REVIEW Open Access

Pathogenesis and treatment of obesityrelated polycystic ovary syndrome

Xiaoling Ouyang¹, Qi Zhou^{1,2*}, Hong Tang¹ and Linxia Li^{1,3*}

Abstract

Polycystic ovary syndrome (PCOS) is a gynecological endocrine disorder affecting 5%–18% of women of reproductive age worldwide. It is characterized by hyperandrogenemia (HA), anovulation, and polycystic ovarian morphology (PCOM), severely impacting women's reproductive and metabolic health. Obesity has become increasingly common among PCOS patients in recent years. Obesity can further exacerbate the metabolic and reproductive dysfunctions of PCOS through mechanisms such as insulin resistance (IR) and chronic low-grade inflammation. It may even have adverse effects on mental health. However, the specific pathogenesis and effective therapeutic targets of PCOS with obesity remain incompletely understood. This review presents a narrative review of recent research, focusing on the molecular mechanisms that drive autophagy in the context of obesity associated with polycystic ovary syndrome (PCOS), endoplasmic reticulum stress (ERS), gut microbiota imbalances, and disruptions in the hypothalamic-pituitary-ovarian (HPO) axis. It also explores corresponding therapeutic strategies. The aim is to provide fresh perspectives and insights for future mechanistic research and clinical interventions in this field.

Keywords Polycystic ovary syndrome, Obesity, Autophagy, Endoplasmic reticulum stress, Chronic low-grade inflammation, Gut microbiota, Hypothalamic-ovarian (HPO) axis, Traditional chinese medicine, Pathogenesis

*Correspondence: Qi Zhou zhouqi399239@163.com Linxia Li llx002399@163.com

¹Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China

²Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China ³Department of Obstetrics and Gynecology, Shanghai General Hospital, Shangahi Jiao Tong University School of Medicine, Shanghai 200080, China

Introduction

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders among women of reproductive age, affecting approximately 5%–18% of this population worldwide [1, 2]. It is primarily defined by the presence of hyperandrogenemia (HA), ovulatory dysfunction, and polycystic ovarian morphology (PCOM). The clinical manifestations of PCOS are notably diverse and are often accompanied by comorbidities such as glucose and lipid metabolism disorders, obesity, cardiovascular diseases, and other systemic conditions [3].

Obesity is notably prevalent among PCOS women, with an estimated 49%-80% of affected individuals being classified as overweight or obese [4–6]. It is both a common comorbidity and a significant pathogenic factor in PCOS [7, 8]. Clinical studies demonstrate that obese PCOS women (BMI \geq 25 kg/m²) typically experience

© The Author(s) 2025. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

more severe endocrine disturbances, including HA, as well as greater abnormalities in glucose and lipid metabolism, such as insulin resistance (IR), increased visceral fat, and reproductive dysfunction, compared to non-obese PCOS patients [9, 10]. The high prevalence of obesity in PCOS is unlikely to be coincidental; increasing evidence suggests that it contributes actively to disease progression through intertwined metabolic and endocrine disruptions.

Mechanistically, visceral adipose tissue (VAT) is a key hub linking obesity to PCOS pathophysiology. Excessive release of free fatty acids (FFAs) from VAT induces systemic IR [11, 12]. The subsequent hyperinsulinemia suppresses sex hormone-binding globulin (SHBG) synthesis, increasing circulating levels of free testosterone [13]. Furthermore, insulin and insulin-like growth factor 1 (IGF-1) have been demonstrated to promote testosterone synthesis by activating insulin receptors and insulin-like growth factor 1 receptors (IGF-1R) on ovarian theca cells (TCs), which subsequently enhances the enzymatic activity of cytochrome P450c17α (CYP17A1) [14]. Elevated androgen levels further aggravate metabolic homeostasis by promoting the differentiation of preadipocytes into visceral adipocytes via androgen receptor (AR) signaling, while simultaneously inhibiting lipolysis in subcutaneous fat [10, 15]. This reciprocal interaction between HA and IR may synergistically promote visceral fat accumulation, forming a self-reinforcing cycle [16].

Obesity also disrupts neuroendocrine signaling, particularly the hypothalamic-pituitary-ovarian (HPO) axis. In adipose tissue, aromatase (CYP19A1) converts excess androgens into estrogens, which exert negative feedback on gonadotropin-releasing hormone (GnRH) secretion. This results in an altered luteinizing hormone (LH) to follicle-stimulating hormone (FSH) ratio, contributing to ovulatory dysfunction and menstrual irregularities.

Additionally, obesity contributes to ovarian dysfunction through multiple molecular mechanisms. Within the ovary, the interplay between HA and IR initiates a series of pathological events, including endoplasmic reticulum stress (ERS) and autophagy dysfunction in ovarian granulosa cells (GCs). These cellular alterations culminate in GC dysfunction and apoptosis, ultimately impairing folliculogenesis [17–19]. The excessive accumulation of adipose tissue contributes to a systemic inflammatory response and disrupts the composition of the gut microbiota. These alterations, mediated by the secretion of various adipokines, synergistically exacerbate metabolic and reproductive dysfunctions in PCOS [16, 20].

Collectively, obesity is increasingly recognized as a major contributor to PCOS progression. However, the downstream pathways—such as aberrant autophagy, ER stress, chronic inflammation, gut dysbiosis, and HPO axis disruption—remain to be fully elucidated. Although

modern medicine and traditional Chinese medicine (TCM) show therapeutic complementarity, elucidating their shared molecular targets is a prerequisite for developing precision interventions.

This narrative review is based on literature retrieved from PubMed, Web of Science, and CNKI between 2018 and 2025, using keywords including "PCOS," "obesity," "autophagy," "endoplasmic reticulum stress," "inflammation," "gut microbiota," "HPO axis," and "traditional Chinese medicine". Relevant preclinical and clinical studies were included to provide mechanistic and therapeutic insights into obesity-related PCOS. In this review, we summarize the underlying mechanisms and therapeutic strategies, aiming to offer new insights into the individualized treatment of obesity-associated PCOS.

Pathogenesis mechanism Autophagy

Autophagy is a cellular process essential for maintaining homeostasis by degrading damaged organelles and proteins via lysosomes. It encompasses three primary types: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). Macroautophagy is particularly important in the ovary, where it plays a pivotal role in regulating oocyte development, follicular growth, and atresia. In PCOS, especially in the context of obesity, dysregulated autophagy disrupts GCs and TCs function, contributing to follicular arrest and anovulation [21]. Notably, this dysregulation is cell-type specific: excessive autophagy is often observed in GCs, while autophagic impairment is more common in TCs [22–27].

IR is tightly linked to altered autophagy in PCOS, particularly in GCs. In PCOS patients, reduced ATG7 levels correlate negatively with HOMA-IR, indicating disrupted autophagy [28]. IR promotes mitochondrial dysfunction and oxidative stress, activating mitophagy via the mitochondrial unfolded protein response (UPR^mt). This leads to GC dysfunction and premature ovarian aging [29]. Conversely, excessive autophagy activation—especially via high mobility group box 1 (HMGB1)—negatively regulates insulin signaling by suppressing IRS-1 and inhibiting the PI3K/AKT pathway, creating a self-perpetuating loop between IR and imbalance between autophagic activation and degradation [30, 31]. This bidirectional interaction is a critical driver of metabolic and reproductive dysfunction in obese PCOS.

HA also induces excessive autophagy in GCs via multiple converging molecular mechanisms. It suppresses the PI3K/AKT/mTOR axis and promotes ROS accumulation—two key pathways known to trigger autophagic activation [32–34]. These changes are consistently observed in clinical and animal models, evidenced by elevated LC3-II/LC3-I ratios and reduced p62 expression [23–25]. Additionally. BORC complex subunit

BOP1 (BOP1) overexpression triggers a nucleolar stress response, further inhibiting mTOR signaling via p53, thereby exacerbating autophagic activity [23]. In parallel, CISD2 upregulation suppresses mitophagy, leading to ROS buildup and mitochondrial dysfunction, which disrupts GC survival [35]. Wnt5a has emerged as a potential modulator capable of restoring autophagic homeostasis in HA-induced PCOS. By downregulating PI3K/AKT/ mTOR signaling, Wnt5a attenuates excessive autophagy and alleviates GC dysfunction in experimental models [36]. Although most evidence centers on GCs, HA disrupts autophagy in peripheral metabolic tissues. In skeletal muscle cells, HA impairs glucose uptake by inhibiting the mTORC1-autophagy axis, resulting in impaired glucose uptake and aggravated IR [37]. Additionally, the mitophagy-related gene MAP1LC3A is positively correlated with serum testosterone in PCOS patients and may serve as a biomarker of ovulatory dysfunction [38]. These findings underscore the role of HA in disrupting both canonical autophagy and mitophagy across multiple tissues, thereby promoting both ovarian and metabolic dysfunction in obese PCOS.

FFAs in obesity-related PCOS disrupt autophagy homeostasis in both TCs and GCs, worsening follicular and metabolic dysfunction. In TCs, FFAs impair autophagosome-lysosome fusion, leading to p62 accumulation. This suppression is associated with upregulated CYP17A1 and PAI-1 expression, which enhance androgen production via ROS/p38 and JNK signaling [22]. In GCs, FFAs stimulate the secretion of adipokine chemerin, which excessively activates autophagy in GCs by inhibiting the PI3K/Akt/mTOR pathway [39–41]. The resulting excessive autophagy activation leads to mitochondrial damage and cellular stress, thereby impairing folliculogenesis. This pathophysiological axis links lipid metabolism, autophagy dysregulation, and ovarian dysfunction. Together, FFAs induce divergent autophagic phenotypes—suppressed flux in TCs and excessive activation in GCs-via distinct molecular pathways. These effects collectively disrupt follicular integrity and contribute to reproductive and metabolic abnormalities of obese PCOS.

