
REVIEW ARTICLE OPEN

Diabetes and its complications: molecular mechanisms,
prevention and treatment
Lijun Zhao1,2, Jiamin Yuan1,2, Qing Yang1,2, Jing Ma1,2, Fenghao Yang3, Yutong Zou1,2, Ke Liu1,2 and Fang Liu 1,2✉

Diabetic complications represent a formidable clinical challenge characterized by hyperglycemia-induced multiorgan dysfunction
and dysregulated intercellular signaling networks. Advances in spatial multiomics and single-cell transcriptomic techniques, along
with insights into aberrant signaling via myokines, cytokines, hormones, the gut microbiota, and exosomes, have revealed the
molecular heterogeneity and dynamic inter-organ crosstalk underlying diabetes. Digital diabetes prevention programs have
demonstrated effectiveness in high-risk populations through the use of remote tools to support lifestyle changes, reduce
hemoglobin A1c, and delay the onset of type 2 diabetes. The therapeutic landscape for diabetic complications has been reshaped
by agents with proven cardiorenal benefits, including sodium‒glucose cotransporter 2 inhibitors, glucagon‒like peptide-1 receptor
agonists, and nonsteroidal mineralocorticoid receptor antagonists, with combination therapies offering potential additive or
synergistic effects. However, their optimal application requires careful benefit–risk assessment across diverse patient populations.
Novel therapeutic strategies involving mesenchymal stem cells and their derived exosomes, gut microbiota modulation, bioactive
compounds from traditional Chinese medicine, and AI-assisted disease management systems offer promising approaches to correct
molecular dysfunctions. This review summarizes recent advances in the mechanisms, prevention, and treatment of diabetic
complications, alongside a critical examination of current bottlenecks in translational applications. The remaining challenges
include establishing long-term safe regenerative therapies and effectively integrating AI into clinical workflows. Although AI shows
promise, issues such as limited data diversity and low model interpretability hinder its generalizability and clinical trust. Addressing
these challenges will be essential for transitioning toward a proactive, personalized, and patient-centered model of care.
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INTRODUCTION
Diabetes mellitus (DM) refers to a group of metabolic disorders
primarily characterized by hyperglycemia due to absolute or
relative insulin deficiency, impaired insulin action, or both.1 It was
estimated that in 2022, there were 828 million adults worldwide
with diabetes, representing a marked increase of 630 million
compared with 1990, with a prevalence rate of 13.9% for women
and 14.3% for men.2 The number of cases is projected to exceed
1.31 billion by 20503, thus imposing a significant burden on both
healthcare and the global economy.4 However, the increasing
incidence of diabetes has not been accompanied by a corre-
sponding rise in its treatment; this is particularly apparent in low-
and middle-income nations, where research reveals that 59% of
diabetic patients worldwide aged 30 years and above are not
receiving treatment.2

Chronic hyperglycemia induces systemic metabolic distur-
bances that drive both macrovascular atherosclerosis and micro-
vascular injury across cardiac, cerebral, renal, and peripheral
circulation. This constellation of pathology is collectively termed
“diabetic panvascular disease (DPD),” reflecting common mole-
cular mechanisms and interdependent risks among vascular
complications.5 Recent studies have emphasized the dynamic
interplay of systemic and tissue-specific risk and protective factors

in the development of diabetic complications.6 This review
comprehensively examines the molecular mechanisms underlying
diabetic complications across multiple organs, as well as current
prevention strategies and recent multi-organ therapeutic
approaches (Fig. 1). These frameworks provide a foundation for
improving the management of diabetic complications and
emphasize the importance of adopting comprehensive treatment
approaches to address the multifaceted challenges associated
with diabetes.

MOLECULAR MECHANISMS AND MEDIATORS OF ORGAN
CROSSTALK IN DIABETIC COMPLICATIONS
Diabetes includes several forms, namely, type 1 diabetes (T1D), an
early-onset autoimmune condition; type 2 diabetes (T2D), a late-
onset non-autoimmune form accounting for more than 90% of
cases7; and monogenic diabetes, such as Maturity-Onset Diabetes
of the Young, a rare inherited form resulting from a single-gene
defect; neonatal diabetes; gestational diabetes associated with
pregnancy; and latent autoimmune diabetes in adults,8 an
autoimmune condition occurring in adulthood. As reviewed
elsewhere,9 the onset of diabetes results from a complex interplay
of genetic and environmental factors, with T2D accounting for
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96% of cases.10 In this review, we focus on recent important
advances in the understanding of the pathology of T2D and its
complications.
β cells are recognized as central nodes in pathways that

mediate hyperglycemia. Diabetes is characterized by a combina-
tion of β-cell dysfunction and insulin resistance in the liver and

muscles, representing key features of T2D. Gene editing,
particularly CRISPR-Cas9, holds the potential for the precise
differentiation of stem cells into β cells.11–13 Furthermore,
manipulating the lncRNA MIR503HG or ZnT8 in stem cell-
derived pancreatic progenitors improved insulin synthesis and
secretion.14,15 As the understanding of β-cell biology advances, a

Diabetes and its complications: molecular mechanisms, prevention and. . .
Zhao et al.

2

Signal Transduction and Targeted Therapy           (2026) 11:22 



combination of stem cell therapy and gene editing presents
promising prospects for diabetes treatment, although further
evaluation is needed to determine long-term efficacy and safety.
In addition, factors such as lipotoxicity, defects in the incretin

system, hyperglucagonemia, increased renal glucose reabsorption,
and central insulin resistance contribute to the progression of
diabetes. These factors are collectively known as the "ominous
octet".16 The development of diabetic complications arises from a
complex interplay of metabolic dysregulation and injury mechan-
isms. The shared core pathways include hyperglycemia, dyslipi-
demia, hemodynamic alterations, oxidative stress, the formation of
advanced glycation end products (AGEs) and chronic inflamma-
tion.5,17 Endothelial cells (ECs), key mediators of vascular lesions,
absorb excess glucose via insulin-independent pathways, such as
glucose transporter 1-3 (GLUT1-3), resulting in elevated intracel-
lular glucose levels.18 Cellular hyperglycemia disrupts mitochon-
drial oxidative phosphorylation, fatty acid metabolism, and key
signaling pathways crucial for metabolic stress adaptation, tissue
integrity, and immune responses in diabetic complications.19–21

Metabolic reprogramming, characterized by a shift from mito-
chondrial oxidative phosphorylation to glycolysis, increases the
production of toxic byproducts and reactive oxygen species
(ROS).22 Moreover, the interplay between ER stress and mitochon-
drial dysfunction at mitochondria-associated ER membranes
exacerbates intracellular calcium imbalance, alterations in mito-
chondrial dynamics, ROS overproduction, and apoptosis.23–25 In
hyperglycemia, innate immune system activation, particularly
through nucleotide-binding oligomerization domain-like receptor
protein 3 (NLRP3) inflammasomes,26 promotes the release of pro-
inflammatory factors, aggravating chronic inflammation, immune
senescence,27 vascular damage, and target organ injury.28–30

Endothelin-1 (ET-1) is a strong vasoconstrictor that promotes
inflammation, hypertrophy, and fibrosis in the heart, vessels, and
kidneys.31 It primarily signals through ETA receptors (ETARs) on
vascular smooth muscle, triggering inflammation and cell
growth.32 ET-1 can also induce vasodilation via ETB receptors
(ETBRs) by stimulating nitric oxide and prostacyclin release from
ECs. These mechanisms collectively drive inflammatory responses,
cellular damage, tissue fibrosis, and progressive organ dysfunction
in diabetic complications.

Diabetic kidney disease
Diabetic vasculopathy can be broadly classified into macroangio-
pathy and microangiopathy.5 As hyperglycemia progresses,
patients are prone to develop pathological changes such as
endothelial dysfunction and thickening of the vascular basement
membrane—key features of diabetic microangiopathy. Approxi-
mately 22–40% of diabetes patients develop DKD, making it the
leading cause of end-stage kidney disease, which requires dialysis
or transplantation and poses a significant public health chal-
lenge.33,34 DKD is driven by a cascade of hemodynamic
disturbances, dysregulated metabolism, and inflammatory and
fibrotic processes, along with epigenetic changes (Fig. 2). Early
features of DKD include intraglomerular and single-nephron
hyperfiltration,35 driven by systemic hyperglycemia and increased
angiotensin II release through tubuloglomerular feedback.10,36

Single-cell RNA sequencing of kidney biopsies from T2D DKD
patients revealed a 1240-gene signature associated with hyperfil-
tration, highlighting endothelial stress and interactions between
endothelial and mesangial cells.37 These hemodynamic changes
impose additional intraglomerular wall tension and shear stress on
podocytes, increasing the oxygen demand in tubular ECs to
support reabsorption.36 Intracellular calcium levels, regulated by
transient receptor potential channels, modulate Rho and Rac
proteins and activate pathways associated with mechanical
stretching, including the YAP/TAZ pathway, which collectively
drives the reorganization of the actin cytoskeleton in podocytes.38

Mammalian target of rapamycin complex 1 (mTORC1)-mediated
podocyte hypertrophy in response to growth factor and insulin
signaling increases vulnerability to further injury.39 These changes
lead to podocyte stress, mesangial expansion, glomerular base-
ment membrane thickening, glomerulosclerosis and tubulointer-
stitial fibrosis.40

Podocyte metabolism undergoes early shifts in DKD, with
oxidative stress promoting podocyte apoptosis.41 Podocyte-
specific deletion of Abca1 (Abca1fl/fl) is associated with
cardiolipin-driven mitochondrial dysfunction, predisposing mice
to DKD.42,43 Cholesterol-enriched lipid droplet formation in
podocytes, combined with dysregulated insulin signaling and
hyperglycemia, exacerbates podocyte death and detachment.44

Moreover, hyperglycemia-induced oxidative stress, AGEs, and
chronic inflammation drive glomerular cell senescence through
glycogen synthase kinase 3β (GSK3β)-modulated nuclear factor
erythroid 2-related factor 2 (Nrf2) signaling, impairing repair and
worsening inflammation and fibrosis.45 Common oral glucose-
lowering agents, including metformin,46 dapagliflozin,47 and
glucagon-like peptide-1 receptor agonists (GLP-1RAs),48 have
demonstrated efficacy in mitigating DKD-associated senescence.
Furthermore, DNA damage repair and epigenetic modifications in
the promoter regions of NEPH1 and RCAN1 have been shown to
restore an intact slit diaphragm in diabetic podocytes in human
samples.49 Loss of podocytes remains a critical factor in
glomerulosclerosis, a hallmark of DKD progression41 (Fig. 2).
Crosstalk between podocytes and endothelial cells leads to
endothelial dysfunction under hyperglycemic conditions.
Decreases in the ratios of angiopoietin-1 (ANGPT1) and ANGPT2,
abnormal podocyte expression of vascular endothelial growth
factor (VEGF), and podocyte/endothelial cell-derived ET-1 induce
abnormal angiogenesis by promoting the proliferation and
migration of ECs, together with tube formation.50 Furthermore,
abnormal VEGF levels impair angiogenesis and lymphangiogenesis,
contributing to renal vascular dysfunction,51 whereas lymphatic
dysfunction exacerbates interstitial edema and fibrosis.52

Recent research has shifted focus from a “glomerulocentric”
model to a “proximal tubulopathy” perspective. Genome-wide
association studies have linked elevated expression of the AKIRIN2
and DCLK1 genes to renal fibrosis.53 Tubular epithelial cells are
particularly susceptible to glucose-induced metabolic derange-
ments.54 Proximal tubular hypertrophy, a compensatory response
to chronic hyperglycemia, triggers metabolic reprogramming,
hypoxia, adenosine triphosphate (ATP) depletion, immune cell
recruitment, and cytokine release.55 This hypertrophic response

