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Obesity and related conditions are associated with distressing food
preoccupation that often culminates in dysregulated eating behaviors.
Incretin-based therapies can reduce excessive weight in obesity, but their
impact on dysregulated eating behaviors remains largely unexamined.
Understanding how these pharmacologics engage the brain’s mesolimbic
circuitry may inform the expansion of their therapeutic potential. We
reportarare, first-in-human exploration of the physiological action of
these therapies by examining the electrophysiology directly within the
human nucleus accumbens. After a short-term course of tirzepatide,

the patient-participant exhibited increased severe food preoccupation
episodes, which were preceded by anincreased delta-theta frequency
(<7 Hz) power in the nucleus accumbens region. We propose that the effects
of anincretin-based therapy (tirzepatide) on food preoccupation may

be associated with modulation of aberrant activity within this key hub of
human mesolimbic circuitry.

Eating behaviors are regulated by homeostatic (for example, eating
based on energy needs) and hedonic (for example, eating based on
pleasure) processes, involving the hypothalamic and brain stem circuits
asahubfor the former, and amesolimbic circuit (including the nucleus
accumbens (NAc)) for the latter'. These systems are highly interac-
tiveand are furtherinfluenced by other intermediate brainregions to
include the complex motivational processes of ingestion*°. Assuch, the
distinction between homeostatic and hedonic eating as entirely sepa-
rate entitiesis increasingly viewed as a conceptual oversimplification™*.
Thereisapreponderance of receptors of incretin-based therapies (for
example, glucose-dependent insulinotropic polypeptide (GIP) and
glucagon-like peptide-1 (GLP-1)-based receptor agonists) in central

nervous system nuclei, including the hypothalamus and NAc, which
regulate energy balance and reward processing®’, underlying their
therapeutic potential for obesity and type 2 diabetes® ™.

However, the physiological action of incretin-based therapies
specifically on the mesolimbic circuitry to alter human eating behav-
iorsremains unexplored. In concordance with homeostatic processes,
the mesolimbic system contributes to food-related motivation and its
dysregulation underlies disturbances in food preoccupation (that is,
heightened or persistent reactivity to food cues"). Food preoccupa-
tion is often associated with dysregulated eating behaviors, ranging
from loss-of-control eating (that is, eating with a subjective feeling
of loss of control and associated distress) to binge eating (that is,
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the most extreme bout of loss-of-control eating). These debilitating
symptoms affect up to 60% of patients with obesity and related eating
disorders" . Although aberrations in the mesocorticolimbic system,
hypothalamus and brainstem are implicated in both obesity and binge
eating disorder>*", patients with binge eating disorder may be more
prone to these symptoms than those with obesity in the absence of
binge eating disorder because of the degree of reward hypersensitivity
and food impulsivity involving mesocorticolimbic dysregulation**™.
While incretin-based therapies have exhibited some promise in ame-
liorating food preoccupation and dysregulated eating behaviors®™,
early datasuggest a tolerance effect for food preoccupation'™". Direct
measures of neural activity could yield insights into how incretin-based
therapies engage the mesolimbic circuitry and help broaden their
therapeuticscopetorelated eating disorders, possibly by identifying
atarget engagement biomarker (that is, a neural signal that reflects
functional modulation of abrain regionin response to treatment).

Intracranial electroencephalography (iEEG), acquired using
implanted depth electrodes, provides a rare opportunity to directly
measure neural activity within human brain circuitry.iEEG has recently
been used to identify electrographic biomarkers of neuropsychiat-
ric disorders®**. An ongoing early feasibility trial (ClinicalTrials.
gov registration NCT03868670) has recruited participants with
treatment-refractory obesity and loss-of-control eating to identify
related iEEG activity®. Participants’ dysregulated eating episodes were
classified as loss-of-control eating rather than binge eating because
they did not consistently meet the criteria for eating an objectively
large amount, probably because of their restricted gastric volume
after bariatric surgery. We previously reported iEEG activity within
alow-frequency band (2-8 Hz), which ramped up during periods of
loss-of-control eating from previous participants®. Inthe present study,
we used afirst-of-its-kind opportunity to report a case study provided
by participant 3 (Fig. 1a-d) toinvestigate an electrographic biomarker
associated with the frequency of severe food preoccupation while
takingtirzepatide, using preliminary findings from participants1and
2 as areference. The preliminary findings presented in this article for
participants1and2 differ fromaprevious report” that aimed to guide
responsive deep brain stimulation (rDBS) with specificity for hedonic
states. Instead, in the present study, we focused on food preoccupation,
reflecting a conceptual shift that dysregulated eating behaviors are a
result of disruption in both hedonic and homeostatic processes (for
moreinformation, see Methods)*'.