In patients with PCOS and obesity, autophagy is primarily marked by excessive activation of ovarian GCs and impaired autophagy in TCs. This dysregulation is driven by several factors, including IR, HA, and abnormal lipid metabolism. These factors contribute to abnormalities in follicular development and a cycle of metabolic dysfunction. Future research should aim to dissect cell-specific autophagic pathways and develop targeted interventions to restore autophagic balance and improve reproductive-metabolic outcomes in PCOS.

Chronic low-grade inflammation

Chronic low-grade inflammation (CLGI), characterized by the persistent elevation of pro-inflammatory mediators such as CRP, IL-6, and TNF- α , is a defining feature of obesity-associated PCOS [42–47]. Compared with non-obese patients with PCOS, those with obesity demonstrated more severe inflammatory responses, including increased levels of IL-6, TNF- α , neutrophil-to-lymphocyte ratio (NLR), high-sensitivity C-reactive protein (hs-CRP), and mean platelet volume (MPV) levels [48, 49]. These systemic alterations reflect a sustained inflammatory milieu driven by both metabolic stress and endocrine perturbations.

At the molecular level, CLGI in PCOS is orchestrated by aberrant immune cell activation, inflammasome signaling, and tissue-specific inflammatory responses. In the liver, overnutrition suppresses AMP-activated protein kinase (AMPK) activation, leading to activation of the NLRP3 inflammasome and IL-1β maturation—key events in initiating hepatic inflammation. Simultaneously, IRS1 Ser307 phosphorylation further links metabolic stress to immune dysregulation [50]. In the endometrium, the reduced abundance of CD56+ NK cells and CD163+ M2 macrophages compromises local immune tolerance, favoring a pro-inflammatory microenvironment [51, 52]. In ovarian GCs, inflammatory stimuli such as advanced glycation end-products (AGEs) and high glucose activate the p38 MAPK pathway, enhancing secretion of IL-6 and TNF- α and impairing follicular development [53].

In addition to canonical immune pathways, endocrine-immune crosstalk reinforces the inflammatory state. While IR and HA are known to contribute to inflammation, emerging evidence suggests that inflammation may independently drive metabolic and reproductive dysfunction in PCOS. For example, elevated IL-15 levels in patients and animal models activate p38 and JNK signaling in GCs, stimulating pro-inflammatory cytokine production and exacerbating steroidogenic imbalance [54]. Furthermore, adipokines such as chemerin accumulate in the follicular fluid and directly impair oocyte competence by disrupting intracellular signaling [40, 41, 55].

Dysregulated lipid metabolism further exacerbates CLGI by altering adipose tissue homeostasis and immune balance. PCOS patients frequently exhibit dyslipidemia, typified by elevated triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels alongside reduced high-density lipoprotein cholesterol (HDL-C). These lipid abnormalities positively correlate with inflammatory markers such as CRP and the systemic immune-inflammation index (SII) [56, 57]. Increased leukocyte counts and immune cell activation further reflect this link [58]. Notably, compensatory mechanisms may exist. In PCOS mouse models, the peptide hormone adropin promotes M2 macrophage polarization and eNOS/

PPARγ-mediated browning of white adipose tissue, thereby mitigating inflammation and restoring metabolic homeostasis [59].

Obesity may exacerbate CLGI in PCOS through the promotion of HA, IR, and lipid metabolism disorders, which in turn aggravate metabolic dysfunction. However, inflammation may also function as an independent pathogenic factor in PCOS, potentially contributing to disease heterogeneity between obese and non-obese patients. Future research should focus on clarifying causal relationships and developing therapeutic strategies targeting the metabolism-inflammation axis.

Endoplasmic reticulum stress

Endoplasmic reticulum stress (ERS) is a cellular adaptive response triggered by disruptions in ER homeostasis, affecting protein folding, calcium balance, and lipid processing. Moderate levels of ERS are essential for oocyte maturation [60]. However, excessive or sustained ERS has been demonstrated to significantly exacerbate the pathological progression of PCOS [61].

Clinical and experimental studies have consistently demonstrated heightened ERS in PCOS, particularly in ovarian GCs. Elevated levels of ERS markers, such as glucose-regulated protein 78 (GRP78) and activating transcription factor 4 (ATF4), have been identified in the GCs of PCOS patients [62, 63]. Animal models further corroborate these findings, showing the activation of key ERS pathways, including inositol-requiring enzyme 1α (IRE1 α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK), correlating with increased GC apoptosis and impaired follicular development [61, 64].

A primary upstream trigger of ERS in PCOS is metabolic overload, particularly FFA accumulation associated with obesity. Elevated FFAs activate PERK and IRE1 α signaling in GCs, inducing apoptosis and steroidogenic dysfunction. Simultaneously, FFAs upregulate CYP17A1 and PAI-1 via the ROS/p38 and JNK axes, enhancing androgen synthesis and amplifying ERS. Inflammatory cytokines released from adipose tissue, such as IL-6 and TNF- α , further intensify ER stress signaling, indicating cross-talk between metabolic and immune perturbations [61–63, 65, 66].

Hyperglycemia and glucose toxicity, frequently observed in insulin-resistant PCOS patients, represent an additional ERS trigger. Persistent high glucose conditions exacerbate oxidative damage and upregulate ERS markers such as ATF4 and XBP1 in GCs, promoting apoptosis and compromising follicular integrity [65, 67]. This hyperglycemia-induced ERS further disrupts systemic insulin sensitivity, creating a detrimental feedforward loop that aggravates metabolic dysfunction.

HA exacerbates ERS through oxidative and inflammatory mechanisms. Androgen excess activates the NOX4/

ROS axis, leading to sustained PERK–ATF4 signaling and induction of the LINC00173–HRK apoptotic pathway, while concurrently inhibiting PI3K/Akt-mediated survival signaling [64, 68]. In parallel, HA enhances the IRE1 α -TXNIP-NLRP3 inflammasome activation, leading to pyroptosis and local inflammation in GCs [69, 70]. Additionally, HA promotes lipid peroxidation and ferroptosis in GCs, while systemically inducing ERS in uterine smooth muscle, impairing contractility and implantation, and in pancreatic β -cells, driving hyperinsulinemia [71–74].

In conclusion, ERS in PCOS represents a critical downstream effector of integrated metabolic and endocrine insults. By disrupting GC survival, steroidogenesis, and tissue homeostasis, sustained ERS contributes to follicular arrest, chronic inflammation, and systemic dysfunction. Therapeutic strategies targeting ERS-related pathways may offer novel avenues for restoring reproductive and metabolic balance in PCOS.

Gut microbiota dysbiosis

Gut microbiota plays a central role in host metabolic homeostasis, immune regulation, and endocrine signaling. Through fermentation of dietary fibers, it produces short-chain fatty acids (SCFAs), maintains intestinal barrier integrity, and regulates tryptophan and bile acid metabolism. These microbial metabolites serve as signaling molecules that regulate systemic inflammation, glucose metabolism, and hormonal balance.

In obese PCOS patients, gut dysbiosis is a common feature, marked by reduced α -diversity, depletion of beneficial microbes (e.g., Bacteroidetes, Firmicutes), and increased abundance of pro-inflammatory taxa (Proteobacteria, Fusobacterium, Prevotella) [75, 76]. The decline in butyrate-producing bacteria and reduced SCFA levels, weakening the intestinal barrier and facilitating lipopolysaccharide (LPS) leakage into the circulation. LPS activates the TLR4/NF- κ B pathway, inducing CLGI. Moreover, SCFAs deficiency promotes epitranscriptomic changes, such as m6A methylation of FOSL2, which activates the NLRP3 inflammasome and enhances IL-1 β secretion [49].

In parallel, the altered microbial composition impairs lipid and bile acid metabolism. Enrichment of Megamonas and Dialister further contributes to IR via disruptions in fatty acid and sphingolipid signaling pathways [77]. Additionally, a decrease in secondary bile acids, such as GDCA and TUDCA, impairs IL-22 secretion, exacerbating local ovarian inflammation and metabolic imbalance [78].

Importantly, HA aggravates gut dysbiosis through AR-mediated regulation of the FKBP5 gene, promoting DNA hypomethylation and microbial imbalance. This HA-microbiota feedback loop further impairs metabolic

homeostasis. Androgens also reshape bile acid profiles and intestinal immunity, further shifting microbial ecology toward pro-inflammatory taxa [79]. This creates a vicious cycle wherein gut dysbiosis and HA reinforce each other, jointly driving endocrine and metabolic dysfunction.

In summary, gut microbiota dysbiosis in obese PCOS is both a cause and consequence of metabolic imbalance, mediated through disrupted SCFA and bile acid metabolism, loss of barrier integrity, and androgen-induced microbial shifts. These findings highlight the potential of microbiota-centered therapies—such as probiotics, prebiotics, and fecal microbiota transplantation—to restore host–microbiota homeostasis and break the pathophysiological cycle of obesity-related PCOS.

Hypothalamic-pituitary-ovarian (HPO) axis

The HPO axis plays a central role in regulating reproductive function by orchestrating the secretion of LH and FSH through the pulsatile release of GnRH. This process coordinates follicular development and sex hormone synthesis. Under physiological conditions, estradiol exerts positive feedback to induce a preovulatory LH surge, while negative feedback maintains hormonal homeostasis [80].

In PCOS, the frequency of GnRH pulses is pathologically elevated, preferentially enhancing LH secretion over FSH. This disrupts the FSH-mediated induction of CYP19A1 (aromatase), impairing the conversion of androgens to estrogens, and resulting in HA and follicular arrest—core features of PCOS pathophysiology [81].