Fig. 1 Schematic representation of the mechanisms and co-management strategies of diabetic complications. The interplay between genetic
and environmental factors gives rise to the development of diabetes and its complications. The mechanisms involved include beta cell
dysfunction, insulin resistance, hyperglycemia, genetic predisposition, epigenetic modifications, changes in the gut flora, cell death, cellular
senescence, inflammation, immunity, cell stress, oxidative stress, hemodynamic alterations, and lipotoxicity. The complications of diabetes
affect multiple organ systems, including the renal, cardiovascular, cerebral, peripheral vascular, ophthalmic, hepatic, muscular, and nervous
systems, as well as the feet. The prevention of diabetic complications necessitates the active collaboration of individuals, families,
communities, and healthcare institutions, alongside the implementation of comprehensive co-management and co-treatment strategies to
effectively address these multifaceted issues. BBB blood–brain barrier, CAR-T Chimeric antigen receptor T, CGMS continuous glucose
monitoring system, ECs endothelial cells, ns-MRAs nonsteroidal mineralocorticoid receptor antagonists, GLP-1RAs glucagon-like peptide-1
receptor agonists, SGLT-2Is sodium‒glucose cotransporter 2 inhibitors
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involves activation of the adenosine 5′-monophosphate-activated
protein kinase (AMPK) pathway, further exacerbating hypoxia and
ATP depletion.56 As the disease progresses, defects in fatty acid
oxidation due to the repression of transcription factors, such as
sterol regulatory element-binding proteins and peroxisome
proliferator-activated receptor-γ, result in energy depletion and

the release of mitochondrial RNA/DNA, activating inflammatory
pathways involving interferon regulatory transcription factor and
transforming growth factor-beta (TGF-β).55,57 These injured or
profibrotic tubular cells recruit macrophages, lymphocytes, and
fibroblasts, promoting tissue fibrosis and leading to irreversible
kidney damage.10
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Increasing evidence highlights the important role of innate
immune activation, particularly the complement system, in DKD-
related inflammation.58,59 Interactions between innate immune
components such as Toll-like receptors (TLRs) and endogenous
danger-associated molecular patterns (DAMPs) or pathogen-
associated molecular patterns induce nuclear factor-κB (NF-κB)-
mediated inflammation59 while also promoting renal apoptosis
and fibrosis.60 This establishes a vicious cycle that exacerbates
kidney damage and contributes to proteinuria in individuals with
diabetes.61 Moreover, activation of the NLRP3 inflammasome by
metabolic stress and oxidative damage amplifies inflammation via
IL-1β and IL-18 secretion.62 This inflammatory environment
facilitates the recruitment of immune cells, including macro-
phages and T cells, which sustain kidney injury and fibrosis.58

Complement components such as C3, C4c, C5, and C7 are
upregulated in glomeruli,63–67 activating both the classical and
alternative complement pathways and generating anaphylatoxins
(C3a and C5a). C3a/C5a receptor antagonists mitigate
endothelial–to–mesenchymal transition (EndMT) in DKD by
inhibiting the WNT–β–catenin pathway, thus potentially alleviat-
ing glomerular fibrosis.68 Overactivation of complement pathways
promotes inflammation, immune cell recruitment, and kidney
injury69 while triggering downstream pathways involving ROS, NF-
κB, and protein kinase C (PKC).69,70 Many researchers and clinicians
believe that the objectives for the treatment of patients with
diabetes and chronic kidney disease (CKD) have changed and that
anti-inflammatory drugs will play an important role in the
management of DKD in the future. It has even been predicted
that by 2030, the focus of DKD treatment will be on reducing
inflammation.71

“Metabolic memory” refers to the phenomenon in which early
episodes of hyperglycemia leave lasting molecular imprints—such
as epigenetic modifications and persistent activation of signaling
pathways (e.g., PKC, NF-κB, and transforming growth factor (TGF)-
β)—that drive the progression of diabetic complications even
after glycemic control is achieved.72 In DKD, prior high-glucose
exposure “primes” kidney cells for persistent injury so that
inflammation and fibrosis continue despite later glycemic control.
The concept of metabolic memory in DKD underscores the critical
role of epigenetic alterations in shaping long-term renal out-
comes.73 Mechanistic studies have associated DNA methylation,
podocyte DNA double-strand breaks, and glomerular DNA
methylation with a decline in the estimated glomerular filtration
rate (eGFR).74 Recent findings suggest that the demethyltrans-
ferases fat mass and obesity-associated protein in macrophages
facilitate the transition from the proinflammatory M1 phenotype
to the anti-inflammatory M2 phenotype, modulating inflammation
and glycolysis through N6-methyladenosine modification of the

neuronal PAS domain protein 2.75 These insights position
epigenetic mechanisms as potential therapeutic targets for
mitigating hyperglycemia-induced kidney damage.
DKD involves complex pathological processes, including glo-

merular hyperfiltration, podocyte dysfunction, tubular injury, and
immune system activation. Emerging therapeutic approaches
targeting epigenetic modulation, immunoregulation, and both
glomerular and tubular pathways hold promise. Special attention
to the “metabolic memory” phenomenon may further guide the
development of novel interventions to reverse or prevent
hyperglycemia-induced renal damage.

Diabetes-related cardiovascular disease (CVD)
CVD remains the leading cause of mortality in individuals with T1D
and T2D, accounting for 44% and 52% of deaths, respectively.76

Diabetes-associated CVDs, including coronary artery disease and
diabetic cardiomyopathy, are commonly classified as macrovas-
cular and microvascular complications, respectively, on the basis
of the underlying pathological changes observed in DPD.
Coronary artery disease is characterized by segmental athero-

sclerotic lesions affecting multiple vascular branches, reflecting
widespread macrovascular involvement.77 In contrast, endothelial
dysfunction—an early and independent predictor of cardiovas-
cular events—contributes to both macrovascular and microvas-
cular pathology, playing a central role in the progression of
diabetic CVD78,79 (Fig. 3). Hyperglycemia exacerbates oxidative
stress and inflammation, reducing nitric oxide (NO) bioavailability
and impairing endothelial function.80,81 Recent findings suggest
that hyperglycemia-induced “metabolic memory” in ECs repre-
sents a novel feature of endothelial dysfunction. Chronic
hyperglycemia triggers NF-κB signaling, the upregulation of miR-
27a-3p, the downregulation of Nrf2, the TGF-β signaling, the
downregulation of miR-29, and the induction of EndMT. These
changes persist even under normoglycemic conditions, contribut-
ing to perivascular fibrosis and cardiac dysfunction.82 EndMT plays
a critical role in the development of diabetic atherosclerosis and is
driven by various atherogenic stimuli, including hyperglycemia,
AGEs, and oxidized low-density lipoprotein (ox-LDL). These factors
induce EndMT through the activation of proinflammatory path-
ways and increasing oxidative stress, leading to endothelial
dysfunction and plaque instability.83 Hyperglycemia upregulates
the expression of mesenchymal markers, such as α-SMA and
fibronectin, while downregulating the expression of endothelial
markers, such as CD31.84 The AGE–RAGE axis activates the NF-κB
pathway, leading to increased production of pro-inflammatory
cytokines and chemokines, which further exacerbates endothelial
dysfunction and facilitates the transition to a mesenchymal
phenotype.85 Hyperglycemia also disrupts the CAV1–CAVIN1–

Fig. 2 Mechanisms Underlying the Development of Diabetic Kidney Disease. Schematic overview of the drivers of glomerulopathy and
tubulopathy in DKD. Early TRPC5/6-mediated Ca²⁺ influx leads to the effacement of podocyte foot processes. Activation of the PI3K/Akt/
mTORC1 pathway promotes podocyte hypertrophy, with hypoxia further enhancing mTORC1 activity. Diabetes-induced oxidative stress drives
GSK3β hyperactivity, reducing nuclear Nrf2 accumulation and impairing the expression of antioxidants (HO-1 and NQO1), thereby promoting
podocyte senescence. Desensitized insulin signaling impairs GLUT4 translocation and glucose uptake, leading to reprogramming of glucose
metabolism and mitochondrial dysfunction, which are characterized by decreased OXPHOS, increased uncoupling, and elevated ROS
production. ABCA1 deficiency exacerbates cholesterol accumulation and mitochondrial damage in podocytes. Inflammation is amplified by
DAMP-induced activation of the NLRP3 inflammasome and NF-κB. Endothelial dysfunction—via LRG1/TGFβ signaling, ANGPT/VEGFA
imbalance, and NET deposition—further promotes abnormal angiogenesis, cytoskeletal disruption, and GBM thickening. Abbreviations:
ABCA1 ATP-binding cassette subfamily A member 1, ANGPT-1 angiopoietin-1, ANGPT-2 angiopoietin-2, Akt protein kinase B, ALK1 activin
receptor-like kinase 1, Ang II angiotensin II, ARE antioxidant responsive element, DKD diabetic kidney disease, ATP adenosine triphosphate,
AMPK AMP-activated protein kinase, DAMPs damage-associated molecular patterns, eNOS endothelial nitric oxide synthase, ET-1 endothelin,
ETR endothelin receptor, FC free cholesterol, GLUT4 insulin sensitive glucose transporter 4, GBM glomerular basement membrane, GSK3β
glycogen synthase kinase 3β, GSDMD gasdermin D, HO-1 heme oxygenase-1, IR insulin receptor, IRS-1 insulin receptor substrate-1, LRG1
leucine-rich alpha-2 glycoprotein 1, MyD88 myeloid differentiation factor 88, mTORC1 mechanistic target of rapamycin complex 1, NET
neutrophil extracellular traps, NLRP3 nucleotide-binding domain (NBD), LRR leucine-rich repeat, and PYD pyrin domain-containing protein 3,
NF-κB nuclear factor κB, NQO1 NAD(P)H quinone dehydrogenase-1, Nrf2 nuclear factor erythroid 2-related factor 2, OXPHOS oxidative
phosphorylation, P phosphorylation, PI3K phosphatidylinositol 3-kinase, PL phospholipid, ROS reactive oxygen species, Rho Ras homology,
TLRs toll-like receptors, TGFβ transforming growth factor beta, TRPC5/6 transient receptor potential channel 5/6
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LC3B axis, impairing autophagy and facilitating low-density
lipoprotein (LDL) transcytosis, thereby accelerating atherosclerotic
pathology.86 Ox-LDL can induce EndMT by activating the TGF-β
signaling pathway and increasing ROS generation in ECs. This
ultimately leads to the loss of endothelial cell integrity and the
acquisition of mesenchymal characteristics, both of which
contribute to plaque formation and instability.85 Multiomics
analysis of human atherosclerotic plaques also identified several
novel EndMT candidates, including USF1, PTGS2, TPM1, and FN1.87

Single-cell RNA sequencing (scRNA-seq) was used to identify
transcriptional heterogeneity in dysfunctional ECs, revealing that
EC-specific overexpression of SRY-related high mobility group box
4 promotes atherogenesis and EndMT.88 As key organelles in
energy metabolism, mitochondria are also the primary sources of

ROS that damage mitochondrial DNA.89 Hyperglycemia-induced
mitochondrial ROS increase SIRT1-mediated PINK1/Parkin-depen-
dent mitophagy,90 making mitochondrial dysfunction a potential
therapeutic target to mitigate diabetes-associated atherosclerosis.
Diabetic cardiomyopathy (DCM) is characterized by ventricular

dysfunction in the absence of coronary artery disease or
hypertension.91 AGEs, formed through the reactions of proteins
and lipids with high glucose levels, crosslink extracellular matrix
(ECM) proteins, inhibit ECM degradation by matrix metalloprotei-
nases (MMPs) and increase cardiac stiffness, resulting in diastolic
dysfunction.92,93 Altered cardiac mechanics further stimulate
profibrotic responses in fibroblasts and myofibroblasts through
mediators such as TGF-β, tumor necrosis factor (TNF), angiotensin
II, and interleukins.94 scRNA transcriptomics was employed to

