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Circulating metabolites, genetics and 
lifestyle factors in relation to future risk of 
type 2 diabetes
 

The human metabolome reflects complex metabolic states affected by 
genetic and environmental factors. However, metabolites associated with 
type 2 diabetes (T2D) risk and their determinants remain insufficiently 
characterized. Here we integrated blood metabolomic, genomic and 
lifestyle data from up to 23,634 initially T2D-free participants from ten 
cohorts. Of 469 metabolites examined, 235 were associated with incident 
T2D during up to 26 years of follow-up, including 67 associations not 
previously reported across bile acid, lipid, carnitine, urea cycle and arginine/
proline, glycine and histidine pathways. Further genetic analyses linked 
these metabolites to signaling pathways and clinical traits central to T2D 
pathophysiology, including insulin resistance, glucose/insulin response, 
ectopic fat deposition, energy/lipid regulation and liver function. Lifestyle 
factors—particularly physical activity, obesity and diet—explained greater 
variations in T2D-associated versus non-associated metabolites, with 
specific metabolites revealed as potential mediators. Finally, a 44-metabolite 
signature improved T2D risk prediction beyond conventional factors. These 
findings provide a foundation for understanding T2D mechanisms and may 
inform precision prevention targeting specific metabolic pathways.

Diabetes affects 589 million adults globally, and the number is esti-
mated to increase to more than 853 million by 20501. T2D accounts for 
more than 90% of all diabetes cases, and its pathogenesis involves both 
polygenic susceptibility and environmental risk factors (for example, 
diet and lifestyle)2. Manifested by insulin resistance, β-cell dysfunction 
and consequent hyperglycemia, the progression of T2D is characterized 
by comprehensive yet integrative metabolic changes orchestrated at 
several organ systems3. Identifying the molecular profile characterizing 
the dysregulated metabolism contributing to T2D, as well as the genetic 
and environmental determinants of such a metabolic profile, is crucial 
for understanding T2D etiology, and may inform the design of more 
effective preventive strategies targeting specific metabolic pathways.

The circulating metabolome is the quantitative collection of 
small molecules in the blood and provides a comprehensive func-
tional readout of the metabolic homeostasis in each person. In past 

decades, prospective studies examining circulating metabolites from 
preselected pathways or, more recently, a broader spectrum of the 
metabolome, have identified more than 100 metabolites associated 
with T2D risk4–6. These studies collectively highlight important roles of 
several metabolites in T2D pathophysiology, such as branched-chain 
amino acids (BCAAs), tryptophan and lysine, specific phospholipids 
(PLs) and ceramides4–6. Recent research further indicated that the 
blood metabolome can be influenced by genetics7,8, health conditions, 
diet and lifestyle6,9,10, among other factors10,11. As such, there is a strong 
need to integrate multimodal data to better understand how various 
risk factors are related to disease-associated metabolites to advance 
precision prevention. However, systematic evaluations of the circulat-
ing metabolome associated with T2D risk are lacking, and the genetic 
and nongenetic contributors to the T2D metabolome have not been 
investigated in a comprehensive manner.
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with incident T2D (false discovery rate (FDR) < 0.05), after adjusting for 
demographic, socioeconomic and clinical factors, including body mass 
index (BMI) and waist–hip ratio (WHR) (Fig. 2, Extended Data Fig. 1a and 
Supplementary Table 2). These include 168 previously reported associa-
tions and 67 additional significant associations identified in this study 
(Supplementary Table 3). Aside from glucose, multivariable-adjusted 
risk ratio (RR) for incident T2D per s.d. increment in circulating levels of 
metabolites ranged from 0.67 (95% confidence interval (CI), 0.61–0.72) 
for C22:4 cholesterol ester (CE), to 1.71 (95% CI, 1.60–1.83) for C32:0 
diacylglycerol (DAG).

The large number of metabolites associated with T2D risk is 
expected, given the correlations among metabolites—particularly 
among lipids (Supplementary Fig. 2) and our large sample size. Results 
were consistent in multiple sensitivity analyses, including a basic 
model adjusting for only demographic and socioeconomic factors, 
and models further adjusting for diet quality and physical activity 
(PA), blood pressure, blood lipids or estimated glomerular filtration 
rate (eGFR) (Supplementary Figs. 3–4 and Supplementary Table 2). In 
stratified meta-analysis by major racial/ethnic groups, associations 
between most metabolites and T2D risk were comparable between 
non-Hispanic white individuals and those of other racial and ethnic 
groups, although a few discrepancies deserve further investigations 
(for example, acisoga was associated with T2D risk only in Black par-
ticipants, and C36:1 phosphatidylcholine (PC) only in Hispanic/Latino 

To fill these knowledge gaps, we examined 469 circulating metabo-
lites in a pooled study of 23,634 initially T2D-free and racially/ethnically 
diverse people from ten prospective cohorts, to identify metabolites 
associated with incident T2D over up to 26 years of follow-up. We 
further conducted integrative analyses combining genomic data and 
diet/lifestyle factors, to systematically elucidate genetic determinants, 
functional enrichments and potential tissue origin for T2D-associated 
metabolites; and to illustrate the relationships among diet/lifestyle 
factors, circulating metabolites and incident T2D. Finally, we derived 
and validated a multi-metabolite signature that reflected the complex 
metabolic states predictive of future T2D risk, with the potential to 
facilitate risk stratification and precision prevention (Fig. 1).

Results
Metabolome-wide association analysis of incident T2D
Our primary analysis included 23,634 participants from ten pro-
spective cohorts free of T2D at study baseline. During up to 26 years 
of follow-up, 4,000 incident T2D cases were identified (Fig. 1 and 
Extended Data Table 1). Metabolomic profiling was conducted at either 
the Broad Institute or Metabolon Inc., and 469 metabolites were har-
monized across cohorts for analyses (Supplementary Fig. 1). We con-
ducted metabolome-wide association analysis in each cohort stratified 
by major racial/ethnic groups (Supplementary Table 1; Methods). In 
meta-analysis of all subsets, we identified 235 metabolites associated 
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Fig. 1 | Study overview. a, To identify blood metabolites associated with incident 
T2D, we analyzed 469 harmonized metabolites in up to 23,634 participants 
from ten prospective cohort studies. At baseline, participants were free of T2D 
and other chronic diseases; and blood metabolome was profiled using the 
metabolomic platforms at Broad Institute or Metabolon Inc. A metabolome-wide 
association study (MWAS) for incident T2D was conducted in each cohort; and 
results from the ten cohorts were combined using meta-analysis, identifying 235 
metabolites associated with T2D risk. b, We curated meta-analyzed genome-wide 
association studies (GWASs) for each metabolite using data of up to 18,590 

people from eight cohorts, followed by functional analyses, colocalization 
analyses and Mendelian randomization analyses. c, We conducted MWASs for 
major modifiable risk factors in up to 16,883 participants from five cohorts, 
identifying metabolites that potentially mediated the associations between 
risk factors and T2D risk. d, We used machine learning analyses to develop a 
metabolomic signature reflecting the complex metabolic states predictive of 
long-term T2D risk, which may facilitate the identification of high-risk individuals 
and precision prevention.
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adults) (Extended Data Fig. 1b–d and Supplementary Table 4). Further 
comparison between cohorts applying Broad Institute versus Metabo-
lon platforms also yielded consistent findings for overlapping metabo-
lites (Extended Data Fig. 2 and Supplementary Table 5).

The 235 metabolites associated with incident T2D
We examined 205 complex lipids, identifying 130 significantly asso-
ciated with incident T2D (including 18 associations not previously 
reported) and providing a comprehensive characterization of the lipi-
domic association patterns (Fig. 2a and Supplementary Tables 2 and 3). 
Positive associations with T2D risk were observed for triacylglycerols 
(TAG; the main form of energy storage in adipose tissue12), DAG (activate 
signaling cascades triggering hepatic insulin resistance13), ceramides 
(involved in β cell apoptosis and impaired insulin signaling14), as well as 
PC, phosphatidylethanolamine (PE) and phosphatidylinositol (related 
to insulin resistance13,15,16). Inverse associations with T2D risk were found 
for CEs, lysophospholipids (LPs), unsaturated PL plasmalogens (func-
tion as endogenous antioxidants17), some sphingomyelins (may coun-
teract effects of ceramides14) and alpha-glycerophosphate (involved 
in glycolysis18). In addition, we noted that more double bonds were 
correlated with lower T2D risk among DAG, TAG and sphingomyelins, 
but with higher T2D risk among plasmalogens (Extended Data Fig. 3 
and Supplementary Table 6), possibly due to functions of constituting 
fatty acids and/or the insulin-mediated regulation of FA desaturases19.