Obesity exacerbates neuroendocrine dysregulation through multiple interrelated mechanisms. Leptin resistance and chronic hyperleptinemia overstimulate GnRH neurons via kisspeptin signaling, promoting excessive LH release and subsequent androgen overproduction [80, 82, 83]. Concurrently, hyperinsulinemia activates AgRP neurons and increases the expression of neuropeptide Y (NPY) and GABA, which synergistically upregulate hypothalamic kisspeptin and GnRH expression, further aggravating LH hypersecretion [84-86]. Altered gut microbiota—characterized by reduced levels of secondary bile acids such as glycodeoxycholic acid (GDCA) and tauroursodeoxycholic acid (TUDCA)—impair the bile acid-IL-22 signaling axis, diminishing hypothalamic sensitivity to androgen feedback and accelerating GnRH pulse generation [78].

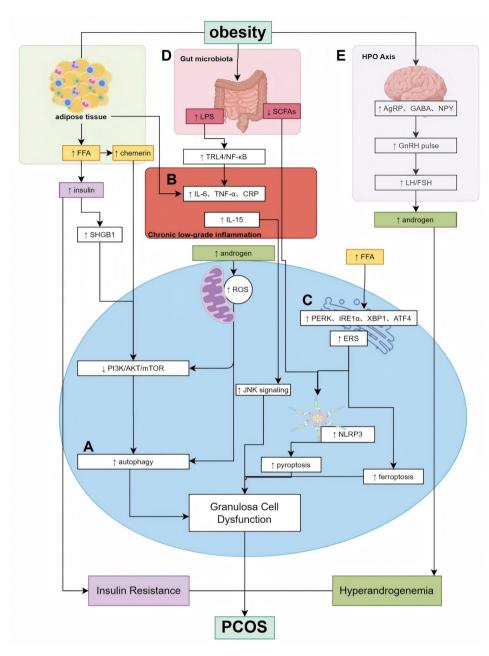
These convergent pathways disrupt the LH/FSH ratio, amplify ovarian androgen output, and impair folliculogenesis. Ultimately, obesity-induced neuroendocrine reprogramming intensifies HPO axis dysfunction, contributing to anovulation and reproductive failure in PCOS.

In summary, obesity-driven alterations in metabolic, endocrine, and microbial pathways converge to intensify HPO axis dysfunction in PCOS Figure 1. Further elucidation of the molecular crosstalk between adipokines, central neuronal circuits, and peripheral metabolites may reveal novel targets for neuromodulatory interventions aimed at restoring reproductive endocrine homeostasis in obese PCOS patients.

Treatment

The treatment of obesity-associated PCOS requires a comprehensive, multi-targeted strategy due to the complexity of its pathophysiology. Current therapeutic approaches aim to restore metabolic and reproductive homeostasis by modulating autophagy, alleviating ERS, reducing chronic inflammation, remodeling gut microbiota, and regulating the HPO axis. Integrative therapies that combine TCM and Western medicine have shown synergistic benefits in improving metabolic profiles and ovarian function Table 1. However, the underlying mechanisms remain incompletely understood, and further research is essential to support their clinical translation.

Autophagy modulation


Dysregulated autophagy contributes to follicular arrest and metabolic dysfunction in obesity-associated PCOS. Preclinical studies suggest that pharmacological agents, TCM, and acupuncture modulate key autophagy-related pathways, potentially restoring cellular homeostasis.

Pharmacological therapy

Melatonin promotes mitophagy via upregulation of Clock genes, while the combination of clomiphene and dexamethasone attenuates GC apoptosis by targeting the ROS–JNK/MAPK–p21 axis and restoring autophagic flux [87, 88].

Chinese herbal formulas and monomers

Chinese herbal interventions modulate autophagy via multiple signaling pathways in both GCs and endometrial cells. Cangfu Daotan Decoction and Guizhi Fuling Wan (GFW) inhibit autophagy via the FOXK1/Wnt/β-catenin and PI3K/AKT/mTOR axis, respectively [30, 89-91]. Bushen Huoluo Decoction and Yishen Jianpi Yangxue Tongli Formula restore autophagy balance by targeting exosomal miR-30a-5p/SOCS3/mTOR and PI3K/AKT1/ FOXO1 pathways [92, 93]. Chaonangging Formula targets GATA3 and MYCT1 to regulate both apoptosis and autophagy in GCs [94]. Monomers such as berberine, curcumin, and protocatechuic acid restore autophagy and alleviate insulin resistance via AMPK/mTOR and NF-κB pathways [95–97]. Naringenin and morin enhance both apoptosis and autophagy markers in endometrial cells, alleviating hyperplasia [98]. These compounds offer

Fig. 1 Mechanisms underlying obesity-associated PCOS. (**A**) Autophagy dysregulation: Obesity-induced IR and HA promote oxidative stress, impairing autophagic flux in GCs and disrupting follicular development. (**B**) Chronic low-grade inflammation: Adipocyte-derived pro-inflammatory cytokines (e.g., TNF-α, IL-6) activate immune pathways such as NF-κB and NLRP3 inflammasome, contributing to ovarian inflammation and androgen excess. (**C**) ER stress: Obesity and metabolic imbalance lead to ER stress, triggering unfolded protein response (UPR) and exacerbating cellular apoptosis, hormone imbalance, and inflammation. (**D**) Gut microbiota dysbiosis: High-fat diet-induced obesity alters gut microbial composition and reduces SCFA production, increasing intestinal permeability and LPS translocation, which enhances systemic inflammation and insulin resistance. (**E**) HPO axis disruption: Obesity impairs GnRH pulsatility and disrupts LH/FSH secretion, resulting in abnormal folliculogenesis and anovulation, further aggravating PCOS symptoms The Fig. 1 is by Figdraw (https://www.figdraw.com)

Table 1 Summary of therapeutic interventions for obesity-related PCOS

	Category	Intervention	Mechanism	Evidence Level
Autophagy modulation	Pharmacological	Melatonin	†Mitophagy via Clock gene regulation	Preclinical
		Clomiphene + Dexamethasone	↓Apoptosis/autophagy via ROS-JNK/MAPK-P21	Preclinical
	TCM Formulas	Cangfu Daotan Decoction	↓Autophagy via FOXK1/Wnt/β-catenin	Preclinical
		Guizhi Fuling Wan	↓Autophagy via H19/miR-29b-3p/mTOR	Preclinical
		Bushen Huoluo Decoction	Regulates miR-30a-5p/SOCS3/mTOR/NLRP3	Preclinica
		Chao Nang Qing	↑Autophagy/apoptosis via GATA3	Preclinica
	TCM Monomers	Berberine + Metformin	AMPK/AKT/mTOR pathway regulatio	Preclinica
		Protocatechuic Acid	PI3K-mediated \$\pmoxROS/autophagy	Preclinica
		Nanocurcumin	Modulates miR-223-3p/NF-κB autophagy	Preclinica
		Naringenin/Morin	†Autophagic apoptosis	Preclinica
	Acupuncture	Electroacupuncture	↓PI3K/AKT/mTOR pathway	Preclinica
Regulation of Chronic Low-Grade Inflammation	Lifestyle Modification	Diet-induced weight loss	↓Inflammatory markers (CRP, IL-6, TNF-α)	Clinical
	Pharmacological	EE/DRSP	†Ferritin levels (potentially related to inflammation)	Clinical
		Atorvastatin	↓Adipose tissue dysfunction and inflammation markers (ASP, IL-6, MCP-1)	Clinical
		Crocin	↓Inflammatory markers (IL-6, TNF-α)	Clinical (RCT)
	TCM Formulas	HeQi San	\downarrow Inflammatory markers (IL-6, TNF- α)	Preclinical
		Bailing Capsule	↓intestinal-derived LPS-TLR4 inflammatory pathway	Preclinica
		Qi Gong Wan	↑Nrf2/HO-1/Cyp1b1 pathway	Preclinica
		Zishen Qingre Lishi Huayu Recipe	↓IL-6, IL-1β, and CRP	Preclinica
		Guizhi Fuling Wan combined with rosiglitazone	↓PI3K/AKT/NF-κB and ↑Nrf2/HO-1 pathways	Preclinical
	TCM Monomers	Curcumin	↓TLR4/MyD88/NF-кВ signaling pathway	Preclinical
		Osthole	↓Nrf2-Foxo1-GSH-NF-ĸB signaling pathway	Preclinical
		Resveratrol	↓NLRP3/GSDMD/Caspase-1-mediated pyroptosis	Preclinica
Alleviation of Endoplasmic Reticulum Stress	Pharmacological	adrenomedullin (ADM)	†PI3K/Akt1 and PPAR-γ pathways	Preclinical
	TCM Formulas	Bushen Huatan Granules and Kunling Wan	↓GRP78, C/EBP, p-IRE-I, ATF4	Preclinical
	TCM Monomers	Curcumin	↓IRE1α-XBP1 pathway	Preclinical
		astaxanthin	↓ GRP78, CHOP, XBP1, ATF4, ATF6 and DR5	Clinical (RCT)
Gut Microbiota Remodeling	Lifestyle Modification	Nutritional Intervention	↓ B. vulgatus, F. prausnitzii, E. rectale, B. uniformis, and Roseburia intestinalis;	Clinical
			†A. hadrus, F. plautii, Lactobacillus ruminis, Bifidobacterium breve, and Oligotropha carboxidovorans	
		probiotics	†Abundance of gut microbiota	Clinical
	Pharmacological	Metformin	†beneficial bacteria	Clinical
	TCM Formulas	Buzhong Yiqi Prescription	↑[Eubacterium]_rectale_group, Escherichia-Shigella, and Fusicatenibacter	Clinical
		Qi Gong Wan	†the diversity of intestinal flora, †the number of intestinal probiotics	Clinical
	TCM Monomers	Antrodia cinnamomea polysac- charide (ACP)	†the α-diversity and modulated the abundance of phyla (Bacteroidetes, Firmicutes, and Verrucomicrobia) and genera (Lactobacillus, Helicobacter, Akkermansia, Oscillospira, Coprococcus, Roseburia, Blautia, and Allobaculum)	Preclinical
	Acupuncture	Electroacupuncture	Tenericutes at the phylum level and Prevotella_9 at the genus level	Preclinical

Table 1 (continued)

	Category	Intervention	Mechanism	Evidence Level
Regulation of the HPO Axis	Pharmacological	Metformin Combined with Exenatide	↑HPO axis	Clinical
	TCM Monomers	total flavonoids from Eucommia ulmoides Oliv. leaves	↓Kiss1/IGF-1/LEPR/AR in the HPO axis	Preclinical
		Crocetin	↑AVPV-kisspeptin, ↓ARC-kisspeptin	Preclinical
	Acupuncture	cheek acupuncture	Regulate HPO axis	Clinical

multi-level regulatory effects on autophagy and represent potential adjunctive therapies for PCOS in obese individuals.