Fig. 3 Pathology and molecular mechanisms associated with diabetes-related CVD. Endothelial cell dysfunction represents a key trigger of
diabetes-related CVD. Initially, glucose enters the cell via the GLUT1 transporter. Under insulin resistance, the binding of insulin to IRS1/2
receptors is reduced, leading to decreased activity in the PI3K/AKT and mTOR signaling pathways and a decrease in protein synthesis.
Concurrently, ox-LDL binds to LOX-1, activating the P38 MAPK and ERK1/2 signaling pathways, which enhance inflammatory responses. The
binding of AGEs to RAGE triggers NADPH oxidase, increasing ROS production and leading to oxidative stress. Additionally, CD36 binds to
circulating free fatty acids, and AT-1R binds to angiotensin II, further activating oxidative stress, mitochondrial dysfunction, and ER stress. In
the cytoplasm, NF-κB promotes the expression of inflammatory cytokines and matrix degradation. Activation of the NLRP3 inflammasome
facilitates the release of IL-1β and IL-18, intensifying the inflammatory response. Oxidative stress and mitochondrial dysfunction induce
apoptosis and ferroptosis. ER stress exacerbates autophagy insufficiency, leading to the accumulation of intracellular waste and ultimately
promoting apoptosis. These molecular mechanisms interact to cause the development and progression of complications such as diabetic
cardiovascular disease, diabetic cardiomyopathy, diabetic encephalopathy, and peripheral arterial disease. Abbreviations: AGE advanced
glycation end product, AMPK AMP-activated protein kinase, ATG1 Autophagy-related gene 1, AT-1R Angiotensin II type 1 receptor, BAX Bcl-2-
associated X protein, CD36 cluster of differentiation 36, CytC Cytochrome C, eNOS endothelial nitric oxide synthase, ER endoplasmic
reticulum, ERK1/2 extracellular signal-regulated kinase 1/2, ET-1 endothelin-1, GLUT Glucose Transporter, ICAM-1 Intercellular Cell Adhesion
Molecule-1, IGF1 insulin-like growth factor 1, IL-1 Interleukin-1, IL-1β interleukin-1β, IL-18 interleukin-18, IL-6 Interleukin-6, IL-8 Interleukin-8,
IRS1/2 insulin receptor substrate 1/2, MCP-1 Monocyte Chemoattractant Protein-1, MMPs Matrix Metalloproteinases, mTOR mechanistic target
of rapamycin, NADPH nicotinamide-adenine dinucleotide phosphate, NF-κB nuclear factor kappa-B, NLRP3 NLR family pyrin domain
containing 3, NO Nitric oxide, P38 MAPK p38 mitogen-activated protein kinase, PI3K phosphatidylinositol 3-kinase, PPARδ peroxisome
proliferator-activated receptor δ, RAGE receptor for advanced glycation end product, ROS reactive oxygen species, TNFα Tumor Necrosis
Factor α, VCAM-1 Vascular Cell Adhesion Molecule-1
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elucidate the cellular profiles of diabetic hearts, identifying nine
fibroblast subsets, among which cluster 4 fibroblasts were
significantly elevated in the diabetic myocardium.95 Moreover,
hyperglycemia leads to electron leakage from the mitochondrial
electron transport chain, forming superoxide ions and generating
excessive mitochondrial ROS (mtROS). This accumulation of
mtROS contributes to mitochondrial dysfunction, activates the
NLRP3 inflammasome, and induces pyroptosis, ultimately exacer-
bating DCM.95,96 DCM appears to progress through an initial
subclinical phase characterized by subtle structural and functional
abnormalities (e.g., impaired diastolic relaxation), followed by
severe diastolic heart failure with preserved ejection fraction
(HFpEF), and ultimately progresses to systolic dysfunction
presenting as heart failure with reduced ejection fraction.97–99

HFpEF constitutes approximately half of all heart failure cases,
particularly in T2D, and is defined by a left ventricular ejection
fraction ≥ 50% with predominant exercise intolerance.100,101 In T2D,
impaired cardiomyocyte Ca²⁺ handling contributes to HFpEF
pathogenesis.102 Concurrent ROS overproduction and AGE deposi-
tion drive concentric left ventricular remodeling and myocardial
stiffness,103 whereas metabolic derangements (hyperglycemia, ele-
vated free fatty acid (FFAs) and proinflammatory cytokines)
exacerbate insulin resistance and impair angiogenesis.104 These
subclinical perturbations collectively precipitate HFpEF.
Diabetes can also lead to “diabetic encephalopathy (DE),” a

condition encompassing ischemic stroke, transient ischemic
attacks, vascular dementia, and neurodegenerative changes. DE
primarily manifests as cognitive and behavioral impairments,
along with memory dysfunction.105 Hyperglycemia initiates a
positive feedback loop involving the tyrosine kinase ErbB4 and the
mammalian target of rapamycin (mTOR), contributing to tau
hyperphosphorylation under hyperglycemic conditions.106 The
PI3K/Akt/mTOR signaling pathway may also exacerbate DE by
suppressing autophagy in a T2D rat model.107 Hyperglycemia also
disrupts the structure and function of the blood–brain barrier
(BBB) by inducing oxidative stress and secondary inflammatory
responses, impairing brain function and the biosynthesis of
neurotransmitters.108,109 Mitochondrial dysfunction weakens
β-amyloid clearance and autophagy in hippocampal neuronal
cells, leading to learning and memory impairments.110 Endoplas-
mic reticulum (ER) stress promotes neuroinflammation, activates
the NF-κB pathway, and contributes to cognitive decline.111

Furthermore, diabetes disrupts brain iron homeostasis, leading to
neurotoxicity through inflammation, increased BBB permeability,
altered iron ion redistribution, and impaired iron metabolism.112

Iron-chelating agents, such as desferrioxamine, represent potential
therapeutic approaches for DE.113

Peripheral artery disease (PAD), characterized by restricted
blood flow due to arterial stenosis or obstruction of arteries,
results in tissue ischemia. Intermittent claudication, which
presents as lower limb lameness after walking a certain distance
and is relieved by a short rest, is a hallmark symptom of PAD.114

The disease pattern differs between diabetic and nondiabetic
individuals. In diabetes-associated PAD, stenotic lesions predomi-
nantly affect distal arteries, such as the popliteal artery and the
anterior tibial, posterior tibial and peroneal arteries, in contrast to
the more proximal lesions seen in nondiabetic individuals.115,116

This distal involvement limits the development of collateral
vessels and reduces revascularization options.115 Hyperglycemia
induces vascular calcification via AGE accumulation, leading to
hydroxyapatite deposits in both the intimal and medial layers,
characteristic of atherosclerotic plaques and medial arterial
calcification.117

The pathophysiological mechanisms underlying diabetes-
related CVD involve endothelial dysfunction, oxidative stress,
inflammatory cascade reactions, mitochondrial dysfunction, and
ER stress, which form complex molecular networks. Future
therapeutic strategies should focus on precision medicine guided

by multiomics approaches and novel mitochondrial-targeted
interventions, offering promising avenues to transform the
management of diabetes-related CVD.

Diabetic retinopathy (DR)
DR, affecting 34.6% of individuals with diabetes, is a leading cause
of blindness.118,119 The pathogenesis of DR is complex, with
emerging evidence highlighting the role of premature senescence
in retinal cells and the secretion of inflammatory cytokines that
exacerbate disease progression through paracrine senescence and
pathological angiogenesis.120,121 Elevated blood glucose levels
target ECs, leading to vascular injury. The loss of cell‒cell junctions
between adjacent ECs and EC apoptosis are key drivers of acellular
capillary formation and internal blood‒retinal barrier disruption.22
Hyperglycemia induces metabolic reprogramming in ECs, which is
characterized by the accumulation of AGEs and the activation of
the hexosamine, polyol, and PKC pathways. These changes
promote oxidative stress, chronic inflammation, and premature
EC senescence.122 Ferroptosis, an iron-dependent cell death
mechanism characterized by lipid peroxide accumulation, has
emerged as a novel therapeutic target in DR.123 TRIM46-induced
ferroptosis in human retinal capillary endothelial cells involves
glutathione peroxidase 4 (GPX4) ubiquitination and degradation,
which are related to iron metabolism and DR pathology.124

Furthermore, multiple modes of cell death, including apoptosis,
necroptosis, pyroptosis,125 and parthanatos,126 contribute to
retinal ECs loss in DR.127,128

Advances in multiomics and artificial intelligence (AI) have
facilitated noninvasive, high-resolution assessments of DR at the
cellular level.129 Multiomics analyses have revealed metabolic
shifts in retinal microglia,130 including a bias for glycolysis and
reduced tricarboxylic acid cycle activity in diabetic models.131 A
novel microglial subpopulation, termed immune microglia, shows
immunoregulatory features with upregulation of the mitogen-
activated protein kinase (MAPK), JAK/STAT, and IL-17 signaling
pathways.132 The shared molecular features between renal
mesangial cells and retinal pericytes, which are regulated by
chemokines, further highlight common mechanisms in diabetes-
related organ damage, as revealed through scRNA sequencing.133

Microglia‒endothelial interactions under hyperglycemic condi-
tions are pivotal in DR progression. Hyperglycemia-induced EC
secretion of colony-stimulating factor 1 activates microglia via
CSF1R-mediated MAPK signaling, driving inflammation and
angiogenesis. Necroptotic microglia expressing receptor-
interacting protein 3 and mixed lineage kinase domain-like
exacerbate retinal neovascularization by releasing fibroblast growth
factor 2, which stimulates ECs.132,134 Moreover, neutrophil extra-
cellular traps containing neutrophil elastase and DNA‒histone
complexes induce oxidative stress, cellular senescence, apoptosis,
and BRB disruption, further contributing to vascular dysfunction.135

High-throughput molecular profiling has established a gene
expression atlas for retinal cells under hyperglycemic conditions,
identifying novel cell subtypes involved in DR pathogenesis.136

scRNA-seq has identified insulin-like growth factor 1 (IGF-1) and
secreted phosphoprotein 1 (Spp1)-expressing microglia as key
sources of the proinflammatory cytokines IL-1β and TNF.131,137

Consistent with these findings, elevated vitreous Igf1 and Spp1
levels have been observed in DR patients compared with non-DR
individuals.138 Pathological neovascularization, driven by VEGF
and hypoxia-induced EC activation, is a hallmark of advanced DR.
The discovery of G protein subunit alpha i2 (Gαi2) as a
downstream mediator of VEGF signaling highlights its role in
retinal angiogenesis via nuclear factor of activated T cells
activation. These fragile neovessels are prone to rupture, leading
to vision-threatening complications such as vitreous hemorrhage
and tractional retinal detachment.139

Targeting microglial activation, ferroptosis, and EC–microglia
crosstalk presents promising therapeutic opportunities.
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Integrating advanced molecular profiling and multiomics analyses
offers a comprehensive understanding of DR pathogenesis, paving
the way for innovative interventions to mitigate disease
progression.