Of other lipid signaling pathways, we identified 34 metabolites 
associated with T2D risk, including 26 significant associations not 
reported previously (Fig. 2b and Supplementary Tables 2 and 3). 
Notably, detrimental associations were identified for four primary 
and three secondary bile acids (BAs), including taurocholate, glyc-
ochenodeoxycholate, taurochenodeoxycholate, deoxycholate and 

taurodeoxycholate, that were not linked previously to T2D risk, adding 
further evidence to the role of BAs in T2D pathogenesis20,21. Significant 
associations with T2D were also noted for eight carnitine metabolites, 
including six significant associations not reported before (that is, C3, 
C5:1, C14, C16, C5–DC, butyrobetaine), supporting its role in energy 
metabolism22. Of the 19 free fatty acids associated with T2D risk, 18 
showed positive associations, whereas some of their CE counterparts 
were inversely associated with T2D risk.

Across other pathways, we identified 43, five, seven and eight 
metabolites involved in amino acid, carbohydrate, energy and nucleo-
tide metabolism, respectively, and eight other metabolites associated 
with T2D risk, comprising 23 significant associations not reported 
previously (Fig. 2b and Supplementary Tables 2 and 3). Key amino acid 
pathways underlying T2D risk indicated by these associations encom-
passing alanine, aspartate and glutamate, glycine, serine and threonine, 
urea cycle, arginine and proline, histidine, BCAA, tryptophan, lysine, 
phenylalanine and creatine metabolism. Notably, although coffee 
consumption has been consistently related to lower T2D risk23, metabo-
lites derived from phytochemicals in coffee showed both positive  
(for example, caffeine, theophylline and 1,3-dimethylurate) and inverse 
(for example, trigonelline and hippuric acid) associations with T2D risk.

Shared genetic architecture between metabolites and T2D
To offer new biological insights, we examined the shared genetic archi-
tecture between T2D-associated metabolites and T2D risk. Through 
meta-analyses in up to 18,590 people from eight cohorts, we curated 
genome-wide association study (GWAS) summary statistics for 458 
harmonized (including 233 T2D-associated) metabolites (Fig. 1 and 
Supplementary Table 7; Methods). We identified one or more genetic 
loci for 165 T2D-associated metabolites at P < 1.09 × 10−10 (5 × 10−8 
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Fig. 2 | Associations between 235 metabolites and incident T2D in meta-
analysis of ten prospective cohorts. Circular plots illustrate metabolites 
associated with incident T2D at FDR < 0.05, by biochemical category. a, Results 
for complex lipids including monoacylglycerols (MAG) and DAG, TAG, LP, PC, 
PE, other PLs, PL plasmalogens and sphingolipids (SG). b, Results for other 
metabolites, including amino acids, carbohydrates, bioenergetic metabolites, 
nucleotides (NTs), xenobiotics (XBs), as well as other lipid metabolites including 
carnitines, BAs, CEs and nonesterified fatty acids. Each bar represents results 
for one metabolite; red and blue indicate positive and inverse associations, 

respectively; color depth indicates association magnitude, that is, ln(RR) per 
s.d. increment in the metabolite, capped at −0.3 to 0.3; and bar height indicates 
association significance, capped at 10−20 in a and 10−15 in b. Analyses were 
conducted in each cohort by racial/ethnic groups adjusting for age, sex, smoking, 
alcohol consumption, fasting status, hypertension, dyslipidemia, lipid-lowering 
medication use, anti-hypertensive medication use, BMI, WHR, family history  
of T2D and cohort-specific variables, and results were combined using  
meta-analysis.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-04105-8

correcting for 458 metabolites), with 45% of the identified metabo-
lite–locus pairs not reported by previous major metabolite quantitative 
trait locus (mQTL) studies8,24–26 (Supplementary Table 8; Methods).

Most mQTLs were annotated to genes involved in cellular metabo-
lism, synthesis, and/or transportation of the corresponding metabo-
lites. Approximately 23% of the identified loci were associated with 
multiple T2D-associated metabolites, especially those from the same 
or closely related pathways (for example, GCKR, FADS1-3 and ZNF259) 
(Extended Data Fig. 4). A brief comparison between racial/ethnic 
groups suggested that some mQTLs may be specific to certain groups 
(for example, OPLAH for pyroglutamate in Hispanic/Latino adults) 
(Supplementary Figs. 5 and 6), warranting confirmation by larger 
trans-ancestry studies. Several mQTLs for T2D-associated metabo-
lites overlapped with known T2D risk loci27, with significant genetic 
colocalizations observed at several loci (posterior probability for H4 
(PPH4) > 0.8). For example, 53 lipids, ten amino acids and two carbo-
hydrates colocalized with T2D at the GCKR locus (probably driven by 

rs1260326). Similar colocalizations with T2D were observed at LDL and 
APOE for several complex lipids and at L17REL for leucine and valine 
(Extended Data Fig. 4 and Supplementary Tables 8 and 9).

The number of independent variants and the proportion of vari-
ance explained by genetics per metabolite, were generally similar 
between T2D-associated and non-associated metabolites (mean 
r2 = 4.4% versus 5.1%; Pdifference = 0.47) (Fig. 3a, Supplementary Figs. 7 and 8 
and Supplementary Table 10). The top enriched canonical pathways for 
mQTLs of T2D-associated metabolites, however, were notably different 
from those of non-associated metabolites. Genes annotated to mQTLs 
of T2D-associated metabolites were enriched in pathways closely 
relevant to T2D pathogenesis—such as lipoprotein metabolism28,29, 
adiponectin functions30, BAs in glucose/lipid regulation31, insu-
lin response and Rac1 activation32, as well as glycine and l-serine33, 
l-lysine34, l-cysteine35 and l-phenylalanine metabolism, whereas most 
of these pathways were not enriched for mQTLs of non-associated 
metabolites (Fig. 3b, Extended Data Fig. 5 and Supplementary Table 11).
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We then examined genetic correlations (rg) between metabolites 
and 21 traits indicative of various T2D pathophysiologic mechanisms, 
leveraging summary statistics from large-scale GWAS for these traits 
(Methods). T2D-associated versus non-associated metabolites demon-
strated substantially more significant rg with fasting insulin (17-fold), 
BMI-adjusted insulin secretion and sensitivity indices (10- to 32-fold), 
liver enzymes (10- to 11-fold), intrahepatic and visceral fat (9- and 6-fold, 
respectively), obesity and blood lipids. Such an enrichment seemed 
to be driven by complex lipids, lipid signaling metabolites and amino 
acids (Fig. 3c). Significant rg demonstrated a potential link between 
metabolites and physiological functions; for example, BCAAs were 
genetically correlated with traits reflecting insulin resistance, ectopic 
fat and impaired liver function (Supplementary Table 12).

Genetic colocalization between circulating metabolites and 
tissue-specific transcriptome
We hypothesized that levels of circulating metabolites may partially 
reflect biological homeostasis and gene regulations of related meta-
bolic pathways across different organ systems. We therefore conducted 
a colocalization analysis between circulating mQTLs and tissue-specific 
cis-gene expression quantitative trait loci (eQTLs) of 47 human tis-
sue types (leveraging Genotype-Tissue Expression v.8 data36) (Meth-
ods). Genetic colocalizations were observed across all tissue types 
(PPH4 > 0.8), supporting our hypothesis. T2D-associated metabolites, 
compared to non-associated metabolites, had significantly higher 
(FDR < 0.05) percentage of colocalizations in seven digestive and meta-
bolic/endocrine tissues, including thyroid (62%), esophagus mucosa 
(45%), esophagus–gastroesophageal junction (58%), visceral fat (55%), 
whole blood (55%), pancreas (54%) and salivary gland (21%), and nomi-
nally higher (P < 0.05) percentage of colocalizations in another 13 tis-
sue types including liver (Fig. 3d and Supplementary Table 13). Such 
an enrichment of colocalizations seemed to be driven primarily by 
T2D-associated amino acids, fatty acids and complex lipids (Fig. 3e). 
Further, each T2D-associated metabolite seemed to be colocalized with 
gene expressions within several, instead of one specific, metabolic/
endocrine tissue types (Extended Data Fig. 6), consistent with the cumu-
lative evidence that T2D development involves integrative biological 
changes across liver, fat, pancreas and digestive organ systems3.

We observed several instances where tissue-specific gene expres-
sion, circulating metabolites and T2D colocalized at the same potential 
causal variants, highlighting potential genes and tissue types underly-
ing the observed metabolite–T2D associations. For example, of the 65 
metabolites colocalized with T2D at the GCKR/PPM1G/IFT172 locus, 
61 also colocalized with PPM1G expression in pancreas, IFT172 in thy-
roid and/or NRBP1 in esophagus–gastroesophageal junction (likely 
causal variant rs1260326). Similarly, 34:4 PC colocalized with T2D, as 
well as FADS1 expression in liver, visceral fat and esophagus–gastroe-
sophageal junction, and TMEM258 expression in thyroid, by rs174545 
(Supplementary Fig. 9a,b).