Acupuncture

Electroacupuncture (EA) dynamically adjusts autophagy by inhibiting or enhancing PI3K/AKT/mTOR signaling, improving hyperandrogenism and insulin sensitivity in PCOS models [99–102].

In summary, targeting autophagy represents a mechanistic avenue for PCOS intervention. While diverse modalities converge on PI3K/AKT/mTOR and oxidative stress-related pathways, current evidence is predominantly preclinical, and further clinical validation is essential.

Regulation of chronic low-grade inflammation

CLGI, driven by adipokines, IR, and oxidative stress, plays a central role in the pathogenesis of obesity-related PCOS. Targeting inflammatory pathways has demonstrated potential in alleviating both metabolic abnormalities and reproductive dysfunction.

Lifestyle interventions

Lifestyle interventions remain the first-line strategy. Caloric restriction and dietary changes lower proinflammatory cytokines, such as IL-6 and TNF- α , improving insulin sensitivity and ovulatory outcomes [103]. In severely obese patients (BMI \geq 35 kg/m²), bariatric surgery further reduces adipose inflammation and enhances reproductive function [104].

Pharmacological therapy

Several pharmacologic agents modulate inflammation by regulating lipid metabolism and suppressing cytokine production. EE/DRSP reduces ferritin levels, indirectly alleviating IR-related inflammation [105]. Crocin and atorvastatin improve lipid profiles and inhibit NF-κB-mediated cytokine expression, restoring endocrine function [106, 107].

Chinese herbal formulas and monomers

TCM regulates inflammation and exerts anti-inflammatory effects through multiple pathways. Heqi San, Bailing

Capsule, and QGW suppress proinflammatory cytokines via inhibition of NF- κ B or activation of the IRS1/PI3K/AKT and Nrf2-HO-1 signaling [108–110]. Zishen Qingre Lishi Huayu recipe and the combination of GFW and rosiglitazone also reduce CRP, IL-6, and IL-1 β expression in ovarian tissues, although their precise mechanisms remain unclear [111, 112].

Among monomers, curcumin and ostiole inhibit NF- κ B signaling through the TLR4/MyD88 pathway or the Nrf2–Foxo1–GSH axis, respectively [113, 114]. Resveratrol attenuates NLRP3-mediated pyroptosis to support follicular development [115]. Although Althaea officinalis extract and astaxanthin combined with curcumin show additive anti-inflammatory effects, the precise mechanisms remain unclear [116, 117].

In summary, these herbal formulas and monomers converge mainly on the NF-kB and NLRP3 pathways, offering mechanistic insight into their anti-inflammatory potential in PCOS. Nonetheless, their efficacy requires confirmation in well-designed clinical studies to enable clinical translation.

Alleviation of endoplasmic reticulum stress

ERS contributes to the metabolic and reproductive dysfunctions in PCOS by promoting GC apoptosis and impairing follicular development. Therapeutic modulation of ERS has emerged as a promising strategy for restoring ovarian homeostasis.

Pharmacological interventions

Pharmacological agents alleviate ERS in PCOS by targeting unfolded protein response (UPR) pathways. Metformin downregulates ER stress markers such as CHOP, thereby reducing GC apoptosis and promoting follicular development [19]. Irisin inhibits IRE1α signaling to improve ovarian dysfunction [69], while adrenomedullin (ADM) exerts anti-apoptotic and anti-inflammatory effects via PI3K/Akt and PPAR-γ activation [118]. These agents converge on UPR suppression and mitochondrial protection, highlighting their potential to restore GC homeostasis.

Chinese herbal formulas and monomers

TCM interventions alleviate ERS through stress-related pathways. Bushen Jieyu Tiaochong Decoction and Kunling Pill mitigate ERS-induced apoptosis by suppressing PERK/ATF4/CHOP and IRE1 α pathways in GCs [119, 120]. At the monomer level, curcumin blocks the IRE1 α -XBP1 axis while activating PI3K/AKT [119, 121]. Astaxanthin reduces GRP78 and CHOP expression, though its metabolic effects require further validation [122].

Acupuncture

EA alleviates ER stress in GCs primarily through inhibition of the PERK/eIF2 α /ATF4/CHOP pathway and may also exert enhanced autophagy, contributing to organelle quality control [101, 102].

ERS-targeted therapies in PCOS primarily act through PERK and IRE1 α signaling to reduce GC apoptosis and restore ovarian function. Although pharmacological agents, TCM, and acupuncture exhibit convergent effects via UPR inhibition and mitochondrial protection, most findings remain preclinical, underscoring the need for further clinical validation.

Gut microbiota remodeling

Gut microbiota dysbiosis contributes to the metabolic, inflammatory, and reproductive abnormalities observed in obesity-related PCOS. Modulating the gut microbiota has thus emerged as a promising therapeutic strategy. This section outlines current strategies—nutritional, pharmacological, and TCM-based—that aim to restore microbial balance and alleviate PCOS.

Nutritional intervention

Dietary modification improves PCOS symptoms by modulating the gut microbiota and reducing systemic inflammation. Clinical studies have shown reductions in BMI, fasting blood glucose (FBG), total cholesterol (TC), and TG, alongside increased abundance of beneficial bacteria (e.g., Bacteroidetes) and decreased Firmicutes [123]. These findings support nutritional intervention as a first-line strategy to restore microbial and metabolic homeostasis.

Pharmacological therapy

Metformin enhances SCFA production, improves insulin sensitivity, and modifies gut microbiota composition. Combined with probiotics or calorie restriction, it shows synergistic effects on glycemic control and hormone regulation [124, 125]. These benefits are mediated through the interplay between microbial metabolites and host metabolism.

0.3.4.3 Chinese Herbal Formulas and Monomers.

TCM formulations improve gut microbial diversity and metabolic parameters. Buzhong Yiqi Decoction and Heqi

San promote microbial balance and ameliorate metabolic dysfunction [108, 126]. Jiawei Qigong Pill and Bailing Capsule attenuate inflammation and IR by inhibiting the LPS–TLR4 signaling pathway [109, 127]. At the monomer level, Antrodia camphorata polysaccharides enhance intestinal barrier integrity and regulate the relative abundance of *Bacteroides, Firmicutes*, and *Verrucomicrobia*, contributing to systemic improvement [128].

Acupuncture

EA alters gut microbiota composition, particularly the abundance of *Tenericutes* and *Prevotella_9*, and improves brown adipose tissue function [129]. Collectively, these changes enhance metabolic and reproductive outcomes in PCOS models.

Interventions targeting gut microbiota—via diet, drugs, TCM, or acupuncture—modulate microbial composition, reinforce intestinal barrier integrity, and suppress inflammation. These findings underscore the close interplay between gut microbiota, metabolic regulation, and reproductive function in obesity-associated PCOS, highlighting the gut as a promising therapeutic target.

Regulation of the HPO axis

HPO axis dysregulation is a central driver of hormonal imbalance, anovulation, and metabolic disturbances in PCOS. Therapeutic modulation of this axis shows promise, particularly in obese phenotypes. This section reviews pharmacological, TCM-derived, and acupuncture-based strategies aimed at restoring HPO axis homeostasis.

Pharmacological therapy

The combination of metformin and Glucagon-Like Peptide-1 (GLP-1) receptor agonist exenatide improves insulin sensitivity and suppresses ovarian androgen production. These agents may help restore HPO axis function by rebalancing gonadotropin secretion, particularly the LH/FSH ratio, and improving systemic metabolic profiles in obese PCOS patients [130].

Traditional Chinese medicine monomers

Flavonoids from *Eucommia ulmoides* and crocetin exert central and peripheral regulation on the HPO axis. Total flavonoids of *Eucommia ulmoides* leaves (TFEL) improve hormone levels and ovarian/pancreatic histopathology, while crocetin modulates hypothalamic kisspeptin neurons—enhancing AVPV-kisspeptin and inhibiting ARC-kisspeptin—to improve ovulatory function [131, 132]. These findings highlight their potential in endocrine reprogramming.

Acupuncture

Cheek acupuncture promotes ovulation and endometrial receptivity by reflexively modulating HPO axis activity

[133]. Although the precise mechanisms remain unclear, it is hypothesized to influence hypothalamic neuroendocrine signaling via somatic–visceral reflex pathways.

In summary, therapies targeting the HPO axis—including metabolic agents, TCM monomers, and acupuncture—aim to restore axis homeostasis and improve reproductive and metabolic outcomes in obesity-related PCOS.

Discussion

PCOS is a common endocrine—metabolic disorder in reproductive-aged women. Obesity is not only a common comorbidity but also an important contributor to its pathogenesis. It exacerbates reproductive and metabolic dysfunction through interconnected mechanisms, including dysregulated autophagy, ERS, chronic low-grade inflammation, gut microbiota imbalance, and HPO axis disruption.