Diabetic hepatopathy (DH)
The liver plays a pivotal role in glucose metabolism and insulin
signaling, and its dysfunction exacerbates diabetes-related com-
plications. Several key comorbidities, such as nonalcoholic fatty
liver disease, are associated bidirectionally with T2D,140 which
shares similar risk factors and pathophysiological mechanisms
with DH. A hallmark of DH is hepatocellular lipid accumulation, or
steatosis, resulting from insulin resistance. In this state, excess
glucose is diverted into fatty acid synthesis via de novo
lipogenesis, driven by the transcription factor sterol regulatory
element binding protein-1c, which is upregulated under hyper-
glycemic conditions. Moreover, peroxisome proliferator-activated
receptor-α, a nuclear receptor essential for fatty acid oxidation, is
often downregulated, impairing lipid breakdown. These metabolic
changes promote triglyceride storage within the liver, leading to
lipid overload. Excessive lipid retention disrupts very low-density
lipoprotein (VLDL) secretion, exacerbating hepatic steatosis and
serving as a precursor to DH.141 Furthermore, emerging evidence
suggests that the gut microbiota may influence the development
of DH through the modulation of metabolism and inflammation.
Dysbiosis increases intestinal permeability, enabling bacterial
products to enter the bloodstream and trigger systemic inflam-
mation, further compromising liver function.142 In summary, DH is
characterized by insulin resistance, FFA accumulation, dysregu-
lated lipid metabolism, and alterations in the gut microbiota.
Understanding these mechanisms provides valuable insights into
potential therapeutic strategies for managing liver complications
associated with diabetes.

Diabetic myopathy
Diabetic myopathy,143 a common complication of both T1D and
T2D, involves the loss of muscle mass and function.144 Muscle
tissues include cardiac, smooth, and skeletal muscle, and this
discussion focuses on skeletal muscles. Metabolic disturbances
caused by hyperglycemia adversely affect muscle function.
Hyperglycemia activates the polyol pathway, increasing sorbitol
and fructose production, which induces osmotic and oxidative
stress in muscle cells. These stressors contribute to muscle cell
damage and dysfunction.145 Diabetic myopathy is characterized
by a metabolic shift from oxidative phosphorylation to glycolytic
metabolism due to mitochondrial dysfunction. This shift reduces
energy production and increases reliance on anaerobic path-
ways, leading to muscle fatigue and reduced force produc-
tion.146,147 Furthermore, senescent muscle cells modify the ECM,
creating an unfavorable environment for muscle regeneration.
Changes in ECM composition and stiffness hinder satellite cell
migration and differentiation into mature muscle fibers.148 The
senescence-associated secretory phenotype, characterized by
the release of proinflammatory mediators, exacerbates chronic
inflammation in muscle tissue, further impairing muscle repair
and regeneration.

Diabetic peripheral neuropathy (DPN)
Despite advances in clinical care, DPN remains a prevalent
complication of diabetes, with a lifetime incidence exceeding
50%.149,150 DPN alone accounts for over $10 billion in annual
health-care costs and represents more than one-fourth of the total
direct medical expenditures associated with diabetes.151 Among
diabetic neuropathies, chronic diabetic sensorimotor peripheral
neuropathy (DSPN) is the most common, accounting for
approximately 75% of cases.152 Early symptoms typically involve
burning, lancinating, tingling, shooting pain, and dysesthesias
indicative of small myelinated nerve fiber involvement.153

However, large-fiber involvement is associated with numbness
and the loss of protective sensation.153,154

The pathogenesis of DPN is driven primarily by metabolic
disturbances characteristic of diabetes, including hyperglycemia and
insulin resistance. Dysregulated lipid metabolism further complicates
this condition. The accumulation of circulating lipids, particularly long-
chain saturated fatty acids, impairs mitochondrial trafficking and
increases lipotoxic acylcarnitines in Schwann cells (SCs), which may
then be transferred to axons. Peripheral nerves develop insulin
resistance, rendering insulin receptors on SCs and axons unrespon-
sive. This insulin resistance disrupts SC and axon metabolism,
diverting glycolytic intermediates into the polyol and hexosamine
pathways.155 Hyperglycemia and dyslipidemia depolarize mitochon-
drial membranes, reducing ATP production and exacerbating an
energy crisis while generating ROS.156 This combination of metabolic
disturbances creates a vicious cycle of “bioenergetic failure,” resulting
in distal-to-proximal nerve damage and producing the characteristic
stocking‒glove pattern of DPN symptoms.157

Emerging research has focused on understanding DPN patho-
genesis, including metabolism regulated through extracellular
vesicles158 and the gut microbiome.159 Transplantation of the gut
microbiota from DSPN patients (but not diabetes patients without
neuropathy) into db/db mice treated with antibiotics resulted in
exacerbated gut–barrier dysfunction, increased antigen load,
systemic inflammation and aggravated peripheral neuropathy.160

Further genome-centric and guild-based approaches revealed a
core microbiome cluster characterized by high butyrate produc-
tion and reduced endotoxin synthesis, which was associated with
the alleviation of DSPN.160 The underlying mechanism appears to
involve immune infiltration161; for example, IgD-CD38-AC B cells
mediate approximately 7.5% of the risk reduction for DPN via the
thiazole biosynthesis I pathway in E. coli.162

Diabetic foot ulcers (DFUs)
The global prevalence of DFUs is ~6.4% among patients with
diabetes.163 Approximately 50–60% of patients with DFUs develop
diabetic foot infections, and 15% ultimately undergo amputation.164

The pathogenesis of DFUs involves a complex interplay of vascular
insufficiency, neuropathy, and microbial infections. PAD is a critical
contributor to DFUs, impairing blood flow to the feet, which hinders
wound healing and affects nearly half of all diabetic patients. Diabetic
metabolic dysfunction, increased ROS, and chronic inflammation
damage the vascular endothelium, promoting atherosclerosis
through EC injury, vascular smooth muscle cell dysfunction, and
platelet hyperactivity.165 Hyperglycemia, AGEs, acylcarnitine, and ox-
LDL further exacerbate this condition by disrupting the integrity of
nerve cells, leading to motor and sensory neuropathy. Sensory
neuropathy reduces pain sensitivity, increasing the risk of unnoticed
skin injuries and subsequent ulcers. Motor neuropathy presents as
muscle atrophy, paralysis, and loss of reflexes, which result in
structural changes such as Charcot foot and hammer toes. These
structural abnormalities, combined with muscle weakness and
imbalances, increase the risk of ulcer formation.166 Autonomic
neuropathy contributes to vasomotor dysfunction, abnormal blood
shunting in the skin vasculature, sweat gland dysfunction, and
increased skin perfusion. These changes dry and weaken the skin,
increasing the risk of ulceration. Diabetic foot infections are often
polymicrobial, with common pathogens including Staphylococcus
aureus, Escherichia coli, and Pseudomonas species.167 These patho-
gens exacerbate tissue destruction and inflammation, leading to
chronic nonhealing wounds.168 Biofilm formation by these micro-
organisms protects against host immune responses and antimicro-
bial treatments, complicating infection eradication.169

Molecular mediators that drive organ crosstalk
Interorgan crosstalk among the kidney, heart, brain, adipose tissue,
liver, skeletal muscle, pancreas, and intestine plays a pivotal role in
the development of insulin resistance and β-cell dysfunction, which
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are central to the progression of diabetic complications. These
organs communicate through various signaling pathways
and factors, including adipokines, myokines, cytokines, hormones,
and exosomes, mutually influencing each other’s functions and
contributing to systemic metabolic dysfunction (Fig. 4).

Adipose and muscle crosstalk. Adipose tissue plays a key role in
interorgan crosstalk by releasing numerous signals that commu-
nicate the body’s energy status to other tissues (Fig. 4a). Leptin—
an adipose-derived hormone170—signals nutritional status, sup-
pressing appetite and increasing energy expenditure via
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hypothalamic pro-opiomelanocortin neurons.171 In insulin resis-
tance, elevated leptin levels reflect central leptin resistance,
disrupting energy homeostasis and promoting hyperglycemia.172

Rodent173 and human studies174 reveal that leptin also modulates
glucose and lipid metabolism through a brain–vagus–liver axis
and hypothalamic–pituitary–adrenal signaling, contributing to
adverse communication among adipose tissue, the hypothalamus,
the liver and the pancreas, exacerbating T2D. Other critical
mediators, including fatty acid-binding protein 4 (FABP4) and
endotrophin, which are strongly associated with increased CVD
risk in T2D patients, demonstrate significant crosstalk between
adipose tissue, the liver, and the heart.175,176 Similarly, endotro-
phin is another adipokine that induces inflammation and fibrosis
in adipose tissue. An animal model showed that blockade of
endotrophin through neutralizing antibodies protects from renal
fibrosis.177 Endotrophin might serve as a predictor of cardiovas-
cular and renal morbidity, heart failure and overall mortality in
individuals with T2D.178 Adipose tissue also releases mediators
that counter diabetic complications through positive inter-organ
crosstalk. Adipose tissue-derived adiponectin,179 a type of lipokine
that includes palmitoleic acid (C16:1n7),180 contributes to inter-
organ communication with tissues such as the liver and muscle,
with a potential role in ameliorating insulin resistance and type 2
diabetes in humans.
Myokines such as CXCL10, CX3CL1 (fractalkine), and follistatin

influence the interaction between skeletal muscle and pancreatic
β-cells.181 Evidence suggests that CXCL10 may have harmful
effects by impairing insulin secretion and promoting β-cell
apoptosis.181 In contrast, CX3CL1 appears to exert beneficial
actions; chronic administration of a fractalkine analog in various
rodent models of obesity has been shown to improve glucose
tolerance and reduce β-cell apoptosis,182 underscoring its positive
role in maintaining glucose homeostasis. However, myokines such
as irisin, which increase energy metabolism by inducing browning
of white adipose tissue, thereby promoting fatty acid oxidation
and reducing hepatic gluconeogenesis,183 could inhibit the
progression of diabetic complications by promoting beneficial
interorgan crosstalk. Diabetic mouse models have shown that
irisin alleviates glomerular injury and albuminuria.184 Moreover,
exercise-induced exercise, such as 3-hydroxyisobutyrate, facilitates
fatty acid accumulation and impairs insulin signaling in the
pancreas and liver by reducing AKT phosphorylation-mediated
pathways.185,186 β-Aminoisobutyric acid (BAIBA), a muscle-derived
metabolite, supports energy metabolism by stimulating fatty acid
oxidation and suppressing hepatic gluconeogenesis, acting as a
protective factor against insulin resistance.187

Adipose and muscle-derived cytokines play pivotal roles in
interorgan metabolic regulation. IL-15 enhances insulin sensitivity,
promotes lipid oxidation, and activates the PPAR-δ pathway in
muscle, liver, and fat, improving glucose homeostasis and
reducing inflammation.188 Conversely, asprosin, interleukin-6
(IL-6), TNF-α, and IL-12p70, which are predominantly secreted by
visceral adipose tissue,189 impair insulin signaling in muscle and
liver and drive non-alcoholic fatty liver disease190 via pro-
inflammatory mechanisms. This cytokine imbalance fosters

deleterious adipose–muscle–liver–gut crosstalk, accelerating T2D
progression.
The crosstalk among adipose tissue, skeletal muscle and other

organs in diabetes is complex and bidirectional. Protective
adipokines, altered lipokines, myokines, and metabolites from
skeletal muscle-mediated communication can regulate metabolic
homeostasis and mitigate the systemic effects of diabetes.