We analyzed ambulatoryiEEG recordings fromthe NAcin partici-
pants1land 2 during the biomarker discovery phase. During this phase
forboth participants, the delta-thetaband (<7 Hz) power in the ventral
NAc during the severe food preoccupation states was significantly
higher than that of control states in both the left hemisphere (per-
mutation testing, P=2.1035 x 107¢ (participant 1) and 2.48443 x10™
(participant 2)) and right hemisphere (P=4.7013 x 10~ (participant 1)
and 4.2414 x 1078 (participant 2)) (Fig. 1e-h left, Supplementary Fig. 3
and Supplementary Tables 1 and 2). Moreover, both participants
reported a high number of severe food preoccupation episodes (that
is, moments of feeling intense food noise; Supplementary Fig. 4). After
the biomarker discovery phase, and thus after afew months of respon-
sive stimulation triggered by this biomarker detection, the delta-theta
band powerinthe ventral NAc during severe food preoccupation states
was indistinguishable from that of control states in both hemispheres
of both participants (left hemisphere: P=0.0519 (participant 1) and
0.6433 (participant 2); right hemisphere: P=0.5129 (participant 1)
and 0.4227 (participant 2); Fig. 1e-h right, Supplementary Fig. 3 and
Supplementary Tables 1 and 2). The number of severe food preoc-
cupation episodes during the stimulation phase also decreased
(Supplementary Fig. 4). Thus, including the previous findings®*, we
postulated that the delta-theta band power (<7 Hz) could serve as a
biomarker reflecting astate of heightened propensity for severe food
preoccupation, asobserved in the changes of the number of episodes.

We hypothesized that the effects of tirzepatide on food preoccupa-
tion are related to modulation of this delta-theta band biomarker in
the NAc, a key hub of the mesolimbic reward circuitry where incretin
receptors are also expressed®”’.

Unlike participants 1 and 2, participant 3 exhibited a lengthy
absence of severe food preoccupation in months 2-4 after surgery
(Fig. 2a and Supplementary Fig. 7), coinciding with a tirzepatide dose
increase that occurred before surgicalimplantation. During this period,
the delta-thetaband (<7 Hz) power during the severe food preoccupa-
tion states was indistinguishable from that of control states (Fig. 2b,
under the green bar, and Fig. 2¢,d) in both the left (permutation test-
ing, P=0.8105) and right (P= 0.1011) hemispheres. There were also no
differences in other higher frequencies. These findings are markedly
different from those from participants1and 2 (Fig. 1e-h, left) and our
prior reports”?**. The length of this quiescent period (months 2-4) was
later corroborated by using an algorithmthat identified the transition
point corresponding to the most pronounced change in power values
within the delta-theta frequency band (<7 Hz; Supplementary Fig. 8;
see Methods for more detail)>%.

In contrast, during months 5-7, the delta-theta band biomarker
emerged and the participant began to report breakthroughs in
severe food preoccupation despite the maximum dose of tirzepatide
(Fig.2a,b, under the pink bar; increased power valuesin the delta-theta
band (<7 Hz) are noted in yellow). During this period, a prominent
delta-thetaoscillatory waveformwas observed (Supplementary Fig. 9).
Moreover, the delta-thetaband (<7 Hz) power from severe food preoc-
cupation states was significantly higher than that of control states in
the left hemisphere (permutation testing, P=1.5310 x 107%?) and right
hemisphere (P=1.0887 x107°) (Fig. 2¢,f). After the change in biomarker,
the number of severe food preoccupation episodesincreased to seven
per month (Fig. 2a).