Among these mechanisms, impaired autophagy in GCs and TCs contributes to follicular arrest by disrupting ovarian microenvironmental stability. ERS, often driven by lipotoxicity, IR, and HA, promotes GC apoptosis and impairs ovulation. CLGI, maintained by adipokine secretion and metabolic stress, further aggravates endocrine and immune dysfunction. Gut microbiota also plays a regulatory role by affecting systemic metabolism, immune balance, and steroid hormone levels. Additionally, HPO axis dysfunction—mediated by leptin resistance, neuropeptide imbalance, and disrupted steroid feedback—links obesity to ovulatory disturbances.

Lifestyle intervention remains the cornerstone of treatment for obese PCOS patients, with strong evidence supporting its benefits on metabolic and reproductive outcomes. Complementary strategies, particularly TCM and acupuncture, show potential in modulating key pathological processes such as autophagy, CLGI, ERS, and HPO axis dysfunction. These therapies offer multi-target regulation and may serve as adjuncts to conventional treatment. Integrated strategies that combine TCM with Western medicine hold potential for individualized management.

However, while TCM-based interventions demonstrate mechanistic promise, their clinical efficacy remains inadequately validated within the framework of evidence-based medicine. Current findings are primarily derived from preclinical studies or small-scale clinical trials, often with methodological limitations. Future research should prioritize large-scale, high-quality randomized controlled trials, adopt standardized outcome measures, and further explore molecular mechanisms to support the integration of TCM into modern PCOS treatment.

Overall, obesity plays a pivotal role in the pathophysiology of PCOS, and interventions targeting its core

mechanisms may enable more personalized and evidence-based management.

Abbreviations

PCOS Polycystic ovary syndrome
HA Hyperandrogenemia
PCOM Polycystic ovarian morphology
BMI Body mass index
IR Insulin resistance

IR Insulin resistance
VAT Visceral adipose tissue
FFAs Free fatty acids
SHBG Sex hormone-binding

SHBG Sex hormone-binding globulin IGF-1 Insulin-like growth factor 1 IGF-1R Insulin-like growth factor 1 receptors

TCs Theca cells

CYP17A1 Cytochrome P450c17a AR Androgen receptors

CYP19A1 Aromatase

HPO axis Hypothalamic-pituitary-ovary axis

Estrogens

GnRH Ronadotropin-releasing hormone

FSH Follicle-stimulating hormone
ERS Endoplasmic reticulum stress
GCs Granulosa cells

GCS Granulosa cells

TCM Traditional Chinese Medicine

CMA Chaperone-mediated autophagy

UPR^mt Unfolded protein response

HMGB1 High mobility group box 1

BOP1 BORC complex subunit BOP1

PAI-1 Plasminogen activator inhibitor-1

CLGI Chronic low-grade inflammation

CRP C-reactive protein IL-18 Interleukin 18

TNF-a Tumor necrosis factor-alpha
NLR Neutrophil-to-lymphocyte ratio
hs-CRP high-sensitivity C-reactive protein
MPV Mean platelet volume
AMPK AMP-activated protein kinase
AGEs Advanced glycation end-products

TG Triglyceride

LDL-C Low-density lipoprotein cholesterol
HDL-C High-density lipoprotein cholesterol
SII Systemic immune-inflammation index
GRP78 Glucose-regulated protein 78
ATF4 Activating transcription factor 4

IRE1a Inositol-requiring enzyme 1a

PERK Protein kinase RNA-like endoplasmic reticulum kinase

SCFAs Short-chain fatty acids LPS Lipopolysaccharide Activity of protein kinase B **AKT** JNK c-Jun N-terminal kinase TLR-4 Toll-like receptor 4 TG Triglycerides IFN-y Interferon-gamma IL-22 Interleukin-22 AgRP Agouti-related protein Gamma-aminobutyric acid GABA

Glycodeoxycholic acid

TUDCA Tauroursodeoxycholic acid NPY Neuropeptide Y LEPR Leptin receptors Guizhi Fuling Wan **GFW** Electroacupuncture EΑ QGW Qi Gong Wan ADM Adrenomedullin FBG Fasting blood glucose TC Total cholesterol

GDCA

GLP-1 Glucagon-Like Peptide-1
TFEL Total flavonoids of Eucommia ulmoides leaves

Acknowledgements

Not applicable.

Author contributions

Xiaoling Ouyang surveyed the literature and had primary responsibility of manuscript writing. Linxia Li, Qi Zhou and Hong Tang critically revised the work.

Funding

Project supported by the Shanghai Pudong New Area Science and Economic Commission of Medical and Health Care (livelihood special project): Study on the Molecular Mechanism of STUB1 Inhibition of Granulosa Cell Senescence to Regulate the Occurrence of Polycystic Ovary Syndrome (PKJ2022-Y09).

Data availability

No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate

Not applicable (review article).

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Received: 3 May 2025 / Accepted: 15 September 2025 Published online: 14 November 2025

References

- Salari N, Nankali A, Ghanbari A, Jafarpour S, Ghasemi H, Dokaneheifard S, et al. Global prevalence of polycystic ovary syndrome in women worldwide: a comprehensive systematic review and meta-analysis. Arch Gynecol Obstet. 2024;310(3):1303–14.
- Joham AE, Norman RJ, Stener-Victorin E, Legro RS, Franks S, Moran LJ, et al. Polycystic ovary syndrome. Lancet Diabetes Endocrinol. 2022;10(9):668–80.
- Rotterdam EA-SP. Revised 2003 consensus on diagnostic criteria and longterm health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.
- Sendur SN, Yildiz BO. Influence of ethnicity on different aspects of polycystic ovary syndrome: a systematic review. Reprod Biomed Online. 2021;42(4):799–818.
- Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.
- Hoeger KM, Dokras A, Piltonen T. Update on PCOS: Consequences, Challenges, and guiding treatment. J Clin Endocrinol Metab. 2021;106(3):e1071–83.
- Liu QW, Zhu ZZ, Kraft P, Deng QL, Stener-Victorin E, Jiang X. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: a large-scale genome-wide cross-trait analysis. Bmc Med. 2022;20(1).
- Simons PIHG, Cornelissen MEB, Valkenburg O, Onland-Moret NC, van der Schouw YT, Stehouwer CDA, et al. Causal relationship between polycystic ovary syndrome and coronary artery disease: A Mendelian randomisation study. Clin Endocrinol. 2022;96(4):599–604.
- Haase CL, Varbo A, Laursen PN, Schnecke V, Balen AH. vol 38, deac267,. Association between body mass index, weight loss and the chance of pregnancy in women with polycystic ovary syndrome and overweight or obesity: a retrospective cohort study in the UK (2023). Human Reproduction. 2023;38(4):776-.
- Pan X. Metabolic characteristics of obese patients with polycystic ovarian syndrome: a meta-analysis. Gynecol Endocrinol. 2023;39(1):2239934.
- Jurczewska J, Ostrowska J, Chelchowska M, Panczyk M, Rudnicka E, Kucharski M et al. Abdominal obesity in women with polycystic ovary syndrome and its relationship with Diet, physical activity and insulin resistance: A pilot study. Nutrients. 2023;15(16).

- Zhao H, Zhang J, Cheng X, Nie X, He B. Insulin resistance in polycystic ovary syndrome across various tissues: an updated review of pathogenesis, evaluation, and treatment. J Ovarian Res. 2023;16(1):9.
- Samarasinghe SNS, Ostarijas E, Long MJ, Erridge S, Purkayastha S, Dimitriadis GK, et al. Impact of insulin sensitization on metabolic and fertility outcomes in women with polycystic ovary syndrome and overweight or obesity-A systematic review, meta-analysis, and meta-regression. Obes Rev. 2024;25(7):e13744.
- Delitala AP, Capobianco G, Delitala G, Cherchi PL, Dessole S. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch Gynecol Obstet. 2017;296(3):405–19.
- Anagnostis P, Tarlatzis BC, Kauffman RP. Polycystic ovarian syndrome (PCOS): Long-term metabolic consequences. Metabolism. 2018;86:33–43.
- Barber TM, Hanson P, Weickert MO, Franks S. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin Med Insights Reprod Health. 2019;13:1179558119874042.
- Bril F, Ezeh U, Amiri M, Hatoum S, Pace L, Chen YH, et al. Adipose tissue dysfunction in polycystic ovary syndrome. J Clin Endocrinol Metab. 2023;109(1):10–24.
- Tao T, Xu H. Autophagy and Obesity-Related reproductive dysfunction. Adv Exp Med Biol. 2020;1207:463–6.
- Jin J, Ma Y, Tong X, Yang W, Dai Y, Pan Y, et al. Metformin inhibits testosteroneinduced Endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod. 2020;35(5):1145–58.
- Zhang H, Butoyi C, Yuan G, Jia J. Exploring the role of gut microbiota in obesity and PCOS: current updates and future prospects. Diabetes Res Clin Pract. 2023;202:110781.
- Kumariya S, Ubba V, Jha RK, Gayen JR. Autophagy in ovary and polycystic ovary syndrome: role, dispute and future perspective. Autophagy. 2021;17(10):2706–33.
- Kobayashi M, Yoshino O, Nakashima A, Ito M, Nishio K, Ono Y, et al. Inhibition of autophagy in Theca cells induces CYP17A1 and PAI-1 expression via ROS/p38 and JNK signalling during the development of polycystic ovary syndrome. Mol Cell Endocrinol. 2020;508:110792.
- Ji R, Zhang Z, Yang Z, Chen X, Yin T, Yang J. BOP1 contributes to the activation of autophagy in polycystic ovary syndrome via nucleolar stress response. Cell Mol Life Sci. 2024;81(1):101.
- 24. Li D, You Y, Bi FF, Zhang TN, Jiao J, Wang TR, et al. Autophagy is activated in the ovarian tissue of polycystic ovary syndrome. Reproduction. 2018:155(1):85–92.
- Khatun A, Nasrin T, Hassan MS, Hoque M, Hoda M, Ali S. A review on the nexus of autophagy genes from the perspective of polycystic ovary syndrome. Biol Cell. 2024;116(7):e2300069.
- 26. Li X, Qi J, Zhu Q, He Y, Wang Y, Lu Y, et al. The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol. 2019;35(8):669–72.
- Bozdemir N, Kablan T, Sukur G, Cinar O, Uysal F. Obesity induced by a high-fat diet changes p62 protein levels in mouse reproductive organs. J Mol Histol. 2024;56(1):13.
- Lu L, Wu B, Peng C, Zhang W, Zhao Y, Huang C, et al. Lower serum ATG7 levels linked to insulin resistance in women with polycystic ovary syndrome. Med Sci Monit. 2024;30:e944556.
- Tian Y, Pan P, Luo X, Sun Y, Yang X, Gao H, et al. Palmitic acid-induced insulin resistance triggers granulosa cell senescence by disruption of the UPR(mt)/ mitophagy/lysosome axis. Chem Biol Interact. 2025;411:111450.
- Liu M, Zhu H, Zhu Y, Hu X. Guizhi fuling Wan reduces autophagy of granulosa cell in rats with polycystic ovary syndrome via restoring the PI3K/AKT/mTOR signaling pathway. J Ethnopharmacol. 2021;270:113821.
- Zhang C, Hu J, Wang W, Sun Y, Sun K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J. 2020;34(7):9563–74.
- Wang F, Han J, Wang X, Liu Y, Zhang Z. Roles of HIF-1alpha/BNIP3 mediated mitophagy in mitochondrial dysfunction of letrozole-induced PCOS rats. J Mol Histol. 2022;53(5):833–42.
- 33. Qin Y, Li T, Zhao H, Mao Z, Ding C, Kang Y. Integrated transcriptomic and epigenetic study of PCOS: impact of Map3k1 and Map1lc3a promoter methylation on autophagy. Front Genet. 2021;12:620241.
- Gu R, Dai F, Xiang C, Chen J, Yang D, Tan W, et al. BMP4 participates in the pathogenesis of PCOS by regulating glucose metabolism and autophagy in granulosa cells under hyperandrogenic environment. J Steroid Biochem Mol Biol. 2023;235:106410.
- 35. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42.