Liver as a metabolic signaling hub. The liver serves as a central
endocrine and metabolic hub, coordinating interorgan commu-
nication to maintain energy homeostasis. It integrates signals from
the gastrointestinal tract and adipose tissue, playing a vital role in
regulating glucose and lipid metabolism in T2D. A key aspect of
this crosstalk is the liver’s secretion of hepatokines, such as
fibroblast growth factor 21 (FGF21) and growth differentiation
factor 15 (GDF15), which increase insulin sensitivity,191 promote
mitochondrial integrity in cardiomyocytes via the AMPK/FOXO3/
SIRT3 signaling axis,192 and suppress renal fibrosis.193,194 Fetuin-A
inhibits glucose-stimulated insulin secretion and, in conjunction
with non-esterified fatty acids (NEFAs), activates Toll-like receptor
4-mediated proinflammatory pathways in adipocytes and macro-
phages.195 GDF15 regulates weight and glucose metabolism by
suppressing caloric intake and reducing adaptive thermogenesis
through its receptor GFRAL in the neurons of the area postrema
and nucleus of the solitary tract.196 GDF15 further promotes fatty
acid oxidation and lipid metabolism in skeletal muscle and
adipose tissue, facilitating beneficial weight loss and glycemic
improvements.196 Another critical hepatokine is IGF-1, which
serves as a neurotrophic factor, assisting in nerve regeneration in
sensory and motor neurons.197 However, IGF-1 plays dual roles in
the kidney, supporting cell survival, whereas excessive signaling
may promote fibrosis and podocyte injury.198,199

NEFA and lipid intermediates such as palmitate (C16:0),
ceramides, and diacylglycerols released from the liver significantly
impact the kidney and heart, particularly in conditions such as
DKD200 and CVD.201 These lipid intermediates especially accumu-
late in renal proximal tubular cells, where increased lipid uptake
exacerbates tubulointerstitial fibrosis and glomerulosclerosis,
leading to progressive renal dysfunction.202 In the heart, excessive
lipid deposition and the activity of lipid intermediates drive
myocardial lipotoxicity, atherosclerosis, and diabetic cardiomyo-
pathy.203 The liver–kidney–heart axis highlights the systemic
impact of lipid-mediated signaling, which is associated with
metabolic dysregulation, inflammation and insulin resistance,
ultimately exacerbating both renal and cardiac pathologies.
Overall, the liver serves as a central endocrine and metabolic

organ, coordinating extensive crosstalk between multiple systems.
Through the secretion of hepatokines, bile acids, and metabolic
signals, the liver links the gut, adipose tissue, muscle, and brain to
maintain energy homeostasis. Disruptions in this communication,
as observed in obesity and T2D, underscore the pivotal role of the
liver in the pathophysiology of metabolic diseases. Targeting liver-
mediated interorgan signaling represents a promising therapeutic
strategy for mitigating metabolic dysfunction and improving
systemic health.

Fig. 4 The role of mediators originating from skeletal muscle, adipose tissue, liver, intestine, heart, kidney and brain in inter-organ crosstalk.
Factors that have protective or detrimental effects on each organ are shown in green and blue frames, respectively. The deleterious outcomes
for each organ are listed under each organ, highlighted with orange frames. a Physical exercise triggers the release of skeletal muscle-derived
myokines, while lipokines secreted from adipose tissue play important roles in the liver, heart, and kidney. IL-15 secreted from skeletal muscle
and leptin from adipose tissue have beneficial effects on the intestine and brain, respectively. b Mediators secreted by the liver affect multiple
tissues. Intestinal incretins (GLP-1, GIP) and short-chain fatty acids (SCFAs) from the microbiome exert beneficial effects on other organs,
whereas trimethylamine-N-oxide (TMAO) plays a harmful role in diabetic retinopathy. Abbreviations: BAIBA β-aminoisobutyric acid, CXCL10 C-
X-C motif ligand 10, CX3CL1 CX3C chemokine ligand 1, FABP4 fatty acid-binding protein 4, FGF21 fibroblast growth factor 21, IGF insulin-like
growth factor, GDF15 growth differentiation factor 15, GIP gastric inhibitory polypeptide, GLP-1 glucagon-like peptide-1, HIB
hydroxyisobutyrate, IL-15 Interleukin-15, IL-6 Interleukin-6, NEFA nonesterified fatty acid, PYY peptide YY, SCFAs short-chain fatty acids,
TMAO trimethylamine-N-oxide, TNF tumor necrosis factor
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Gastrointestinal‒endocrine crosstalk. The gastrointestinal tract
serves as a major neuroendocrine hub, communicating with
distant organs via intricate hormonal and neural signaling
networks204 (Fig. 4b). A key mechanism of gastrointestinal
communication is mediated by incretins, such as GLP-1 and GIP,
which stimulate glucose-dependent insulin secretion after meals,
facilitating entero-insular crosstalk.205 GLP-1 receptor expression
in tissues such as the heart, kidneys, and immune cells highlights
its systemic benefits, including cardiorenal protection and anti-
inflammatory effects.205–207 Beyond this, GLP-1 exerts pleiotropic
effects on multiple organs, including those involved in appetite
control, whereas GIP directly influences metabolic processes in the
endocrine pancreas and adipose tissue.206

The gut microbiota further influences neuroendocrine crosstalk
due to reduced diversity in the gut microbiota, characterized by
reduced abundance of Faecalibacterium prausnitzii, Roseburia,
Dialister, Flavonifractor, Alistipes, Haemophilus, and Akkermansia
muciniphila, along with an increase in Lactobacillus, Streptococcus,
Escherichia, Veillonella, and Collinsella.208 Dysbiosis is implicated in
diabetic complications, including CKD, CVD and retinopathy in
diabetes.209 Dysbiosis, alterations in the composition of the gut
microbiota characterized by perturbed eubiosis of the Bacter-
oidetes and Firmicutes phyla, impair intestinal barrier function,
finally allowing lipopolysaccharides and other microbial products
to enter the bloodstream, triggering systemic inflammation.210

Byproducts of the microbiota, such as trimethylamine N-oxide
(TMAO) derived from dietary choline metabolism, have also been
linked with DR, greater numbers of CVD events, and worse renal
outcomes.211–213 However, short-chain fatty acids (SCFAs), includ-
ing butyrate and propionate, derived from dietary fiber fermenta-
tion207,214 increase insulin sensitivity and energy metabolism by
stimulating peptide YY and GLP-1 release and influencing hepatic
function.215 Hormonal signaling from the GI tract also modulates
adipose tissue and brain function. Ghrelin, produced by the
stomach, stimulates appetite and regulates energy balance,
whereas hormones such as peptide YY and oxyntomodulin
suppress appetite and influence feeding behavior via neuroendo-
crine crosstalk with the brain, particularly through the hypotha-
lamus.216 SCFAs, particularly acetate, activate the parasympathetic
nervous system, which modulates ghrelin and insulin secretion,217

forming a complex feedback loop involving the gut, brain, liver
and adipose tissue. Under pathological conditions, dysregulated
SCFA production impairs protein synthesis, contributing to
sarcopenia and chronic inflammation and exacerbating muscle
loss and metabolic dysfunction.218

The gastrointestinal tract engages in extensive interorgan
crosstalk, and therapeutic strategies targeting these pathways,
including incretin-based therapies, DPP4 inhibitors, and micro-
biota modulation, such as fecal microbiome transplantation
(FMT),219 offer promising approaches for improving insulin
sensitivity and appetite regulation and mitigating diabetic
complications. Understanding these complex interactions will
advance the development of integrated treatments for T2D and its
associated disorders.

Kidney‒heart axis in crosstalk. The kidney contributes to inter-
organ crosstalk through the secretion of hormones and proteins
such as erythropoietin, renin,220,221 and Klotho,222,223 which have
significant effects on the heart, muscle and adipose tissue. Klotho
is predominantly expressed in the kidneys and is involved in
promoting antioxidant defense functions by increasing the
expression of superoxide dismutase, thus reducing the levels of
ROS and preventing oxidative damage in the kidneys and
heart.224–226 Additionally, Klotho enhances insulin sensitivity in
peripheral tissues, including muscle and adipose tissue, and has
neuroprotective functions through the modulation of neuronal
signaling pathways.222,223 The protective effects of Klotho extend
to the liver, where it contributes to the regulation of glucose and

lipid metabolism and protects against liver fibrosis and
steatosis.227

Cardiac crosstalk with the liver represents a vital axis of
interorgan communication, primarily mediated through cardio-
myokines such as natriuretic peptides, and secretory phospholi-
pase A2 (sPLA2) regulates energy balance, lipid metabolism,
inflammation and glucose homeostasis in diabetes.228 In addition
to regulating sodium and volume homeostasis, atrial natriuretic
peptide functions as an endocrine factor in the heart–liver axis by
activating cGMP-protein kinase G-AKT-GSK3 signaling, leading to
the regulation of liver glycogen metabolism.216 SPLA2, another
cardiomyokine, can increase hepatic triglyceride levels and affect
VLDL secretion, contributing to nonalcoholic fatty liver disease
(NAFLD) and nonalcoholic steatohepatitis (NASH).229 C-Atrial
natriuretic peptide (ANP)4-23, an agonist of natriuretic peptide
receptor-C (NPR-C), reduces renal fibrosis by attenuating miner-
alocorticoid receptor (MR) activation and oxidative stress while
modulating the Akt and Erk1/2 signaling pathways.230 Other
heart-derived mediators, such as MED13, play a role in patholo-
gical adipocyte hypertrophy, with reduced MED13 expression
observed in individuals with obesity and diabetes. Cardiac-specific
deletion of MED13 increases susceptibility to obesity, whereas its
overexpression promotes a lean phenotype.228 This complex
cardiohepatic and heart‑to‑adipose crosstalk underscores the
critical role of cardiomyokines in modulating metabolic hemos-
tasis and systemic health.
DPD triggered by shared metabolic dysregulation and amplified

through intersecting pathophysiological pathways constitutes a
systemic vascular catastrophe traversing the entire circulatory
continuum. It ultimately converges to produce severe multiorgan
complications affecting the cardiac, cerebrovascular, renal, retinal,
and peripheral vascular systems.231 Emerging biomarkers further
highlight the complexity of interorgan crosstalk in diabetes.
FGF21, which is primarily secreted by the liver in response to
oxidative and endoplasmic reticulum stress, not only predicts DKD
progression232 but also holds promise as a novel marker for
NAFLD.233 Conversely, bone-derived FGF23 reflects
mineral–metabolism disturbances and independently predicts
incident DKD, adverse cardiovascular events and limb outcomes
in diabetic individuals with peripheral arterial disease.234,235 Future
research should aim to develop integrative, multiomic panels that
combine hormonal, lipidomic, and genetic markers to generate
dynamic “crosstalk signatures” that are predictive of organ-specific
and systemic complications.

PREVENTION OF DIABETIC COMPLICATIONS
Maintaining a healthy lifestyle
The implementation of lifestyle changes to prevent complications
of diabetes can yield substantial cost–benefit effects. Individuals
who are overweight or obese are at increased risk of developing
diabetes and should thus focus on behavioral changes that
contribute to a healthy lifestyle.236 Lifestyle factors, including
nutritional therapy, especially the Mediterranean diet,237 physical
activity,238–240 smoking cessation,241 and quality sleep, are
essential for preventing diabetes and its complications. Sleep
and circadian rhythm disturbances are strongly linked to the
development and poor outcomes of diabetes.242 Irregular sleep
patterns, such as short or long durations, poor quality, or a late
chronotype, are associated with increased insulin resistance and
poor health outcomes.243 A U-shaped relationship exists between
sleep duration and T2D risk, with 7–8 h of sleep per night
corresponding to the lowest risk.244 Sleep duration variability is
further associated with increased risks of CVD,245 DR and
DKD.246,247 Sleep disorders are particularly prevalent among
individuals with T2D,248 with those experiencing sleep distur-
bances for 15 or more days a month being at greater risk of
complications.249 Interventions such as light therapy, sleep
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improvement strategies, and melatonin supplementation can help
regulate circadian rhythms, potentially benefiting diabetes man-
agement and reducing complications, including DR.250–253 There-
fore, effective diabetic complication management requires a
holistic approach that integrates healthy lifestyle practices with
advanced technologies, such as wearable health devices, which
offer promising avenues for transforming diabetes care and
improving patient outcomes.

