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The human metabolome reflects complex metabolic states affected by
genetic and environmental factors. However, metabolites associated with
type 2 diabetes (T2D) risk and their determinants remain insufficiently

characterized. Here we integrated blood metabolomic, genomic and
lifestyle data from up to 23,634 initially T2D-free participants from ten
cohorts. Of 469 metabolites examined, 235 were associated with incident
T2D during up to 26 years of follow-up, including 67 associations not
previously reported across bile acid, lipid, carnitine, urea cycle and arginine/
proline, glycine and histidine pathways. Further genetic analyses linked
these metabolites to signaling pathways and clinical traits central to T2D
pathophysiology, including insulin resistance, glucose/insulin response,
ectopicfat deposition, energy/lipid regulation and liver function. Lifestyle
factors—particularly physical activity, obesity and diet—explained greater
variations in T2D-associated versus non-associated metabolites, with
specific metabolites revealed as potential mediators. Finally, a 44-metabolite
signatureimproved T2D risk prediction beyond conventional factors. These
findings provide afoundation for understanding T2D mechanisms and may
inform precision prevention targeting specific metabolic pathways.

Diabetes affects 589 million adults globally, and the number is esti-
mated to increase to more than 853 million by 2050". T2D accounts for
more than 90% of all diabetes cases, and its pathogenesis involves both
polygenicsusceptibility and environmental risk factors (for example,
dietand lifestyle)®. Manifested by insulin resistance, -cell dysfunction
and consequent hyperglycemia, the progression of T2Dis characterized
by comprehensive yet integrative metabolic changes orchestrated at
several organsystems’. Identifying the molecular profile characterizing
the dysregulated metabolism contributing to T2D, as well as the genetic
and environmental determinants of such ametabolic profile, is crucial
for understanding T2D etiology, and may inform the design of more
effective preventive strategies targeting specific metabolic pathways.

The circulating metabolome is the quantitative collection of
small molecules in the blood and provides a comprehensive func-
tional readout of the metabolic homeostasis in each person. In past

decades, prospective studies examining circulating metabolites from
preselected pathways or, more recently, a broader spectrum of the
metabolome, have identified more than 100 metabolites associated
with T2D risk*¢. These studies collectively highlightimportant roles of
several metabolites in T2D pathophysiology, such as branched-chain
amino acids (BCAAs), tryptophan and lysine, specific phospholipids
(PLs) and ceramides*°. Recent research further indicated that the
blood metabolome can beinfluenced by genetics”®, health conditions,
dietandlifestyle®”'°, among other factors'*". As such, thereis astrong
need to integrate multimodal data to better understand how various
risk factors are related to disease-associated metabolites to advance
precision prevention. However, systematic evaluations of the circulat-
ing metabolome associated with T2D risk are lacking, and the genetic
and nongenetic contributors to the T2D metabolome have not been
investigated ina comprehensive manner.
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@ Prospective associations between baseline circulating metabolites and incident T2D
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Fig.1|Study overview. a, To identify blood metabolites associated with incident
T2D, we analyzed 469 harmonized metabolites in up to 23,634 participants

from ten prospective cohort studies. At baseline, participants were free of T2D
and other chronic diseases; and blood metabolome was profiled using the
metabolomic platforms at Broad Institute or Metabolon Inc. A metabolome-wide
association study (MWAS) for incident T2D was conducted in each cohort; and
results from the ten cohorts were combined using meta-analysis, identifying 235
metabolites associated with T2D risk. b, We curated meta-analyzed genome-wide
association studies (GWASs) for each metabolite using data of up to 18,590

people from eight cohorts, followed by functional analyses, colocalization
analyses and Mendelian randomization analyses. ¢, We conducted MWASs for
major modifiable risk factors in up to 16,883 participants from five cohorts,
identifying metabolites that potentially mediated the associations between

risk factors and T2D risk. d, We used machine learning analyses to develop a
metabolomic signature reflecting the complex metabolic states predictive of
long-term T2D risk, which may facilitate the identification of high-risk individuals
and precision prevention.

Tofillthese knowledge gaps, we examined 469 circulating metabo-
litesinapooledstudy of 23,634 initially T2D-free and racially/ethnically
diverse people from ten prospective cohorts, to identify metabolites
associated with incident T2D over up to 26 years of follow-up. We
further conducted integrative analyses combining genomic dataand
diet/lifestyle factors, to systematically elucidate genetic determinants,
functional enrichments and potential tissue origin for T2D-associated
metabolites; and to illustrate the relationships among diet/lifestyle
factors, circulating metabolites and incident T2D. Finally, we derived
and validated a multi-metabolite signature that reflected the complex
metabolic states predictive of future T2D risk, with the potential to
facilitate risk stratification and precision prevention (Fig. 1).

Results

Metabolome-wide association analysis of incident T2D

Our primary analysis included 23,634 participants from ten pro-
spective cohorts free of T2D at study baseline. During up to 26 years
of follow-up, 4,000 incident T2D cases were identified (Fig. 1 and
Extended Data Table1). Metabolomic profiling was conducted at either
the Broad Institute or Metabolon Inc., and 469 metabolites were har-
monized across cohorts for analyses (Supplementary Fig. 1). We con-
ducted metabolome-wide association analysis in each cohort stratified
by major racial/ethnic groups (Supplementary Table 1; Methods). In
meta-analysis of all subsets, we identified 235 metabolites associated

withincident T2D (false discovery rate (FDR) < 0.05), after adjusting for
demographic, socioeconomic and clinical factors, including body mass
index (BMI) and waist-hip ratio (WHR) (Fig. 2, Extended Data Fig.1laand
Supplementary Table 2). These include 168 previously reported associa-
tions and 67 additional significant associations identified in this study
(Supplementary Table 3). Aside from glucose, multivariable-adjusted
riskratio (RR) forincident T2D per s.d. incrementin circulating levels of
metabolites ranged from 0.67 (95% confidence interval (Cl), 0.61-0.72)
for C22:4 cholesterol ester (CE), to 1.71 (95% Cl, 1.60-1.83) for C32:0
diacylglycerol (DAG).

The large number of metabolites associated with T2D risk is
expected, given the correlations among metabolites—particularly
among lipids (Supplementary Fig.2) and our large sample size. Results
were consistent in multiple sensitivity analyses, including a basic
model adjusting for only demographic and socioeconomic factors,
and models further adjusting for diet quality and physical activity
(PA), blood pressure, blood lipids or estimated glomerular filtration
rate (eGFR) (Supplementary Figs. 3-4 and Supplementary Table 2).In
stratified meta-analysis by major racial/ethnic groups, associations
between most metabolites and T2D risk were comparable between
non-Hispanic white individuals and those of other racial and ethnic
groups, although a few discrepancies deserve further investigations
(for example, acisoga was associated with T2D risk only in Black par-
ticipants, and C36:1 phosphatidylcholine (PC) only in Hispanic/Latino
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Fig.2| Associations between 235 metabolites and incident T2D in meta-
analysis of ten prospective cohorts. Circular plotsillustrate metabolites
associated withincident T2D at FDR < 0.05, by biochemical category. a, Results
for complex lipids including monoacylglycerols (MAG) and DAG, TAG, LP, PC,
PE, other PLs, PL plasmalogens and sphingolipids (SG). b, Results for other
metabolites, including amino acids, carbohydrates, bioenergetic metabolites,
nucleotides (NTs), xenobiotics (XBs), as well as other lipid metabolites including
carnitines, BAs, CEs and nonesterified fatty acids. Each bar represents results
for one metabolite; red and blue indicate positive and inverse associations,
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respectively; color depth indicates association magnitude, thatis, In(RR) per
s.d.increment in the metabolite, capped at 0.3 to 0.3; and bar height indicates
association significance, capped at 10 inaand 10 in b. Analyses were
conducted in each cohort by racial/ethnic groups adjusting for age, sex, smoking,
alcohol consumption, fasting status, hypertension, dyslipidemia, lipid-lowering
medication use, anti-hypertensive medication use, BMI, WHR, family history

of T2D and cohort-specific variables, and results were combined using
meta-analysis.

adults) (Extended Data Fig.1b—-d and Supplementary Table 4). Further
comparison between cohorts applying Broad Institute versus Metabo-
lonplatformsalsoyielded consistent findings for overlapping metabo-
lites (Extended Data Fig. 2 and Supplementary Table 5).

The 235 metabolites associated with incident T2D
We examined 205 complex lipids, identifying 130 significantly asso-
ciated with incident T2D (including 18 associations not previously
reported) and providing acomprehensive characterization of the lipi-
domicassociation patterns (Fig.2aand Supplementary Tables 2and 3).
Positive associations with T2D risk were observed for triacylglycerols
(TAG; the main form of energy storage in adipose tissue'?), DAG (activate
signaling cascades triggering hepatic insulin resistance™), ceramides
(involvedin B cell apoptosis and impaired insulin signaling™), as well as
PC, phosphatidylethanolamine (PE) and phosphatidylinositol (related
toinsulin resistance™"*). Inverse associations with T2D risk were found
for CEs, lysophospholipids (LPs), unsaturated PL plasmalogens (func-
tionas endogenous antioxidants"), some sphingomyelins (may coun-
teract effects of ceramides') and alpha-glycerophosphate (involved
in glycolysis™). In addition, we noted that more double bonds were
correlated with lower T2D risk among DAG, TAG and sphingomyelins,
but with higher T2D risk among plasmalogens (Extended Data Fig. 3
and Supplementary Table 6), possibly due to functions of constituting
fatty acids and/or the insulin-mediated regulation of FA desaturases®.
Of other lipid signaling pathways, we identified 34 metabolites
associated with T2D risk, including 26 significant associations not
reported previously (Fig. 2b and Supplementary Tables 2 and 3).
Notably, detrimental associations were identified for four primary
and three secondary bile acids (BAs), including taurocholate, glyc-
ochenodeoxycholate, taurochenodeoxycholate, deoxycholate and

taurodeoxycholate, that were not linked previously to T2D risk, adding
further evidence to the role of BAsin T2D pathogenesis®?.. Significant
associations with T2D were also noted for eight carnitine metabolites,
including six significant associations not reported before (thatis, C3,
C5:1, C14, C16, C5-DC, butyrobetaine), supporting its role in energy
metabolism?%. Of the 19 free fatty acids associated with T2D risk, 18
showed positive associations, whereas some of their CE counterparts
were inversely associated with T2D risk.

Across other pathways, we identified 43, five, seven and eight
metabolitesinvolved inamino acid, carbohydrate, energy and nucleo-
tide metabolism, respectively, and eight other metabolites associated
with T2D risk, comprising 23 significant associations not reported
previously (Fig.2b and Supplementary Tables 2 and 3). Key amino acid
pathwaysunderlying T2D risk indicated by these associations encom-
passingalanine, aspartate and glutamate, glycine, serine and threonine,
urea cycle, arginine and proline, histidine, BCAA, tryptophan, lysine,
phenylalanine and creatine metabolism. Notably, although coffee
consumption has been consistently related to lower T2D risk?’, metabo-
lites derived from phytochemicals in coffee showed both positive
(forexample, caffeine, theophylline and 1,3-dimethylurate) and inverse
(forexample, trigonelline and hippuric acid) associations with T2D risk.

Shared genetic architecture between metabolites and T2D

To offer new biological insights, we examined the shared genetic archi-
tecture between T2D-associated metabolites and T2D risk. Through
meta-analyses in up to 18,590 people from eight cohorts, we curated
genome-wide association study (GWAS) summary statistics for 458
harmonized (including 233 T2D-associated) metabolites (Fig.1and
Supplementary Table 7; Methods). We identified one or more genetic
loci for 165 T2D-associated metabolites at P<1.09 x10° (5 x 1078
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Fig. 3| Genetic determinants of T2D-associated metabolites. We examined
genetic architectures of T2D-associated metabolites based on genome-wide
meta-analysis summary statistics. a, R? explained by genetics comparing the
T2D-associated metabolites versus other metabolites by biochemical category
(Wilcoxon test, statistical significance defined as two-sided P < 0.00625,
correcting for eight categories). b, Top enriched canonical pathways for

genes mapped to mQTLs of T2D-associated metabolites, most of which were
not enriched for genes mapped to mQTLs of non-associated metabolites.