- Ma Y, Ma Y, Li P, Ma F, Yu M, Xu J, et al. Wnt5a alleviates the symptoms of PCOS by modulating PI3K/AKT/mTOR pathway-mediated autophagy in granulosa cells. Cell Signal. 2025;127:111575.
- Song X, Shen Q, Fan L, Yu Q, Jia X, Sun Y, et al. Dehydroepiandrosteroneinduced activation of mTORC1 and Inhibition of autophagy contribute to skeletal muscle insulin resistance in a mouse model of polycystic ovary syndrome. Oncotarget. 2018;9(15):11905–21.
- Yang Y, Chen X, Liao X, Jiang W, Zhou Y, Sun Y, et al. Identification of MAP1LC3A as a promising mitophagy-related gene in polycystic ovary syndrome. Sci Rep. 2024;14(1):16982.
- Mansoori A, Amoochi-Foroushani G, Zilaee M, Hosseini SA, Azhdari M. Serum and follicular fluid chemerin and chemerin mRNA expression in women with polycystic ovary syndrome: systematic review and meta-analysis. Endocrinol Diabetes Metab. 2022;5(1):e00307.
- Gao Y, Xin C, Fan H, Sun X, Wang H. Circulating Apelin and chemerin levels in patients with polycystic ovary syndrome: A meta-analysis. Front Endocrinol (Lausanne). 2022;13:1076951.
- 41. Pourteymour Fard Tabrizi F, Abbasalizad Farhangi M, Vaezi M, Hemmati S. Changes of body composition and Circulating neopterin, omentin-1, and chemerin in response to thylakoid-rich spinach extract with a hypocaloric diet in obese women with polycystic ovary syndrome: A randomized controlled trial. Phytother Res. 2021;35(5):2594–606.
- 42. Orisaka M, Mizutani T, Miyazaki Y, Shirafuji A, Tamamura C, Fujita M, et al. Chronic low-grade inflammation and ovarian dysfunction in women with polycystic ovarian syndrome, endometriosis, and aging. Front Endocrinol (Lausanne). 2023;14:1324429.
- 43. Regidor PA, de la Rosa X, Muller A, Mayr M, Gonzalez Santos F, Gracia Banzo R et al. PCOS: A chronic disease that fails to produce adequately specialized Pro-Resolving lipid mediators (SPMs). Biomedicines. 2022;10(2).
- Aboeldalyl S, James C, Seyam E, Ibrahim EM, Shawki HE, Amer S. The role of chronic inflammation in polycystic ovarian Syndrome-A systematic review and Meta-Analysis. Int J Mol Sci. 2021;22(5).
- Alsaffar SF, Ibrahim SK. Assessment of chemokines MIP-1alpha and MIP-1 Betain Iraqi women with polycystic ovarian syndrome. Egypt J Immunol. 2023;30(4):40–6.
- Rudnicka E, Kunicki M, Suchta K, Machura P, Grymowicz M, Smolarczyk R. Inflammatory markers in women with polycystic ovary syndrome. Biomed Res Int. 2020;2020:4092470.
- 47. Zhai Y, Pang Y. Systemic and ovarian inflammation in women with polycystic ovary syndrome. J Reprod Immunol. 2022;151:103628.
- Liu W, Li S, Lou X, Li D, Wang F, Zhang Z. Assessment of neutrophil to lymphocyte ratio, C-reactive protein, mean platelet volume in obese, and Nonobese patients with polycystic ovary syndrome. Med (Baltim). 2022;101(29):e29678.
- 49. Liu K, He X, Huang J, Yu S, Cui M, Gao M, et al. Short-chain fatty acid-butyric acid ameliorates granulosa cells inflammation through regulating METTL3-mediated N6-methyladenosine modification of FOSL2 in polycystic ovarian syndrome. Clin Epigenetics. 2023;15(1):86.
- Velickovic N, Micic B, Teofilovic A, Milovanovic M, Jovanovic M, Djordjevic A, et al. Overfeeding in the early postnatal period aggravates inflammation and hepatic insulin sensitivity in the 5alpha-dihydrotestosterone-induced animal model of PCOS. Front Endocrinol (Lausanne). 2024;15:1402905.
- Calcaterra V, Verduci E, Cena H, Magenes VC, Todisco CF, Tenuta E et al. Polycystic ovary syndrome in Insulin-Resistant adolescents with obesity: the role of nutrition therapy and food supplements as a strategy to protect fertility. Nutrients. 2021;13(6).
- Liu S, Hong L, Mo M, Xiao S, Chen C, Li Y, et al. Evaluation of endometrial immune status of polycystic ovary syndrome. J Reprod Immunol. 2021;144:103382
- Silber M, Miller I, Bar-Joseph H, Ben-Ami I, Shalgi R. Elucidating the role of pigment epithelium-derived factor (PEDF) in metabolic PCOS models. J Endocrinol. 2020;244(2):297–308.
- Liu Y, Li Z, Wang Y, Cai Q, Liu H, Xu C, et al. IL-15 participates in the pathogenesis of polycystic ovary syndrome by affecting the activity of granulosa cells. Front Endocrinol (Lausanne). 2022;13:787876.
- Wang Y, Huang R, Li X, Zhu Q, Liao Y, Tao T, et al. High concentration of chemerin caused by ovarian hyperandrogenism May lead to poor IVF outcome in polycystic ovary syndrome: a pilot study. Gynecol Endocrinol. 2019:35(12):1072–7.
- Akpata CBN, Uadia PO, Okonofua FE. Association between C-Reactive protein and low-grade inflammation among Nigerian women with polycystic ovarian syndrome. West Afr J Med. 2023;40(10):1079–85.

