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ABSTRACT

In the search for novel treatment strategies for alcohol use disorder (AUD), glucagon-like peptide-1 (GLP-1) receptor agonists
(GLP-1RAs) approved for treating Type 2 diabetes and obesity have caught much attention. GLP-1 is a naturally occurring pep-

tide produced in the small intestines and the brain, regulating plasma glucose levels and satiety. This focused review will report

on the preclinical studies, case stories, register-based cohort studies, brain-imaging data and secondary analysis of clinical data

supporting the role of GLP-1RAs as a novel treatment of AUD. Several clinical trials are ongoing, examining the potential effects

of the GLP-1RA semaglutide in AUD.

1 | Alcohol Use Disorder (AUD)

AUD is a chronic relapsing brain disorder characterised by loss
of control of alcohol intake, compulsive alcohol behaviour lead-
ing to relapse and a negative affective state when not consuming
alcohol [1]. Up to 50% of AUD patients experience alcohol with-
drawal symptoms such as nausea, tremors, and anxiety, and
some need medical assistance for detoxification [2]. Globally,
AUD is a tremendous burden, with an estimated 280 million
people suffering from this disorder [3]. The treatment gap is
wide compared to other mental health disorders [4], and a recent
Danish register study reports that the all-cause 10-year cumu-
lative mortality rate after a first-time hospital contact due to an
alcohol-related problem is as high as 29% [5]. In this perspec-
tive, AUD is a severe condition with enormous consequences for
the individual, relatives, and society [2, 3], and regarded as the
most harmful addictive drug when taking harm to both users
and others into consideration [6]. Several behavioural and psy-
chological treatments are available in the clinic against AUD
and have demonstrated efficacy in clinical trials [2]. Cognitive

behavioural therapy (CBT) is among the AUD treatments with
the highest level of empirical support [7]. According to the
National Institute for Health and Care Excellence (NICE) clini-
cal guidelines, a combination of psychological intervention and
pharmacological treatment is recommended in patients with
moderate to severe AUD [8]. Four medical treatments have
been approved by the European Medicines Agency (EMA),
that is, disulfiram, acamprosate, naltrexone and nalmefene,
and three medical treatments, that is, disulfiram, acampro-
sate and naltrexone, are approved by the U.S. Food and Drug
Administration (FDA) [9]. According to the NICE guidelines,
naltrexone and acamprosate, which have shown anticraving
efficacy, are first-line treatments, whereas disulfiram is listed
as a second-line treatment [8]. The opioid receptor antagonist
naltrexone is approved as an oral formulation once daily and as
along-acting injection formulation [9], whereas acamprosate re-
quires dosing thrice daily [9]. Its chemical structure resembles
the structure of gamma-aminobutyric acid (GABA), and preclin-
ical evidence suggests that the effects of acamprosate in AUD
are due to interactions with the neurotransmitters GABA and
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Plain English Summary

This review presents the existing data from animal stud-
ies in rodents and non-human primates, clinical trials,
register studies and social media investigations, all inves-
tigating the potential of a class of diabetes and weight-loss
medications—glucagon-like peptide-1 (GLP-1) receptor
agonists—as a novel and very much-needed treatment for
alcohol use disorder.

glutamate, restoring the imbalance of neuronal excitation and
inhibition caused by chronic alcohol exposure [10]. Disulfiram
inhibits the enzyme aldehyde dehydrogenase, which catalyses
alcohol conversion to the toxic metabolite acetaldehyde. The
enzymatic inhibition causes the ‘disulfiram-ethanol’ reaction,
that is, nausea, vomiting, headache, facial flushing, hypoten-
sion, sweating, palpitations, restlessness, exhaustion, confusion
and rarely cardiovascular relapse [9, 11]. This means that the
therapeutic effect is mediated through the anticipation of get-
ting a disulfiram-ethanol reaction [9]. Nalmefene is a mu- and
delta-opioid receptor antagonist and a kappa-opioid receptor
partial agonist to be administered when the risk of alcohol con-
sumption is present. Nalmefene is not used in the clinic to any
considerable extent and is—to the best of our knowledge—not
recommended in clinical guidelines [9]. Other medications have
been used off-label to treat AUD, for example, ondansetron, topi-
ramate, prazosin, gabapentin, varenicline and baclofen [2]. If as-
sisted withdrawal treatment is needed, benzodiazepines should
be provided, either as an inpatient or outpatient treatment, de-
pending on the severity of symptoms and previous medical his-
tory [8]. It is estimated that 45%-90% of patients receiving AUD
treatment relapse within the first 3years of treatment [12, 13].
Relapse risk factors are age, health, the severity of AUD, absti-
nence duration, comorbid substance use disorder (SUD), smok-
ing, unpleasant life events, stress, living alone, having no ‘life
purpose’ and psychological factors, for example, insight, readi-
ness to seek help, drinking goals and motivation [14]. The sparse
treatment options with divergent results have led to a search for
novel treatment strategies against AUD, and one of the molecu-
lar targets has been the glucagon-like peptide-1 (GLP-1) receptor
(GLP-1R) [15].