AS, atherosclerosis; CAR, constitutive androstane receptor; FXR, farnesoid X
receptor; MetS, metabolic syndrome; PXR, pregnane X receptor; VLDL, very
low-density lipoprotein. ¢, Percentages of metabolites showing nominally
significant (P < 0.05) genetic correlations (r,) with traits reflecting T2D
pathophysiology, comparing T2D-associated versus non-associated metabolites
(two-sided chi-squared test). Barplot shows results for all metabolites

(*FDR < 0.05, correcting for 22 traits); and heatmap shows percentage among
T2D-associated metabolites by biochemical category (**FDR < 0.05 correcting
for121 comparisons; *P < 0.05). ALT, alanine aminotransferase; AST, aspartate
aminotransferase; GGT, gamma-glutamyltransferase; HDLC, HDL cholesterol;
LDLC, LDL cholesterol; TC, total cholesterol; TG, triglycerides. d, Proportions
of metabolites colocalized (PPH4 > 0.8) with tissue-specific gene expression
across 47 human tissues. We tested whether the proportions were higher among
T2D-associated metabolites (colors: organ systems) versus non-associated
metabolites (gray) using univariant logistic regression (**one-sided FDR < 0.05
correcting for 47 tissue types; *P < 0.05). e, For tissue types showing enriched
genetic colocalizations with T2D-associated metabolites (seven tissue types
with FDR < 0.05, plus the main metabolic organ liver with P < 0.05), we detailed
the enrichment by biochemical category (color depth: proportions among
T2D-associated versus non-associated metabolites; *one-sided P < 0.05).

correcting for 458 metabolites), with 45% of the identified metabo-
lite-locus pairs not reported by previous major metabolite quantitative
trait locus (mQTL) studies®**2° (Supplementary Table 8; Methods).
Most mQTLs were annotated to genes involved in cellular metabo-
lism, synthesis, and/or transportation of the corresponding metabo-
lites. Approximately 23% of the identified loci were associated with
multiple T2D-associated metabolites, especially those from the same
or closely related pathways (for example, GCKR, FADS1-3 and ZNF259)
(Extended Data Fig. 4). A brief comparison between racial/ethnic
groups suggested that some mQTLs may be specific to certain groups
(for example, OPLAH for pyroglutamate in Hispanic/Latino adults)
(Supplementary Figs. 5 and 6), warranting confirmation by larger
trans-ancestry studies. Several mQTLs for T2D-associated metabo-
lites overlapped with known T2D risk loci?, with significant genetic
colocalizations observed at several loci (posterior probability for H4
(PPH4) > 0.8). For example, 53 lipids, ten amino acids and two carbo-
hydrates colocalized with T2D at the GCKR locus (probably driven by

rs1260326). Similar colocalizations with T2D were observed at LDL and
APOE for several complex lipids and at LI7REL for leucine and valine
(Extended DataFig. 4 and Supplementary Tables 8 and 9).

The number of independent variants and the proportion of vari-
ance explained by genetics per metabolite, were generally similar
between T2D-associated and non-associated metabolites (mean
7 =4.4%versus 5.1%; Pierence = 0.47) (Fig. 3, Supplementary Figs.7and 8
and Supplementary Table 10). The top enriched canonical pathways for
mQTLs of T2D-associated metabolites, however, were notably different
fromthose of non-associated metabolites. Genes annotated to mQTLs
of T2D-associated metabolites were enriched in pathways closely
relevant to T2D pathogenesis—such as lipoprotein metabolism?*?°,
adiponectin functions®®, BAs in glucose/lipid regulation®, insu-
lin response and Racl activation®?, as well as glycine and L-serine®
L-lysine**, L-cysteine® and L-phenylalanine metabolism, whereas most
of these pathways were not enriched for mQTLs of non-associated
metabolites (Fig. 3b, Extended Data Fig. 5and Supplementary Table11).
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We then examined genetic correlations (r,) between metabolites
and21traitsindicative of various T2D pathophysiologic mechanisms,
leveraging summary statistics from large-scale GWAS for these traits
(Methods). T2D-associated versus non-associated metabolites demon-
strated substantially more significant r, with fasting insulin (17-fold),
BMI-adjusted insulin secretion and sensitivity indices (10- to 32-fold),
liver enzymes (10- to 11-fold), intrahepatic and visceral fat (9- and 6-fold,
respectively), obesity and blood lipids. Such an enrichment seemed
to be driven by complex lipids, lipid signaling metabolites and amino
acids (Fig. 3c). Significant r, demonstrated a potential link between
metabolites and physiological functions; for example, BCAAs were
genetically correlated with traits reflecting insulin resistance, ectopic
fat and impaired liver function (Supplementary Table 12).

Genetic colocalization between circulating metabolites and
tissue-specific transcriptome

We hypothesized that levels of circulating metabolites may partially
reflect biological homeostasis and gene regulations of related meta-
bolic pathways across different organ systems. We therefore conducted
acolocalization analysis between circulating mQTLs and tissue-specific
cis-gene expression quantitative trait loci (eQTLs) of 47 human tis-
sue types (leveraging Genotype-Tissue Expression v.8 data®®) (Meth-
ods). Genetic colocalizations were observed across all tissue types
(PPH4 > 0.8), supporting our hypothesis. T2D-associated metabolites,
compared to non-associated metabolites, had significantly higher
(FDR < 0.05) percentage of colocalizations in seven digestive and meta-
bolic/endocrine tissues, including thyroid (62%), esophagus mucosa
(45%), esophagus-gastroesophageal junction (58%), visceral fat (55%),
wholeblood (55%), pancreas (54%) and salivary gland (21%), and nomi-
nally higher (P < 0.05) percentage of colocalizations in another 13 tis-
sue types including liver (Fig. 3d and Supplementary Table 13). Such
an enrichment of colocalizations seemed to be driven primarily by
T2D-associated amino acids, fatty acids and complex lipids (Fig. 3e).
Further, each T2D-associated metabolite seemed to be colocalized with
gene expressions within several, instead of one specific, metabolic/
endocrinetissuetypes (Extended DataFig. 6), consistent with the cumu-
lative evidence that T2D development involves integrative biological
changes across liver, fat, pancreas and digestive organ systems>.

We observed several instances where tissue-specific gene expres-
sion, circulating metabolites and T2D colocalized at the same potential
causal variants, highlighting potential genes and tissue types underly-
ing the observed metabolite-T2D associations. For example, of the 65
metabolites colocalized with T2D at the GCKR/PPM1G/IFT172 locus,
61 also colocalized with PPM1G expression in pancreas, IFT172 in thy-
roid and/or NRBPI in esophagus-gastroesophageal junction (likely
causal variant rs1260326). Similarly, 34:4 PC colocalized with T2D, as
well as FADS1 expressionin liver, visceral fat and esophagus-gastroe-
sophageal junction, and TMEM258 expression in thyroid, by rs174545
(Supplementary Fig. 9a,b).

Bidirectional Mendelian randomization analysis

We conducted two-sample Mendelian randomization (MR) analyses
toinfer the potential causal relationships between 233 T2D-associated
metabolitesand T2Drisk, leveraging a published consortium GWAS for
T2D” (Methods). Genetically predicted circulating levels of 42 lipids
and five amino acids were associated with T2D risk (FDR < 0.05), sup-
ported by several MR methods (Supplementary Table 14a). Sensitiv-
ity analyses selecting genetic instruments using a more stringent P
threshold did not change the results, but removing variants on the three
most recurrent loci (that is, GCKR, ZNF259 and FADS1-3) attenuated
results especially for lipids, which was expected giventheroles of these
genesinlipogenesis and lipid metabolism (Supplementary Fig.10). Of
note, genetically predicted T2D was not associated with any metabo-
lite except for glucose—a known diagnostic criterion, rather than an
etiological biomarker of T2D (Supplementary Table 14b), supporting

that our prospective analysis findings are less likely to be due to
reverse causation.

Modifiable risk factors and T2D-associated metabolites
Lifestyle and dietary factors play a pivotal rolein metabolism and T2D
development”*°, We next examined relationships between modifi-
ablerisk factors (that is, BMI, smoking, PA and intakes of 15 main food
groups, mutually adjusted for one another) with circulating metabolites
inup to16,883 participants (Fig.1; Methods). BMIaccounted for more
between-person variation in T2D-associated versus non-associated
metabolites (r? =1.52% versus 0.55%, Pierence = 1 X 10%), which seemed
tobedriven by glycerolipids (GLs), PLs and severalamino acids (Fig. 4),
consistent with their strong genetic correlation with BMI (Fig. 3c).
Behavioral factors (especially PA, and red meat, vegetable and coffee/
tea consumption) in total explained more variationsin T2D-associated
versus non-associated metabolites (r*=7.73% versus 6.57%,
Pirrerence = 0.029), especially for GLs, fatty acids, amino acids and bio-
energetic metabolites (Fig. 4 and Supplementary Table 15).

Metabolites mediating associations between modifiable risk
factors and incident T2D

T2D-associated metabolites (versus non-associated metabolites)
seemed to show stronger associations with several baseline risk fac-
tors, in a direction that is consistent with the epidemiological asso-
ciations between risk factors and T2D risk (Fig. 5a-c). For example,
among the 235 T2D-associated metabolites, there was a strong, posi-
tive correlation (r = 0.86) between their association coefficients with
baseline BMI and their prospective association coefficients with inci-
dent T2D (Fig. 5a). Likewise, positive correlations of association coef-
ficients were observed for risk-increasing behavioral factors such as
smoking, and higher consumption of red meat and sugary drinks. In
contrast, metabolites associated with higher levels of PA, and higher
consumption of coffee/tea and vegetables, tended to be associated
withlower T2Drisk (r=-0.65,-0.46 and —0.34, respectively) (Fig. 5b-c,
Extended Data Fig. 7 and Supplementary Table 16).

Four risk factors (BMI, PA, coffee/tea consumption and red meat
intake) demonstrated expected prospective associations with T2D risk
consistently across our study cohorts (Supplementary Table17a). We
therefore employed a mediation analysis to identify which metabo-
lites, and to what degree, mediated the associations between these
risk factors and incident T2D. For BMI and PA, we identified 148 and
50 metabolites, respectively, potentially mediating their associa-
tions with T2D risk (Fig. 5d—e and Supplementary Table 17a). Notably,
many of these metabolites have been linked, in our genetic analyses, to
T2D-related traits such as intrahepatic and visceral fat, lipids and liver
enzymes, and to tissue types such as visceral fat, pancreas and thyroid,
among others (Fig. 5¢g and Supplementary Tables 12,13 and 17a). We
found eight metabolites (including C22:0 ceramide, C32:0 DAG and
C36:2 PC Plasmalogen) as potentially causal mediators between BMI
and T2D risk, based on mediation analysis and two-step MR analysis
(Supplementary Fig. 11and Supplementary Table 17b). These findings
suggest that obesity and PA may affect T2D risk through metabolic
modulations related to visceral and intrahepatic fat deposition, liver
and endocrine dysfunction, and lipid dysregulation.

