin reduces GRP78 and CHOP expression, though its 
metabolic effects require further validation [122].

Acupuncture
EA alleviates ER stress in GCs primarily through inhibi-
tion of the PERK/eIF2α/ATF4/CHOP pathway and may 
also exert enhanced autophagy, contributing to organelle 
quality control [101, 102].

ERS-targeted therapies in PCOS primarily act through 
PERK and IRE1α signaling to reduce GC apoptosis and 
restore ovarian function. Although pharmacological 
agents, TCM, and acupuncture exhibit convergent effects 
via UPR inhibition and mitochondrial protection, most 
findings remain preclinical, underscoring the need for 
further clinical validation.

Gut microbiota remodeling
Gut microbiota dysbiosis contributes to the metabolic, 
inflammatory, and reproductive abnormalities observed 
in obesity-related PCOS. Modulating the gut microbiota 
has thus emerged as a promising therapeutic strategy. 
This section outlines current strategies—nutritional, 
pharmacological, and TCM-based—that aim to restore 
microbial balance and alleviate PCOS.

Nutritional intervention
Dietary modification improves PCOS symptoms by 
modulating the gut microbiota and reducing systemic 
inflammation. Clinical studies have shown reductions in 
BMI, fasting blood glucose (FBG), total cholesterol (TC), 
and TG, alongside increased abundance of beneficial 
bacteria (e.g., Bacteroidetes) and decreased Firmicutes 
[123]. These findings support nutritional intervention as 
a first-line strategy to restore microbial and metabolic 
homeostasis.

Pharmacological therapy
Metformin enhances SCFA production, improves insu-
lin sensitivity, and modifies gut microbiota composition. 
Combined with probiotics or calorie restriction, it shows 
synergistic effects on glycemic control and hormone reg-
ulation [124, 125]. These benefits are mediated through 
the interplay between microbial metabolites and host 
metabolism.

0.3.4.3 Chinese Herbal Formulas and Monomers.
TCM formulations improve gut microbial diversity and 

metabolic parameters. Buzhong Yiqi Decoction and Heqi 

San promote microbial balance and ameliorate metabolic 
dysfunction [108, 126]. Jiawei Qigong Pill and Bailing 
Capsule attenuate inflammation and IR by inhibiting the 
LPS–TLR4 signaling pathway [109, 127]. At the mono-
mer level, Antrodia camphorata polysaccharides enhance 
intestinal barrier integrity and regulate the relative abun-
dance of Bacteroides, Firmicutes, and Verrucomicrobia, 
contributing to systemic improvement [128].

Acupuncture
EA alters gut microbiota composition, particularly the 
abundance of Tenericutes and Prevotella_9, and improves 
brown adipose tissue function [129]. Collectively, these 
changes enhance metabolic and reproductive outcomes 
in PCOS models.

Interventions targeting gut microbiota—via diet, drugs, 
TCM, or acupuncture—modulate microbial composi-
tion, reinforce intestinal barrier integrity, and suppress 
inflammation. These findings underscore the close inter-
play between gut microbiota, metabolic regulation, and 
reproductive function in obesity-associated PCOS, high-
lighting the gut as a promising therapeutic target.

Regulation of the HPO axis
HPO axis dysregulation is a central driver of hormonal 
imbalance, anovulation, and metabolic disturbances in 
PCOS. Therapeutic modulation of this axis shows prom-
ise, particularly in obese phenotypes. This section reviews 
pharmacological, TCM-derived, and acupuncture-based 
strategies aimed at restoring HPO axis homeostasis.

Pharmacological therapy
The combination of metformin and Glucagon-Like Pep-
tide-1 (GLP-1) receptor agonist exenatide improves 
insulin sensitivity and suppresses ovarian androgen pro-
duction. These agents may help restore HPO axis func-
tion by rebalancing gonadotropin secretion, particularly 
the LH/FSH ratio, and improving systemic metabolic 
profiles in obese PCOS patients [130].

Traditional Chinese medicine monomers
Flavonoids from Eucommia ulmoides and crocetin exert 
central and peripheral regulation on the HPO axis. Total 
flavonoids of Eucommia ulmoides leaves (TFEL) improve 
hormone levels and ovarian/pancreatic histopathology, 
while crocetin modulates hypothalamic kisspeptin neu-
rons—enhancing AVPV-kisspeptin and inhibiting ARC-
kisspeptin—to improve ovulatory function [131, 132]. 
These findings highlight their potential in endocrine 
reprogramming.

Acupuncture
Cheek acupuncture promotes ovulation and endometrial 
receptivity by reflexively modulating HPO axis activity 
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[133]. Although the precise mechanisms remain unclear, 
it is hypothesized to influence hypothalamic neuroendo-
crine signaling via somatic–visceral reflex pathways.

In summary, therapies targeting the HPO axis—includ-
ing metabolic agents, TCM monomers, and acupunc-
ture—aim to restore axis homeostasis and improve 
reproductive and metabolic outcomes in obesity-related 
PCOS.

Discussion
PCOS is a common endocrine–metabolic disorder in 
reproductive-aged women. Obesity is not only a com-
mon comorbidity but also an important contributor to 
its pathogenesis. It exacerbates reproductive and meta-
bolic dysfunction through interconnected mechanisms, 
including dysregulated autophagy, ERS, chronic low-
grade inflammation, gut microbiota imbalance, and HPO 
axis disruption.

Among these mechanisms, impaired autophagy in 
GCs and TCs contributes to follicular arrest by disrupt-
ing ovarian microenvironmental stability. ERS, often 
driven by lipotoxicity, IR, and HA, promotes GC apop-
tosis and impairs ovulation. CLGI, maintained by adipo-
kine secretion and metabolic stress, further aggravates 
endocrine and immune dysfunction. Gut microbiota also 
plays a regulatory role by affecting systemic metabolism, 
immune balance, and steroid hormone levels. Addition-
ally, HPO axis dysfunction—mediated by leptin resis-
tance, neuropeptide imbalance, and disrupted steroid 
feedback—links obesity to ovulatory disturbances.

Lifestyle intervention remains the cornerstone of treat-
ment for obese PCOS patients, with strong evidence 
supporting its benefits on metabolic and reproductive 
outcomes. Complementary strategies, particularly TCM 
and acupuncture, show potential in modulating key path-
ological processes such as autophagy, CLGI, ERS, and 
HPO axis dysfunction. These therapies offer multi-target 
regulation and may serve as adjuncts to conventional 
treatment. Integrated strategies that combine TCM 
with Western medicine hold potential for individualized 
management.

However, while TCM-based interventions demonstrate 
mechanistic promise, their clinical efficacy remains inad-
equately validated within the framework of evidence-
based medicine. Current findings are primarily derived 
from preclinical studies or small-scale clinical trials, 
often with methodological limitations. Future research 
should prioritize large-scale, high-quality randomized 
controlled trials, adopt standardized outcome measures, 
and further explore molecular mechanisms to support 
the integration of TCM into modern PCOS treatment.

Overall, obesity plays a pivotal role in the pathophysi-
ology of PCOS, and interventions targeting its core 

mechanisms may enable more personalized and evi-
dence-based management.
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