- 57. Zhou X, Tian Y, Zhang X. Correlation and predictive value of systemic immune-inflammation index for dyslipidemia in patients with polycystic ovary syndrome. BMC Womens Health. 2024;24(1):564.
- Jiang H, Chen L, Tian T, Shi H, Huang N, Chi H, et al. Inflammation mediates the effect of adiposity and lipid metabolism indicators on the embryogenesis of PCOS women undergoing in vitro fertilization/intracytoplasmic sperm injection. Front Endocrinol (Lausanne). 2023;14:1198602.
- Zhang S, Li J, Lv X, Pan G, Liu Q, Zheng L, et al. Adropin-Driven browning: targeting M2 macrophages to combat PCOS. Int Immunopharmacol. 2025;149:114273.
- 60. Harada M, Takahashi N, Azhary JM, Kunitomi C, Fujii T, Osuga Y. Endoplasmic reticulum stress: a key regulator of the follicular microenvironment in the ovary. Mol Hum Reprod. 2021;27(1).
- Koike H, Harada M, Kusamoto A, Xu Z, Tanaka T, Sakaguchi N, et al. Roles of Endoplasmic reticulum stress in the pathophysiology of polycystic ovary syndrome. Front Endocrinol (Lausanne). 2023;14:1124405.
- 62. Sun HL, Tian MM, Jiang JX, Liu CJ, Zhai QL, Wang CY et al. Does Endoplasmic reticulum stress stimulate the apoptosis of granulosa cells in polycystic ovary syndrome? J Physiol Pharmacol. 2021;72(5).
- Azhary JMK, Harada M, Takahashi N, Nose E, Kunitomi C, Koike H, et al. Endoplasmic reticulum stress activated by androgen enhances apoptosis of granulosa cells via induction of death receptor 5 in PCOS. Endocrinology. 2019;160(1):119–32.
- 64. Yu N, Wu L, Xing X. NOX4 deficiency improves the impaired viability, inhibited the apoptosis and suppressed autophagy of DHEA-treated ovarian granulosa cells through inhibiting Endoplasmic reticulum stress via inactivating PERK/ ATF4 pathway. Tissue Cell. 2025;92:102640.
- 65. Cozzolino M, Herraiz S, Cakiroglu Y, Garcia-Velasco JA, Tiras B, Pacheco A, et al. Distress response in granulosa cells of women affected by PCOS with or without insulin resistance. Endocrine. 2023;79(1):200–7.
- Hua D, Zhou Y, Lu Y, Zhao C, Qiu W, Chen J, et al. Lipotoxicity impairs granulosa cell function through activated Endoplasmic reticulum stress pathway. Reprod Sci. 2020;27(1):119–31.
- Nasta TZ, Tabandeh MR, Amini K, Abbasi A, Dayer D, Jalili C. The influence of Indole propionic acid on molecular markers of steroidogenesis, ER stress, and apoptosis in rat granulosa cells exposed to high glucose conditions. J Steroid Biochem Mol Biol. 2024;240:106509.
- Zhao Y, Wu X, Meng F, Liu X, Yuan J, Zhang X, et al. ER stress-induced LINC00173 promotes the apoptosis of ovarian granulosa cells by regulating the HRK/PI3K/AKT pathway in polycystic ovary syndrome. Sci Rep. 2024;14(1):24636.
- Weng Y, Zhang Y, Wang D, Wang R, Xiang Z, Shen S, et al. Exercise-induced Irisin improves follicular dysfunction by inhibiting IRE1alpha-TXNIP/ROS-NLRP3 pathway in PCOS. J Ovarian Res. 2023;16(1):151.
- Xiang Y, Wang H, Ding H, Xu T, Liu X, Huang Z, et al. Hyperandrogenism drives ovarian inflammation and pyroptosis: A possible pathogenesis of PCOS follicular dysplasia. Int Immunopharmacol. 2023;125:111141. Pt A).
- Wang JX, Davies MJ, Norman RJ. Polycystic ovarian syndrome and the risk of spontaneous abortion following assisted reproductive technology treatment. Hum Reprod. 2001;16(12):2606–9.
- Hosseinzadeh P, Barsky M, Gibbons WE, Blesson CS. Polycystic ovary syndrome and the forgotten uterus. F S Rev. 2021;2(1):11–20.
- 73. Aguilar HN, Mitchell BF. Physiological pathways and molecular mechanisms regulating uterine contractility. Hum Reprod Update. 2010;16(6):725–44.
- Zhu B, Chen Y, Xu F, Shen X, Chen X, Lv J, et al. Androgens impair beta-cell function in a mouse model of polycystic ovary syndrome by activating Endoplasmic reticulum stress. Endocr Connect. 2021;10(3):265–72.
- Zhou L, Ni Z, Yu J, Cheng W, Cai Z, Yu C. Correlation between fecal metabolomics and gut microbiota in obesity and polycystic ovary syndrome. Front Endocrinol (Lausanne). 2020;11:628.
- Liang Y, Ming Q, Liang J, Zhang Y, Zhang H, Shen T. Gut microbiota dysbiosis in polycystic ovary syndrome: association with obesity - a preliminary report. Can J Physiol Pharmacol. 2020;98(11):803–9.
- Bai X, Ma J, Wu X, Qiu L, Huang R, Zhang H, et al. Impact of visceral obesity on structural and functional alterations of gut microbiota in polycystic ovary syndrome (PCOS): A pilot study using metagenomic analysis. Diabetes Metab Syndr Obes. 2023;16:1–14.
- Qi XY, Yun CY, Sun LL, Xia JL, Wu Q, Wang Y, et al. Gut microbiota-bile acidinterleukin-22 axis orchestrates polycystic ovary syndrome (25, Pg 1225, 2019). Nat Med. 2019;25(9):1459.
- 79. Huang F, Deng Y, Zhou M, Tang R, Zhang P, Chen R. Fecal microbiota transplantation from patients with polycystic ovary syndrome induces metabolic

- disorders and ovarian dysfunction in germ-free mice. BMC Microbiol. 2024;24(1):364.
- Goldsammler M, Merhi Z, Buyuk E. Role of hormonal and inflammatory alterations in obesity-related reproductive dysfunction at the level of the hypothalamic-pituitary-ovarian axis. Reprod Biol Endocrinol. 2018;16(1):45.
- Wang F, Zhang ZH, Xiao KZ, Wang ZC. Roles of Hypothalamic-Pituitary-Adrenal axis and Hypothalamus-Pituitary-Ovary axis in the abnormal endocrine functions in patients with polycystic ovary syndrome. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2017;39(5):699–704.
- 82. Estienne A, Bongrani A, Reverchon M, Rame C, Ducluzeau PH, Froment P et al. Involvement of novel Adipokines, Chemerin, Visfatin, resistin and Apelin in reproductive functions in normal and pathological conditions in humans and animal models. Int J Mol Sci. 2019;20(18).
- 83. Tena-Sempere M. Roles of Ghrelin and leptin in the control of reproductive function. Neuroendocrinology. 2007;86(3):229–41.
- 84. Coutinho EA, Prescott M, Hessler S, Marshall CJ, Herbison AE, Campbell RE. Activation of a classic hunger circuit slows luteinizing hormone pulsatility. Neuroendocrinology. 2020;110(7–8):671–87.
- Bai X, Fu L, Jin N, Liu X, Chen L, Shan Y, et al. Rescue of obesity-induced infertility in female mice by Silencing AgRP neurons. Biochem Biophys Res Commun. 2022;623:32–8.
- Chen X, Xiao Z, Cai Y, Huang L, Chen C. Hypothalamic mechanisms of obesity-associated disturbance of hypothalamic-pituitary-ovarian axis. Trends Endocrinol Metab. 2022;33(3):206–17.
- 87. Chen W, Zhang H, Guo B, Tao Y, Zhang J, Wang J, et al. Melatonin refines ovarian mitochondrial dysfunction in PCOS by regulating the circadian rhythm gene clock. Cell Mol Life Sci. 2025;82(1):104.
- 88. Liu R, Tang Y, Chen X, Shang X. Clomiphene and dexamethasone inhibit apoptosis and autophagy via the ROS-JNK/MAPK-P21 signaling pathway in PCOS. Histol Histopathol. 2024:18800.
- 89. Wang C, Yu J, Ding C, Chen C. CangFu Daotan Decoction improves polycystic ovarian syndrome by downregulating FOXK1. Gynecol Endocrinol. 2023;39(1):2244600.
- Zhang Y, Zhou H, Ding C. The ameliorative effect of CangFu Daotan Decoction on polycystic ovary syndrome of rodent model is associated with m6A methylation and Wnt/beta-catenin pathway. Gynecol Endocrinol. 2023;39(1):2181637.
- 91. Wu P, Zhu Y, Li J, Chen H, Wu H, Hu X, et al. Guizhi fuling Wan inhibits autophagy of granulosa cells in polycystic ovary syndrome mice via H19/miR-29b-3p. Gynecol Endocrinol. 2023;39(1):2210232.
- Huang Q, Li Y, Chen Z, Ou H, Tan Y, Lin H. Bushenhuoluo Decoction improves polycystic ovary syndrome by regulating Exosomal miR-30a-5p/ SOCS3/ mTOR/NLRP3 signaling-mediated autophagy and pyroptosis. J Ovarian Res. 2024;17(1):29.
- 93. Hu W, Xie N, Pan M, Zhang Q, Zhang H, Wang F, et al. Chinese herbal medicine alleviates autophagy and apoptosis in ovarian granulosa cells induced by testosterone through PI3K/AKT1/FOXO1 pathway. J Ethnopharmacol. 2024;318(Pt B):117025.
- Luo L, Shen Y, Ning D, Tang M, Xie L, Zheng Q, et al. Chao Nang Qing prescription promotes granulosa cell apoptosis and autophagy by targeting GATA3. Gynecol Endocrinol. 2023;39(1):2223724.
- Jin R, Chen A, Ye Y, Ren Y, Lu J, Xuan F, et al. Effect of Berberine combined with Metformin on autophagy in polycystic ovary syndrome by regulating AMPK/ AKT/mTOR pathway. Mol Reprod Dev. 2024;91(8):e23768.
- Wang F, Yin Y, Nie X, Zou Y, Tong X, Tong Y, et al. Protocatechuic acid alleviates polycystic ovary syndrome symptoms in mice by PI3K signaling in granulosa cells to relieve ROS pressure and apoptosis. Gynecol Endocrinol. 2023;39(1):2228917.
- Abuelezz NZ, Rashed MES, Nb Morcos L. Nanocurcumin modulates miR-223-3p and NF-kappaB levels in the pancreas of rat model of polycystic ovary syndrome to attenuate autophagy Flare, insulin resistance and improve Ss cell mass. J Exp Pharmacol. 2021;13:873–88.
- Yi Y, Liu J, Xu W. Naringenin and Morin reduces insulin resistance and endometrial hyperplasia in the rat model of polycystic ovarian syndrome through enhancement of inflammation and autophagic apoptosis. Acta Biochim Pol. 2022;69(1):91–100.
- 99. Huang J, Tang CL, Liao DM. [Effect of electroacupuncture on levels of serum sex hormones and expression of ovarian auto-phagy related factors in rats with polycystic ovary syndrome]. Zhen Ci Yan Jiu. 2020;45(8):640–4.
- 100. Chen X, Tang H, Liang Y, Wu P, Xie L, Ding Y, et al. Acupuncture regulates the autophagy of ovarian granulosa cells in polycystic ovarian syndrome