We identified 74 metabolites as potential mediators between
coffee/tea consumption and lower T2D risk, comprising several
complex lipids, hippuric acid, isoleucine and glycine (Fig. 5f and
Supplementary Table 17a). Hippuric acid is formed through hepatic
glycine conjugation of benzoic acid, which is generated by the gut
microbiota from polyphenols such as chlorogenic acids and epicat-
echins (abundantin coffee and tea)***, highlighting a potential host-
microbeinterplayin polyphenol metabolism and metabolic health. We
alsoidentified sixlipids as potential mediators between red meatintake
and T2Drisk, including lipids linked to ectopic fat and lipid dysregula-
tionin our genetic analyses (Supplementary Tables 12,13 and 17a).
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Fig. 4| Variance of metabolites explained by modifiable risk factors.

a, Boxplots comparing variance explained by age, sex and modifiable risk factors
(including smoking, PA and intakes of 15 main food groups), for T2D-associated
metabolites versus non-associated metabolites. b, Boxplots showing several
specific biochemical categories of metabolites that drove the differential R%
Each box shows the IQR, line in box indicates median and whiskers extend from
the box to the smallest and largest value within 1.5IQR from the lower and upper
quartiles. Wilcoxon test was used to compare R? of the T2D-associated versus
that of other metabolites; **two-sided P < 0.0025 (Bonferroni correction for

20 examined factors); *two-sided P < 0.05. For each metabolite, we first fitted a

linear regression to regress inverse normal transformed metabolite on age, sex,
BMI (standardized), PA (METs hours per week; standardized), all 15 main food
groups (red meat, processed meat, poultry, fish and seafood, egg, total dairy,
total vegetables, total fruits, potato, nuts and legume, whole grain, refined
grain, sugary drinks, coffee and tea and alcohol; servings per day), fasting
status and other cohort-specific variables simultaneously. We then calculated
R?of the metabolites explained by each of the risk factors based on association
coefficients and the variance of metabolite and risk factors. The analyses were
conducted in NHS, NHS2, HPFS, SOL and WHI separately (n = 16,883) by main
racial/ethnic groups and R? were averaged for the comparison.

A metabolomic signature to reflect the complex metabolic
states predictive of T2D risk

Finally, we developed a multi-metabolite signature reflecting the com-
plex metabolic states predictive of future T2D risk using elastic net
regression, focusing on T2D-associated metabolites shared between
the two metabolomic platforms to facilitate translational applicability
of our findings. A leave-one-cohort-out cross-validation approach was
applied to avoid overfitting (Methods and Supplementary Fig. 18a).
In independent testing cohorts, the metabolomic signature alone
demonstrated decent prediction performance for incident T2D risk,
with an area under the receiver operating characteristic (ROC) curve
(AUC) ranging from 0.62 to 0.86. Compared to a conventional model
with traditional risk factors, the model that additionally included the
metabolomic signature substantially improved T2D risk prediction

with the AUC ranging from 0.69 to 0.92 (AUC increment P< 0.05in
all cohorts, except P=0.054 in SOL) (Fig. 6a—c, Extended Data Fig. 8,
Supplementary Fig. 12 and Supplementary Table 18b). In secondary
analyses of five datasets with available fasting glucose, the addition
of the metabolomic signature improved the model AUC significantly
(P<0.05inthree datasets) to marginally (P=0.06in SOL) beyond tradi-
tional risk factors and fasting glucose, except for PREDIMED (P = 0.18)
(Extended Data Fig. 9).

Across cohorts, crude incidence of T2D increased from 7.7% in
thelowest to37.7%inthe highest decile of the metabolomicsignature
(Fig. 6d). In a multivariable-adjusted analysis combining all cohorts,
participantsin the highest decile had a 5.1-fold higher risk of T2D com-
paredtothoseinthe lowest decile (RR =5.07; 95 Cl1%,4.02-6.39) (Fig. 6e
and Supplementary Table 18c). Further assessing associations with
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epidemiologically expected direction, we conducted mediation analysis

testing theindirect effect (risk factor — T2D association via a metabolite).
d-f,For metabolites whose indirect effects were in the same direction asthe
total effect, we present the distribution of proportion mediated (indirect effect/
total effect) for BMI (d), PA (e) and coffee and/or tea consumption (f). All analyses
were conducted separately in NHS, NHS2, HPFS, SOL and WHI (n up t0 16,883

for individual metabolites) and results were combined using meta-analysis.

g, For metabolites showing significant mediating effects between risk factors
andincident T2D, we highlighted the top tissue types where these metabolites
showed the most genetic colocalizations with tissue-specific gene expression,
and the top clinical traits with which these metabolites have most genetic
correlation.

modifiable diet/lifestyle factors, we found that greater BMland higher
consumption of red meat and sugary drinks were associated with a
higher metabolomic signature score, whereas more PA and higher
intakes of whole grain, coffee/teaand wine were associated with alower
signature score (Fig. 6f and Supplementary Table 18d).

The final metabolomic signature model, derived based on all
study cohorts, comprised 44 metabolites (including 20 amino acids,
19 involved in lipid/energy metabolism and five others), with many
potentially linking modifiable risk factors to T2D risk (Fig. 6f and
Supplementary Table18a). Forinstance, alanine, which connected higher
BMland intakes of red meatand sugary drinks with higher T2D risk, was
found as a potential mediator between BMI and T2D risk by our media-
tion and two-step MR analyses (Supplementary Tables 14a and 17a,b).
Several metabolites, including trigonelline, hippuricacid, isoleucine and
glycine, connected higher coffee/tea intake to lower T2D risk (Fig. 6f).
Taking together, this metabolomic signature may serve asapredicting/
monitoring biomarker to facilitate risk prediction, risk stratification and
evaluation of effects of diet/lifestyle interventions on T2D prevention.

Discussion

This is one of the largest and most comprehensive investigations of
metabolomic profiles associated with T2D risk, integrating blood
metabolomic, genomic and diet/lifestyle data acrossracially and eth-
nically diverse cohorts. Collectively, our study identified a profile of
235 metabolites reflecting a dysregulated metabolism driven by both
genetics and modifiable risk factors and predicts future T2D risk.

A key strength of this study is the harmonized analysis of
individual-level datafromten prospective cohort studies using stand-
ardized protocols. This design provided highstatistical power, enabling
the identification of 235 metabolites prospectively associated with
T2D risk, offering a comprehensive view of the metabolic landscape
underlying T2D pathogenesis and substantially expanding upon the 123
metabolites reportedinarecent literature-review-based meta-analysis
of more than 60 studies*. Our identified significant associations include
34 that were only nominally significant in previous studies and 33
never linked to T2D risk. The use of individual-level data also allowed
consistent adjustments of covariates and result comparisons across
population groups and metabolomic platforms—which are not fea-
siblein literature-review-based meta-analyses. Notably, associations
between the identified metabolites and T2D risk remain robust after
adjustments for obesity/adiposity, blood lipids, blood pressures, life-
style factors or kidney function, and were generally consistent across
popular liquid chromatography-tandem mass spectroscopy (LC-MS)
platforms and major racial and ethnic groups.

Previous mQTL studies have advanced our understanding of
genetic regulation of metabolic homeostasis”®***>*>, Our study offers
additional insights into the shared genetic architectures between
metabolites and T2D. First, genetic determinants of T2D-associated
metabolites were enriched in pathways central to T2D pathogenesis,
including regulatory signaling of glucose response, insulin resistance
and lipid homeostasis, despite their modest contributions to the over-
all metabolite variation. In addition, many of these metabolites were
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Fig. 6 | A multi-metabolite signature for T2D risk prediction. a, AUC for T2D

risk prediction in each cohort. Yellow: the model with metabolomic signature

only, acquired using a leave-one cohort-out cross-validation approach to avoid

overfitting (within WHI, the signature was acquired using a leave-one-out

cross-validation); blue: the model with conventional risk factors including age,

sex, smoking, BMI, dyslipidemia, hypertension, lipid-lowering medication use,

anti-hypertensive medication use and family history of T2D; red: the model

with conventional risk factors plus the metabolomic signature. For cohorts

analyzed with Cox model, we plotted AUC estimated at the median follow-up

time. We compared the AUC of the conventional plus metabolomic signature
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== Pyroglutamate
["] Indole-3-propionate

10 [[] Positive associations
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risk ratio (points) and 95% CI (lines) for incident T2D, comparing participantsin
higher versus the lowest deciles of the metabolomic signature. Analyses were
conducted separately in NHS, NHS2, HPFS, SOL, WHI, PREDIMED and Black

and white participants from ARIC, separately, adjusting for age, sex, smoking,
alcohol consumption, fasting status, hypertension, dyslipidemia, lipid-lowering
medication use, anti-hypertensive medication use, BMI, WHR, family history

of T2D and cohort-specific variables. We plotted relative risk ratios from the
meta-analysis (n =20,930). f, Inmultivariable analysis, BMI, red meat intake
and sugary drink consumption (purple) were associated positively with the
metabolomic signature, whereas PA, and intakes of coffee/tea, whole grains
and wine (green), were associated inversely with the metabolomic signature
(FDR < 0.05). A Sankey plot was used to demonstrate the associations between
each of the 44 metabolites constituting the final metabolomic signature with
these risk factors and with T2D risk (band-width proportional to the association
coefficients).

genetically correlated with traits reflecting T2D pathophysiology, such
asinsulinsecretion, insulin resistance, obesity, ectopic fat deposition
and liver function. Furthermore, circulating levels of T2D-associated
metabolites may reflect biological regulations within specific tissue
types relevant to nutrient metabolism (digestive track, pancreas and
liver), endocrine/metabolic regulation (thyroid, pancreas and adipose
tissues), and inflammation (whole blood and visceral fat). Mapping
metabolites—particularly those with strong genetic regulation—to
relevant tissues and physiological functions can facilitate mecha-
nistic interpretation. For example, TAGs 46:1 and 46:2 were linked to
visceral but not subcutaneous fat, gene expression in pancreas, and
insulin secretion and sensitivity indices, suggesting a role in visceral
adiposity-related insulin resistance**. Notably, although dyslipidemia
is often viewed as a consequence of diabetes*, our findings and recent

evidence**** indicate a complex interplay between lipid and amino

acid metabolism and glucose homeostasis. Future studies may lev-
erage our results to further explore mechanisms linking circulating
metabolites to T2D risk.

Obesity, diet and lifestyle can directly influence circulating
metabolome’ ™", We showed that obesity, PA and diet may impose sub-
stantialimpacts on the subset of metabolites associated with T2D risk,
whichis consistent with the notion that environmental factors need to
disturb causal pathways to affect T2D risk*®. We also identified specific
metabolites probably mediating risk factor-T2D associations. These
findings, together with our genetic results, highlight potential causal
pathways underlying T2D that deserve further mechanisticinvestiga-
tions. Forinstance, several metabolites mediating the inverse associa-
tionbetween PAand T2D risk seem to be involvedin ectopic fat-related
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insulinresistance and liver functionimpairment, whereas metabolites
mediating the association between coffee/tea consumption and T2D
risk were linked to polyphenol metabolism, glucose response, insulin
resistance, ectopic fat deposition and liver function. Future clinical
trials and functional studies could prioritize these pathways when
investigating the causal effects of PA and coffee (or tea) consumption
on metabolic health.

Theblood metabolome reflects overall biological states and may
serve as a prediction or monitoring toolin T2D prevention and thera-
peuticinterventions. In the final step, we developed a multi-metabolite
signature that robustly predicted future T2D risk, either used alone
or in combination with conventional risk factors, and could identify
people with extremely high risk of T2D before T2D diagnosis. The
metabolomic signature is also associated with key modifiable risk
factors and comprises metabolites that may mediate the associations
between various diet/lifestyle factors and T2D risk. Collectively, this
metabolomic signature captures the complex metabolic states asso-
ciated with T2D risk, and is applicable in future clinical and research
settings, as either a prediction tool to identify people with high risk of
T2D for early prevention, or anintermediate biomarker to evaluate the
efficacy of dietary and lifestyle interventions.