2 | The Addicted Brain

In 1954, Olds and Milner reported that rats voluntarily and re-
peatedly self-stimulate specific brain areas electrically, that is,
positive reinforcement [16]. In 1972, it was proposed that self-
stimulation activates dopamine-containing neurons [17], and in
1993, the ‘incentive-sensitisation theory of addiction” was pre-
sented [18]. The theory differentiates between ‘wanting’ a drug,
triggered by reward cues in addicted individuals and ‘liking’ a
drug. The ‘wanting’ is believed to be generated in the dopami-
nergic mesolimbic system projecting from the ventral tegmental
area (VTA) to the nucleus accumbens (NAc), and the ‘liking’ is
generated in more discrete hedonic hotspots in the brain, not
dependent on dopamine [19]. The consequence of chronic and
heavy intake of alcohol and other drugs of abuse changes the
brain reward system, and with continued use, impairment of

function in brain areas associated with executive functions, mo-
tivated behaviour, stress control and emotionality, for example,
the midbrain, prefrontal cortex and amygdala [20].

3 | The Dopamine System

Dopamine is a catecholamine neurotransmitter synthesised
from the amino acid tyrosine [21]. It is released into the synaptic
cleft upon stimulation, binding to presynaptic and postsynaptic
dopamine receptors. If dopamine doesn't bind to a receptor, it
is broken down or transported back into the presynaptic neu-
ron by the dopamine transporter (DAT) and then repacked into
vesicles by the vesicular monoamine transporter 2 (VMAT?2) for
recycling or degradation (Figure 1) [22]. The plasma membrane
protein DAT plays a pivotal role in brain dopamine homeostasis
and is a target for many addictive drugs and therapeutics [23].
The central dopaminergic system contains dopaminergic neu-
rons localised in the VTA and the substantia nigra, projecting to
the NAc, amygdala, hippocampus, prefrontal cortex and dorsal
striatum [24]. Disinhibition or stimulation of dopaminergic VTA
neurons plays a critical role in the reinforcing effects of alcohol
and other drugs of abuse [24]. Radioligand imaging studies in
patients with AUD [25] have reported decreased dopamine re-
ceptor availability, indicating reduced brain dopamine function
[26]. Whether this is caused by a primary dopaminergic mech-
anism of action or indirectly by changes in other neurotrans-
mitter systems, for example, glutamate or GABA, has not been
ruled out [27]. Post-mortem brain studies [28, 29] and a single-
photon emission tomography (SPECT) study [30] have reported

Dopamine .

Presynaptic

Synaptic cleft

Postsynaptic dopamine receptors

FIGURE 1 | The dopamine synapse. Note: The dopamine synapse
with its presynaptic and postsynaptic terminal of a dopamine neuron.
Dopamine is synthesised in the presynaptic terminal. After the release
into the synaptic cleft, it binds to postsynaptic or presynaptic receptors.
The free synaptic dopamine, which does not bind to the dopamine re-
ceptor, is then broken down or recycled into the presynaptic neuron by
the dopamine transporter (DAT), where it is repacked into vesicles by
the vesicular monoamine transporter 2 (VMAT2) or catabolised.
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a significant reduction in striatal DAT availability in patients
with AUD compared to healthy controls.