Bidirectional Mendelian randomization analysis
We conducted two-sample Mendelian randomization (MR) analyses 
to infer the potential causal relationships between 233 T2D-associated 
metabolites and T2D risk, leveraging a published consortium GWAS for 
T2D27 (Methods). Genetically predicted circulating levels of 42 lipids 
and five amino acids were associated with T2D risk (FDR < 0.05), sup-
ported by several MR methods (Supplementary Table 14a). Sensitiv-
ity analyses selecting genetic instruments using a more stringent P 
threshold did not change the results, but removing variants on the three 
most recurrent loci (that is, GCKR, ZNF259 and FADS1-3) attenuated 
results especially for lipids, which was expected given the roles of these 
genes in lipogenesis and lipid metabolism (Supplementary Fig. 10). Of 
note, genetically predicted T2D was not associated with any metabo-
lite except for glucose—a known diagnostic criterion, rather than an 
etiological biomarker of T2D (Supplementary Table 14b), supporting 

that our prospective analysis findings are less likely to be due to 
reverse causation.

Modifiable risk factors and T2D-associated metabolites
Lifestyle and dietary factors play a pivotal role in metabolism and T2D 
development37–39. We next examined relationships between modifi-
able risk factors (that is, BMI, smoking, PA and intakes of 15 main food 
groups, mutually adjusted for one another) with circulating metabolites 
in up to 16,883 participants (Fig. 1; Methods). BMI accounted for more 
between-person variation in T2D-associated versus non-associated 
metabolites (r2 = 1.52% versus 0.55%, Pdifference = 1 × 10−13), which seemed 
to be driven by glycerolipids (GLs), PLs and several amino acids (Fig. 4), 
consistent with their strong genetic correlation with BMI (Fig. 3c). 
Behavioral factors (especially PA, and red meat, vegetable and coffee/
tea consumption) in total explained more variations in T2D-associated 
versus non-associated metabolites (r2 = 7.73% versus 6.57%,  
Pdifference = 0.029), especially for GLs, fatty acids, amino acids and bio-
energetic metabolites (Fig. 4 and Supplementary Table 15).

Metabolites mediating associations between modifiable risk 
factors and incident T2D
T2D-associated metabolites (versus non-associated metabolites) 
seemed to show stronger associations with several baseline risk fac-
tors, in a direction that is consistent with the epidemiological asso-
ciations between risk factors and T2D risk (Fig. 5a–c). For example, 
among the 235 T2D-associated metabolites, there was a strong, posi-
tive correlation (r = 0.86) between their association coefficients with 
baseline BMI and their prospective association coefficients with inci-
dent T2D (Fig. 5a). Likewise, positive correlations of association coef-
ficients were observed for risk-increasing behavioral factors such as 
smoking, and higher consumption of red meat and sugary drinks. In 
contrast, metabolites associated with higher levels of PA, and higher 
consumption of coffee/tea and vegetables, tended to be associated 
with lower T2D risk (r = −0.65, −0.46 and −0.34, respectively) (Fig. 5b–c, 
Extended Data Fig. 7 and Supplementary Table 16).

Four risk factors (BMI, PA, coffee/tea consumption and red meat 
intake) demonstrated expected prospective associations with T2D risk 
consistently across our study cohorts (Supplementary Table 17a). We 
therefore employed a mediation analysis to identify which metabo-
lites, and to what degree, mediated the associations between these 
risk factors and incident T2D. For BMI and PA, we identified 148 and 
50 metabolites, respectively, potentially mediating their associa-
tions with T2D risk (Fig. 5d–e and Supplementary Table 17a). Notably, 
many of these metabolites have been linked, in our genetic analyses, to 
T2D-related traits such as intrahepatic and visceral fat, lipids and liver 
enzymes, and to tissue types such as visceral fat, pancreas and thyroid, 
among others (Fig. 5g and Supplementary Tables 12, 13 and 17a). We 
found eight metabolites (including C22:0 ceramide, C32:0 DAG and 
C36:2 PC Plasmalogen) as potentially causal mediators between BMI 
and T2D risk, based on mediation analysis and two-step MR analysis 
(Supplementary Fig. 11 and Supplementary Table 17b). These findings 
suggest that obesity and PA may affect T2D risk through metabolic 
modulations related to visceral and intrahepatic fat deposition, liver 
and endocrine dysfunction, and lipid dysregulation.

We identified 74 metabolites as potential mediators between 
coffee/tea consumption and lower T2D risk, comprising several 
complex lipids, hippuric acid, isoleucine and glycine (Fig. 5f and 
Supplementary Table 17a). Hippuric acid is formed through hepatic 
glycine conjugation of benzoic acid, which is generated by the gut 
microbiota from polyphenols such as chlorogenic acids and epicat-
echins (abundant in coffee and tea)40,41, highlighting a potential host–
microbe interplay in polyphenol metabolism and metabolic health. We 
also identified six lipids as potential mediators between red meat intake 
and T2D risk, including lipids linked to ectopic fat and lipid dysregula-
tion in our genetic analyses (Supplementary Tables 12, 13 and 17a).
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A metabolomic signature to reflect the complex metabolic 
states predictive of T2D risk
Finally, we developed a multi-metabolite signature reflecting the com-
plex metabolic states predictive of future T2D risk using elastic net 
regression, focusing on T2D-associated metabolites shared between 
the two metabolomic platforms to facilitate translational applicability 
of our findings. A leave-one-cohort-out cross-validation approach was 
applied to avoid overfitting (Methods and Supplementary Fig. 18a). 
In independent testing cohorts, the metabolomic signature alone 
demonstrated decent prediction performance for incident T2D risk, 
with an area under the receiver operating characteristic (ROC) curve 
(AUC) ranging from 0.62 to 0.86. Compared to a conventional model 
with traditional risk factors, the model that additionally included the 
metabolomic signature substantially improved T2D risk prediction 

with the AUC ranging from 0.69 to 0.92 (AUC increment P < 0.05 in 
all cohorts, except P = 0.054 in SOL) (Fig. 6a–c, Extended Data Fig. 8, 
Supplementary Fig. 12 and Supplementary Table 18b). In secondary 
analyses of five datasets with available fasting glucose, the addition 
of the metabolomic signature improved the model AUC significantly 
(P < 0.05 in three datasets) to marginally (P = 0.06 in SOL) beyond tradi-
tional risk factors and fasting glucose, except for PREDIMED (P = 0.18) 
(Extended Data Fig. 9).

Across cohorts, crude incidence of T2D increased from 7.7% in 
the lowest to 37.7% in the highest decile of the metabolomic signature 
(Fig. 6d). In a multivariable-adjusted analysis combining all cohorts, 
participants in the highest decile had a 5.1-fold higher risk of T2D com-
pared to those in the lowest decile (RR = 5.07; 95 CI%, 4.02–6.39) (Fig. 6e 
and Supplementary Table 18c). Further assessing associations with 
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Fig. 4 | Variance of metabolites explained by modifiable risk factors.  
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that of other metabolites; **two-sided P < 0.0025 (Bonferroni correction for 
20 examined factors); *two-sided P < 0.05. For each metabolite, we first fitted a 

linear regression to regress inverse normal transformed metabolite on age, sex, 
BMI (standardized), PA (METs hours per week; standardized), all 15 main food 
groups (red meat, processed meat, poultry, fish and seafood, egg, total dairy, 
total vegetables, total fruits, potato, nuts and legume, whole grain, refined 
grain, sugary drinks, coffee and tea and alcohol; servings per day), fasting 
status and other cohort-specific variables simultaneously. We then calculated 
R2 of the metabolites explained by each of the risk factors based on association 
coefficients and the variance of metabolite and risk factors. The analyses were 
conducted in NHS, NHS2, HPFS, SOL and WHI separately (n = 16,883) by main 
racial/ethnic groups and R2 were averaged for the comparison.
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modifiable diet/lifestyle factors, we found that greater BMI and higher 
consumption of red meat and sugary drinks were associated with a 
higher metabolomic signature score, whereas more PA and higher 
intakes of whole grain, coffee/tea and wine were associated with a lower 
signature score (Fig. 6f and Supplementary Table 18d).

The final metabolomic signature model, derived based on all 
study cohorts, comprised 44 metabolites (including 20 amino acids, 
19 involved in lipid/energy metabolism and five others), with many 
potentially linking modifiable risk factors to T2D risk (Fig. 6f and 
Supplementary Table 18a). For instance, alanine, which connected higher 
BMI and intakes of red meat and sugary drinks with higher T2D risk, was 
found as a potential mediator between BMI and T2D risk by our media-
tion and two-step MR analyses (Supplementary Tables 14a and 17a,b). 
Several metabolites, including trigonelline, hippuric acid, isoleucine and 
glycine, connected higher coffee/tea intake to lower T2D risk (Fig. 6f). 
Taking together, this metabolomic signature may serve as a predicting/
monitoring biomarker to facilitate risk prediction, risk stratification and 
evaluation of effects of diet/lifestyle interventions on T2D prevention.

Discussion
This is one of the largest and most comprehensive investigations of 
metabolomic profiles associated with T2D risk, integrating blood 
metabolomic, genomic and diet/lifestyle data across racially and eth-
nically diverse cohorts. Collectively, our study identified a profile of 
235 metabolites reflecting a dysregulated metabolism driven by both 
genetics and modifiable risk factors and predicts future T2D risk.