We acknowledge several limitations. First, although metabo-
lomic data were harmonized between two LC-MS platforms, some
metabolites were unique to one platform, limiting their sample
sizes to specific cohorts. Second, although MR analysis is used fre-
quently to infer causality between metabolites and diseases* ™, its
results should be interpreted cautiously, because some metabo-
lites have weak genetic instruments and many molecules within the
same pathways share genetic loci. To minimize false positives, we
used the conservative mode-based estimate as our primary method,
and confirmed findings with another three MR methods. We note
that the lack of significant MR results does not preclude potential
biological connections between a metabolite and T2D. Third, due
to the observational design, our study cannot establish causality.
Randomized trials are warranted to assess how diet/lifestyle affect
T2D-associated metabolites and T2D risk. Finally, although our study
included people withracially and ethnically diverse backgrounds, and
associations were generally consistent across groups, 77% of our par-
ticipants were non-Hispanic white individuals, highlighting the need
for further replication and additional investigations in more diverse
populations.

In summary, we identified 235 metabolites associated with inci-
dent T2D, potentially reflecting the influence of genetic and modifi-
able factors (especially diet, PA and adiposity) on metabolic pathways
underlying T2D risk. This included 67 significant associations not
previously reported encompassing BA, lipid, carnitine, urea cycle
and arginine/proline, glycine and histidine metabolic pathways. As
aresource, our findings may aid mechanistic and clinical research to
investigate pathways underlying T2D pathophysiology. Our metabo-
lomicsignature may serve as a powerful tool for risk stratificationand
as a monitoring biomarker to inform precision T2D prevention and
early intervention.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41591-025-04105-8.

References

1. IDF Diabetes Atlas 2025, 11th edn (International Diabetes
Federation, 2025).

2. Galicia-Garcia, U. et al. Pathophysiology of type 2 diabetes
mellitus. Int. J. Mol. Sci. 21, 6275 (2020).

10.

1.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Roden, M. & Shulman, G. I. The integrative biology of type 2
diabetes. Nature 576, 51-60 (2019).

Morze, J. et al. Metabolomics and type 2 diabetes risk: an updated
systematic review and meta-analysis of prospective cohort
studies. Diabetes Care 45, 1013-1024 (2022).

Guasch-Ferre, M. et al. Metabolomics in prediabetes and
diabetes: a systematic review and meta-analysis. Diabetes Care
39, 833-846 (2016).

Qi, Q. et al. Host and gut microbial tryptophan metabolism and
type 2 diabetes: an integrative analysis of host genetics, diet, gut
microbiome and circulating metabolites in cohort studies. Gut 71,
1095-1105 (2022).

Feofanova, E. V. et al. A genome-wide association study discovers
46 loci of the human metabolome in the Hispanic Community
Health Study/Study of Latinos. Am. J. Hum. Genet. 107, 849-863
(2020).

Feofanova, E. V. et al. Whole-genome sequencing analysis of
human metabolome in multi-ethnic populations. Nat. Commun.
14, 3111 (2023).

Li, J. et al. The Mediterranean diet, plasma metabolome, and
cardiovascular disease risk. Eur. Heart J. 41, 2645-2656 (2020).
Chen, L. et al. Influence of the microbiome, diet and genetics on
inter-individual variation in the human plasma metabolome.

Nat. Med. 28, 2333-2343 (2022).

Bar, N. et al. A reference map of potential determinants for the
human serum metabolome. Nature 588, 135-140 (2020).

Bender, D. A. & Mayes, P. A. in Harper's Illustrated Biochemistry
31st edn (eds Rodwell, V. W. et al.) Ch. 14 (McGraw-Hill Education,
2018).

Boden, G. & Laakso, M. Lipids and glucose in type 2 diabetes: what
is the cause and effect? Diabetes Care 27, 2253-2259 (2004).
Bellini, L. et al. Targeting sphingolipid metabolism in the
treatment of obesity/type 2 diabetes. Expert Opin. Ther. Targets
19, 1037-1050 (2015).

Raubenheimer, P. J., Nyirenda, M. J. & Walker, B.R. A
choline-deficient diet exacerbates fatty liver but attenuates
insulin resistance and glucose intolerance in mice fed a high-fat
diet. Diabetes 55, 2015-2020 (2006).

van der Veen, J. N., Lingrell, S., da Silva, R. P., Jacobs, R. L. &
Vance, D. E. The concentration of phosphatidylethanolamine

in mitochondria can modulate ATP production and glucose
metabolism in mice. Diabetes 63, 2620-2630 (2014).

Messias, M. C. F., Mecatti, G. C., Priolli, D. G. & de Oliveira
Carvalho, P. Plasmalogen lipids: functional mechanism and their
involvement in gastrointestinal cancer. Lipids Health Dis. 17, 41
(2018).

Yu, J. et al. Update on glycerol-3-phosphate acyltransferases: the
roles in the development of insulin resistance. Nutr. Diabetes 8, 34
(2018).

Lee, J. M., Lee, H., Kang, S. & Park, W. J. Fatty acid desaturases,
polyunsaturated fatty acid regulation, and biotechnological
advances. Nutrients 8, 23 (2016).

Ferrell, J. M. & Chiang, J. Y. L. Understanding bile acid signaling in
diabetes: from pathophysiology to therapeutic targets. Diabetes
Metab. J. 43, 257-272 (2019).

Vangipurapu, J., Fernandes Silva, L., Kuulasmaa, T., Smith, U. &
Laakso, M. Microbiota-related metabolites and the risk of type 2
diabetes. Diabetes Care 43, 1319-1325 (2020).

Virmani, M. A. & Cirulli, M. The role of L-carnitine in mitochondria,
prevention of metabolic inflexibility and disease initiation.

Int. J. Mol. Sci. 23, 2717 (2022).

Huxley, R. et al. Coffee, decaffeinated coffee, and tea
consumption in relation to incident type 2 diabetes mellitus: a
systematic review with meta-analysis. Arch. Intern. Med. 169,
2053-2063 (2009).

Nature Medicine


http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-025-04105-8

Article

https://doi.org/10.1038/s41591-025-04105-8

24. Surendran, P. et al. Rare and common genetic determinants of
metabolic individuality and their effects on human health. Nat.
Med. 28, 2321-2332 (2022).

25. Lotta, L. A. et al. A cross-platform approach identifies genetic
regulators of human metabolism and health. Nat. Genet. 53,
54-64 (2021).

26. Chen, Y. et al. Genomic atlas of the plasma metabolome
prioritizes metabolites implicated in human diseases. Nat. Genet.
55, 44-53 (2023).

27. Mahajan, A. et al. Multi-ancestry genetic study of type 2 diabetes
highlights the power of diverse populations for discovery and
translation. Nat. Genet. 54, 560-572 (2022).

28. Soremekun, O. et al. Lipid traits and type 2 diabetes risk in
African ancestry individuals: a Mendelian randomization study.
EBioMedicine 78,103953 (2022).

29. Yuan, S. & Larsson, S. C. An atlas on risk factors for type 2
diabetes: a wide-angled Mendelian randomisation study.
Diabetologia 63, 2359-2371(2020).

30. Achari, A. E. & Jain, S. K. Adiponectin, a therapeutic target for
obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 18,
1321(2017).

31. Chavez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile
acid control of metabolism and inflammation in obesity, type
2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease.
Gastroenterology 152, 1679-1694 (2017).

32. Chiu, T.T, Jensen, T.E., Sylow, L., Richter, E. A. &Klip, A. Rac1
signalling towards GLUT4/glucose uptake in skeletal muscle. Cell
Signal. 23,1546-1554 (2011).

33. Holm, L. J. & Buschard, K. L-Serine: a neglected amino acid with a

potential therapeutic role in diabetes. APMIS 127, 655-659 (2019).

34. Razquin, C. et al. Lysine pathway metabolites and the risk of type
2 diabetes and cardiovascular disease in the PREDIMED study:
results from two case-cohort studies. Cardiovasc. Diabetol. 18, 151
(2019).

35. Nakatsu, D. et al. L-Cysteine reversibly inhibits glucose-induced
biphasic insulin secretion and ATP production by inactivating
PKM2. Proc. Natl Acad. Sci. USA 112, E1067-E1076 (2015).

36. GTEx Consortium The GTEx Consortium atlas of genetic regulatory
effects across human tissues. Science 369, 1318-1330 (2020).

37. Lichtenstein, A. H. et al. 2021 Dietary guidance to improve
cardiovascular health: a scientific statement from the American
Heart Association. Circulation 144, e472-e487 (2021).

38. Ardisson Korat, A. V., Willett, W. C. & Hu, F. B. Diet, lifestyle, and
genetic risk factors for type 2 diabetes: a review from the Nurses’
Health Study, Nurses’ Health Study 2, and Health Professionals’
Follow-up Study. Curr. Nutr. Rep. 3, 345-354 (2014).

39. Hu, F.B. et al. Diet, lifestyle, and the risk of type 2 diabetes
mellitus in women. N. Engl. J. Med. 345, 790-797 (2001).

40. Liang, N. &Kitts, D. D. Role of chlorogenic acids in controlling
oxidative and inflammatory stress conditions. Nutrients 8, 16
(2015).

41. Musial, C., Kuban-Jankowska, A. & Gorska-Ponikowska, M.
Beneficial properties of green tea catechins. Int. J. Mol. Sci. 21,
1744 (2020).

42. Han, X. et al. Integrating genetics and metabolomics from
multi-ethnic and multi-fluid data reveals putative mechanisms
for age-related macular degeneration. Cell Rep. Med. 4,101085
(2023).

43. Rhee, E. P. et al. A genome-wide association study of the human
metabolome in a community-based cohort. Cell Metab. 18,
130-143 (2013).

44. Neeland, I. J. et al. Visceral and ectopic fat, atherosclerosis, and
cardiometabolic disease: a position statement. Lancet Diabetes
Endocrinol. 7, 715-725 (2019).

45. Athyros, V. G. et al. Diabetes and lipid metabolism. Hormones
(Athens) 17, 61-67 (2018).

46. Kolb, H. & Martin, S. Environmental/lifestyle factors in the
pathogenesis and prevention of type 2 diabetes. BMC Med. 15, 131
(2017).

47. Liu, J. et al. A Mendelian randomization study of metabolite
profiles, fasting glucose, and type 2 diabetes. Diabetes 66,
2915-2926 (2017).

48. Yuan, S., Merino, J. & Larsson, S. C. Causal factors underlying
diabetes risk informed by Mendelian randomisation analysis:
evidence, opportunities and challenges. Diabetologia 66,
800-812 (2023).

49, Lotta, L. A. et al. Genetic predisposition to an impaired
metabolism of the branched-chain amino acids and risk of type
2 diabetes: a Mendelian randomisation analysis. PLoS Med. 13,
1002179 (2016).

Publisher’s note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. You do not have permission under this licence to share
adapted material derived from this article or parts of it. The images

or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit

line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2026

JunLi®"?