Controlling glycemia, blood pressure, and lipids
Achieving normoglycemia is essential for managing diabetes and
preventing complications.254 While strict glycemic control effec-
tively reduces microvascular complications,255,256 its impact on
CVD risk is unclear and may increase adverse events in some
populations.257,258 Dyslipidemia, commonly observed in T2D, is
characterized by elevated triglycerides and low HDL cholesterol.
Lipid-lowering therapies such as statins and PCSK9 inhibitors,
particularly angiopoietin-like 3 antibodies and antisense oligonu-
cleotide therapy, significantly reduce cardiovascular risk76,259,260

and provide additional benefits beyond cholesterol reduction,
including anti-inflammatory and endothelial protective effects.261

Statins also have renoprotective effects by reducing albuminuria
and preserving the glomerular filtration rate.262 Hemodynamic
factors, such as the RAAS, significantly contribute to diabetic
complications. As first-line therapies, RAAS inhibitors (RAASis) offer
renal function preservation and cardiovascular protection with
minimal side effects.263–265 Suggested screening strategies for
various types of diabetic complications are detailed in Table 1.

Digital diabetes prevention program
Digital diabetes prevention programs, such as the National Health
Service (NHS) Digital Stream and Omada Health’s model, have
demonstrated efficacy in preventing T2D, particularly among
high-risk individuals. The NHS Diabetes Prevention Program (DDP)
uses digital tools, including apps, wearable devices, and virtual
health coaches, to facilitate lifestyle modifications that delay or
prevent diabetes onset and its complications.266 Ryan Batten et al.
found that DDP is effective at preventing type 2 diabetes through
a significant reduction in body weight and increase of physical
activity.267 These programs allow for remote personalized care,
addressing barriers such as travel limitations and time constraints
while maintaining effective diabetes prevention outcomes.

TREATMENT STRATEGIES FOR DIABETIC COMPLICATIONS
Multisystem effects of novel drugs in diabetic complications
Cardiovascular–kidney–metabolic syndrome (CKM), a multisystem
disorder that is particularly prevalent in individuals with
diabetes,268 highlights the interconnected risk factors and the
need for integrated management strategies. Recent advances in
pharmacotherapy highlight the potential of novel agents to
concurrently target multiple diabetic complications, reshaping
therapeutic paradigms. This section synthesizes evidence on the
systemic effects of metformin, sodium‒glucose cotransporter 2
inhibitors (SGLT-2Is), GLP-1RAs, nonsteroidal mineralocorticoid
receptor antagonists (ns-MRAs), and dual incretin agonists across
organ systems.
Metformin, a first-line antidiabetic drug, exhibits modest

cardioprotective effects and reduces mortality in T2D,72 although
its impact on the incidence of major adverse cardiovascular events
(MACE) remains neutral.269,270 Its utility is limited in patients with
advanced CKD owing to safety concerns.271 Emerging preclinical
evidence suggests the potential of metformin in ameliorating
NAFLD. In db/db mice, metformin has been shown to reduce iron
accumulation and lipid-related ROS production in the liver,
thereby mitigating liver injury.136 Mechanistically, metformin
modulates the expression of genes272 associated with hepatic
inflammation and fibrosis,273 consequently improving hepatic

stiffness and slowing NAFLD progression,274 although clinical
translation requires further validation.
SGLT-2 is expressed in multiple organs beyond the kidneys and

heart, including the brain, liver, and retina.275,276 SGLT-2Is reduce
MACE (primarily by reducing cardiovascular death),277 hospitaliza-
tions due to heart failure,278 and CKD progression278 (including
significant reductions in albuminuria and delayed eGFR decline) in
various populations, irrespective of baseline glycemic status.
Animal studies suggest that SGLT-2Is provide neuroprotective
effects by mitigating neuroinflammation, increasing cerebral
glucose metabolism, and limiting amyloid protein aggrega-
tion.279–281 A systematic review of RCTs suggested that SGLT-2Is
are associated with a lower occurrence of neuropathy events
(SGLT-2I: 3.81% vs control: 4.18%).282 Clinical observational studies
have also shown that SGLT-2Is lower the risk of cognitive decline
(montreal cognitive assessment scores improved by 2.5),283

dementia, and Parkinson’s disease (approximately 20% reduc-
tion).284 Furthermore, electronic medical records studies have
shown that SGLT-2 slows DR progression285 and decreases
reliance on anti-VEGF therapies,286 probably by enhancing retinal
fuel metabolism, reducing oxidative stress, and improving retinal
neurovascular coupling.276,287 Moreover, SGLT-2Is have shown
potential for treating NASH and NAFLD through the inhibition of
hepatocellular glucose uptake and subsequent modulation of
pathways associated with oxidative stress, inflammation, autop-
hagy, and apoptosis.288 Observational studies have linked SGLT-2Is
to NAFLD regression and reduced liver-related outcomes in
patients with comorbid T2D and NAFLD.289 An RCT of empagli-
flozin also confirmed these findings, showing significant
reductions in hepatic fat content by 2.49% after 52 weeks.290

Large-scale phase III trials (e.g., NCT06519448 and NCT06218342)
are now underway to verify these benefits and refine the role of
SGLT-2Is in NAFLD management. Despite these advances, the
effects of SGLT-2Is on diabetic myopathy291–293 and DFUs294–297

remain unclear, necessitating further research.
GLP-1R, a key member of the G protein-coupled receptor family,

is ubiquitously expressed on the surfaces of various cells, such as
pancreatic β-cells, hepatocytes, and cells in the cardiovascular and
neural systems, and has significant therapeutic potential for
multiple diseases.298 GLP-1RAs and dual incretin receptor agonists
are strongly recommended for the treatment of diabetes,
particularly in overweight or obese individuals.299 Notably,
semaglutide and tirzepatide (a dual GIP and GLP-1RA) can lead
to effective weight loss, marking a new era in weight manage-
ment. Additionally, these drugs offer both cardiovascular and
renal benefits, strengthening their use in diabetes management.
The findings of meta-analyses and clinical trials indicate that
semaglutide not only reduces the risk of MACE and heart
failure300,301 but also improves renal outcomes in obese patients
with or without diabetes.302,303 The SURPASS-4 trial304 revealed
that tirzepatide significantly reduced composite kidney endpoints
by 40% and improved the annual eGFR decline by 2.2 mL/min per
1.73 m2 per year. Further analyses revealed that tirzepatide dose-
dependently decreased the levels of atherogenic lipoproteins,
such as apoC-III and apoB, which are major cardiovascular risk
factors.305 CagriSema (a combination of semaglutide and the long-
acting amylin analog cagrilintide) has completed phase II clinical
trials306 and has been shown to be superior to both tirzepatide
and semaglutide in terms of promoting weight loss (−14.03 kg,
−8.47 kg, and −3.13 kg, respectively, for 3 months of treat-
ment),307 making it one of the most noteworthy drugs of 2025.
Apart from reducing appetite and delaying gastric emptying to

lose weight, GLP-1RAs exhibit potential benefits in modulating
innate immune responses and inhibiting β-cell apoptosis.308

Ongoing phase III clinical trials of semaglutide have aimed to
further elucidate the efficacy and safety of these drugs in the T1D
population (NCT05819138). In addition, GLP-1RAs exert neuropro-
tective effects by restoring brain energy metabolism, enhancing

Diabetes and its complications: molecular mechanisms, prevention and. . .
Zhao et al.

12

Signal Transduction and Targeted Therapy           (2026) 11:22 



BBB integrity, and reducing neurovascular inflammation, oxidative
stress, and apoptosis.309–312 These mechanisms highlight the
potential of GLP-1RAs in treating DE and diabetic neuropathy.
Small-scale RCTs and observational studies have shown that GLP-
1RAs enhance impaired odor-induced brain activation312 and
improve the size of the tibial nerve and sural sensory nerve

conduction amplitude in T2D.313 Meta-analyses have associated
GLP-1RAs with lower risks of dementia,314 cognitive decline,315

and pain disorders.316 In addition to their neuroprotective effects,
GLP-1RAs indirectly improve hepatic insulin resistance, lipotoxicity,
and inflammation,317 with promising results in improving liver
histology.318–320 A phase 2 RCT revealed that 0.4 mg semaglutide

Table 1. Screening for diabetic complications

Screening guidelines Screening parameters

Diabetic kidney disease

Annually in T1D; with duration of ≥5 years in T2D Urinary albumin (e.g., spot UACR), and eGFR442

Diabetes-related cardiovascular disease

In asymptomatic individuals, routine screening for coronary artery
disease is not recommended.

-

Atypical cardiac symptoms; signs or symptoms of associated vascular
disease, including carotid bruits, transient ischemic attack, stroke,
claudication, or peripheral arterial disease; or electrocardiogram
abnormalities (e.g., Q waves).

Consider investigations for coronary artery disease132

Adults with diabetes are at increased risk for the development of
asymptomatic cardiac structural or functional abnormalities (stage B
heart failure) or symptomatic (stage C) heart failure.

Measuring a natriuretic peptide (BNP or NT-proBNP)132

In asymptomatic individuals with diabetes and abnormal natriuretic
peptide levels.

Echocardiography132

In asymptomatic individuals with diabetes and age ≥50 years,
microvascular disease in any location, or foot complications or any
end-organ damage from diabetes.

Ankle-brachial index testing132

Peripheral arterial disease

Diabetes duration ≥10 years Ankle-brachial index testing, lower-extremity pulses, capillary refill time,
rubor on dependency, pallor on elevation, and venous filling time132,443

Diabetic retinopathy

Within 5 years after the onset of T1D;
At the time of the T2D diagnosis

Initial dilated and comprehensive eye examination; retinal photography with
remote reading or the use of U.S. Food and Drug Administration–approved
artificial intelligence443

Diabetic hepatopathy

Adults with T2D or prediabetes; FIB-4 (derived from age, ALT, AST, and platelets)355

Adults with T2D or prediabetes with an indeterminate or high FIB-4 Liver stiffness measurement with transient elastography, the blood
biomarker enhanced liver fibrosis.

Diabetic myopathy

All elderly patients with diabetes Questionnaire: SARC-F, SARC‑CalF;
Imaging techniques: MRI, CT, BIA, and DXA;
Anthropometric measurement techniques: MUAC, skinfold thickness, and
calf circumference; Muscle Strength Measurement: handgrip strength and
the chair stand test;
Physical Performance Measurements: SPPB, SCPT444–446

Diabetic peripheral neuropathy

5 years after the diagnosis of T1D;
At diagnosis of T2D and at least annually thereafter

Small-fiber function: pinprick and temperature sensation.
Large-fiber function: lower-extremity reflexes, vibration perception using a
128-Hz tuning fork, and 10-g monofilament.
Protective sensation:10-g monofilament.
Electrophysiological testing when necessary.
Screening questionnaire: NSS, NSI, DNS, NDS, MNSIQ, MDNS, CSS,
mTCNS154,443,447–452

Diabetic foot ulcers

Annually in all diabetes Inspection of the skin, assessment of foot deformities, neurological
assessment (10-g monofilament testing with at least one other assessment:
pinprick, temperature, or vibration), and vascular assessment, including
pulses in the legs and feet.443

T1D type 1 diabetes, T2D type 2 diabetes, UACR urinary albumin-to-creatinine ratio, eGFR estimated glomerular filtration rate, BNP B-type natriuretic peptide, NT-
proBNP N-terminal pro-BNP, FIB-4 fibrosis-4 index, ALT alanine aminotransferase, AST aspartate aminotransferase, SARC-F strength assistance in walking rise from
a chair climb stairs, SARC‑CalF strength‑assistance in walking‑rise from a chair‑climb stairs‑falls‑calf circumference questionnaire, MRI magnetic resonance
imaging, CT computed tomography, BIA bioimpedance analysis, DXA dual-energy X-ray absorptiometry, MUAC mid-upper arm circumference, SPPB Short
Physical Performance Battery, SCPT Stair Climb Power Test, NSS Neurological Symptom Score, NSI Neuropathy Screening Instrument, DNS Diabetic Neuropathy
Score, NDS Neuropathy Disability Score, MNSIQ Michigan Neuropathy Screening Instrument Questionnaire, MDNS Michigan Diabetic Neuropathy Score, CSS
Toronto Clinical Scoring System, mTCNS Modified Toronto Clinical Neuropathy Score
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induced 42% greater NASH resolution than did placebo.320 In
2023, the American Association for the Study of Liver Diseases
guidance recommended the use of semaglutide for managing
metabolic dysfunction-associated steatohepatitis in patients with
T2D or obesity, even without FDA approval.321 Additionally, dual
incretin receptor agonists, including tirzepatide and GLP-1/
glucagon receptor coagonists such as efinopegdutide, pemvidu-
tide, and cotadutide, have shown promise in reducing liver fat and
resolving fibrosis in NAFLD and related conditions.322–326 Among
them, the 15mg tirzepatide group achieved 52% NASH resolution
compared with the placebo group.326 However, weight loss
induced by GLP-1RA has been associated with reductions in
muscle mass, which can lead to sarcopenia and frailty.327 To
mitigate these effects, personalized resistance exercise is recom-
mended to preserve muscle mass during GLP-1RA therapy.
Ongoing pharmacologic strategies aim to maintain or improve
muscle mass during GLP-1RA therapy.328