A key strength of this study is the harmonized analysis of 
individual-level data from ten prospective cohort studies using stand-
ardized protocols. This design provided high statistical power, enabling 
the identification of 235 metabolites prospectively associated with 
T2D risk, offering a comprehensive view of the metabolic landscape 
underlying T2D pathogenesis and substantially expanding upon the 123 
metabolites reported in a recent literature-review-based meta-analysis 
of more than 60 studies4. Our identified significant associations include 
34 that were only nominally significant in previous studies and 33 
never linked to T2D risk. The use of individual-level data also allowed 
consistent adjustments of covariates and result comparisons across 
population groups and metabolomic platforms—which are not fea-
sible in literature-review-based meta-analyses. Notably, associations 
between the identified metabolites and T2D risk remain robust after 
adjustments for obesity/adiposity, blood lipids, blood pressures, life-
style factors or kidney function, and were generally consistent across 
popular liquid chromatography–tandem mass spectroscopy (LC–MS) 
platforms and major racial and ethnic groups.

Previous mQTL studies have advanced our understanding of 
genetic regulation of metabolic homeostasis7,8,24,42,43. Our study offers 
additional insights into the shared genetic architectures between 
metabolites and T2D. First, genetic determinants of T2D-associated 
metabolites were enriched in pathways central to T2D pathogenesis, 
including regulatory signaling of glucose response, insulin resistance 
and lipid homeostasis, despite their modest contributions to the over-
all metabolite variation. In addition, many of these metabolites were 
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Fig. 5 | Metabolites that potentially mediate associations between modifiable 
risk factors and T2D risk. a–c, Scatterplots compare the associations 
of metabolites with the risk factors BMI (a), PA (b) and coffee and/or tea 
consumption (c) versus their associations with T2D risk. Each dot represents 
a metabolite (colored: associated with the risk factor and incident T2D at 
FDR < 0.05 by biochemical category; dark gray: associated with incident T2D 
but not the risk factor; light gray: not associated with incident T2D); and the two 
trend lines are for T2D-associated (dark gray) and non-associated metabolites 
(light gray) separately. Association coefficients (betas) for risk factors are from 
MWASs in which all risk factors were mutually adjusted (including age, sex, BMI, 
PA, consumption of 15 main food groups, fasting status and other cohort-specific 
variables). For metabolites associated with a risk factor and incident T2D in an 

epidemiologically expected direction, we conducted mediation analysis  
testing the indirect effect (risk factor − T2D association via a metabolite).  
d–f, For metabolites whose indirect effects were in the same direction as the 
total effect, we present the distribution of proportion mediated (indirect effect/
total effect) for BMI (d), PA (e) and coffee and/or tea consumption (f). All analyses 
were conducted separately in NHS, NHS2, HPFS, SOL and WHI (n up to 16,883 
for individual metabolites) and results were combined using meta-analysis. 
g, For metabolites showing significant mediating effects between risk factors 
and incident T2D, we highlighted the top tissue types where these metabolites 
showed the most genetic colocalizations with tissue-specific gene expression, 
and the top clinical traits with which these metabolites have most genetic 
correlation.
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genetically correlated with traits reflecting T2D pathophysiology, such 
as insulin secretion, insulin resistance, obesity, ectopic fat deposition 
and liver function. Furthermore, circulating levels of T2D-associated 
metabolites may reflect biological regulations within specific tissue 
types relevant to nutrient metabolism (digestive track, pancreas and 
liver), endocrine/metabolic regulation (thyroid, pancreas and adipose 
tissues), and inflammation (whole blood and visceral fat). Mapping 
metabolites—particularly those with strong genetic regulation—to 
relevant tissues and physiological functions can facilitate mecha-
nistic interpretation. For example, TAGs 46:1 and 46:2 were linked to 
visceral but not subcutaneous fat, gene expression in pancreas, and 
insulin secretion and sensitivity indices, suggesting a role in visceral 
adiposity-related insulin resistance44. Notably, although dyslipidemia 
is often viewed as a consequence of diabetes45, our findings and recent 

evidence4,28,29 indicate a complex interplay between lipid and amino 
acid metabolism and glucose homeostasis. Future studies may lev-
erage our results to further explore mechanisms linking circulating 
metabolites to T2D risk.

Obesity, diet and lifestyle can directly influence circulating 
metabolome9–11. We showed that obesity, PA and diet may impose sub-
stantial impacts on the subset of metabolites associated with T2D risk, 
which is consistent with the notion that environmental factors need to 
disturb causal pathways to affect T2D risk46. We also identified specific 
metabolites probably mediating risk factor–T2D associations. These 
findings, together with our genetic results, highlight potential causal 
pathways underlying T2D that deserve further mechanistic investiga-
tions. For instance, several metabolites mediating the inverse associa-
tion between PA and T2D risk seem to be involved in ectopic fat-related 
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Fig. 6 | A multi-metabolite signature for T2D risk prediction. a, AUC for T2D 
risk prediction in each cohort. Yellow: the model with metabolomic signature 
only, acquired using a leave-one cohort-out cross-validation approach to avoid 
overfitting (within WHI, the signature was acquired using a leave-one-out 
cross-validation); blue: the model with conventional risk factors including age, 
sex, smoking, BMI, dyslipidemia, hypertension, lipid-lowering medication use, 
anti-hypertensive medication use and family history of T2D; red: the model 
with conventional risk factors plus the metabolomic signature. For cohorts 
analyzed with Cox model, we plotted AUC estimated at the median follow-up 
time. We compared the AUC of the conventional plus metabolomic signature 
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and Black participants from ARIC (c). d, Crude incident rate of T2D by cohort, 
across deciles of the metabolomic signature, with a smooth trendline and 95% CI 
(gray band) from locally estimated scatterplot smoothing (LOESS). e, Relative 

risk ratio (points) and 95% CI (lines) for incident T2D, comparing participants in 
higher versus the lowest deciles of the metabolomic signature. Analyses were 
conducted separately in NHS, NHS2, HPFS, SOL, WHI, PREDIMED and Black 
and white participants from ARIC, separately, adjusting for age, sex, smoking, 
alcohol consumption, fasting status, hypertension, dyslipidemia, lipid-lowering 
medication use, anti-hypertensive medication use, BMI, WHR, family history 
of T2D and cohort-specific variables. We plotted relative risk ratios from the 
meta-analysis (n = 20,930). f, In multivariable analysis, BMI, red meat intake 
and sugary drink consumption (purple) were associated positively with the 
metabolomic signature, whereas PA, and intakes of coffee/tea, whole grains 
and wine (green), were associated inversely with the metabolomic signature 
(FDR < 0.05). A Sankey plot was used to demonstrate the associations between 
each of the 44 metabolites constituting the final metabolomic signature with 
these risk factors and with T2D risk (band-width proportional to the association 
coefficients).
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insulin resistance and liver function impairment, whereas metabolites 
mediating the association between coffee/tea consumption and T2D 
risk were linked to polyphenol metabolism, glucose response, insulin 
resistance, ectopic fat deposition and liver function. Future clinical 
trials and functional studies could prioritize these pathways when 
investigating the causal effects of PA and coffee (or tea) consumption 
on metabolic health.

The blood metabolome reflects overall biological states and may 
serve as a prediction or monitoring tool in T2D prevention and thera-
peutic interventions. In the final step, we developed a multi-metabolite 
signature that robustly predicted future T2D risk, either used alone 
or in combination with conventional risk factors, and could identify 
people with extremely high risk of T2D before T2D diagnosis. The 
metabolomic signature is also associated with key modifiable risk 
factors and comprises metabolites that may mediate the associations 
between various diet/lifestyle factors and T2D risk. Collectively, this 
metabolomic signature captures the complex metabolic states asso-
ciated with T2D risk, and is applicable in future clinical and research 
settings, as either a prediction tool to identify people with high risk of 
T2D for early prevention, or an intermediate biomarker to evaluate the 
efficacy of dietary and lifestyle interventions.

We acknowledge several limitations. First, although metabo-
lomic data were harmonized between two LC–MS platforms, some 
metabolites were unique to one platform, limiting their sample 
sizes to specific cohorts. Second, although MR analysis is used fre-
quently to infer causality between metabolites and diseases47–49, its 
results should be interpreted cautiously, because some metabo-
lites have weak genetic instruments and many molecules within the 
same pathways share genetic loci. To minimize false positives, we 
used the conservative mode-based estimate as our primary method, 
and confirmed findings with another three MR methods. We note 
that the lack of significant MR results does not preclude potential 
biological connections between a metabolite and T2D. Third, due 
to the observational design, our study cannot establish causality. 
Randomized trials are warranted to assess how diet/lifestyle affect 
T2D-associated metabolites and T2D risk. Finally, although our study 
included people with racially and ethnically diverse backgrounds, and 
associations were generally consistent across groups, 77% of our par-
ticipants were non-Hispanic white individuals, highlighting the need 
for further replication and additional investigations in more diverse  
populations.