We present a unique case that provided a serendipitous opportu-
nity toinvestigate the associated electrophysiology of anincretin-based
pharmacologicinthe humanNAc. A profoundly low number of severe
food preoccupation episodes (and areduction in body weight) during
months 2-4 (excluding month 1 after surgery because of a potential
implantation effect”’) was consistent with a concomitant increase in
tirzepatide for diabetes management™%. Importantly, this lengthy
absence of severe food preoccupation after surgery contrasted with
participants 1and 2 (Supplementary Fig. 7). During this period, par-
ticipant 3 also exhibited an absence of the expected delta-theta band
(<7 Hz) biomarker inthe ventral NAc. The delta-thetaband biomarker
emerged duringmonths 5-7in participant 3, which preceded a break-
through in severe food preoccupation despite tirzepatide''. There-
fore, the delta-theta band power during severe food preoccupation
states may reflect a state of heightened propensity for severe food
preoccupation, as observed in the changes of the number of episodes.
The biomarker is present (or increased compared to control) when
severe food preoccupation occurs more frequently and is absent (or
indistinguishable from control) when severe food preoccupation
occurs less frequently.

These preliminary results suggest that tirzepatide administra-
tion may be associated with the modulation of the delta-theta band
(<7 Hz) biomarker in the human NAc. All three participants exhibited
asubstantialincrease in delta-theta power during severe food preoc-
cupationstatesinboth hemispheres (that is, six hemispheres) during
the biomarker discovery phase. For participant 3, there was atemporal
lag between the emergence of the biomarker in month 5 and the most
severe breakthrough of food preoccupationinmonth 7, which could be
specifictotirzepatide. In particular, asupplementary cross-correlation
analysis suggested a 7-week lag (Supplementary Fig.10). Additionally,
the effect size of the power difference between severe food preoccu-
pation and control states was more pronounced, and the transition
point was only identified in the left NAc of participant 3, suggesting a
potential laterality bias.
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Fig.1|Background information of participant 3 and association of increased
delta-theta power in the ventral NAc with severe food preoccupationin
participants1and 2. a, Two quadripolar depth electrodes were placed bilaterally
inthe ventral NAc of participant 3 with a neurostimulator fully implanted
subgaleally in the skull. b, Anatomical figure of participant 3 (view from posterior
to anterior): three-dimensional rendering of DBS electrodes and their position
inbasal forebrain structures in the participant’s native space: ventral NAc,
magenta; dorsal NAc, white; putamen, green; caudate, blue; anterior limb of
internal capsule (ALIC), light pink. ¢, Anatomical magnetic resonance imaging

of participant 3 (Supplementary Fig.1). L, left hemisphere; R, right hemisphere.
Prior participants in this ongoing trial had similar electrode placement®.

d, Timeline of crucial events for participant 3. A larger illustration and specifics
for data collection and use are described in the Methods and Supplementary
Fig.2.e, Participant 1 (left ventral NAc): power spectrum (mean + s.e.m.)

during the biomarker discovery (left) and stimulation (right) phases when the
participant was relaxing (control, blue) or in a severe food preoccupation state

preoccupation preoccupation

(pink). The bottom black lines indicate frequencies with statistically significant
differences in power values between the control and severe food preoccupation
conditions after two-sided permutation testing (P < 0.05) with cluster
correction. f, Data from participant 2 (left ventral NAc), using the same format as
ine.g, Participant1 (left ventral NAc): delta-theta band (<7 Hz) power during the
biomarker discovery (left) and stimulation (right) phases when the participant
was relaxing (control, blue) or ina severe food preoccupation state (pink). The
center line of the box indicates the median; the bottom and top edges of the box
indicate the 25th and 75th percentiles, respectively. The individual points outside
the whiskers are considered as outliers. The top black line with a single asterisk
inthe box plot shows statistically significant differences between two conditions
after two-sided permutation testing (*P < 0.05). h, Data from participant 2 (left
ventral NAc), using the same format as in g. For more information, including

the right NAc, see Supplementary Fig. 3 and Supplementary Tables1and 2.
Illustrationsinaand d created using BioRender.com.