Finerenone, a ns-MRA, has demonstrated significant efficacy in
reducing the risk of clinically important cardiovascular and kidney
outcomes in patients with T2D and DKD.329 Ongoing clinical trials
are also investigating its effects on T1D and DKD (NCT05901831,
Phase III)330 Beyond its renal and cardiovascular advantages,
finerenone has shown promise in treating DR. A subset of
participants from the FIDELIO-DKD and FIGARO-DKD trials under-
went routine ophthalmological evaluations, revealing a lower
incidence of vision-threatening complications in the finerenone
group (3.7% [5/134]) than in the control group (6.4% [7/110]).331

While these findings suggest that finerenone may delay the
progression of nonproliferative DR in T2D patients with DKD, the
lack of randomization and the limited number of endpoint events
restrict the strength of these conclusions. Preclinical investigations
have indicated that finerenone reduces retinal inflammation,
vascular leakage, and microglial density, thereby supporting its
potential therapeutic role in DR management.332,333 Furthermore,
on the basis primarily of preclinical evidence, MRAs have been
shown to confer protection against cognitive decline in hyperten-
sive conditions.334,335 Additionally, MRAs may improve muscle
function, reduce degradation and inflammation, and mitigate
fibrosis in dystrophic muscles.336

These findings underscore the multifaceted benefits of novel
drugs in treating diabetic complications, highlighting their
potential as comprehensive therapeutic agents in diabetes
management. Recent multicenter RCTs have demonstrated that
SGLT-2Is,278,337–339 GLP-1RAs,340 and ns-MRAs329,341,342 offer sig-
nificant kidney and cardiovascular benefits, regardless of baseline
albuminuria, eGFR, or diabetes status.76,343,344 Initial therapy with
finerenone plus SGLT-2Is led to a greater reduction in the urinary
albumin-to-creatinine ratio than either treatment alone did,345

which was consistent with a meta-analysis indicating that the
combination of RAASis, SGLT-2Is, and ns-MRAs—the so-called
“renal triple therapy”—synergistically reduces cardiorenal events
with minimal risk of hyperkalemia.346,347 These findings mark the
onset of a new treatment paradigm for CKM disorders and the use
of drug combination therapies to significantly lower multisystemic
risks in patients with T2D by targeting multiple mechanisms.348

Emerging novel drugs are redefining therapeutic approaches by
addressing multiple diabetic complications concurrently. Target-
ing NLRP3 inflammasome activation has direct translational
relevance: the small-molecule inhibitor MCC950 ameliorates
albuminuria, glomerulosclerosis, and podocyte injury in db/db
mice by blocking caspase-1/IL-1β maturation.349 EndMT drives
renal fibrosis in DKD, and overexpressed bone morphogenetic
protein-7 prevents EndMT and extracellular matrix deposition in
diabetic rodent models.350 Likewise, FGF21 analogs reduce urinary
albumin excretion, mesangial expansion, and oxidative stress in
db/db mice, linking their metabolic and antifibrotic actions to a
promising DKD therapy.351 Details of other promising candidates
under active clinical investigation in the past five years are

presented in Table 2, with a more comprehensive list of drugs
provided in Table S1. Figure 5 illustrates the mechanisms by which
the drugs act on their targets, primarily for the treatment of
diabetes, DKD, and diabetes-related cardiovascular disease.

Stem cells and stem cell-derived exosomes: regenerative and
immunomodulatory potential for treating diabetic complications
Mesenchymal stem cells (MSCs) are promising therapeutic
candidates for regenerative medicine. Sources of MSCs, such as
placenta,352 adipose tissue,353 and human umbilical cord,354

provide versatile platforms for therapeutic applications. After
intravenous administration, MSCs initially localize to the lungs and
liver before homing to target organs such as the kidneys, where
they exert antidiabetic effects by mitigating inflammation and
fibrosis, partly via the autophagy-mediated Sirtuin 1 (SIRT1)/
Forkhead Box O1 pathway.355 Clinical evidence supports their
safety and efficacy. Table S2 shows the therapeutic and
immunomodulatory effects of stem cells or their exosomes on
diabetic complications, involving the regulation of macrophage
polarization, the inflammatory balance, and Tregs. A phase 1b/2a
trial demonstrated that a single infusion of allogeneic MSCs slows
the decrease in the eGFR in patients with progressive DKD.356

Synergistic effects are observed when MSCs are combined with
conventional therapies, such as GLP-1RA exenatide357 or SGLT-2I,
such as empagliflozin,358 which improve mitochondrial autop-
hagy, podocyte protection, and renal function in diabetic rat
models. These combinations exhibit synergistic anti-inflammatory
effects, suppress DNA damage, and regulate cytokines.359

Furthermore, genetic engineering of MSCs to overexpress
angiotensin-converting enzyme-2 ameliorates DKD by modulating
the TGF-β/Smad signaling pathway and reducing glomerular
fibrosis.360 Advances in bioengineering techniques, including 3D
encapsulation,361 hydrogels,362 and nanoparticles,363 have
increased MSC survival, differentiation, and therapeutic potential.
However, challenges such as chromosomal abnormalities, poten-
tial tumorigenesis, and suboptimal integration in diabetic micro-
environments remain.364

MSC-derived exosomes (MSC-Exos) provide a safer, cell-free
approach that minimizes the risks of immune rejection and
tumorigenesis.365 These nanovesicles deliver bioactive molecules,
including proteins, lipids, and nucleic acids, to mediate inter-
cellular communication and modulate recipient cell behavior.366

Stem cells and stem cell-derived exosomes have shown immuno-
modulatory effects on DKD, diabetic cardiomyopathy, DR, and
DFU, involving the regulation of macrophage polarization, the
inflammatory balance, and Tregs (Table S2). Additionally, exoso-
mal miRNAs from adipose-derived MSCs enhance autophagy flux
and alleviate podocyte injury by suppressing mTOR signaling,
leading to reductions in proteinuria and serum creatinine levels in
DKD patients.367 Exosomes derived from bone marrow MSCs,368

human umbilical cord MSCs,369 and urine-derived stem cells370

show similar promise in DKD management.
In diabetic cardiomyopathy, MSC-Exos improve cardiac dysfunc-

tion by alleviating the inflammation associated with the TAK1-
pJNK-NFKB pathway.371 In diabetic myocardial injury, MSC-Exos
mitigate fibrosis and myocardial damage by inhibiting the TGF-β1/
Smad2 signaling pathway.372 MSC-Exos reduce retinal vascular
endothelial injury and inflammatory cytokine production in DR by
downregulating the expression of markers such as high mobility
group box 1, NLRP3, and NF-κB/P65.373 Moreover, MSC-Exos
deliver miR-222 to retinal cells, regulating signal transducer and
activator of transcription 5 signaling, inhibiting neovascularization,
and promoting retinal regeneration in advanced DR.374 MSC-Exos
also promote M2 macrophage polarization, suppress inflammation
and enhance wound healing in diabetic ulcers.375,376 Advances in
engineering and molecular profiling continue to improve their
efficacy, paving the way for innovative clinical applications.
Further research is essential to fully realize their potential and
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Fig. 5 Promising molecular targeted drugs for treating diabetic complications. This figure illustrates the selected promising molecularly targeted
drugs for diabetes, diabetic kidney disease, and diabetes-related cardiovascular diseases. GLP-1R, GIPR, and GCGR agonists enhance insulin
secretion in β-cells via the cAMP/PKA pathway. GCGR agonists further activate CREB to promote hepatic fatty acid oxidation. GLP-1R and AMYR/
CTR agonists regulate appetite and slow gastric emptying. Mazdutide, Retatrutide, and CagriSema, owing to their pharmacological structures or
combinatorial formulations, activate multiple receptors simultaneously. Dorzagliatin enhances glucose-stimulated insulin secretion and hepatic
glycogen synthesis by activating glucokinase. HD-6277 targets FFAR1 to activate the PLC pathway, increasing insulin release. Dapansutrile
inhibits the NLRP3 inflammasome, reducing β-cell inflammation and pyroptosis to preserve function. In DKD, avenciguat activates sGC, dilating
afferent arterioles and improving renal perfusion. SER-150 and SC-0062 inhibit TBXA2R and ETA receptors, dilating efferent arterioles to reduce
glomerular hyperfiltration. Selonsertib and bremelanotide mitigate glomerular endothelial inflammation and apoptosis by targeting ASK1 and
melanocortin receptors, respectively. R3R-01 promotes cholesterol efflux via ABCA1 to generate nascent HDL, reducing cellular lipotoxicity.
Inclisiran, a siRNA, degrades PCSK9 mRNA, preventing LDLR degradation and enhancing hepatic LDL clearance. Bempedoic acid inhibits ATP
citrate lyase in the liver, reducing endogenous cholesterol synthesis. MEDI6570 blocks LOX-1 to attenuate vascular endothelial inflammation and
apoptosis. Furthermore, pentoxifylline inhibits PDE, increasing cAMP levels to exert anti-inflammatory effects. Alpha-lipoic acid, an antioxidant,
scavenges ROS to reduce oxidative stress, inflammation, and apoptosis. Abbreviations: ABCA1 ATP-binding cassette transporter A1, AC adenylate
cyclase, AMYR amylin receptor, ApoA-I apolipoprotein A-I, ASK1 apoptosis signal-regulating kinase 1, BCL-2 B-cell lymphoma 2, CREB cAMP
response element-binding protein, CPT1 carnitine palmitoyltransferase 1, CTR calcitonin receptor, DKD diabetic kidney disease, ERK extracellular
signal-regulated kinase, ETA endothelin A receptor, FA fatty acids, FC free cholesterol, FFAR1 free fatty acid receptor 1, GCGR glucagon receptor,
GIPR glucose-dependent insulinotropic polypeptide receptor, GK glucokinase, GLP-1R glucagon-like peptide-1 receptor, GLUT2 glucose
transporter 2, HDL high-density lipoprotein, LDL low-density lipoprotein, LDLR low-density lipoprotein receptor, LOX-1 lectin-like oxidized low-
density lipoprotein receptor-1, MAPK mitogen-activated protein kinase, MCP-1 monocyte chemoattractant protein-1, MCR melanocortin
receptor, NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells, NLRP3 NACHT LRR and PYD domains-containing protein 3, PCSK9
proprotein convertase subtilisin/kexin type 9, PDE phosphodiesterase, PGC-1α peroxisome proliferator-activated receptor gamma coactivator 1-
alpha, PI3K phosphoinositide 3-kinase, PKA protein kinase A, PKC protein kinase C, PL phospholipase, PLC phospholipase C, ROS reactive oxygen
species, sGC soluble guanylate cyclase, siRNA small interfering RNA, Src proto-oncogene tyrosine-protein kinase, TBXA2R thromboxane A2
receptor, TCA tricarboxylic acid, TNF-R tumor necrosis factor receptor
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ensure safe, effective deployment in managing diabetes and its
complications.
The development of smart drug delivery systems for treating