In summary, we identified 235 metabolites associated with inci-
dent T2D, potentially reflecting the influence of genetic and modifi-
able factors (especially diet, PA and adiposity) on metabolic pathways 
underlying T2D risk. This included 67 significant associations not 
previously reported encompassing BA, lipid, carnitine, urea cycle 
and arginine/proline, glycine and histidine metabolic pathways. As 
a resource, our findings may aid mechanistic and clinical research to 
investigate pathways underlying T2D pathophysiology. Our metabo-
lomic signature may serve as a powerful tool for risk stratification and 
as a monitoring biomarker to inform precision T2D prevention and 
early intervention.
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Methods
Study participants and ethics approval
Our MWAS for incident T2D involves the use of data from ten prospec-
tive cohorts, including the Nurses’ Health Study (NHS; initiated in 1976 
with 121,701 female nurses aged 30–55 years9,50), NHS2 (started in 1989 
with 116,429 female nurses aged 25–42 years9,50), Health Profession-
als Follow-Up Study (HPFS; started in 1986 with 51,529 male health 
professions aged 40–75 years9), Hispanic Community Health Study/
Study of Latinos (SOL; enrolled 16,415 Hispanic/Latino adults aged 
18–74 years during 2008–201151,52), Women’s Health Initiative (WHI; 
initiated in 1993 enrolling 68,132 women aged 50–79 years to one of 
three clinical trials or an observational study53), Atherosclerosis Risk 
in Communities (ARIC) study (enrolled 15,792 mostly Black and white 
US adults aged 45–64 years during 1987–198954), Framingham Heart 
Study Offspring cohort (FHS; enrolled 5,124 adults; we focused on 
those attended the fifth examination during 1991–1995), Multi-Ethnic 
Study of Atherosclerosis (MESA; initiated in 2000 with 6,814 adults 
aged 45–84 years55,56), the Boston Puerto Rican Health Study (BPRHS; 
enrolled 1,500 self-identified Puerto Rican adults aged 45–75 years) 
and the Prevención con Dieta Mediterránea Study (PREDIMED; a 5-year 
dietary trial with 7,447 adults aged 55–80 years57). In each cohort, 
comprehensive data on demographics, medical and family history, 
diet, lifestyle and other health information were collected at baseline 
and were updated during longitudinal follow-ups. Blood samples 
were collected at baseline and/or during follow-ups. Our MWAS for 
incident T2D included participants with qualified metabolomics 
data, and were free of diabetes, cardiovascular disease and cancer at 
study baseline. The final analysis included 6,890 participants from 
NHS; 3,692 from NHS2 and 2,529 from HPFS; 2,821 from SOL; 1,392 
from WHI; 1,288 white and 1,433 Black participants from ARIC; 1,424 
from FHS; 902 from MESA; 378 from BPRHS and 885 from PREDIMED 
(Extended Data Table 1). Each study was approved by Institutional 
Review Boards at respective institutions or study centers, and all 
participants provided informed consent. Our GWAS for metabolites 
included participants from eight cohorts comprising NHS, NHS2, 
HPFS, SOL, WHI, ARIC, FHS and, in addition, the Cardiovascular Health 
Study (CHS; enrolled 5,201 adults during 1989–1990 and 678 predomi-
nantly Black participants in 1992–199358,59) (Supplementary Table 7). 
The detailed descriptions of the design, data collection, ethical review 
of each cohort, and our inclusion and exclusion criteria are provided 
in Supplementary Methods.

Ascertainment of T2D
In all cohorts, incident T2D was defined when a participant was free 
of diabetes at baseline but was identified as having T2D during longi-
tudinal follow-up. Detailed information on diagnosis criteria in each 
cohort is included in Supplementary Methods, and follow-up years and 
numbers of incident cases are listed in Extended Data Table 1. Briefly, in 
NHS/HPFS, T2D were identified by follow-up questionnaires, and con-
firmed through a supplementary questionnaire based on diagnostic 
criteria from the National Diabetes Data Group before 199860 and the 
American Diabetes Association (ADA) criteria after 199861,62. In SOL, T2D 
was defined if a participant had fasting glucose ≥7.0 mmol l−1, fasting 
≤8 h and nonfasting glucose ≥11.1 mmol l−1, post oral glucose tolerance 
test glucose ≥11.1 mmol l−1, HbA1c ≥ 6.5%, current use of antidiabetic 
medications or self-reported physician-diagnosed diabetes63. In WHI, 
T2D was determined based on self-reported history of diabetes or 
using antidiabetic medications (pills or shots) in any visits/interviews. 
In ARIC and FHS, T2D was diagnosed if a person had fasting glucose 
≥7.0 mmol l−1, fasting ≤8 h and nonfasting glucose ≥11.1 mmol l−1, or 
current use of antidiabetic medications with ARIC further considering 
self-reported physician-diagnosed diabetes64,65. T2D cases in MESA 
and BPRHS were determined according to the ADA criteria66, which 
included fasting plasma glucose level ≥7.0 mmol l−1 or the use of anti-
diabetic medications or insulin56,67. In PREDIMED, T2D was adjudicated 

through blind assessment by a Clinical Endpoint and Adjudication of 
Events Committee, based on the ADA criteria68.

Assessment of diet, lifestyle factors and covariates
Detailed information on data collection in each cohort is in Supplemen-
tary Methods. Briefly, demographic factors (for example, self-reported 
sex, and race and ethnicity), socioeconomic status, health information 
(for example, medical conditions and family history) and lifestyle 
(for example, smoking history and PAs), anthropometrics and blood 
pressure, were collected at baseline and follow-up visits, through 
self-administrated questionnaires, or in-person or telephone-based 
interviews by trained staff. PA was quantified as metabolic equivalent 
(MET) in hours per week. We calculated BMI based on baseline weight 
and height, and WHR based on waist and hip circumferences. Blood 
clinical biomarkers were measured using standard assays. Among 
participants with serum creatinine data, eGFR was estimated using 
the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) 
formula, based on age, sex and race in NHS/HPFS, WHI, ARIC and PRED-
IMED69, and standard reference equations for Hispanics adjusting for 
age and sex in SOL. In PREDIMED, two propensity scores were estimated 
to account for the probability of assignment to intervention groups57.

In NHS/HPFS, diet was assessed using a semi-quantitative food 
frequency questionnaire (FFQ) every 4 years; in our analysis we averaged 
the intakes from the two FFQs closest to the time of blood draw (NHS: 
1986 and 1990; NHS2: 1995 and 1999; HPFS: 1994 and 1998). In WHI, ARIC, 
FHS, MESA and BPRHS, diet was similarly assessed by FFQs designed and 
validated for application to their targeted populations (for example, 
multiethnic and geographically diverse populations in WHI70–72 and 
Puerto Rican population in BPRHS73). In SOL, diet was assessed using two 
24-h dietary recalls and a food propensity questionnaire74. The overall 
dietary quality was assessed by the Alternate Healthy Eating Index-2010 
(AHEI-2010)75 in all cohorts except for the PREDIMED trial, in which it was 
assessed by a 14-item Mediterranean Diet Adherence Screener score57. 
In NHS/HPFS, SOL and WHI, we also calculated baseline consumptions 
of 15 main food groups in the unit of servings per day.

Metabolomic profiling, quality control and data 
harmonization
Metabolomic profiling in NHS/HPFS, WHI, MESA, PREDIMED, FHS and 
CHS was conducted with the Metabolomics Platforms at the Broad 
Institute of MIT and Harvard University, using three to four comple-
mentary LC–MS methods9,65,76. Metabolomic profiling in SOL and ARIC 
(serum samples) and BPRHS (plasma samples) was conducted using 
LC–MS based methods by the Metabolon DiscoveryHD4 Panel at the 
Metabolon Inc.63,77,78. Detailed protocols for both platforms have been 
described previously53,79.

Data processing was conducted within each study and, if appli-
cable, separately within each batch (or substudy) if several batches/
substudies were conducted within a cohort. Samples were removed if 
their metabolite detection rate was <80%, or were identified as outli-
ers by multidimensional scaling analysis within a specific race/ethnic 
group. Metabolites were filtered if their detection rate across samples 
was <80% and, if applicable, had a coefficient of variation >20% for 
quality control (QC) samples. After quality filtering, missingness of 
each metabolite were imputed using the half minimum value, and 
the data were then standardized for analysis. Across all cohorts, we 
matched metabolites by their HMDB ID and/or PubChem ID, provided 
by the corresponding metabolomic laboratories. A total of 1,273 named 
metabolites were initially qualified for analysis in at least one cohort. 
To reduce single-study bias, we limited our analyses to 469 metabolites 
that were available in at least four independent cohorts, or available in 
at least three independent cohorts if the three cohorts covered both 
Metabolomic platforms. Finally, 407 metabolites from NHS, 363 from 
NHS2, 291 from HPFS, 364 from WHI, 327 from MESA, 274 from PRED-
IMED, 188 from FHS, 283 from SOL, 139 from ARIC and 231 from BPRHS 
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were harmonized for our analysis (Extended Data Table 1). In CHS, 411 
metabolites were included in genetic analyses (Supplementary Table 7). 
Details of the metabolomic profiling, QC and data processing are in the 
Supplementary Methods.