Our findings raise the possibility that this delta-thetaband oscil-
lation could serve as a target engagement biomarker, but its relation-
ship to food preoccupation warrants more controlled investigation.
Moreover, the phenomenon of a biomarker preceding actual behav-
ioral change has been reported previously in the context of other
behaviors relevant to psychiatric illness?>%. Thus, the early findings
reported in this study could provide the foundations of developing
such a biomarker-based approach for tirzepatide administration for
dysregulated eating, a strategy garnering interest for neuropsychi-
atric disorders®?. Although the invasive nature of monitoring this
biomarker may limit scalability, the results reported in this study could
inform preclinical studies given that the low-frequency nature of this
biomarker is conserved at least when recorded from the NAc across

mouse and human studies®. Further, noninvasive strategies can be
developedto capturerelevant brain dynamics; a parallel can be found
inpatients with Parkinson disease, where a prominent beta band signal
has been detected both within the subthalamic nucleus and via scalp
EEG*>**. Thus, abiomarker-based approach holds promise as astrategy
to optimize incretin-based therapies for food preoccupation™".
This study has some limitations. As this is a single uncontrolled
casesstudy, itisunknown whether the findings will generalize, for exam-
ple, tootherincretin-based therapies. Given the potential compulsive
componentin patients exhibiting dysregulated eating behaviors, the
delta-thetabiomarker may notbe applicable tothe broader population
with obesity. In addition, we cannot determine whether the effects of
tirzepatide are duetodirectactionin the NAc or identify whichincretin
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Fig.2| Association of increased delta-theta power in the ventral NAc available, as shown on the right (under the green bar). Likewise, during months
with severe food preoccupation in participant 3. a, Number of severe 5-7,thereported number was 11 but only six iEEG recordings were collected, as
food preoccupation episodes per month after surgery (excluding month1 shownontheright (under the pink bar). ¢,d, Participant 3 (ventral NAc): power
after surgery because of a potential implantation effect”’; month 4 had no spectrum (mean +s.e.m.) (c) and delta-theta band (<7 Hz) power (d) when
episode). The green block denotes months 2-4. b, Participant 3 (left ventral the participant was relaxing (control, blue) or in a severe food preoccupation
NAc): spectrograms from magnet swipes for the control (left) and severe food state (pink) during months 2-4. ¢, The bottom black line shows statistically
preoccupation (right) conditions during the biomarker discovery phase (months  significant differencesin power values between the control and severe food
2-7). These spectrograms show power values per frequency from1to 10 Hz preoccupation (two-sided permutation testing (P < 0.05) conditions with cluster
when the participant was relaxing (control; n = 33) or when the participant was correction). There was no significant difference except at 7.2-8.8 Hz where the
inasevere food preoccupation state (n =10). Each column corresponds to one power value from severe food preoccupation was lower than the control.d, The
magnet swipe episode, whichis a participant-triggered iEEG recording (90 center line of the box indicates the median; the bottom and top edges of the
or180s). The red dashed line denotes the end of month 4 and the beginning boxindicate the 25th and 75th percentiles, respectively. The individual points
of month 5 (see the green and pink bars above each spectrogram). For the outside the whiskers are considered as outliers. The top black line with a single
results from the right ventral NAc, see Supplementary Fig. 5. Note that the asterisk shows statistically significant differences between two conditions after
apparent similarity in the number of severe food preoccupation episodes two-sided permutation testing (*P < 0.05). During months 2-4, there was alsoa
across months 2-4 versus months 5-7 arises from technical limitations (for 7% decrease in body weight relative to the baseline before surgery (138-128 kg;
example, device storage or trigger failure). Data reflect the number of available Supplementary Fig. 6). e,f, Power spectrum (mean +s.e.m.) (e) and delta-theta
electrophysiological recordings. During months 2-4, the reported number band (<7 Hz) power (f) from months 5-7, formatted asin ¢,d. c-f, For more
of severe food preoccupation episodes was five but only four iEEG data were information, see Supplementary Table 3.