- ovulation disorder by inhibiting the PI3K/AKT/mTOR pathway through LncMEG3. Biomed Pharmacother. 2021;144:112288.
- 101. Cong J, Zhang Y, Yang X, Wang Y, He H, Wang M. Anti-polycystic ovary syndrome effect of electroacupuncture: IMD inhibits ER stress-mediated apoptosis and autophagy in granulosa cells. Biochem Biophys Res Commun. 2022;634:159–67.
- 102. Peng Y, Guo L, Gu A, Shi B, Ren Y, Cong J, et al. Electroacupuncture alleviates polycystic ovary syndrome-like symptoms through improving insulin resistance, mitochondrial dysfunction, and Endoplasmic reticulum stress via enhancing autophagy in rats. Mol Med. 2020;26(1):73.
- 103. Alenezi SA, Elkmeshi N, Alanazi A, Alanazi ST, Khan R, Amer S. The impact of Diet-Induced weight loss on inflammatory status and hyperandrogenism in women with polycystic ovarian syndrome (PCOS)-A systematic review and Meta-Analysis. J Clin Med. 2024;13(16).
- Liu J, Gu J, Zhang J, Xing D, Wang G. Improvement of polycystic ovary syndrome symptoms in obese patients. Altern Ther Health Med. 2024.
- 105. Gokkaya N, Gecmez G, Ozcelik S, Biyikli M, Aydin K. Increased ferritin with contraceptives containing Ethinyl estradiol Drospirenone in polycystic ovary syndrome: a paradox of iron storage and iron deficiency. Endocrine. 2025;87(3):1314–22.
- 106. Rahimi G, Shams S, Aslani MR. Effects of Crocin supplementation on inflammatory markers, lipid profiles, insulin and cardioprotective indices in women with PCOS: A randomized, double-blind, placebo-controlled trial. Phytother Res. 2022;36(6):2605–15.
- 107. Sathyapalan T, Hobkirk JP, Javed Z, Carroll S, Coady AM, Pemberton P, et al. The effect of Atorvastatin (and subsequent Metformin) on adipose tissue Acylation-Stimulatory-Protein concentration and inflammatory biomarkers in Overweight/Obese women with polycystic ovary syndrome. Front Endocrinol (Lausanne). 2019;10:394.
- 108. Li J, Liu D, Zhao H, Zhang P, Cai F, Li H, et al. Chinese medicine compound prescription HeQi San ameliorates chronic inflammatory States and modulates gut flora in dehydroepiandrosterone-induced polycystic ovary syndrome mouse model. Int Immunopharmacol. 2024;137:112491.
- 109. Guan HR, Li B, Zhang ZH, Wu HS, Wang N, Chen XF, et al. Exploring the efficacy and mechanism of bailing capsule to improve polycystic ovary syndrome in mice based on intestinal-derived LPS-TLR4 pathway. J Ethnopharmacol. 2024;331:118274.
- 110. Zheng R, Shen H, Li J, Zhao J, Lu L, Hu M, et al. Qi Gong Wan ameliorates adipocyte hypertrophy and inflammation in adipose tissue in a PCOS mouse model through the Nrf2/HO-1/Cyp1b1 pathway: integrating network Pharmacology and experimental validation in vivo. J Ethnopharmacol. 2023;301:115824.
- 111. Li X, Yi Y, Ren Y, Zhang Y, Wang CC, Liu C, et al. Zishen Qingre Lishi Huayu recipe May ameliorate the symptoms of PCOS model rats via alleviating systemic and ovarian inflammation. Am J Reprod Immunol. 2024;92(2):e13918.
- 112. Ye Y, Zhou W, Ren Y, Lu J, Chen A, Jin R, et al. The ameliorating effects of Guizhi fuling Wan combined with Rosiglitazone in a rat ovarian model of polycystic ovary syndrome by the PI3K/AKT/NF-kappaB and Nrf2/HO-1 pathways. Gynecol Endocrinol. 2023;39(1):2254848.
- 113. Yang Q, Wan Q, Wang Z. Curcumin mitigates polycystic ovary syndrome in mice by suppressing TLR4/MyD88/NF-kappaB signaling pathway activation and reducing intestinal mucosal permeability. Sci Rep. 2024;14(1):29848.
- 114. Jin S, Wang YS, Huang JC, Wang TT, Li BY, Guo B, et al. Osthole exhibits the remedial potential for polycystic ovary syndrome mice through Nrf2-Foxo1-GSH-NF-kappaB pathway. Cell Biol Int. 2024;48(8):1111–23.
- 115. Wei H, Zhang Z, Zhang S, Wang J, Cui X, Zhang Z et al. Resveratrol improves follicular development in PCOS rats by inhibiting the inflammatory response and pyroptosis of granulosa cells. Biol Reprod. 2024.
- Zhang G, He M, Wang Z, Zheng J, Zhao D, Nie L, et al. Synergistic effect and mechanism of combined Astaxanthin and Curcumin administration on ovarian function in PCOS mice. Food Sci Nutr. 2024;12(12):10618–27.
- 117. Valenzuela CY. [ABO system, Rh and sex interactions in newborn infants]. Rev Med Chil. 1985;113(5):472–3.
- 118. El-Saka MH, Barhoma RA, Ibrahim RR, Elsaadany A, Alghazaly GM, Elshwaikh S, et al. Potential effect of adrenomedullin on metabolic and endocrinal dysfunctions in the experimentally induced polycystic ovary: targeting implication of Endoplasmic reticulum stress. J Biochem Mol Toxicol. 2021;35(5):e22725.
- 119. Zhang Y, Weng Y, Wang D, Wang R, Wang L, Zhou J, et al. Curcumin in combination with aerobic exercise improves follicular dysfunction via Inhibition of the Hyperandrogen-Induced IRE1alpha/XBP1 Endoplasmic reticulum stress pathway in PCOS-Like rats. Oxid Med Cell Longev. 2021;2021:7382900.

- 120. Xu Y, Pan CS, Li Q, Zhang HL, Yan L, Anwaier G, et al. The ameliorating effects of Bushen Huatan granules and Kunling Wan on polycystic ovary syndrome induced by dehydroepiandrosterone in rats. Front Physiol. 2021;12:525145.
- 121. Zhang Y, Wang L, Weng Y, Wang D, Wang R, Wang H, et al. Curcumin inhibits Hyperandrogen-Induced IRE1alpha-XBP1 pathway activation by activating the PI3K/AKT signaling in ovarian granulosa cells of PCOS model rats. Oxid Med Cell Longev. 2022;2022:2113293.
- 122. Jabarpour M, Amidi F, Aleyasin A, Nashtaei MS, Marghmaleki MS. Randomized clinical trial of Astaxanthin supplement on serum inflammatory markers and ER stress-apoptosis gene expression in PBMCs of women with PCOS. J Cell Mol Med. 2024;28(14):e18464.
- 123. Fu L, Li Y, Bian Y, Wang Q, Li J, Wang Y, et al. The nutritional intervention improves the metabolic profile of overweight and obese PCOS along with the differences in gut microbiota. Reprod Sci. 2023;30(7):2210–8.
- 124. Luo J, Li Z, Wang Z, Ding Y, Gao P, Li Y. Efficacy of probiotics combined with Metformin and a calorie-restricted diet in obese patients with polycystic ovary syndrome. Pak J Med Sci. 2025;41(3):657–61.
- 125. Kukaev E, Kirillova E, Tokareva A, Rimskaya E, Starodubtseva N, Chernukha G, et al. Impact of gut microbiota and SCFAs in the pathogenesis of PCOS and the effect of Metformin therapy. Int J Mol Sci. 2024;25:19.
- 126. Ni Z, Cheng W, Ding J, Yao R, Zhang D, Zhai D, et al. Impact of Buzhong Yiqi prescription on the gut microbiota of patients with obesity manifesting polycystic ovarian syndrome. Evid Based Complement Alternat Med. 2021;2021:6671367.
- 127. Zhang N, Li C, Guo Y, Wu HC. Study on the intervention effect of Qi Gong Wan prescription on patients with Phlegm-Dampness syndrome of polycystic ovary syndrome based on intestinal flora. Evid Based Complement Alternat Med. 2020;2020:6389034.

- 128. Liu ZQ, Yan CZ, Zhong SM, Chong CJ, Wu YQ, Liu JY, et al. Dietary antrodia cinnamomea polysaccharide intervention modulates clinical symptoms by regulating ovarian metabolites and restructuring the intestinal microbiota in rats with Letrozole-Induced PCOS. J Agric Food Chem. 2024;72(50):27884–901.
- 129. Zhang F, Ma T, Tong X, Liu Y, Cui P, Xu X, et al. Electroacupuncture improves metabolic and ovarian function in a rat model of polycystic ovary syndrome by decreasing white adipose tissue, increasing brown adipose tissue, and modulating the gut microbiota. Acupunct Med. 2022;40(4):347–59.
- 130. Gan J, Chen J, Ma RL, Deng Y, Ding XS, Zhu SY, et al. Action mechanisms of Metformin combined with exenatide and Metformin only in the treatment of PCOS in obese patients. Int J Endocrinol. 2023;2023:4288004.
- 131. Peng MF, Tian S, Song YG, Li CX, Miao MS, Ren Z, et al. Effects of total flavonoids from eucommia ulmoides Oliv. Leaves on polycystic ovary syndrome with insulin resistance model rats induced by letrozole combined with a high-fat diet. J Ethnopharmacol. 2021;273:113947.
- 132. Hu Q, Jin J, Zhou H, Yu D, Qian W, Zhong Y, et al. Crocetin attenuates DHT-induced polycystic ovary syndrome in mice via revising Kisspeptin neurons. Biomed Pharmacother. 2018;107:1363–9.
- 133. Yang Y, Jin L, Xu S, Ye H, Luo X, Li R, et al. Observation on efficacy and underlying mechanism of cheek acupuncture on ovulation induction for infertile women with PCOS: case series. Med (Baltim). 2024;103(10):e37370.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.