4 | GLP-1

GLP-1 is an endogenous 30-amino acid peptide hormone pro-
duced by cleavage of the prohormone proglucagon. GLP-1 is
produced in the L-cells in the small intestines and released in
response to food intake. It is hastily inactivated (with a half-
life of 3-5min) by the enzyme dipeptidyl peptidase-4 (DPP-4)
[31]. GLP-1 potentiates insulin secretion and suppresses glu-
cagon secretion, regulating overall glycaemic control. It slows
down gastric emptying and regulates appetite and food intake
via appetite- and reward-related areas of the brain [32, 33].
Importantly, rodent data show that GLP-1 is also produced in
the nucleus tractus solitarius (NTS) of the brain stem and re-
leased as a neurotransmitter in the VTA and NAc [34]. This is
in concordance with preclinical data in rodents and non-human
primates showing expression of GLP-1Rs in brain regions in-
volved in reward and addiction, for example, VTA, NAc, septal
nucleus, hypothalamus and amygdala [35-40]. Human GLP-1R
mRNA positive cells are localised in the hypothalamus, hippo-
campus, thalamus, caudate—putamen, globus pallidum and ce-
rebral cortex [41], and human post-mortem brain studies have
revealed the presence of GLP-1R in the brainstem, hypothala-
mus, thalamus, amygdala, hippocampus and cerebral cortex
[41-43]. In addition, GLP-1 mRNA is significantly elevated in
the hippocampus in individuals with AUD compared to healthy
controls [43]. GLP-1 protein expression is reported in most corti-
cal areas and in the diencephalon and the brainstem [42].

5 | GLP-1 Receptor Agonists (GLP-1RAs)

In 2006, the FDA approved the first GLP-1RA, exenatide twice
daily, to treat Type 2 diabetes. In 2011, exenatide once weekly
was approved [44]. Since then, several GLP-1RAs have been
approved for the treatment of Type 2 diabetes, and in 2014, the
first GLP-1RA was approved for the treatment of obesity (body
mass index [BMI]>30kg/m? or a BMI>27kg/m? and at least
one weight-related comorbid condition) [45]. In 2019, the first
oral GLP-1RA was approved to treat patients with Type 2 dia-
betes [46]. In line with the conception of a centrally mediated
effect on appetite regulation, several preclinical studies report
on the blood-brain barrier penetrance of GLP-1 and GLP-1RAs
[47-50], for example, the GLP-1R A liraglutide was following flu-
orescently labelling detected in the arcuate nucleus and other
hypothalamic areas in mice [50].

6 | GLP-1 and GLP-1RAs—Preclinical Studies
6.1 | Alcohol

Several GLP-1RAs have been evaluated in preclinical addic-
tion models regarding their effects on alcohol consumption in
rodents and non-human primates. In a conditioned place pref-
erence (CPP) model, preclinical trials report decreased or abol-
ished alcohol place preference when animals are pretreated
with systemically administered exenatide [51, 52], or exenatide

is injected centrally into the NTS [53] or NAc [54]. The same
results are reported for the GLP-1RA liraglutide [55]. In a ro-
dent two-bottle-choice paradigm, pretreatment with exenatide
administered systemically [51, 52, 56], or injected centrally into
the VTA [52, 57], NTS [53], NAc, dorsal hippocampus, lateral
hypothalamus [57], NAc shell [54, 57] or laterodorsal tegmental
area [54], is reported to reduce alcohol intake. It has also been
reported that exenatide decreased alcohol consumption in a ro-
dent operant self-administration paradigm when administered
systemically [51] or injected centrally into the VTA [58]. The ef-
fects of GLP-1RAs on alcohol intake have also been tested in
non-human primates with long-term access to alcohol, where al-
cohol consumption was significantly reduced when treated with
the GLP-1RAs exenatide or liraglutide compared to placebo [59].
Recently, the newer and more potent GLP-1R A semaglutide was
reported to reduce alcohol consumption in rats [60, 61] and non-
human primates as well [62].