receptor is involved (that is, GLP-1 or GIP). Lastly, analyzing electro-  attributable to other confounding factors (for example, postoperative
physiological datain the absence of tirzepatide use was not feasible,as  recovery, elapsed time since surgery or unrelated behavioral changes)
it was part of the ongoing diabetes management of participant 3. Thus, cannot be excluded. Discontinuation of tirzepatide could pose both
the possibility that the observed electrophysiological changesmaybe  clinical and ethical challenges, but future studies may be designed to
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directly investigate the physiological impact of incretin-based thera-
pies on brain reward circuitry.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgments, peer review information; details of author contribu-
tionsand competinginterests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-025-04035-5.
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Methods

Written informed consent was obtained from participant 3 to par-
ticipate in an early feasibility trial of ‘responsive deep brain stimu-
lation (rDBS) for patients with treatment-refractory obesity and
loss-of-control eating’ (ClinicalTrials.gov registration NCT03868670)%.
This trial was approved by the U.S. Food and Drug Administration
(FDA) and the institutional review board (IRB) of the University of
Pennsylvania (IRB no. 850489 and investigational device exemption
no.G180079).

Participants

Participant 1is a 51-year-old woman with severe treatment-resistant
obesity (body mass index (BMI) =46.5 kg m™) and distressing food
preoccupationdespite bariatric surgery. After Roux-en-Y gastric bypass
surgery, shelost 52.16 kg but she gradually regained the weight, return-
ingto her before surgery weight at the time of enrollment. She had the
comorbidities of neoplasm, lower back pain, kyphoscoliosis/scoliosis,
hypertension, esophageal reflux, dyslipidemia, complicated migraine
and anxiety at the time of enrollment.

Participant2isa61-year-old womanwithsevere treatment-resistant
obesity (BMI =47.1 kg m) and distressing food preoccupation despite
bariatric surgery. After Roux-en-Y gastric bypass surgery, she lost
68.95 kg but regained the weight and was back to within 9% of her before
surgery weight at the time of enrollment. She had the comorbidity of
migraine at the time of enrollment. After bariatric surgery and before
the enrollment, both participants tried many other weight loss strat-
egies, including behavior therapy, support groups and medication,
which were unsuccessful.

Both participants reported severe food preoccupations particu-
larly related to emotional-related and stress-related triggers that often
led toloss-of-control eating episodes (approximately five episodes per
week and four episodes per week, respectively, as measured using the
Eating Disorder Examination®*). Neither participants reported previous
testing or diagnosis regarding monogenic obesity, which is not part
of our clinical standard. These participants were enrolled at Stanford
University and the study was approved by Stanford University’s IRB
(IRBno.46563) at that time. Informed consent was obtained fromboth
participants (please refer to ref. 21 for more details).

Participant 3 is a 60-year-old woman with severe treatment-
resistant obesity (BMI = 46.1 kg m™) despite bariatric surgery and
comorbid type 2 diabetes. She did not report any previous testing or
diagnosis regarding monogenic obesity. She presented to us report-
ing substantial distress from food preoccupation. Her frequent food
preoccupations led to unwanted eating behaviors, including many
loss-of-control eating episodes. Before laparoscopic Roux-en-Y gastric
bypass surgery, she weighed 154 kg and she had cravings for calorically
dense food choices. After her bariatric surgery, she reached a nadir
weight of 115 kg (BMI = 38.7 kg m™), but near the time of enrollment,
her weight had increased to 137 kg (BMI = 46.1 kg m™). She stated that
she was often preoccupied with thoughts of food, which led to ordering
ameal out or to continual snacking, even though she wanted to resist.
Her preoccupation focused on both sweet and salty foods, such as
prepackaged cupcakes and roast beef sandwiches with french fries. She
reported 19 loss-of-control episodes in the previous month on study
entry. The participantendorsed eating until uncomfortably full, eating
large amounts when she was not hungry and feeling guilty after these
episodes, with high levels of distress associated with them.