Metabolome-wide association analysis for incident T2D
Details of analytical approaches and models are provided in Supple-
mentary Methods and Supplementary Table 1. Briefly, all association 
analyses were conducted separately for each cohort, stratified by 
major racial/ethnic groups when sample sizes permitted. Metabo-
lites were inversely normal transformed by each substudy and racial/
ethnic group (if applicable) in each cohort. To analyze the association 
between each metabolite and T2D risk, we applied Cox regression 
for studies of longitudinal cohort design (NHS excluding the T2D 
nested case–control substudy, NHS2, HPFS, SOL, ARIC, WHI, FHS, MESA 
and BPRHS); logistic regression for the NHS T2D nested case–control 
substudy; and Cox regression with Barlow weights80 and robust esti-
mators for the PREDIMED T2D nested case–cohort study. The basic 
multivariate model (model 1) was adjusted for age, sex, smoking status, 
alcohol consumption and, if applicable, education, family income, 
fasting status, lipid-lowering medications, anti-hypertensive medica-
tions, family history of diabetes, self-reported physician-diagnosed 
hypertension, self-reported physician-diagnosed dyslipidemia and 
study-specific covariates. The main model was further adjusted for 
BMI and WHR (model 2). In sensitivity analyses, model 1 was further 
adjusted for PA and dietary quality index (model 3); high-density lipo-
protein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol 
and triglycerides (model 4), or systolic and diastolic blood pres-
sures (model 5). In another sensitivity analysis, model 2 was further 
adjusted for eGFR in NHS, NHS2, HPFS, SOL, ARIC, WHI and PRED-
IMED. For each metabolite, association results from all available 
cohorts and racial/ethnic groups were combined using a fixed-effect, 
inverse-variance-weighted (IVW) meta-analysis, and a meta-analyzed 
FDR < 0.05 was considered statistically significant. In secondary analy-
ses, meta-analysis was conducted combining results from the same 
racial/ethnic groups, or cohorts using the same platforms.

To annotate the novelty of the identified associations, we reviewed 
previous prospective cohort studies linking circulating metabolites 
to T2D risk. We used a literature-review-based meta-analysis4 that 
included all studies published before 6 March 2021 as an anchor, and 
searched for additional studies published from 2021 to 202421,81–94. We 
considered an association as ‘previously reported,’ if the association 
was statistically significant in a published study after multiple testing 
correction based on the study’s prespecified analysis plan.

GWAS of metabolites
Detailed information on genotyping arrays, imputation methods, 
sample size and GWAS and meta-analysis methods, is provided in Sup-
plementary Methods and Supplementary Table 7. Briefly, genotyping 
were conducted using several types of array by previous studies in 
NHS/HPFS95, SOL96, ARIC7, WHI97, CHS98 and FHS43. Imputation was 
conducted based on the HRC reference panel in NHS/HPFS and CHS; 
1000 Genomes Project phase 3 worldwide reference panel in SOL, 
1000 Genomes Project phase 3 v.5 in WHI and HapMap CEU popula-
tion release v.22 in FHS with comprehensive pre- and postimputation 
QC. GWAS of metabolites were conducted previously in the NHS/HPFS 
(median n = 6,610, range 971–8,054) and WHI (n = 1,256) using the 
RVTESTS tool6,42,99, in SOL (n = 3,933) using a linear mixed-effect model 
in GMMAT7 and in ARIC (n = 1,772 and n = 1509 for African American 
and non-Hispanic white participants, respectively)7, CHS (n = 263) 
and FHS (n = 1,802)43, with detailed analysis procedures described in 
previous publications7,42,43.

GWAS summary statistics from each cohort were lifted over to 
Genome Build v.37 and filtered, retaining single nucleotide polymor-
phisms with a minor allele frequency ≥ 0.01 and imputation ratio ≥0.3. 

For each metabolite, an IVW fixed-effect meta-analysis, implemented 
in METAL100, was used to combine GWAS results from the cohorts in 
which the metabolite was available. Genomic control was implemented 
before and after meta-analysis100. The final GWAS were available for 
458 out of 469 harmonized metabolites, with the total sample size 
ranging from 1,074 to 18,590 (median n = 8,611). We compared sig-
nificant mQTLs identified at P < 5 × 10−8 and 1.09 × 10−10 (that is, 5 × 10−8 
further correcting for 458 metabolites) levels. Manhattan plots were 
derived using R package CMplot and regional plots were draw with 
LocusZoom101. In a secondary analysis, we compared genetic effect 
heterogeneity between racial/ethnic groups at the identified mQTLs 
for T2D-associated metabolites (Supplementary Methods).

We annotate the novelty of our significant mQTLs for the 165 
T2D-associated metabolites at P < 1.09 × 10−10, by comparing our 
results to eight previous studies (with N ≥ 4,000 and used LC–MS 
based metabolomic platforms)8,24–26,102–105. We considered a locus for a 
specific metabolite as ‘previously reported’ if the reported lead genetic 
variant was the same lead variant, or not the same lead variant but was 
significant in our study; or not in our study but within the clumping 
range of our identified locus. We considered a locus for a metabolite as 
potentially new if our locus was not previously reported for this metab-
olite, or this metabolite was not previously reported in these studies.

Lead variants for metabolites, pathway analysis and 
proportion of variance explained
We used the PLINK clumping function (P < 5 × 10−8 and r2 < 0.01 in a 
1,000-kb window) to identify independent genetic variants associated 
with each metabolite. For metabolite with no variant at P < 5 × 10−8, a 
single lead variant with the smallest P was selected. Gene annotation 
for top variants was conducted using the SNPNexus web tool106. Canoni-
cal pathway enrichment analyses was conducted using the MetaCore 
software with the default background107; and we compared top enriched 
pathways for genes annotated to mQTLs of T2D-related metabolites 
versus those of non-associated metabolites. We calculated the R2 of 
each metabolite explained by independent lead genetic variants using 
the formula ∑k

i=1β × β × 2 ×MAF × (1 −MAF), in which k is the number of 
independent lead variants, and β is the association coefficient between 
the variant and the metabolite. We compared the R2 distribution for 
the T2D-associated versus non-associated metabolites using 
Wilcoxon test.

Genetic correlation rg between metabolites and T2D-related 
traits
We acquired publicly available GWAS summary statistics from large 
consortium studies for T2D (180,834 cases and 1,159,055 controls)27, 
fasting insulin (N = 98,210)108, proinsulin (N = 45,861)109, HOMA-IR 
and HOMA-B (N = 51,750)110, BMI-adjusted insulin sensitivity index 
(ISI, N = 53,657) and insulin fold-change (IFC; N = 55,124)111, BMI and 
WHR (N = ∼700,000)112 and lipids (N = ∼1,500,000)113. We conducted 
GWAS for HBA1c (N = 390,982), subcutaneous fat volume (N = 37,912), 
visceral fat volume (N = 37,912), liver proton density fat fraction 
(PDFF; N = 29,512), pancreas PDFF (N = 28,624) and liver enzymes 
(N = ∼390,000) in the UK Biobank using BOLT-LMM (Supplementary 
Methods). We calculated rg between each metabolite and each clini-
cal trait using linkage disequilibrium score regression, based on their 
GWAS summary data overlapping with the 1.2 M HapMap3 variants 
after excluding the major histocompatibility complex region in the 
European population114. For each trait, we compared the distribution 
of its rg with T2D-associated versus non-associated metabolites, using 
chi-squared test, and considered FDR < 0.05 (correcting for numbers 
of comparisons tested) as statistically significant.

Genetic colocalization
We obtained tissue-specific cis-eQTLs summary statistics from 
the GTEx project v.8115,116. The shared causal variants between each 
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metabolite and tissue-specific transcriptome from 47 tissue types, 
were examined using colocalization analysis implemented in the coloc.
abf() function in R package ‘coloc’ v.5117. For each metabolite, we input 
the GWAS summary statistics for all variants within ±500 kb of its 
independent lead variants (Supplementary Methods). A posterior 
probability of H4 (PPH4) > 0.8 was considered as strong evidence for 
genetic colocalization. Within each tissue type, we used univariant 
logistic regression to test whether the proportions of mQTL–eQTL colo-
calizations are higher for the T2D-associated versus non-associated 
metabolites, and a one-sided FDR < 0.05 (correcting for 47 tissue types) 
was considered as statistically significant. We applied a similar coloc 
approach to examine genetic colocalizations between circulating 
metabolites and T2D27. We then aligned mQTL–T2D colocalizations with 
tissue-specific eQTL–mQTL colocalizations by metabolites and shared 
causal variants, to interpret the potential functionality of metabolites 
in T2D pathogenesis.