6.2 | Dopamine Homeostasis

GLP-1-producing neurons projecting from the NTS to the VTA
and the core and shell regions of the NAc have been identified
[34], and GLP-1R stimulation in the NTS increases expression
of dopamine-related genes, e.g. mRNA encoding tyrosine hy-
droxylase, which is required for the synthesis of dopamine [21].
However, exenatide does not seem to alter the expression of do-
pamine receptors or DAT in the NAc [63]. Several preclinical
studies have investigated how GLP-1 modulates dopamine sig-
nalling. Microdialysis and fast-scan cyclic voltammetry studies
indicate attenuated alcohol-induced dopamine release in the
NAc following systemic injections of liraglutide [55], or exen-
atide [51], and after local injection of exenatide into NTS [53].
Exenatide also attenuates cocaine-, amphetamine- and nicotine-
induced increases in NAc or lateral septal dopamine levels in
rats [64-68]. However, GLP-1RAs do not seem to suppress base-
line dopamine levels, as opposed to their lowering effects on
elevated dopamine levels induced by drugs of abuse, including
alcohol [64, 67]. The mechanism by which GLP-1R stimulation
affects dopamine homeostasis is less clear. In rat brain slices
from the lateral septum and striatum, GLP-1R stimulation in-
creases DAT expression [65, 69]. In the lateral septum, GLP-1R
stimulation reduces septal expression of the retrograde messen-
ger 2-arachidonylglycerol (2-AG), as well as its metabolite, ara-
chidonic acid [65]. Interestingly, arachidonic acid reduces septal
DAT function, suggesting that arachidonic acid may be a novel
regulator of central DA homeostasis [65]. However, other pre-
clinical studies report unaffected striatal DAT availability after
GLP-1R stimulation in wild-type and knock-out mice [69], as
well as in rat NAc [64].

7 | GLP-1and GLP-1RAs - Human Studies
7.1 | Alcohol

Clinical trials investigating the effects of alcohol on gastroin-
testinal (GI) hormones in healthy controls report no changes
in plasma GLP-1 levels after consumption of alcohol [70-73] or
after intravenous alcohol [70]. However, one study in patients
diagnosed with Type 2 diabetes and consuming alcohol and
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a fat-rich meal reported decreased postprandial GLP-1 levels
[74]. Tt is thus uncertain whether the result can be attributed
to the consumption of alcohol or other nutrients. It has been
reported that there is an increased prevalence of AUD among
patients having bariatric surgery performed [75, 76], and post-
surgery changes of several gut peptides, including GLP-1, have
been described [77, 78]. In a newly published review, it has been
reported that postprandial GLP-1 plasma levels increase after
surgery and are associated with a more extensive weight loss,
but fasting GLP-1 levels do remain low [77]. However, due to the
very short half-life of peripherally released endogenous GLP-1, it
is unlikely, that it could reach GLP-1Rs in reward-related brain
areas. Therefore, the effect of GLP-1RAs on appetite regulation,
and possible effect on alcohol consumption, is most likely due to
a direct effect of GLP-1RAs on GLP-1R in reward-related brain
areas and not via peripherally released endogenous GLP-1. The
first report on GLP-1RA-related reduction in alcohol intake in
humans was a conference abstract from 2011 [79]. The author
performed a cross-sectional study (only published in abstract for-
mat) conducted on individuals diagnosed with Type 2 diabetes
and treated with liraglutide for 3months, showing a reduction
in alcohol consumption [79]. Recently, human data from several
register studies have been published, and data is in concordance
with the results from Kalra [79]. Both a Danish and an American
nationwide register-based studies have reported a lower risk of
an alcohol-related event or AUD diagnosis when individuals di-
agnosed with diabetes or obesity were treated with a GLP-1RA
[80, 81]. A case series of six individuals receiving semaglutide
for obesity have reported a reduction in AUD symptomatology
based on the Alcohol Use Disorders Identification Test (AUDIT)
score [82]. Also, secondary analysis from an RCT investigating
the GLP-1RA dulaglutide as a treatment for nicotine dependence
found that the dulaglutide group had a 29% reduction in alco-
hol consumption after 12weeks of treatment with dulaglutide,
compared to the placebo group, and this was not correlated with
smoking status. The results showed no significant change in
alcohol consumption in the group of participants being heavy
drinkers. No data on calories or fluids consumed were reported
[83]. Lastly, a social media study on posts related to GLP-1 or
GLP-1/GIP receptor agonists has reported reductions in craving
and desire to drink [84]. Recently, we published on the effects of
the GLP-1RA exenatide in patients receiving psychotherapy for
AUD in a randomised, placebo-controlled clinical trial [85]. No
significant difference in the reduction of heavy drinking days
was found. However, a subgroup of participants had a brain