The participant fulfilled all eligibility criteria of the trial, which are
mainly: (1) BMI=40-60 kg m™; (2) unsuccessful intervention with of
bariatric surgery, behavioral therapy and pharmacological therapy for
dysregulated eating behavior and weight loss and (3) loss-of-control
eating episodes at least four times per week. Importantly, these
included unsuccessful use of a GLP-1receptor agonist (dulaglutide),
which resulted in no relief in her weight or food preoccupation. She
was switched to a GLP-1-GIP dual receptor agonist (tirzepatide) for

its FDA-approved indication treating type 2 diabetes. There was no
reported impact on weight and food preoccupationat 7.5 mg per week
oftirzepatide at the time of baseline assessment. She reported tempo-
rary weight loss followed by subsequent returnto her initial weight with
noreportedimpact to her food preoccupation and loss-of-control eat-
ingepisodes. Asthis agent was intended for treating her type 2 diabetes,
the participant was enrolled into the study and underwent implanta-
tionof the rDBS system (NeuroPace) bilaterally inthe NAc. The patient
increased the tirzepatide dose to optimize her diabetes management
as suggested by the clinical team given the known risk of this medical
comorbidity on surgical outcomes, particularly infection, given the
medical device implantation. At the time of implantation, the patient
was receiving 12.5 mg per week and it was further increased to 15 mg
per week after approximately 4 months for continued optimization
of glucose control. She had comorbidities of hypertension, hyperlipi-
demia, coronary artery disease, nonalcoholic steatohepatitis, irritable
bowel, migraine and asthma at the time of enrollment.

Surgical procedure

The surgical procedure has been reported previously?*. Briefly,
probabilistic tractography was used to guide surgical targeting of the
NAc as described previously*®. On the day of surgery, implantation of
bilateral DBS electrodesin the NAc was performed under awake condi-
tions as per our standard institutional practice. Using a personalized
appetitive provocation task, microelectrode recording was performed
intraoperatively to identify single-unit or multiunit appetitive neural
activity®. After confirmation of the target with electrophysiology and
imaging, aquadripolar depthelectrode was placed and macroelectrode
monopolar stimulation mapping was conducted to confirm positive
effects and no adverse effects. After securing the DBS electrodes, the
electrodes were connected to the neurostimulator pulse generator,
which was placed in the right parietal skull region of the patient.

Dataacquisition

iEEG recordings were acquired from the FDA-approved rDBS device
(NeuroPace) as reported previously”. An rDBS device is different
from aregular DBS device in that it stimulates only when it detects
a predefined biomarker rather than stimulating continuously. Neu-
ral recordings acquired from the rDBS device were used to identify
biomarkers differentiating severe food preoccupation swipes from
control swipes. iEEG data were recorded at a 250-Hz sampling rate
and bipolar re-referenced online. We used data from channels1and 3,
which were referred to as the data from the left and right ventral
NAc in this article. Four electrode contacts were located in the fol-
lowing order: (1) ventral NAc (the most ventral contact; presumed
NAc shell*®); (2) dorsal NAc (presumed NAc core®); (3) and (4) ALIC.
For all participants, an electrode in the left hemisphere, one channel
(channel 1) was bipolar re-referenced between contacts 1and 3; the
other channel (channel 2) was between contacts 2 and 4. Likewise,
an electrode in the right hemisphere, one channel (channel 3) was
bipolar re-referenced between contacts 1 and 3, and the other channel
(channel 4) was between contacts 2 and 4.