MR analysis
To infer the potential causal relationships between 233 T2D-associated 
metabolites (with genetic data) and T2D risk, we applied four MR 
methods implemented in the MendelianRandomization R pack-
age118: we used mode-based estimate (MBE) as the main method as 
it is generally conservative and robust to outliers; we further applied 
weighted-median, IVW and MR-egger to indicate result consistency119. 
When testing the direction from metabolites to T2D, we used inde-
pendent variants from clumping (P < 5 × 10−8 and r2 < 0.01 in a 1,000-kb 
window) excluding the HLA region as genetic instrumental variables. 
If fewer than three variants were identified, we reduced the clumping 
P threshold until at least three variants were identified. We considered 
a potential causal relationship when MBE–FDR < 0.05 and at least 
two other MR methods showed the same effect directions as those 
from MBE. Sensitivity analyses were conducted, either to remove vari-
ants mapped to the top 3 recurrent loci (GCKR, ZNF259, FADS cluster) 
from the instrumental variables, or to use only independent variants 
clumped at P < 1.09 × 10−10 as the instrumental variables of metabolites, 
using the IVW MR method (due to fewer variants retained). When test-
ing the direction from T2D to metabolites, we used independent lead 
variants associated with T2D at P < 5 × 10−8 as the instrumental vari-
ables. For the 148 metabolites that are potential mediators between 
BMI and T2D risk, we applied MR analysis to test the direction from 
BMI to metabolites. Details are provided in Supplementary Methods.

MWASs for modifiable risk factors
We fitted linear models to regress inversely normal transformed metab-
olite levels on age, sex (only in SOL), current smoking status, BMI, PA, 
intakes of 15 main food groups and fasting status, simultaneously 
together with cohort-specific covariates. Analyses were conducted in 
NHS/HPFS, SOL and WHI, separately, further stratified by substudies 
or racial groups (Supplementary Methods). Association coefficients 
between metabolites and each particular risk factor were then  
combined across analytical sets using a fixed-effect IVW meta- 
analysis. The R2 of each metabolite explained by specific risk  
factors were first calculated in each analytical set using the formula 
β × β × variance (risk factor)/variance (metabolite) , with the β being the 
association coefficients between the metabolite and the risk factor; 
and then averaged across all analytical sets. We compared the distribu-
tions of R2 for T2D-associated versus non-associated metabolites using 
the Wilcoxon test.

Mediation analysis between risk factors, metabolites and  
T2D risk
Details for mediation analysis are described in Supplementary Meth-
ods. Briefly, our analysis focused on BMI, PA, coffee/tea consumption 
and red/processed meat intake. For each risk factor, metabolites (1) that 
were associated with both the risk factor and T2D risk and (2) whose 

association directions with the risk factor and T2D risk were consistent 
with the pre-assumed epidemiological relationships between the risk 
factor and T2D risk, were considered. We tested whether, and to what 
degree, each metabolite mediated the association between a risk fac-
tor and T2D risk using the CMAverse R package120, adjusting age, sex, 
smoking, BMI and PA (if not the tested risk factor), calorie intake and 
other cohort-specific covariates, separately in NHS/HPFS, SOL and 
WHI. We combined total, indirect and direct effects, respectively, from 
each analytical set using a fixed-effect meta-analysis. The mediated 
proportion was calculated by dividing indirect effect to total effect. 
Metabolites with an indirect effect FDR < 0.05 and a consistent effect 
direction between the indirect and total effects, was considered as a 
potential mediator between a risk factor and T2D risk.

A multimetabolite signature for incident T2D prediction
We used metabolites shared between the Broad Institute and the 
Metabolon platforms (excluding glucose) to develop the signature to 
increase its generalizability to future studies. To avoid overfitting in 
model development and testing, we employed a leave-one-cohort-out 
cross-validation approach, in which we set aside one cohort as the 
testing set each time, and trained a prediction model for the set-aside 
cohort using data from all other cohorts (Extended Data Fig. 8). Given 
the heterogeneity of our cohorts, we did not pool individual-level 
data for model training. Instead, we applied a two-step approach to 
train the prediction model in a representable cohort (that is, WHI, 
which assessed the most shared metabolites for all its participants) 
but also leveraged association data from several other cohorts. In 
each iteration (that is, for each held-out testing cohort), we first 
conducted a metabolome-wide meta-analysis for T2D risk using 
all cohorts except WHI and the held-out cohort. Then, metabolites 
associated with T2D risk at FDR < 0.05 in the first step and shared 
between the two metabolomic platforms, were used as input in a Cox 
regression with elastic net regularization, implemented using the 
glmnet R package121, to construct a metabolomic signature model for 
T2D prediction in WHI. The derived model was further applied to the 
held-out cohort to calculate a metabolomic signature score. Within 
WHI, a leave-one-out cross-validation approach was used to acquire 
the unbiased metabolomic signature score. For details, please see 
Supplementary Methods.

The metabolomic signature scores, calculated in each held-out 
cohort, were then standardized. To evaluate whether the signature 
improved the T2D risk prediction, we fitted three sets of logistic (in 
SOL, and T2D nested case–control substudy in NHS) or Cox models 
(all other datasets): one model including only the metabolomic sig-
nature; a conventional risk factor model including age, sex, smoking, 
lipid-lowering medication use, anti-hypertensive medications, family 
history of diabetes, hypertension, dyslipidemia and BMI; and a third 
model including all conventional risk factors and the metabolomic 
signature. We compared the AUC between the conventional model 
versus the conventional plus metabolomic signature model. In a sec-
ondary analysis, we further included blood glucose (from metabolomic 
assays) in the conventional model to evaluate the added value of the 
metabolomic signatures beyond blood glucose.

In each cohort, we calculated the crude incident rate of T2D across 
deciles of the signature score. We fitted logistic or Cox models to ana-
lyze the relative risk of T2D, comparing higher versus lowest deciles 
of the metabolomic signature, adjusting for the same covariates in 
the main analysis model 2. In NHS/HPFS, SOL and WHI, we examined 
associations between the metabolomic signature with baseline risk 
factors, by regressing the signature score on age, sex (if appropriate), 
current smoking status, BMI, PA, intakes of 15 main food groups and 
fasting status simultaneously, together with cohort-specific covariates, 
using linear regression. All analysis was conducted separately in each 
cohort, and results were combined using a meta-analysis. FDR < 0.05 
was considered as statistically significant.
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We conducted two sensitivity analyses during model develop-
ment. One was to use SOL (measured the most metabolites using the 
Metabolon platform) as the representative training cohort instead of 
WHI, which showed a similar, albeit slightly weaker, model performance 
in held-out cohorts (Extended Data Fig. 8). The other was to compare 
between elastic net versus lasso regularizations121, which reaffirmed that 
elastic net regression had compatible but a slightly better performance 
versus lasso regression (Supplementary Fig. 13). Separately from the 
leave-one-cohort-out cross-validation, we presented a final metabo-
lomic signature model for future studies, developed using data from all 
study cohorts. For this model, we first conducted a metabolome-wide 
meta-analysis for T2D risk in all cohorts except WHI, and then used sig-
nificant metabolites (FDR < 0.05) as input in a Cox regression with elastic 
net regularization for T2D prediction in WHI. The selected metabolites 
and their coefficients of this final model are highly consistent with those 
of models applied to each held-out cohort (Supplementary Table 18a).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study did not generate any new/raw data but used existing data 
from several population-based cohorts, including the NHS, NHS2, HPFS, 
SOL, WHI, ARIC, FHS, MESA and BPRHS cohorts and the PREDIMED trial. 
Because of participant confidentiality and privacy concerns, these data-
sets are each governed by an approved data access policy, and are avail-
able upon request with formal applications submitted to the respective 
cohort committees, to adhere to data security and ethical considerations. 
Data for NHS/NHS2 (detailed policies and access procedures https://
nurseshealthstudy.org/; email to nhsaccess@channing.harvard.edu) 
HPFS (https://www.hsph.harvard.edu/hpfs/) are available upon written 
request; applications to use resources will be reviewed by an External 
Collaborators Committee for evaluation of the fit of the data for the 
proposed methodology, and verification that the proposed use meets 
the guidelines of the Ethics and Governance Framework and the consent 
that was provided by the participants. HCHS/SOL has established a pro-
cess for the scientific community to apply for access to participant data 
and materials, with requests reviewed by the SOL Steering Committee 
(https://sites.cscc.unc.edu/hchs/). WHI metabolomic, genomic and 
clinical data are available upon reasonable request to the WHI Publica-
tions and Presentations (P&P) Committee. Upon approval, requesters 
will be provided with details to access to the data (https://www.whi.org/
propose-a-paper). Data access for FHS (detailed data policy at https://
www.framinghamheartstudy.org/), MESA (https://www.mesa-nhlbi.
org/), and ARIC (https://aric.cscc.unc.edu/aric9/) in the current study 
was approved by the TOPMed Publications and Presentations Steering 
Committees with data access provided by an approved project (10065). 
GWAS summary statistics for metabolites from NHS/HPFS (doi: 10.1016/j.
xcrm.2023.101085), SOL and ARIC (doi: 10.1016/j.ajhg.2020.09.003) and 
FHS (doi: 10.1016/j.cmet.2013.06.013) were each acquired from prior 
publications. For the PREDIMED trial (http://www.predimed.es/), due to 
the restrictions imposed by the Informed Consent and the Institutional 
Review Board, bona fide investigators interested in analyzing the PRED-
IMED dataset used for the present article may submit a brief proposal and 
statistical analysis plan to the corresponding author. Upon approval from 
the PREDIMED Steering Committee and Institutional Review Boards, the 
data will be made available to them using an onsite secure access data 
enclave. BPRHS data are available upon reasonable request, and infor-
mation on data request can be found at https://www.uml.edu/research/
uml-cph/research/bprhs/. Source data are provided with this paper.