, Jie Hu®*%, Huan Yun®, Zhendong Mei ®", Xingyan Wang®, Kai Luo ® ¢, Marta Guasch-Ferré ® 2’8, Xikun Han®5,

Buu Truong?®, Jordi Merino ® 8, Chengyong Jia®, Miguel Ruiz-Canela® °'°", Casey M. Rebholz® "2, Eun Hye Moon® %,
Taryn Alkis™, Guning Liu', Jie Yao', Xiyuan Zhang'®, Bianca C. Porneala”, Jordi Salas-Salvad6 ® "¢, Thomas J. Wang'®,
Josée Dupuis ® 2°7, Elizabeth Selvin® 2, Xiuging Guo ® ™, Shilpa N. Bhupathiraju?, Jennifer A. Brody ® %, Yongmei Liu?*,
Alexis C. Wood?, Kari E. North® 2%, Su Yon Jung ® %, Ching-Ti Liu®?°, Nona Sotoodehnia?, Simin Liu?,

Lesley F. Tinker ®3°, A. Heather Eliassen ® >°?2, JoAnn E. Manson ®'®, Jose C. Florez ® ¥ Robert E. Gerszten ® 3>%4,
Clary B. Clish®*, Liming Liang ® **%, Rozenn N. Lemaitre ® %, Katherine L. Tucker ® 6, Stephen S. Rich® ¥,

Jerome |. Rotter ®*°, Miguel Angel Martinez-Gonzalez® >°'°", Kathryn M. Rexrode ® 3, James B. Meigs3*33°8,

Eric Boerwinkle™, Robert C. Kaplan®??, Frank B. Hu®*5??, Bing Yu®* & Qibin Qi®*

Nature Medicine


http://www.nature.com/naturemedicine
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://orcid.org/0000-0003-3519-8638
http://orcid.org/0000-0001-6235-8647
http://orcid.org/0000-0001-6453-3699
http://orcid.org/0000-0001-8525-1404
http://orcid.org/0000-0002-3823-7308
http://orcid.org/0000-0001-8312-1438
http://orcid.org/0000-0002-7684-2787
http://orcid.org/0000-0002-5442-8745
http://orcid.org/0000-0002-8215-7487
http://orcid.org/0000-0003-2700-7459
http://orcid.org/0000-0003-2871-3603
http://orcid.org/0000-0002-3539-2070
http://orcid.org/0000-0002-5264-5068
http://orcid.org/0000-0001-8509-148X
http://orcid.org/0000-0002-8903-0366
http://orcid.org/0000-0002-0513-1830
http://orcid.org/0000-0002-0703-0742
http://orcid.org/0000-0003-2469-1929
http://orcid.org/0000-0002-3961-6609
http://orcid.org/0000-0002-9426-7595
http://orcid.org/0000-0002-1730-9325
http://orcid.org/0000-0002-6767-7687
http://orcid.org/0000-0001-8259-9245
http://orcid.org/0000-0001-8261-3174
http://orcid.org/0000-0002-7038-1844
http://orcid.org/0000-0001-7640-662X
http://orcid.org/0000-0003-3872-7793
http://orcid.org/0000-0001-7191-1723
http://orcid.org/0000-0002-3917-9808
http://orcid.org/0000-0003-3387-8429
http://orcid.org/0000-0002-8233-6274
http://orcid.org/0000-0003-4818-1077
http://orcid.org/0000-0002-2687-1758

Article https://doi.org/10.1038/s41591-025-04105-8

'Division of Preventive Medicine, Department of Medicine, Brigham and Women'’s Hospital and Harvard Medical School, Boston, MA, USA. 2Department
of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Division of Women's Health, Department of Medicine, Brigham and Women'’s
Hospital and Harvard Medical School, Boston, MA, USA. “Center for Genomic Medicine and Department of Anesthesia, Critical Care and Pain Medicine,
Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. *Department of Epidemiology, Harvard T.H. Chan School of Public Health,
Boston, MA, USA. ®Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA. "Department of Public
Health, University of Copenhagen, Copenhagen, Denmark. ®Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark. °Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain. PInstituto de Investigacion
Sanitaria de Navarra (IdiSNA), Edificio LUNA-Navarrabiomed, Pamplona, Spain. "CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERObn), Instituto de
Salud Carlos lll, Madrid, Spain. ?Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. ®*Department of
Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA. “Department of Environmental and
Occupational Health Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA. *The Institute for
Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical
Center, Torrance, CA, USA. "®Department of Biomedical and Nutritional Sciences, College of Health Sciences, University of Massachusetts Lowell,
Lowell, MA, USA. "Heller School for Social Policy and Management, Brandeis University, Waltham, MA, USA. ®Human Nutrition Unit, Faculty of Medicine
and Health Sciences, Institut d’Investigacio Sanitaria Pere Virgili, Universitat Rovira i Virgili, Reus, Spain. University of Michigan Medical School, Ann
Arbor, MI, USA. 2°Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. #Department of Epidemiology, Biostatistics
and Occupational Health, McGill University, Montreal, Quebec, Canada. 2Channing Division of Network Medicine, Department of Medicine, Brigham
and Women's Hospital and Harvard Medical School, Boston, MA, USA. *Cardiovascular Health Research Unit, Department of Medicine, University of
Washington, Seattle, WA, USA. **Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA.
USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. %Gillings School of Global
Public Health, University of North Carolina, Chapel Hill, NC, USA. ?’Department of Epidemiology, Fielding School of Public Health, Translational Sciences
Section, Jonsson Comprehensive Cancer Center, School of Nursing, University of California, Los Angeles, CA, USA. ®Cardiovascular Health Research
Unit, Division of Cardiology, University of Washington, Seattle, WA, USA. >Department of Epidemiology and Biostatistics, The Joe C. Wen School of
Population and Public Health; Mary and Steve Wen Cardiovascular Division, Department of Medicine, School of Medicine; and The Center for Global
Cardiometabolic Health and Nutrition, The University California Irvine (UCI), Irvine, CA, USA. *°Division of Public Health Sciences, Fred Hutchinson Cancer
Research Center, Seattle, WA, USA. *Diabetes Unit, Department of Medicine and Center for Genomic Medicine, Massachusetts General Hospital, Boston,
MA, USA. *2Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. **Department of
Medicine, Harvard Medical School, Boston, MA, USA. **Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
3Metabolomics Platform, The Broad Institute of MIT and Harvard, Cambridge, MA, USA. *Department of Biostatistics, Harvard T.H. Chan School of Public
Health, Boston, MA, USA. *’Department of Genome Sciences, University of Virginia, Charlottesville, VA, USA. *®Division of General Internal Medicine,
Massachusetts General Hospital, Boston, MA, USA. [</e-mail: juli@bwh.harvard.edu; gibin.gi@einsteinmed.edu

Nature Medicine


http://www.nature.com/naturemedicine
mailto:juli@bwh.harvard.edu
mailto:qibin.qi@einsteinmed.edu

Article

https://doi.org/10.1038/s41591-025-04105-8

Methods

Study participants and ethics approval

Our MWAS forincident T2D involves the use of data from ten prospec-
tive cohorts, including the Nurses’Health Study (NHS; initiated in 1976
with121,701female nurses aged 30-55 years**°), NHS2 (started in 1989
with 116,429 female nurses aged 25-42 years”*°), Health Profession-
als Follow-Up Study (HPFS; started in 1986 with 51,529 male health
professions aged 40-75 years’), Hispanic Community Health Study/
Study of Latinos (SOL; enrolled 16,415 Hispanic/Latino adults aged
18-74 years during 2008-2011°"?), Women’s Health Initiative (WHI;
initiated in 1993 enrolling 68,132 women aged 50-79 years to one of
three clinical trials or an observational study®’), Atherosclerosis Risk
in Communities (ARIC) study (enrolled 15,792 mostly Black and white
US adults aged 45-64 years during 1987-1989°*), Framingham Heart
Study Offspring cohort (FHS; enrolled 5,124 adults; we focused on
those attended the fifth examination during 1991-1995), Multi-Ethnic
Study of Atherosclerosis (MESA; initiated in 2000 with 6,814 adults
aged 45-84 years™*°), the Boston Puerto Rican Health Study (BPRHS;
enrolled 1,500 self-identified Puerto Rican adults aged 45-75 years)
and the Prevencion con Dieta Mediterranea Study (PREDIMED; a 5-year
dietary trial with 7,447 adults aged 55-80 years>’). In each cohort,
comprehensive data on demographics, medical and family history,
diet, lifestyle and other healthinformation were collected at baseline
and were updated during longitudinal follow-ups. Blood samples
were collected at baseline and/or during follow-ups. Our MWAS for
incident T2D included participants with qualified metabolomics
data, and were free of diabetes, cardiovascular disease and cancer at
study baseline. The final analysis included 6,890 participants from
NHS; 3,692 from NHS2 and 2,529 from HPFS; 2,821 from SOL; 1,392
from WHI; 1,288 white and 1,433 Black participants from ARIC; 1,424
from FHS; 902 from MESA; 378 from BPRHS and 885 from PREDIMED
(Extended Data Table 1). Each study was approved by Institutional
Review Boards at respective institutions or study centers, and all
participants provided informed consent. Our GWAS for metabolites
included participants from eight cohorts comprising NHS, NHS2,
HPFS, SOL, WHI, ARIC, FHS and, inaddition, the Cardiovascular Health
Study (CHS; enrolled 5,201 adults during 1989-1990 and 678 predomi-
nantly Black participants in 1992-1993°*°°) (Supplementary Table 7).
Thedetailed descriptions of the design, data collection, ethical review
of each cohort, and our inclusion and exclusion criteria are provided
inSupplementary Methods.

Ascertainment of T2D

In all cohorts, incident T2D was defined when a participant was free
of diabetes at baseline but was identified as having T2D during longi-
tudinal follow-up. Detailed information on diagnosis criteria in each
cohortisincludedin Supplementary Methods, and follow-up years and
numbers ofincident cases arelisted in Extended Data Table 1. Briefly, in
NHS/HPFS, T2D were identified by follow-up questionnaires, and con-
firmed through a supplementary questionnaire based on diagnostic
criteria from the National Diabetes Data Group before 1998°° and the
American Diabetes Association (ADA) criteria after 1998°-°%. InSOL, T2D
was defined if a participant had fasting glucose >7.0 mmol I, fasting
<8 hand nonfasting glucose >11.1 mmol I, post oral glucose tolerance
test glucose >11.1 mmol I”!, HbAlc > 6.5%, current use of antidiabetic
medications or self-reported physician-diagnosed diabetes®>. In WHI,
T2D was determined based on self-reported history of diabetes or
using antidiabetic medications (pills or shots) inany visits/interviews.
In ARIC and FHS, T2D was diagnosed if a person had fasting glucose
>7.0 mmol |7, fasting <8 h and nonfasting glucose >11.1 mmol I, or
current use of antidiabetic medications with ARIC further considering
self-reported physician-diagnosed diabetes®**, T2D cases in MESA
and BPRHS were determined according to the ADA criteria®®, which
included fasting plasma glucose level >7.0 mmol I or the use of anti-
diabetic medications or insulin®**’. InPREDIMED, T2D was adjudicated

through blind assessment by a Clinical Endpoint and Adjudication of
Events Committee, based on the ADA criteria®.

Assessment of diet, lifestyle factors and covariates
Detailed information ondatacollectionin each cohortisin Supplemen-
tary Methods. Briefly, demographic factors (for example, self-reported
sex, and race and ethnicity), socioeconomic status, healthinformation
(for example, medical conditions and family history) and lifestyle
(for example, smoking history and PAs), anthropometrics and blood
pressure, were collected at baseline and follow-up visits, through
self-administrated questionnaires, or in-person or telephone-based
interviews by trained staff. PA was quantified as metabolic equivalent
(MET) in hours per week. We calculated BMI based on baseline weight
and height, and WHR based on waist and hip circumferences. Blood
clinical biomarkers were measured using standard assays. Among
participants with serum creatinine data, eGFR was estimated using
the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration)
formula, based on age, sex and race in NHS/HPFS, WHI, ARIC and PRED-
IMED®’, and standard reference equations for Hispanics adjusting for
age and sexin SOL. In PREDIMED, two propensity scores were estimated
toaccount for the probability of assignment to intervention groups®’.
In NHS/HPFS, diet was assessed using a semi-quantitative food
frequency questionnaire (FFQ) every 4 years; in our analysis we averaged
the intakes from the two FFQs closest to the time of blood draw (NHS:
1986 and 1990; NHS2:1995and 1999; HPFS:1994 and 1998). In WHI, ARIC,
FHS, MESA and BPRHS, diet was similarly assessed by FFQs designed and
validated for application to their targeted populations (for example,
multiethnic and geographically diverse populations in WHI*"> and
Puerto Rican populationin BPRHS").In SOL, diet was assessed using two
24-hdietary recalls and a food propensity questionnaire™. The overall
dietary quality was assessed by the Alternate Healthy Eating Index-2010
(AHEI-2010)” inall cohorts except for the PREDIMED trial, in which it was
assessed by al4-item Mediterranean Diet Adherence Screener score”.
InNHS/HPFS, SOL and WHI, we also calculated baseline consumptions
of 15 main food groups in the unit of servings per day.