fMRI scan performed at baseline and Week 26. In a predefined
region of interest (ROI) analysis, alcohol cue-induced activation
was significantly reduced in the ventral striatum, dorsal stria-
tum and putamen in the exenatide group compared to the pla-
cebo group [85]. In the fMRI whole-brain analyses, a significant
reduction in alcohol cue-induced activation in the left caudate
and septal area was observed in the exenatide group compared
to the placebo group [85]. In an exploratory analysis of BMI sub-
groups, a reduction in heavy drinking days and total alcohol
intake was found in individuals with a baseline BMI>30kg/
m? treated with exenatide, compared to the BMI-matched pla-
cebo group (total n=30). In the exenatide-treated patients
with a BMI>25kg/m?, a significant reduction in total alcohol
intake compared to the matched BMI placebo group was also
found (total n=75). In contrast, in patients with a normal BMI
(18.5-24.9kg/m?), the placebo group had a significantly larger
reduction in heavy drinking days than the exenatide-treated
group (total n=>52) [85]. Table 1 gives an overview of all ongoing
clinical trials investigating the effects of a GLP-1RA in AUD.
Table 2 gives an overview of all the clinical studies mentioned
above, investigating the effects of a GLP-1RA in AUD.

7.2 | Dopamine Homeostasis

Three clinical trials have investigated the effects of GLP-1IRAson
DAT availability in humans; a randomised placebo-controlled
clinical trial in Parkinson's disease patients treated with ex-
enatide once weekly reported no changes in DAT availability
measured with a SPECT-DAT-scan after 48 weeks of treatment
[86]. A smaller clinical SPECT study performed by our research
group investigated DAT availability in 10 healthy volunteers
with no record of AUD or SUDs. All participants received pla-
cebo and exenatide infusions while placed in the SPECT scanner
for 100min (40 min with saline infusion followed by 60 min of
exenatide infusion) [69]. No acute changes in DAT availability
were observed [69]. In the published exenatide AUD trial [85],
a subgroup of the AUD patients had a SPECT-DAT scan per-
formed at baseline and at Week 26. At the Week 26 rescan, a sig-
nificant reduction in DAT availability in the striatum, caudate
and putamen was found in the exenatide group, compared to the
placebo group [85]. When baseline values for the AUD patients
were compared to a sample of healthy controls, no significant
difference in baseline DAT availability between AUD patients
and healthy controls was found [85].

TABLE1 | Allunpublished or ongoing clinical trials investigating a GLP-1 receptor agonist in alcohol use disorder registered until December 12,

2024.
NCT Identifier Drug Administration n= Primary outcome Expected end date
NCT05895643 Semaglutide  sc, 2.4mg once weekly 108 Change in heavy drinking days December 2025
NCT05520775 Semaglutide  sc, 1.0mg once weekly 48 Change in alcohol consumption Completed
in four laboratory sessions
NCT05891587 Semaglutide  sc, 1.0mg once weekly 80 Change in alcohol drinking July 2025
measured per week
NCT05892432 Semaglutide po, 7.0mg once daily 135 Change in alcohol craving June 2025
NCT06015893 Semaglutide  sc, 2.4mg once weekly 52 Change in alcohol consumption December 2030

Abbreviation: NCT, ClinicalTrials.gov.
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8 | Adverse Events and Safety