The biomarker discovery phase data of participants1and 2 over-
laps with ambulatory data used in our previous report”. However,
the focus and analytical approach in the previous report were funda-
mentally different from the current study. In the previous report, the
analysis was centered around pure ‘craving’ in the absence of hunger,
aiming to dissociate hedonic and homeostatic eating by stratifying
databased on ‘craving’ and ‘hunger’ ratings. This allowed us to explore
the NAcelectrophysiology in states seemingly dominated by hedonic
versus homeostatic derives, given that we were performing biomarker
discovery to guide an rDBS. Thus, we hypothesized that stimulation
would be more behaviorally specific to hedonic states.

However, inthe currentreport, we focused onadistinct construct,
thatis, food preoccupation, as defined by ‘heightened and/or persistent
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reactivity to food cues™. This encompasses a broader range of influ-

ences, including hunger and other sensorial, environmental and social
cues™. The excessive food preoccupation observed in our participants
reflected combined alterationsinbothhomeostaticand hedonic eating
rather than hedonic eating alone’. To better align with this conceptual
shift, data were stratified to ‘severe food preoccupation’ only using
the craving rating regardless of the hunger rating. This stratification
included episodes with both high craving and hunger ratings.

For participants 1 and 2, the bipolar reference montage was
adjusted during early recording period and the stimulation safety
testing period. We confined our analysis to the periods across all partici-
pants when the same recording montage was used. Thus, the biomarker
discovery phase used for participant1was limited to data collected for
approximately 1 month before final initiation of stimulation, which
took place during months 8-9 after surgery. There was no apparent
changeinfood preoccupation during this brief period of safety testing.
To examine the effect of stimulation, we used a dataset collected from
the momentimmediately after the stimulation parameter had been set
toamaximum dose to month 18 after surgery (that is, the stimulation
phase). Toreduce confounders to our electrophysiological analysis due
tostimulation, we used magnet swipes that had no stimulation within
the magnet swipe time window. The same was done for participant 2.

For participant 2, we defined the period from when electrophysiol-
ogy data were collected between month 3 and month 6 after surgery
before stimulation initiation as the ‘biomarker discovery phase’. To
examine the effect of stimulation, we again used a dataset collected
from the moment immediately after the stimulation parameter had
been set to a maximum dose to month 18 after surgery (that is, the
stimulation phase).

For participant 3, stimulation was not delivered throughout the
data acquisition reported in this article. Moreover, we excluded data
from up to a month from the surgery date (month 1) because of con-
founding with an implantation effect, as we did for the prior partici-
pants, although implantation effects typically last less than a month
in patients with Parkinson disease”. Thus, months 2-7 corresponded
tothe ‘biomarker discovery phase’. We limited this case study’s interim
analysis to the 6-month recording phase planned by the investigational
device exemption trial to avoid further trial-related confounders.

Magnet swipe (ambulatory iEEG recordings). With the rDBS system,
participants caninitiate iEEG recordings by swiping their magnet over
thesurgicallyimplanted device under the scalp (Supplementary Fig.2).
The magnet swipe triggers the iEEG recordings, which record apreset
length of time before and after the magnet swipe with a two-to-one
ratio. For instance, if the preset length is 90 s, it records 60 s before
the magnet swipe and 30 s after it. For this study, the length was set to
90 s (participants 2and 3) or 180 s (participants 1and 3).

For the control condition of participants1and 2, data were auto-
matically recorded ata preset time (12:00 for participant1and 17:00 for
participant2), the time participants answered that they were most likely
tobeatrest. Thiswas to reduce their study burdens. For participant 3,
the control condition consisted of magnet swipes collected when she
was relaxing and not feeling food cravings. For control episodes from
scheduled recordings, we removed themif craving swipes were present
near the scheduled recording time.

For the food preoccupation condition, we asked participants to
swipe the magnet when they felt cravings for food and before eating.
Considering food preoccupation as ‘heightened or persistent reactivity
tofood cues’, we focused on the extent of food preoccupation regard-
less of hunger level, unlike our prior report?, because cues that could
elicitfood preoccupationinclude not only hunger and craving but also
other sensorial, environmental and social aspects”. We asked partici-
pantstoswipe when they were feeling a sense of craving to capture the
most relevant moment of food preoccupation. For allmagnet swipes,
participants were asked to keep amagnet swipe diary, recording their

craving, hunger and thirst levels, the extent they felt a loss of control
and the extent they felt compelled to eatin a 5-point Likert scale (1 for
none/not at all versus 5 for extreme/extremely). Therefore, magnet
swipes withintense craving were classified as severe food preoccupa-
tion based on craving ratings per participant.