Metabolomic profiling, quality control and data
harmonization

Metabolomic profiling in NHS/HPFS, WHI, MESA, PREDIMED, FHS and
CHS was conducted with the Metabolomics Platforms at the Broad
Institute of MIT and Harvard University, using three to four comple-
mentary LC-MS methods®*>’°, Metabolomic profilingin SOLand ARIC
(serum samples) and BPRHS (plasma samples) was conducted using
LC-MS based methods by the Metabolon DiscoveryHD4 Panel at the
Metabolon Inc.®*””’%, Detailed protocols for both platforms have been
described previously™”.

Data processing was conducted within each study and, if appli-
cable, separately within each batch (or substudy) if several batches/
substudies were conducted within a cohort. Samples were removed if
their metabolite detection rate was <80%, or were identified as outli-
ers by multidimensional scaling analysis within a specific race/ethnic
group. Metabolites were filtered if their detection rate across samples
was <80% and, if applicable, had a coefficient of variation >20% for
quality control (QC) samples. After quality filtering, missingness of
each metabolite were imputed using the half minimum value, and
the data were then standardized for analysis. Across all cohorts, we
matched metabolites by their HMDB ID and/or PubChem ID, provided
by the corresponding metabolomiclaboratories. Atotal of1,273 named
metabolites were initially qualified for analysis in at least one cohort.
Toreducesingle-study bias, we limited our analyses to 469 metabolites
that were availablein atleast fourindependent cohorts, oravailablein
at least three independent cohorts if the three cohorts covered both
Metabolomic platforms. Finally, 407 metabolites from NHS, 363 from
NHS2, 291 from HPFS, 364 from WHI, 327 from MESA, 274 from PRED-
IMED, 188 from FHS, 283 from SOL, 139 from ARIC and 231 from BPRHS
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were harmonized for our analysis (Extended Data Table 1). In CHS, 411
metabolites wereincluded ingenetic analyses (Supplementary Table 7).
Details of the metabolomic profiling, QC and data processing arein the
Supplementary Methods.

Metabolome-wide association analysis for incident T2D
Details of analytical approaches and models are provided in Supple-
mentary Methods and Supplementary Table 1. Briefly, all association
analyses were conducted separately for each cohort, stratified by
major racial/ethnic groups when sample sizes permitted. Metabo-
lites were inversely normal transformed by each substudy and racial/
ethnicgroup (if applicable) ineach cohort. To analyze the association
between each metabolite and T2D risk, we applied Cox regression
for studies of longitudinal cohort design (NHS excluding the T2D
nested case-control substudy, NHS2, HPFS, SOL, ARIC, WHI, FHS, MESA
and BPRHS); logistic regression for the NHS T2D nested case-control
substudy; and Cox regression with Barlow weights®® and robust esti-
mators for the PREDIMED T2D nested case-cohort study. The basic
multivariate model (model 1) was adjusted for age, sex, smoking status,
alcohol consumption and, if applicable, education, family income,
fasting status, lipid-lowering medications, anti-hypertensive medica-
tions, family history of diabetes, self-reported physician-diagnosed
hypertension, self-reported physician-diagnosed dyslipidemia and
study-specific covariates. The main model was further adjusted for
BMI and WHR (model 2). In sensitivity analyses, model 1 was further
adjusted for PA and dietary quality index (model 3); high-density lipo-
protein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol
and triglycerides (model 4), or systolic and diastolic blood pres-
sures (model 5). In another sensitivity analysis, model 2 was further
adjusted for eGFR in NHS, NHS2, HPFS, SOL, ARIC, WHI and PRED-
IMED. For each metabolite, association results from all available
cohorts and racial/ethnic groups were combined using a fixed-effect,
inverse-variance-weighted (IVW) meta-analysis, and a meta-analyzed
FDR < 0.05was considered statistically significant. In secondary analy-
ses, meta-analysis was conducted combining results from the same
racial/ethnic groups, or cohorts using the same platforms.
Toannotate the novelty of the identified associations, we reviewed
previous prospective cohort studies linking circulating metabolites
to T2D risk. We used a literature-review-based meta-analysis* that
included all studies published before 6 March 2021 as an anchor, and
searched for additional studies published from 2021 to 202454, We
considered an association as ‘previously reported, if the association
was statistically significantin a published study after multiple testing
correction based on the study’s prespecified analysis plan.

GWAS of metabolites
Detailed information on genotyping arrays, imputation methods,
sample size and GWAS and meta-analysis methods, is provided in Sup-
plementary Methods and Supplementary Table 7. Briefly, genotyping
were conducted using several types of array by previous studies in
NHS/HPFS®, SOL?®, ARIC’, WHI””, CHS®® and FHS*. Imputation was
conducted based on the HRC reference panel in NHS/HPFS and CHS;
1000 Genomes Project phase 3 worldwide reference panel in SOL,
1000 Genomes Project phase 3 v.5 in WHI and HapMap CEU popula-
tion release v.22 in FHS with comprehensive pre- and postimputation
QC.GWAS of metabolites were conducted previously in the NHS/HPFS
(median n= 6,610, range 971-8,054) and WHI (n=1,256) using the
RVTESTS tool***”?,in SOL (n = 3,933) using a linear mixed-effect model
in GMMAT” and in ARIC (n=1,772 and n=1509 for African American
and non-Hispanic white participants, respectively)’, CHS (n=263)
and FHS (n=1,802)*, with detailed analysis procedures described in
previous publications™***,

GWAS summary statistics from each cohort were lifted over to
Genome Build v.37 and filtered, retaining single nucleotide polymor-
phismswithaminor allele frequency > 0.01and imputationratio >0.3.

For eachmetabolite, an IVW fixed-effect meta-analysis, implemented
in METAL', was used to combine GWAS results from the cohorts in
whichthe metabolite was available. Genomic control was implemented
before and after meta-analysis'®°. The final GWAS were available for
458 out of 469 harmonized metabolites, with the total sample size
ranging from 1,074 to 18,590 (median n = 8,611). We compared sig-
nificant mQTLsidentified at P<5x10%and1.09 x 10 (thatis, 5 x 1078
further correcting for 458 metabolites) levels. Manhattan plots were
derived using R package CMplot and regional plots were draw with
LocusZoom'. In a secondary analysis, we compared genetic effect
heterogeneity between racial/ethnic groups at the identified mQTLs
for T2D-associated metabolites (Supplementary Methods).

We annotate the novelty of our significant mQTLs for the 165
T2D-associated metabolites at P<1.09 x 107'°, by comparing our
results to eight previous studies (with N> 4,000 and used LC-MS
based metabolomic platforms)®22¢19271% we considered alocus fora
specificmetabolite as ‘previously reported’ if the reported lead genetic
variant was the same lead variant, or not the same lead variant but was
significant in our study; or not in our study but within the clumping
range of our identified locus. We considered alocus for ametabolite as
potentially new if our locus was not previously reported for this metab-
olite, or this metabolite was not previously reported in these studies.

Lead variants for metabolites, pathway analysis and
proportion of variance explained

We used the PLINK clumping function (P<5x10®%and < 0.0lina
1,000-kb window) toidentify independent genetic variants associated
with each metabolite. For metabolite with no variantat P<5x107%, a
single lead variant with the smallest P was selected. Gene annotation
for top variants was conducted using the SNPNexus web tool'*®. Canoni-
cal pathway enrichment analyses was conducted using the MetaCore
software with the default background'”’; and we compared top enriched
pathways for genes annotated to mQTLs of T2D-related metabolites
versus those of non-associated metabolites. We calculated the R* of
eachmetabolite explained by independent lead genetic variants using
theformula Zleﬂ x B x 2 x MAF x (1 - MAF),inwhich kis thenumber of
independentlead variants, and Sis the association coefficient between
the variant and the metabolite. We compared the R* distribution for
the T2D-associated versus non-associated metabolites using
Wilcoxon test.

Genetic correlation r,between metabolites and T2D-related
traits

We acquired publicly available GWAS summary statistics from large
consortium studies for T2D (180,834 cases and 1,159,055 controls)?,
fasting insulin (N = 98,210)'%, proinsulin (N = 45,861)'°°, HOMA-IR
and HOMA-B (N =51,750)"°, BMI-adjusted insulin sensitivity index
(ISI, N=53,657) and insulin fold-change (IFC; N =55,124)", BMI and
WHR (N=~700,000)" and lipids (N = ~1,500,000)"”. We conducted
GWAS for HBAIc (N =390,982), subcutaneous fat volume (N = 37,912),
visceral fat volume (N =37,912), liver proton density fat fraction
(PDFF; N=29,512), pancreas PDFF (N = 28,624) and liver enzymes
(N=~390,000) in the UK Biobank using BOLT-LMM (Supplementary
Methods). We calculated r, between each metabolite and each clini-
cal trait using linkage disequilibrium score regression, based on their
GWAS summary data overlapping with the 1.2 M HapMap3 variants
after excluding the major histocompatibility complex region in the
European population™. For each trait, we compared the distribution
ofitsr,with T2D-associated versus non-associated metabolites, using
chi-squared test, and considered FDR < 0.05 (correcting for numbers
of comparisons tested) as statistically significant.

Genetic colocalization
We obtained tissue-specific cis-eQTLs summary statistics from
the GTEx project v.8">"¢, The shared causal variants between each
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metabolite and tissue-specific transcriptome from 47 tissue types,
were examined using colocalization analysisimplemented in the coloc.
abf() functionin R package ‘coloc’ v.5". For each metabolite, we input
the GWAS summary statistics for all variants within £500 kb of its
independent lead variants (Supplementary Methods). A posterior
probability of H4 (PPH4) > 0.8 was considered as strong evidence for
genetic colocalization. Within each tissue type, we used univariant
logisticregressionto test whether the proportions of mQTL-eQTL colo-
calizations are higher for the T2D-associated versus non-associated
metabolites, and aone-sided FDR < 0.05 (correcting for 47 tissue types)
was considered as statistically significant. We applied a similar coloc
approach to examine genetic colocalizations between circulating
metabolites and T2D”. We then aligned mQTL-T2D colocalizations with
tissue-specific eQTL-mQTL colocalizations by metabolites and shared
causal variants, tointerpret the potential functionality of metabolites
in T2D pathogenesis.

MR analysis

Toinfer the potential causal relationships between 233 T2D-associated
metabolites (with genetic data) and T2D risk, we applied four MR
methods implemented in the MendelianRandomization R pack-
age"®: we used mode-based estimate (MBE) as the main method as
itis generally conservative and robust to outliers; we further applied
weighted-median, IVW and MR-egger to indicate result consistency'.
When testing the direction from metabolites to T2D, we used inde-
pendent variants from clumping (P<5x10®and r* <0.01ina1,000-kb
window) excluding the HLA region as genetic instrumental variables.
If fewer than three variants were identified, we reduced the clumping
Pthreshold until atleast three variants were identified. We considered
a potential causal relationship when MBE-FDR < 0.05 and at least
two other MR methods showed the same effect directions as those
from MBE. Sensitivity analyses were conducted, either to remove vari-
ants mapped to the top 3 recurrent loci (GCKR, ZNF259, FADS cluster)
from the instrumental variables, or to use only independent variants
clumpedat P <1.09 x 10"°as the instrumental variables of metabolites,
using the VW MR method (due to fewer variants retained). When test-
ing the direction from T2D to metabolites, we used independent lead
variants associated with T2D at P <5 x 1078 as the instrumental vari-
ables. For the 148 metabolites that are potential mediators between
BMI and T2D risk, we applied MR analysis to test the direction from
BMI to metabolites. Details are provided in Supplementary Methods.