GLP-1RAs are widely used, with an exposure of over 20 million
patient-years, equivalent to 20 million patients medicated with a
GLP-1RA for 1year [87]. A common mild to moderate, transient
side effect of most GLP-1RAs is GI-related. The GI side effects
reported in the GLP-1 exenatide AUD trial [85] were more pro-
nounced than those previously reported in diabetes and obesity
trials [88, 89], suggesting that AUD patients are more prone to
GI adverse events [90]. Depressive disorders [91] and suicidal ide-
ation [92] are often co-occurring with AUD. During the last year,
the scientific and regulatory society and the media have focused
on a potentially increased suicide/suicidal ideation rate among
patients receiving a GLP-1RA [93]. Analyses from the FDA
Adverse Event Reporting System (FAERS) have concluded that
there is no causal link between GLP-1RAs and suicidality [94],
and a very recent retrospective cohort study of electronic health
records among individuals without a diagnosis of AUD does not
support a higher risk of suicidal ideation when treated with the
GLP-1RA semaglutide compared to other antidiabetes or obesity
medications [95]. Patients with AUD have an increased risk for
hepatic damage [1], and a rodent study has recently shown that
the GLP-1RA exenatide improves alcohol-associated hepatic ste-
atosis [96]. In individuals with nonalcoholic fatty liver disease
(NAFLD) and nonalcoholic steatohepatitis (NASH), it is reported
that the GLP-1R A semaglutide causes a reduction in liver enzyme
levels, reduces liver stiffness and improves metabolic parame-
ters [97]. To the best of our knowledge, the role of GLP-1RAs in
alcohol-related liver disease (ALD) has not yet been reported, but
one clinical trial investigating this has been initiated [98]. The
renal elimination of GLP-1RAs [32] is also advantageous in AUD
patients, and results from a post hoc analysis have indicated that
semaglutide does reduce albuminuria and the risk of new-onset
macroalbuminuria [99]. Semaglutide has also been shown to re-
duce the incidence of death due to cardiovascular disease, non-
fatal stroke and nonfatal myocardial infarction in nondiabetic
patients with pre-existing cardiovascular disease and a BMI of
27 or higher [100]. Heavy alcohol consumption is associated with
reduced bone mass density and increased risk of bone fractures
[101]. Several rodent studies have shown that GLP-1RAs increase
bone mass and enhance bone strength [102]. In humans, treat-
ment with a GLP-1RA does not seem to impact bone health [103].
In the exenatide AUD trial, no significant difference in bone
marker levels between the two groups was observed, indicating
that treatment with the GLP-1RA exenatide did not increase the
risk of bone fractures in this specific group of patients—at least
not in a 6-month treatment period [85]. Earlier studies [104] and
case reports [105] have reported that GLP-1R As were associated
with an increased risk of pancreatitis or pancreatic cancer in pa-
tients with Type 2 diabetes. This increased risk may have limited
the enthusiasm for testing GLP-1RAs against AUD, as patients
with AUD are already at higher risk for pancreatitis and pancre-
atic cancer [92]. However, a systematic review and meta-analysis
including three high-quality, randomised clinical trials and 18 700
patients diagnosed with diabetes and treated with GLP-1RAs or
placebo found no significant association [106]. These findings are
supported by a recent meta-analysis including more than 55,000
patients [107], as well as a study comparing the risk of pancre-
atitis [108] or pancreatic cancer [109] in patients treated with
GLP-1RAs and patients treated with other antidiabetic therapies.
In the exenatide AUD trial [85], no elevated pancreatic plasma

enzyme levels above the upper limit were observed, nor were any
incidences of pancreatitis recorded [85]. In the two clinical nic-
otine trials, there were no registered incidences of pancreatitis
[110, 111] nor in the cocaine trial [112]. Because only one pub-
lished clinical trial in AUD patients has investigated the effects
of GLP-1RAs, recent safety concerns regarding treatment with
GLP-1RAs in AUD patients related to alcoholic ketoacidosis or
hypoglycaemia are still to be explored. In individuals receiving
therapy with a GLP-1RA for the treatment of diabetes or obesity,
the risk of hypoglycaemic episodes or ketoacidosis is dependent
on comedication with a sulfonylurea [113]. Also, severe compli-
cations such as malnutrition, cirrhosis, and sarcopenia are still to
be investigated, even though—to the best of our knowledge—no
data support these concerns [114].

9 | Discussion

Promising treatment effects of GLP-1RAs on alcohol intake have
been reported in preclinical trials [115], case stories [82], in register-
based cohort studies [80, 81], secondary analyses of data [83] and
social media comments [84]. Still, the exenatide AUD trial—the
only published RCT including patients with primarily AUD—
showed that exenatide was not superior to placebo on the primary
alcohol outcomes, except in a post hoc analysis of the subgroup of
patients with comorbid obesity (BMI > 30kg/m?). However, in the
subgroup of patients with BMI <25kg/m?, the exenatide subgroup
significantly increased the number of heavy drinking days com-
pared to the placebo group. A possible explanation of the increased
heavy drinking days in the lean exenatide subgroup could be that
they experienced a more considerable exenatide-induced decrease
in blood sugar [116], leading to more alcohol cravings [117], caus-
ing more heavy drinking days [85]. In preclinical studies, high
alcohol-consuming animals are reported to decrease their alcohol
intake more than low alcohol-consuming animals when treated
with GLP-1RAs [52, 55]. The lack of effect of exenatide on the
primary endpoints could be related to the severity profile of the
study participants whose baseline alcohol intake was lower than
what is reported in other clinical pharmacotherapy alcohol trials
[118, 119].