Behavioral data. We collected participants’ number of severe food
preoccupation episodes per month through the magnet swipe diary
butused ecological momentary assessment or verbal or written reports
asasupplementifthey forgot to keep themin the diary.

Signal processing

In the offline analysis, standard preprocessing techniques were con-
ducted in MATLAB (v.R2022b) using the FieldTrip Toolbox*, which
involved the application of a 1-124-Hz band-pass filter. Static spectral
analysis was performed using a multi-taper method with four Slepian
multi-tapers per epoch. These epochs were acquired using chunking mag-
net swipes every 5 s without overlaps. A full power spectrum (1-124 Hz)
wasacquired with 0.5-Hz frequency resolution; delta-thetaband powers
were acquired using a <7-Hz window. Epochs containing artifacts were
removed ifthe artifact was larger than the six standard deviations of the
data points of acorresponding magnet swipe. For the power spectrums
inFig. 2b, power values per frequency were averaged per amagnet swipe.

Statistical testing

Power spectral density values from the control and severe food preoc-
cupation swipes were tested using two-sided permutation testing with
1,000 permutations and P=0.05. Then, it underwent cluster correction
using a cluster size threshold of the top 2.5%. Delta-thetaband power
values from two swipe conditions were tested using two-sided permuta-
tion testing with10,000 permutations and P= 0.05.

Transition point detection differentiating months 2-4 and
months 5-7

The transition point, which was predefined based on the emergence
of the biomarker, was further validated using a model that identifies
the transition point corresponding to the most pronounced changein
power values within the delta-theta frequency band (<7 Hz)**. More
specifically, the transition point between two periods was determined
by minimizing the total residual error, calculated from deviations of
each time point from the root mean square estimate of the period to
whichitbelongs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datathatsupport the findings of the present study are available
from the corresponding author (C.H.H.) upon reasonable request.
The data are not yet publicly available because they contain infor-
mation that could compromise research participant privacy and
consent. As this study is part of an ongoing clinical trial, enroll-
ing additional participants (ClinicalTrials.gov registration no.
NCT03868670), all data will be deposited in the Data Archive Brain
Initiative (https://dabi.loni.usc.edu) as part of the BRAIN Initiative
on completion of the study. During this time, any request will be
reviewed in a timely manner by the corresponding author, corre-
sponding author’s institution and ultimately shared within reason
of asigned data transfer agreement.

Code availability
All code has been made publicly available and can be found on
GitHub at https://github.com/Wonkyung-Woni-Choi/Tirzepatide_
Case_Report/tree/main.
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is not relevant to the current case report, which does not address stimulation efficacy.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies |Z| D ChlIP-seq
Eukaryotic cell lines |Z| D Flow cytometry
Palaeontology and archaeology |Z| D MRI-based neuroimaging
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Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  ClinicalTrials.gov Identifier: NCT03868670

Study protocol The study protocol can be found here: https://doi.org/10.1093/neuros/nyaa300

Data collection Data collection and analysis spanned from January 2020 to August 2025, covering all three participants. Data were collected at
Stanford University for Participants 1 and 2, and the University of Pennsylvania for Participant 3, with magnet swipes and self-
reported ratings completed by participants at home.

Outcomes Primary and secondary outcome variables were defined in the clinical trial protocol. However, this case report focuses on examining

the association between tirzepatide use and changes in Participant 3’s food preoccupation and electrophysiological changes—
analyses that are not directly related to the primary objectives of the clinical trial.

Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor

Authentication gggci/%ﬁé//éﬁ)'/ authentication-procedures for-each seed stock used-or-novel-genotype generated.-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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