MWASs for modifiable risk factors

Wefitted linear models to regressinversely normal transformed metab-
olite levels on age, sex (only in SOL), current smoking status, BMI, PA,
intakes of 15 main food groups and fasting status, simultaneously
together with cohort-specific covariates. Analyses were conductedin
NHS/HPFS, SOL and WHI, separately, further stratified by substudies
or racial groups (Supplementary Methods). Association coefficients
between metabolites and each particular risk factor were then
combined across analytical sets using a fixed-effect IVW meta-
analysis. The R? of each metabolite explained by specific risk
factors were first calculated in each analytical set using the formula
B x B x variance (risk factor)/variance (metabolite), with the S being the
association coefficients between the metabolite and the risk factor;
andthenaveraged across all analytical sets. We compared the distribu-
tions of R*for T2D-associated versus non-associated metabolites using
the Wilcoxon test.

Mediation analysis between risk factors, metabolites and
T2Drisk

Details for mediation analysis are described in Supplementary Meth-
ods. Briefly, our analysis focused on BMI, PA, coffee/tea consumption
andred/processed meatintake. For eachrisk factor, metabolites (1) that
were associated with both the risk factor and T2D risk and (2) whose

association directions with the risk factor and T2D risk were consistent
with the pre-assumed epidemiological relationships between the risk
factor and T2Drisk, were considered. We tested whether, and to what
degree, each metabolite mediated the association between arisk fac-
tor and T2D risk using the CMAverse R package'”’, adjusting age, sex,
smoking, BMI and PA (if not the tested risk factor), calorie intake and
other cohort-specific covariates, separately in NHS/HPFS, SOL and
WHI. We combined total, indirect and direct effects, respectively, from
each analytical set using a fixed-effect meta-analysis. The mediated
proportion was calculated by dividing indirect effect to total effect.
Metabolites with anindirect effect FDR < 0.05 and a consistent effect
direction between the indirect and total effects, was considered as a
potential mediator between arisk factor and T2D risk.

A multimetabolite signature for incident T2D prediction

We used metabolites shared between the Broad Institute and the
Metabolon platforms (excluding glucose) to develop the signature to
increaseits generalizability to future studies. To avoid overfitting in
model development and testing, we employed aleave-one-cohort-out
cross-validation approach, in which we set aside one cohort as the
testing set eachtime, and trained a prediction model for the set-aside
cohortusing datafromall other cohorts (Extended Data Fig. 8). Given
the heterogeneity of our cohorts, we did not pool individual-level
data for model training. Instead, we applied a two-step approach to
train the prediction model in a representable cohort (that is, WHI,
which assessed the most shared metabolites for all its participants)
but also leveraged association data from several other cohorts. In
each iteration (that is, for each held-out testing cohort), we first
conducted a metabolome-wide meta-analysis for T2D risk using
all cohorts except WHI and the held-out cohort. Then, metabolites
associated with T2D risk at FDR < 0.05 in the first step and shared
between the two metabolomic platforms, were used asinputina Cox
regression with elastic net regularization, implemented using the
glmnetR package'”, to construct ametabolomic signature model for
T2D predictionin WHI. The derived model was further applied to the
held-out cohort to calculate a metabolomic signature score. Within
WHI, aleave-one-out cross-validation approach was used to acquire
the unbiased metabolomic signature score. For details, please see
Supplementary Methods.

The metabolomic signature scores, calculated in each held-out
cohort, were then standardized. To evaluate whether the signature
improved the T2D risk prediction, we fitted three sets of logistic (in
SOL, and T2D nested case-control substudy in NHS) or Cox models
(all other datasets): one model including only the metabolomic sig-
nature; a conventional risk factor model including age, sex, smoking,
lipid-lowering medication use, anti-hypertensive medications, family
history of diabetes, hypertension, dyslipidemia and BMI; and a third
model including all conventional risk factors and the metabolomic
signature. We compared the AUC between the conventional model
versus the conventional plus metabolomic signature model. In a sec-
ondary analysis, we further included blood glucose (from metabolomic
assays) in the conventional model to evaluate the added value of the
metabolomic signatures beyond blood glucose.

Ineach cohort, we calculated the crudeincident rate of T2D across
deciles of the signature score. We fitted logistic or Coxmodels to ana-
lyze the relative risk of T2D, comparing higher versus lowest deciles
of the metabolomic signature, adjusting for the same covariates in
the main analysis model 2. In NHS/HPFS, SOL and WHI, we examined
associations between the metabolomic signature with baseline risk
factors, by regressing the signature score on age, sex (if appropriate),
current smoking status, BMI, PA, intakes of 15 main food groups and
fasting status simultaneously, together with cohort-specific covariates,
using linear regression. All analysis was conducted separately in each
cohort, and results were combined using a meta-analysis. FDR < 0.05
was considered as statistically significant.
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We conducted two sensitivity analyses during model develop-
ment. One was to use SOL (measured the most metabolites using the
Metabolon platform) as the representative training cohort instead of
WHI, which showed asimilar, albeit slightly weaker, model performance
in held-out cohorts (Extended Data Fig. 8). The other was to compare
between elastic net versus lasso regularizations', which reaffirmed that
elasticnetregression had compatible but aslightly better performance
versus lasso regression (Supplementary Fig. 13). Separately from the
leave-one-cohort-out cross-validation, we presented a final metabo-
lomicsignature model for future studies, developed using datafromall
study cohorts. For this model, we first conducted a metabolome-wide
meta-analysis for T2D risk in all cohorts except WHI, and then used sig-
nificant metabolites (FDR < 0.05) asinput in a Cox regression with elastic
net regularization for T2D predictionin WHI. The selected metabolites
and their coefficients of this final model are highly consistent with those
of models applied to each held-out cohort (Supplementary Table 18a).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

This study did not generate any new/raw data but used existing data
fromseveral population-based cohorts, including the NHS, NHS2, HPFS,
SOL, WHI, ARIC, FHS, MESA and BPRHS cohorts and the PREDIMED trial.
Because of participant confidentiality and privacy concerns, these data-
sets are each governed by an approved data access policy, and are avail-
able uponrequest with formal applications submitted to the respective
cohortcommittees, to adhere to data security and ethical considerations.
Data for NHS/NHS2 (detailed policies and access procedures https://
nurseshealthstudy.org/; email to nhsaccess@channing.harvard.edu)
HPFS (https://www.hsph.harvard.edu/hpfs/) are available upon written
request; applications to use resources will be reviewed by an External
Collaborators Committee for evaluation of the fit of the data for the
proposed methodology, and verification that the proposed use meets
the guidelines of the Ethics and Governance Framework and the consent
that was provided by the participants. HCHS/SOL has established a pro-
cess for the scientific community to apply for access to participant data
and materials, with requests reviewed by the SOL Steering Committee
(https://sites.cscc.unc.edu/hchs/). WHI metabolomic, genomic and
clinical data are available upon reasonable request to the WHI Publica-
tions and Presentations (P&P) Committee. Upon approval, requesters
willbe provided with details toaccess to the data (https://www.whi.org/
propose-a-paper). Data access for FHS (detailed data policy at https://
www.framinghamheartstudy.org/), MESA (https://www.mesa-nhlbi.
org/), and ARIC (https://aric.cscc.unc.edu/aric9/) in the current study
was approved by the TOPMed Publications and Presentations Steering
Committees with dataaccess provided by an approved project (10065).
GWAS summary statistics for metabolites from NHS/HPFS (doi:10.1016/j.
xcrm.2023.101085), SOL and ARIC (doi: 10.1016/j.ajhg.2020.09.003) and
FHS (doi: 10.1016/j.cmet.2013.06.013) were each acquired from prior
publications. For the PREDIMED trial (http:/www.predimed.es/), dueto
therestrictions imposed by the Informed Consent and the Institutional
Review Board, bona fide investigators interested in analyzing the PRED-
IMED dataset used for the present article may submit abrief proposal and
statistical analysis planto the corresponding author. Uponapproval from
the PREDIMED Steering Committee and Institutional Review Boards, the
data will be made available to them using an onsite secure access data
enclave. BPRHS data are available upon reasonable request, and infor-
mationondatarequest canbe found at https://www.uml.edu/research/
uml-cph/research/bprhs/.Source dataare provided with this paper.

Code availability
The main code used to conduct this study is available on GitHub at
https://github.com/JL-BWHlab/TOPMed_MWAS.
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Extended Data Fig. 1| Biochemical categories of the 469 analyzed metabolites,
and their associations with incident T2D comparing non-Hispanic White
individuals vs. individuals of other races and ethnicities. (A) Numbers

of metabolites with positive, inverse, or null associations with T2D risk by
biochemical category. We compared the association coefficients of each
metabolite with T2D risk in the non-Hispanic White group to those from all
individuals of other races and ethnics (B), Hispanic/Latino participants (C), and
African American participants (D). Sample sizes for individual metabolites vary,
depending on their availability in each cohort; the maximum sample sizes are
18,193 for non-Hispanic White individuals, 3,686 for Hispanic/Latino individuals,
and 1,604 for African American individuals (see Supplementary Table S4).

Ln(RR) for T2D in the non-Hispanic
White group (max n=18,193)

Metabolites that are
® FDR<0.05 in meta-analysis of all individuals
® FDR<0.05 only in non-Hispanic White group
FDR<0.05 only in Hispanic/Latino group
© Not associated with T2D risk

Ln(RR) for T2D in the non-Hispanic
White group (max n=18,193)
Metabolites that are
® FDR<0.05 in meta-analysis of all individuals
® FDR<0.05 only in non-Hispanic White group
® FDR<0.05 only in African American group
® Not associated with T2D risk

Association coefficients were presented as natural log of relative risk (RR) per SD
increment in metabolites. In each cohort, we first conducted MWAS for incident
T2D stratified by major racial/ethnic groups (thatis, non-Hispanic White,
African American, Hispanic/Latino, or mixed non-White individuals depending
onsample size). The main model was adjusted for age, sex, smoking, alcohol
consumption, fasting status, lipid-lowering mediation use, anti-hypertensive
medication use, hypertension, dyslipidemia, body mass index, waist-hip ratio,
family history of T2D, and other cohort-specific variables. Results presented in
A were from meta-analysis of all participants. When comparing between racial/
ethnic groupsin panel B-D, we meta-analyzed the results within each group.
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Extended Data Fig. 2| Comparison of associations between metabolites

and T2Drisk across the two metabolomic platforms. In each cohort and
stratified by major racial/ethnic groups, associations between inversely normal
transformed metabolites and T2D risk were analyzed using Cox or logistic
regressions. Results were then meta-analyzed separately for cohorts profiled
at the Broad Institute vs. those profiled at the Metabolome Inc. A total of 294

overlapping metabolites were included in the comparison. A and Ccompare the
association coefficients (that is, natural log-transformed relative risk ratio [RR]
of T2D risk per standard deviation increase in metabolite levels) between the two
platforms from Model 1and Model 2, respectively. B and D show distributions of
FDR testing for association heterogeneity between the two platforms, for Model 1
and Model 2, respectively.
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Extended Data Fig. 3| Association with T2D risk for complex lipids and fatty