Code availability
The main code used to conduct this study is available on GitHub at 
https://github.com/JL-BWHlab/TOPMed_MWAS.
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Extended Data Fig. 1 | Biochemical categories of the 469 analyzed metabolites, 
and their associations with incident T2D comparing non-Hispanic White 
individuals vs. individuals of other races and ethnicities. (A) Numbers 
of metabolites with positive, inverse, or null associations with T2D risk by 
biochemical category. We compared the association coefficients of each 
metabolite with T2D risk in the non-Hispanic White group to those from all 
individuals of other races and ethnics (B), Hispanic/Latino participants (C), and 
African American participants (D). Sample sizes for individual metabolites vary, 
depending on their availability in each cohort; the maximum sample sizes are 
18,193 for non-Hispanic White individuals, 3,686 for Hispanic/Latino individuals, 
and 1,604 for African American individuals (see Supplementary Table S4). 

Association coefficients were presented as natural log of relative risk (RR) per SD 
increment in metabolites. In each cohort, we first conducted MWAS for incident 
T2D stratified by major racial/ethnic groups (that is, non-Hispanic White, 
African American, Hispanic/Latino, or mixed non-White individuals depending 
on sample size). The main model was adjusted for age, sex, smoking, alcohol 
consumption, fasting status, lipid-lowering mediation use, anti-hypertensive 
medication use, hypertension, dyslipidemia, body mass index, waist-hip ratio, 
family history of T2D, and other cohort-specific variables. Results presented in 
A were from meta-analysis of all participants. When comparing between racial/
ethnic groups in panel B-D, we meta-analyzed the results within each group.
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Extended Data Fig. 2 | Comparison of associations between metabolites 
and T2D risk across the two metabolomic platforms. In each cohort and 
stratified by major racial/ethnic groups, associations between inversely normal 
transformed metabolites and T2D risk were analyzed using Cox or logistic 
regressions. Results were then meta-analyzed separately for cohorts profiled 
at the Broad Institute vs. those profiled at the Metabolome Inc. A total of 294 

overlapping metabolites were included in the comparison. A and C compare the 
association coefficients (that is, natural log-transformed relative risk ratio [RR] 
of T2D risk per standard deviation increase in metabolite levels) between the two 
platforms from Model 1 and Model 2, respectively. B and D show distributions of 
FDR testing for association heterogeneity between the two platforms, for Model 1 
and Model 2, respectively.
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Extended Data Fig. 3 | Association with T2D risk for complex lipids and fatty 
acids by carbon chain length and double-bond numbers. For complex lipid 
metabolites and fatty acids, we tested the correlation between their association 
coefficients (with T2D, from Model 2) with carbon chain length and double-bond 
numbers. Correlations with P < 0.05 were demonstrated, including for free 
fatty acids (A), cholesterol esters (B), diacylglycerols (C), triacylglycerols (D), 

phosphatidylcholines (E), plasmalogens (F), and sphingomyelins (G). In each 
sub-figure, x- and y-axis each represents carbon chain length and double-bond 
numbers, respectively; and the z-axis represents the natural log-transformed 
relative risk (RR) for T2D per standard deviation increase in the levels of 
metabolites. Significant correlations and P values were highlighted in red ( + and 
– indicate positive and negative correlations, respectively).
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Extended Data Fig. 4 | Genetic determinants of T2D-associated metabolites. 
The Manhattan-like plots show significant genetic variants associated with any 
of the T2D-associated metabolites, at the standard genome-wide significant level 
(P < 5×10−8; upper panel) and after Bonferroni corrections for 458 metabolites 
with genetic data (P < 1.09×10−10; lower panel). The x-axis demonstrates 
chromosomal positions; y-axis shows the numbers of T2D-related metabolites 

associated with each variants; and the color depicts the major biochemical 
categories of the metabolite (amino acids, lipids, carbohydrates and energy 
metabolism, and others). Genome-association study was conducted in each of 
the 8 cohorts by major racial/ethnic groups, and meta-analyzed using fixed effect 
meta-analysis in METAL. Among the 235 T2D-associated metabolites, 233 had 
GWAS summary data and were included in the analyses.
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Extended Data Fig. 5 | Comparison of top enriched canonical pathways for 
genes mapped to mQTLs of T2D-associated metabolites vs. those mapped 
to mQTLs of non-associated metabolites. A. The top 30 enriched pathways 
identified for genes mapped to mQTLs of T2D-associated metabolites (left) 
vs. those for non-associated metabolites (right). B. We also observed a clear 

difference in the overall enrichment pattern of canonical pathways, when 
comparing the enrichment-FDR for genes mapped to mQTLs of T2D-associated 
metabolites vs. those of non-associated metabolites across all 1,140 tested 
canonical pathways.
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Extended Data Fig. 6 | Numbers of tissue-specific eQTL-mQTL colocalizations 
by metabolite’s association with T2D and key tissue types. (A) We calculated 
the numbers of tissue types that each metabolite had significant mQTL-eQTL 
colocalizations with, and then compared numbers of colocalized tissue types 
across all T2D-associated metabolites vs. non-associated metabolites. Further, 
for the 8 selected tissue types (7 with significant enrichment of mQTL-eQTL 

colocalizations among T2D-associated metabolites plus liver), we used upset 
plots to depict the numbers of metabolites with mQTL-eQTL colocalizations, 
stratified by tissue types (left horizontal bars) and cross-tissue intersections 
(vertical bars), separately for T2D-associated metabolites (B) and non-associated 
metabolites (C).
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Extended Data Fig. 7 | Associations of each circulating metabolites with 
baseline modifiable risk factors, and with incident T2D. Here we presented 
results for current smoking, red meat intake, sugary beverage intake, and 
vegetable intake. In the scatter plots, we compared the associations between 
metabolites with a risk factor vs. their association with incident T2D. Each dot 
represents a metabolite (colored: associated with the risk factor and incident 
T2D at FDR < 0.05 by biochemical category, dark grey: associated with incident 
T2D but not with the risk factor; light grey: not associated with incident T2D), 
and we presented the trend lines (and correlation coefficients) separately for 

T2D-associated metabolites (dark grey) and non-associated metabolites (light 
grey). Association coefficients (beta) for risk factors are from metabolome-wide 
association analysis with all risk factors mutually adjusted simultaneously 
(including age, sex, and BMI, physical activity, 15 major food groups, fasting 
status, and other cohort specific variables). This analysis was conducted 
separately in NHS, NHSII, HPFS, SOL, and WHI (n = 16,883) and results were 
combined using a meta-analysis. Association coefficients (ln[RR]) for T2D risk are 
from Model 2 (the main analysis model).
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Extended Data Fig. 8 | Schematic plot and results for metabolomic signature 
development and testing. A. We primarily used WHI, which assessed the 
most metabolites shared between the two platforms for all its participants, 
as a representable training cohort. For each of held-out testing cohort, we 
first conducted a metabolome-wide meta-analysis for T2D risk including all 
cohorts except WHI and the held-out cohort. Metabolites associated with T2D 
risk at FDR < 0.05 and shared between the two platforms were then used as the 
input, in an elastic net Cox regression to construct a metabolomic signature 
model for T2D risk prediction in WHI. We next applied the derived model 
to the held-out cohort to calculate a metabolomic signature score. In WHI, 

a leave-one-out cross-validation (LOOCV) approach was used to acquire an 
unbiased metabolomic signature score for each individual without overfitting. 
B. We conducted a sensitivity analysis using SOL, which measured the most 
metabolites on the Metabolon platform for all its participants, as the training 
cohort. C. The AUC for T2D risk prediction in each cohort, comparing models 
with vs. without (blue) the metabolomic signatures, beyond traditional risk 
factors (age, sex, smoking, lipid-lowering medication use, anti-hypertensive 
medication use, family history of diabetes, hypertension, dyslipidemia, and BMI). 
** Two-sided P < 0.01; * P < 0.05, ̂  P < 0.1; slash: signature scores were calculated 
using LOOCV.
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Extended Data Fig. 9 | Metabolomic signature for T2D prediction with the 
conventional model additionally adjusting for fasting glucose in cohorts with 
available data. We compared AUC for T2D risk prediction across three models in 
a secondary analysis. Model 1 (yellow) included only the metabolomic signature. 
Model 2 (blue) included traditional T2D risk factors, comprising age, sex, 
smoking, lipid-lowering medication use, anti-hypertensive medications, family 

history of diabetes, hypertension, dyslipidemia, and BMI, and a T2D diagnostic 
biomarker, blood glucose, assessed by the metabolomic assays. Model 3 (green) 
additionally included the metabolomic signature score on the basis of Model 
2. We compared Model 3 vs. Model 2 to evaluate if the metabolomic signatures 
demonstrated added value beyond traditional risk factors and blood glucose. ** 
Two-sided P < 0.01, * P < 0.05, and ̂  P < 0.1.
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Extended Data Table 1 | Characteristics of study participants included in the prospective analyses
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