Recently, papers have described that individuals treated with
a GLP-1RA for obesity have reduced their alcohol intake or
alcohol-related behaviour [80, 82-84, 120]. A plausible expla-
nation could be that overlapping brain circuits are involved in
obesity and in addiction [121]. The antiobesity effects of GLP-
1RAs may be due to a change in food preference [122], sati-
ety signal [32] or that individuals with obesity have deranged
GLP-1 signalling [123], which might be due to changes in gene
expression [124]. An fMRI study in obese individuals also re-
ported a normalised brain response to food cues when treated
with the GLP-1RA exenatide [125].

The NAc, which is part of the ventral striatum, plays a pivotal
role in addiction and relapse [126-128]. Repeated use of drugs
can cause a permanently hypersensitive state to drug-associated
stimuli—‘incentive salience’ [21], causing addictive behaviour
[18]. In the exenatide AUD trial, we found significantly reduced
fMRI alcohol cue reactivity in the ventral striatum (and other
brain areas), implying that exenatide-treated patients with AUD
experience less incentive salience of alcohol-associated cues [85].
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This has also been reported previously in an RCT investigating
the effects of cue-exposure training in patients with AUD [129].

In 1954, Olds and Milner reported that rodents with electrodes
implanted in the septal area were conveying the highest re-
ward response [16], and it has been reported that the lateral
septum receives dopaminergic input [130]. A rodent study has
also shown that GLP-1Rs are highly expressed in the septum
and that GLP-1R stimulation might regulate addiction-related
effects by reducing dopamine levels via increased DAT ex-
pression [65]. The GLP-1RA exenatide is reported to attenu-
ate alcohol-, cocaine-, amphetamine- and nicotine-induced
increases in accumbal or lateral septal dopamine levels in rats
[51, 64-68]. In accordance with these preclinical data, whole-
brain fMRI results from the exenatide AUD trial showed a sig-
nificant reduction in alcohol cue reactivity in the septal area
[85], indicating that the septal area may play a role in the ef-
fects of GLP-1RAs on addictive behaviour.

In humans, data on dopamine and DAT availability, measured
with different brain-imaging modalities or in post-mortem
brains, are divergent [25, 26, 28, 30, 131, 132], and so are
the results of GLP-1RA-induced DAT availability [69]. In in-
dividuals without AUD, no acute changes in DAT levels are
reported following infusion of the GLP-1RA exenatide [69].
The same was reported in Parkinson's disease patients treated
with exenatide for 48 weeks [86]. In the human exenatide AUD
trial, no significant baseline difference in DAT availability
was observed between AUD patients and individuals with-
out AUD [85]. After 26 weeks of treatment with exenatide, re-
duced DAT availability was observed in the striatum, caudate
and putamen [85]. This GLP-1RA-induced reduction in DAT
availability may counteract the decreased dopamine activity
previously reported in patients with AUD [127]. Nevertheless,
the divergent findings on DAT availability in preclinical and
human studies add to the assumption that GLP-1 regulation of
DAT might be species-dependent and that the precise mech-
anisms in different species are still to be elucidated [69, 115].
The effects of GLP-1RAs might also be caused by changes
in other neurotransmitter systems, for example, GABA [27],
as indicated by a preclinical study, where treatment with
the GLP-1RA semaglutide enhanced GABA release in the
central nucleus of amygdala and infralimbic cortex neurons
in alcohol-naive rats. In alcohol-dependent rats, a more het-
erogeneous response was observed with increased network-
dependent GABA release in some neurons and decreased
GABA release in the remaining cells [60]. In conclusion, the
central mechanisms of action involved in the potential effects
of GLP-1RAs in AUD are not fully elucidated. Newer and
more potent GLP-1RAs are now available for clinical use, and
several randomised clinical trials involving different treat-
ment durations and different GLP-1RA doses have been initi-
ated, which may pave the road for further investigation of the
potential role of GLP-1RAs in the medical treatment of AUD
and other addictive disorders. However, the somewhat high
prize of GLP-1RAs poses barriers to treatment access, which
may be an even greater challenge for patients with AUD com-
pared to patients with diabetes and/or obesity.
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