phosphatidylcholines (E), plasmalogens (F), and sphingomyelins (G). In each
acids by carbon chain length and double-bond numbers. For complex lipid sub-figure, x- and y-axis each represents carbon chain length and double-bond
metabolites and fatty acids, we tested the correlation between their association numbers, respectively; and the z-axis represents the natural log-transformed
coefficients (with T2D, from Model 2) with carbon chain length and double-bond relative risk (RR) for T2D per standard deviation increase in the levels of
numbers. Correlations with P < 0.05 were demonstrated, including for free metabolites. Significant correlations and Pvalues were highlighted in red ( +and
fatty acids (A), cholesterol esters (B), diacylglycerols (C), triacylglycerols (D), -indicate positive and negative correlations, respectively).
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Extended Data Fig. 4 | Genetic determinants of T2D-associated metabolites.
The Manhattan-like plots show significant genetic variants associated with any
of the T2D-associated metabolites, at the standard genome-wide significant level
(P<5x1078; upper panel) and after Bonferroni corrections for 458 metabolites
with genetic data (P <1.09x107°; lower panel). The x-axis demonstrates
chromosomal positions; y-axis shows the numbers of T2D-related metabolites

associated with each variants; and the color depicts the major biochemical
categories of the metabolite (amino acids, lipids, carbohydrates and energy
metabolism, and others). Genome-association study was conducted in each of
the 8 cohorts by major racial/ethnic groups, and meta-analyzed using fixed effect
meta-analysis in METAL. Among the 235 T2D-associated metabolites, 233 had
GWAS summary dataand were included in the analyses.
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Extended Data Fig. 5| Comparison of top enriched canonical pathways for difference in the overall enrichment pattern of canonical pathways, when
genes mapped to mQTLs of T2D-associated metabolites vs. those mapped comparing the enrichment-FDR for genes mapped to mQTLs of T2D-associated
to mQTLs of non-associated metabolites. A. The top 30 enriched pathways metabolites vs. those of non-associated metabolites across all 1,140 tested

identified for genes mapped to mQTLs of T2D-associated metabolites (left) canonical pathways.
vs. those for non-associated metabolites (right). B. We also observed a clear
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Extended Data Fig. 6| Numbers of tissue-specific eQTL-mQTL colocalizations
by metabolite’s association with T2D and key tissue types. (A) We calculated
the numbers of tissue types that each metabolite had significant mQTL-eQTL
colocalizations with, and then compared numbers of colocalized tissue types
across all T2D-associated metabolites vs. non-associated metabolites. Further,
for the 8 selected tissue types (7 with significant enrichment of mQTL-eQTL

colocalizations among T2D-associated metabolites plus liver), we used upset
plots to depict the numbers of metabolites with mQTL-eQTL colocalizations,
stratified by tissue types (left horizontal bars) and cross-tissue intersections
(vertical bars), separately for T2D-associated metabolites (B) and non-associated
metabolites (C).
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Extended Data Fig. 7| Associations of each circulating metabolites with
baseline modifiable risk factors, and with incident T2D. Here we presented
results for current smoking, red meatintake, sugary beverage intake, and
vegetable intake. In the scatter plots, we compared the associations between
metabolites with arisk factor vs. their association with incident T2D. Each dot
represents a metabolite (colored: associated with the risk factor and incident
T2D at FDR < 0.05 by biochemical category, dark grey: associated with incident
T2D but not with therisk factor; light grey: not associated with incident T2D),
and we presented the trend lines (and correlation coefficients) separately for

T2D-associated metabolites (dark grey) and non-associated metabolites (light
grey). Association coefficients (beta) for risk factors are from metabolome-wide
association analysis with all risk factors mutually adjusted simultaneously
(including age, sex, and BMI, physical activity, 15 major food groups, fasting
status, and other cohort specific variables). This analysis was conducted
separately in NHS, NHSII, HPFS, SOL, and WHI (n =16,883) and results were
combined using a meta-analysis. Association coefficients (In[RR]) for T2D risk are
from Model 2 (the main analysis model).
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Extended Data Fig. 8| Schematic plot and results for metabolomic signature
development and testing. A. We primarily used WHI, which assessed the

most metabolites shared between the two platforms for all its participants,
asarepresentable training cohort. For each of held-out testing cohort, we

first conducted a metabolome-wide meta-analysis for T2D risk including all
cohorts except WHI and the held-out cohort. Metabolites associated with T2D
risk at FDR < 0.05 and shared between the two platforms were then used as the
input, in an elastic net Cox regression to construct a metabolomic signature
model for T2D risk prediction in WHI. We next applied the derived model

to the held-out cohort to calculate a metabolomic signature score. In WHI,

aleave-one-out cross-validation (LOOCV) approach was used to acquire an
unbiased metabolomic signature score for each individual without overfitting.

B. We conducted a sensitivity analysis using SOL, which measured the most
metabolites on the Metabolon platform for all its participants, as the training
cohort. C. The AUC for T2D risk prediction in each cohort, comparing models
withvs. without (blue) the metabolomic signatures, beyond traditional risk
factors (age, sex, smoking, lipid-lowering medication use, anti-hypertensive
medication use, family history of diabetes, hypertension, dyslipidemia, and BMI).
**Two-sided P< 0.01;*P< 0.05, " P< 0.1; slash: signature scores were calculated
using LOOCV.
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Extended Data Fig. 9| Metabolomic signature for T2D prediction with the
conventional model additionally adjusting for fasting glucose in cohorts with
available data. We compared AUC for T2D risk prediction across three modelsin
asecondary analysis. Model 1 (yellow) included only the metabolomic signature.
Model 2 (blue) included traditional T2D risk factors, comprising age, sex,
smoking, lipid-lowering medication use, anti-hypertensive medications, family
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history of diabetes, hypertension, dyslipidemia, and BMI, and a T2D diagnostic
biomarker, blood glucose, assessed by the metabolomic assays. Model 3 (green)
additionally included the metabolomic signature score on the basis of Model
2.We compared Model 3 us. Model 2 to evaluate if the metabolomic signatures
demonstrated added value beyond traditional risk factors and blood glucose. **
Two-sided P<0.01,*P<0.05,and*P<0.1.
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Extended Data Table 1| Characteristics of study participants included in the prospective analyses

SOL NHS NHSIT HPFS WHI ARIC FHS MESA BPRHS PREDIMED
Tn prospective analyses

Total N free of diabetes at 2,821 6,890 3,692 2,529 1,392 2,721 1,424 902 378 885

Follow-up years, median (max) 5.7(9.4) 26.1 (27.4) 19.2 (20.8) 219 (23.1) 119 (17.2) 20.0 (27.0) 20.0 (24.0) 9.3 (11.0) 5.0(5.0) 3.8(5.0)

Incident diabetes 367 1219 412 164 163 1,036 218 118 55 248
Harmonized Metabolites

Qualified metabolites measured 782 501 418 305 484 25 207 432 510 302

Harmonized across 283 407 363 291 364 139 188 327 231 274
Characteristics
Age, years 45.0 (33.0 - 53.0) 56.5 (6.9) 44.4 (4.6) 617 (8.8) 67.1(6.9)  52.0 (48.0 - 58.0) 55.0 (9.5) 60.1(9.7) 55.7(7.4) 66.5 (5.7)
Women, n (%) 1,610 (57.1%) 6,890 (100%) 3,692 (100%) 0(0%) 1,392 (100%) 1,624 (59.7%) 741 (52.0%) 485 (53.8%) 287 (75.9%) 540 (61.0%)
Racerethnicity, n (%)

Non-Hispanic whites na 6,582 (95.5%) 3,520 (95.3%) 2,403 (95.0%) 1,088 (78.2%) 1,288 (47.3%) 1,424 (100%) 402 (44.6%) na. 885 (100%)

Hispanics‘'Latinos 2,821 (100%) 64 (0.9%) 42 (1.1%) na. 45 (3.2%) na. na. 267 (29.6%) 378 (100%) na.

African American na. 210 (3.0%) 76 (2.1%) 11(0.4%) 171 (12.3%) 1,433 (52.7%) na. 166 (18.4%) na. na

Others na. 34/(0.5%) 54 (1.5%) 115 (4.5%) 88 (6.3%) na. na. 67 (7.4%) na. na.
Current smoking 606 (21.5%) 815 (11.8%) 307 (8.3%) 112 (4.4%) 146 (10.5%) 724 (26.6%) 248 (17.4%) 121 (13.4%) 88 (23.3%) 199 (22.5%)
Family history of diabetes 1,132 (40.2%) 2,101 (30.5%) 1,678 (45.4%) 583 (23.1%) 437 (31.4%) 757 (27.8%) 247 (17.3%) na. na 242 (27.3%)
Self-reported dyslipidemia na. 2,765 (40.1%) 917 (24.8%) 1,027 (40.6%) 237 (17.0%) . na. 134 (14.9%) 190 (50.3%) 745 (84.2%)
Self-reported hypertension na. 1,943 (28.2%) 428 (11.6%) 730 (28.9%) 733 (527%) 1,076 (39.5%) na. 332 (36.8%) 230 (60.8%) 811 (91.6%)
Lipid-lowering medication use 144 (5.2%) 171 (2.5%) 812 (22.0%) 543 (21.5%) 160 (11.5%) na. 90 (6.3%) 134 (14.9%) na. 32 (3.6%)
Anti-hypertensive medication use 252 (9.1%) 1,487 (21.6%) 1,033 (28.0%) 177 (7.0%) 339 (24.4%) 765 (28.1%) 305 (21.4%) 281 (31.2%) na. 427 (48.2%)
BML. ke/m’ 284(25.1-32.0) 247(223-280) 243 (21.8-28.2)  254(23.5-272) 26.8(23.8-31.0) 27.2(24.5-30.7 273 (4.6) 285(5.1)  303(27.2-34.2) 29.7(27.6-32.2)
Waist-to-Hip Ratio 0.90 (0.90 - 1.00)  0.78 (0.75-0.80)  0.78 (0.76-0.78)  0.94 (0.91-0.96) 0.82 (0.77-0.87)  0.90 (0.90 - 0.90 (0.09) 0.92 (0.08) na. na
HDL cholesterol, mg/dL 48.0 (41.0 - 57.0) n.a. na. na. 510 (42.0- 61.7) 51.0 (41.4-63.9)  48.0(39.0 - 59.0) 512(142) 45.0(38.0-53.0) 510 (45.0 - 59.0)
LDL cholesterol, mg/dL 121.0(98.0-  127.3(106.7-152) 120.1 (101.8 - 140.7) 134.2(113.7 - 157.4) n.a. 133.7(108.8 - 1262 (105.4 - 148.9)  118.8 (31.3) 119.0(92.0- 1370 (114.0 - 161.0)
Total cholesterol, mg:dL na. 210.0 (186.2 - 235.8) 199.1 (177.6 - 223.5) 217.9 (193.1- 248.1) 2310 (204.0 - na na. na. na na
Triglycerides, mg/dL 108.0 (75.0 - 105.5(75.8- 152.4) 103.4 (72.7- 155.7)  106.4 (76.0 - 159.3) na. 100.0(73.0 - 116.0(83.0-169.5)  132.7(96.1) 128.5(94.2- 1150 (91.0 - 156.0)
Systolic blood pressure, mmg 118.0(109.0 - 120.0 (120.0 - 130.0) 120.0 (110.0- 130.0) 128.3 (120.0- 140.0) 130.5(120.0-  120.0 (109.0- 124.0(1123-136.0) 118.0(107.5-  133.0 (12L.1-  147.5 (136.8 - 161.0)
Diastolic blood pressure. mmHg___72.0 (6.0 - 79.0) _80.0 (70.0 - 80.0) __70.0 (70.0 - 80.0)

79.6(77.0-82.0) 75.0(69.0-82.0) 75.0(68.0-83.0) 74.0(68.0-81.0) 70.5(64.5-780) 82.2(76.1-89.0)

84.2 (78.0 - 90.5

Values are presented as mean (standard deviation), median (25th-75th), or n (%)
Note that lipid levels were available in 5,017, 3,322, and 1,456 participants in the NHS, NHSII, and HPFS, respectively.
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