diabetes, incorporating glucose-sensing components such as
glucose-binding proteins, glucose oxidase, and phenylboronic
acid, together with advanced carriers such as hydrogels, micro-
gels, and nanoparticles, has ensured precise, safe, and efficient
insulin delivery.377 The use of esterified collagen hydrogels can
increase the differentiation and functionality of insulin-producing
cells derived from induced pluripotent stem cells (iPSCs).378 Chen
et al. successfully encapsulated vascularized islets composed of
iPSC-derived β-like cells and microvascular fragments via three-
dimensional (3D) printing combined with hydrogels, ensuring
high survival of islet cells and low immunogenicity.379 Coculture of
iPSC-derived β-cells with endothelial cells and their integration
into a bioengineered vascular system enabled the creation of a
functional, sustainable, humanized endocrine organ, with a
controlled in vitro insulin-secreting phenotype and effective
in vivo function.380 This biomimetic pancreas, composed of β
and α cells derived from human iPSCs and GLP-1 analog-loaded
glucose-responsive nanoparticles, was found to increase survival
rates in diabetic mice,381 suggesting promising prospects for
future diabetes treatment. Furthermore, novel drug delivery
systems can substantially increase stem cell viability and
therapeutic efficacy for diabetic complications by providing 3D
microenvironments that support cell migration, proliferation and
differentiation.382 These systems enable precise cell targeting and
sustained therapeutic release, as demonstrated by Wang et al. in
treating DKD, using placental mesenchymal stem cells with
guided nanoparticles.383 Furthermore, the integration of bioma-
terials and genetic engineering techniques is expected to further
augment the therapeutic potential of stem cells.384 In DR,
nanotechnology offers transformative solutions through con-
trolled, targeted therapies.385,386 Notably, Lee et al. developed a
dopamine-functionalized gellan gum hydrogel that enhanced
retinal pigment epithelium function by increasing the expression
of vision-related genes.387 Hydrogel-based and scaffold-based
delivery platforms show particular promise for DFUs, as they
effectively promote wound healing and skin regeneration.388,389

As these technologies continue to evolve, careful evaluation of
their biocompatibility and long-term safety will be essential for
maximizing their clinical benefits.

Gut flora: regulating inflammation and metabolic health
The gut microbiota plays a critical role in maintaining homeostasis
and metabolic health, with disruptions in its composition
associated with the progression of diabetic complications.390,391

Emerging therapies, including prebiotics, probiotics, and FMT, aim
to modulate the gut microbiota and its metabolites, illustrating
the potential to mitigate complications associated with
diabetes.209

Previous studies have reported that probiotic products and FMT
can improve renal parameters, such as plasma urea nitrogen and
serum creatinine levels, in patients with CKD.392,393 A novel
prebiotic, the graminan-type fructan from Achyranthes bidentata,
has the potential to prevent DKD. This prebiotic alleviates kidney
injury by promoting the production of SCFAs and modulating the
gut microbiota composition, increasing the abundance of
Bacteroides while decreasing the abundance of Rikenella and
Alistipes in DKD mice.394 Similarly, enriched seafood sticks
containing postbiotic and bioactive compounds have shown
efficacy in lowering cardiometabolic risk factors, including HOMA-
IR and postprandial triglyceride concentrations, which is partially
attributed to changes in the composition of the gut microbiota.395

In diabetic mouse models, Lactobacillus paracasei has been shown
to reduce retinal inflammation, gliosis, neuronal cell death, and
vascular capillary loss, thereby mitigating DR.396 In a double-blind,
placebo-controlled RCT, FMT from healthy donors significantly

alleviated DSPN in recipients. Compared with the placebo group
(10 patients), those who received FMT (22 patients) presented
enriched beneficial microbial guilds and suppressed harmful
guilds.160 Moreover, intermittent fasting improved cognitive
dysfunction in db/db mice by reconstructing the gut microbiota
and altering microbial metabolites, likely via increased mitochon-
drial biogenesis and energy metabolism in the hippocampus.397

Adjunctive probiotic therapy also improves the therapeutic effects
of conventional medications in managing T2D. By promoting
SCFA-producing bacteria and modulating bile acid pathways,
probiotics increase the efficacy of standard treatments.398

Current clinical data on targeting the gut microbiota for diabetic
complications remain limited, with particular gaps in under-
standing the modulation of specific microbial compositions and
their therapeutic efficacy. Advances in microbiome research may
allow personalized interventions targeting dysbiosis patterns
associated with specific diabetic complications.399 Furthermore,
the interplay between gut microbiota-based therapies and
conventional medications presents promising opportunities for
integrated treatment strategies. The ongoing exploration of the
role of the gut microbiota in systemic inflammation and metabolic
health highlights its potential as a key therapeutic target in
diabetes management.

Traditional Chinese Medicine: synergistic approaches to
integrative regulation and precision therapies
The long-term management of diabetes typically involves the
lifelong use of antidiabetic medications, which often impose
economic burdens and are associated with undesirable side
effects, leading to poor adherence among patients.400,401 Com-
pared with synthetic drugs, traditional Chinese medicine (TCM)
has gained popularity as an alternative or complementary
approach because of its perceived safety, efficacy, and holistic
benefits compared to synthetic drugs (Table S3).
Resveratrol (RES), a naturally occurring phytoalexin found in

cereals, fruits, vegetables, and plant-derived beverages such as tea
and wine, has diverse biological activities, including antiobesity,
antidiabetic, anticancer, anti-inflammatory, antioxidative, and
cardiovascular-protective effects.402 Resveratrol protects the heart
from I/R injury and cardiomyopathy through multiple mechan-
isms, such as scavenging free radicals, reducing myocardial
oxygen demand, inhibiting inflammation-induced damage, indu-
cing angiogenesis, improving mitochondrial function, and pre-
venting cardiomyocyte apoptosis.403 A study integrating network
pharmacology, molecular docking, and experimental validation
revealed that RES can target the PPARA, SHBG, AKR1B1, PPARG,
IGF1R, MMP9, AKT1, and INSR domains, acting as a therapeutic
agent for DKD.404 In addition, resveratrol ameliorates diabetic
retinopathy by preserving blood–retinal barrier integrity and
suppressing inflammation and oxidative stress through AMPK
activation, SIRT1 preservation, NF-κB inhibition, Nrf2/GPx4 path-
way regulation.405

Berberine, a bioactive alkaloid derived from TCM herbs such as
Rhizoma Coptidis, exerts anti-inflammatory, antioxidative, hepato-
protective, and anticancer effects.406–408 A phase 2 RCT demon-
strated that berberine ursodeoxycholate significantly reduced liver
fat content, improved glycemic control, lowered liver enzyme
levels, and promoted weight loss in T2D patients with presumed
NASH.409 In DKD, berberine inhibits podocyte apoptosis, ROS
generation, and mitochondrial dysfunction.410 Berberine also
alleviates DR by inhibiting insulin-induced activation of retinal
ECs through the Akt/mTOR/HIF-1α/VEGF pathway411 and reduces
DCM by suppressing IL-1β secretion and gasdermin D expres-
sion.412 Moreover, other TCM formulations, such as Rehmannia-6-
based medicine413 and Astragalus,414 have shown promising
effects. Both have been reported to stabilize the eGFR after
48 weeks in patients with T2D and DKD when used alongside
standard care.
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Despite its promise, the use of TCM for managing diabetic
complications faces several challenges. Many current clinical
studies on TCM interventions for diabetic complications fail to
fully adhere to the principles required for high-quality RCTs,
including multicenter collaboration, adequate sample size, rando-
mization, blinding, Good Clinical Practice, and research ethics for
human subjects, resulting in lower levels of evidence in these
RCTs.415 Consequently, the U.S. FDA has not approved TCM
interventions for treating diabetic complications.416 The complex-
ity of TCM formulas, which are composed of multiple medicinal
herbs with numerous uncharacterized components, impedes in-
depth experimental investigations.417 Additionally, the character-
istic pattern differentiation-based treatment approach inherently
necessitates timely prescription adjustments, including modifica-
tions to formula composition and dosage, on the basis of patients’
evolving clinical manifestations across different treatment peri-
ods.418 Collectively, these factors critically limit the application of
TCM in the management of diabetic complications. By addressing
these challenges, TCM could provide a valuable, integrative
approach to managing the complex pathogenesis of diabetes
and its complications, offering a multicomponent, multitarget
synergistic treatment paradigm.

Beyond traditional care: the digital health paradigm shift in the
management of diabetic complications
Digital health technologies (DHTs), particularly AI, transform
diabetes care by addressing critical challenges in prevention,
diagnosis, and management171 (Fig. 1). Traditional medical
practices often encounter issues such as delayed diagnoses,
insufficient healthcare resources, and the need for continuous self-
management.419,420 AI, combined with wearables, mobile apps,
and telemedicine, offers innovative solutions to these problems,
improving efficiency and patient outcomes.421 AI algorithms have
demonstrated significant potential in predicting diabetic compli-
cations, enabling targeted interventions for high-risk indivi-
duals.422 Advances include AI-powered diabetic retinopathy
screening systems such as AEYE Health (AEYE Health Inc.), EyeArt
(Eyenuk Inc.), and IDx-DR (IDx LLC), which facilitate early and
accurate detection.423,424 The EyeArt system is a cloud-based
automated AI eye screening technology designed to detect
referable DR by automatically analyzing patients’ retinal images.
An early version of the EyeArt system software (v1.2) demon-
strated 90% sensitivity and 63.2% specificity on a data set of
40,542 images from 5084 patient visits.425 A recently reported real-
world study involving over 100,000 consecutive visits by diabetic
patients revealed that automated DR screening via the EyeArt
system v2.0 achieved high screening sensitivity (91.3%) and
specificity (91.1%).424 A separate independent study of the EyeArt
system on more than 20,000 consecutive patient encounters
revealed that the sensitivity and specificity were not affected by
patient ethnicity, sex, or camera type.426 Additionally, the EyeArt
system is a computerized, cost-effective, cloud-based AI medical
device capable of screening approximately 100,000 patients in less
than 45 h, whereas manual graders can evaluate only 8–12
patients per hour.424 However, the widespread adoption of AI-
driven platforms such as the EyeArt system raises critical ethical
concerns, particularly regarding data privacy and security.427 In
addition, while cloud-based AI improves screening efficiency, it
escalates the risk of unauthorized third-party data access.428

Similarly, AI has been applied in DKD screening and management,
as shown by the Minuteful Kidney system. This system uses a step-
by-step kit to detect kidney damage by identifying abnormalities
in the UACR, allowing remote and accessible screening.429,430

Wearable technologies, such as Checkme Lite, employ AI
algorithms to detect up to 45 types of abnormal electrocardio-
gram (ECG) events, offering rapid analysis, early warnings, and
timely interventions. Innovations in diabetic foot care include
assessments via thermography and smartphone imaging,431,432

whereas neuropathy screening benefits from AI integration in
electronic health records and imaging techniques.433–435 Platforms
such as NVIDIA Clara support AI-driven applications in imaging
and drug discovery, enabling the development of 3D organ
models, such as kidneys, to assess organ volume and enhance
diagnostic precision.
Telemedicine has shown improved outcomes compared with

traditional care, with evidence indicating better reductions in
HbA1c through remote consultations.436,437 Mobile apps and
smart devices further improve diabetes management by
enabling patient education, continuous monitoring, and seam-
less data sharing between patients and healthcare provi-
ders.438,439 AI facilitates home-based monitoring, community
screening programs, and hospital-based complication detec-
tion, paving the way for personalized treatment algorithms and
integrated healthcare systems. These advancements promise to
improve clinical outcomes while reducing healthcare costs,
highlighting the transformative potential of DHTs in diabetes
care. Nevertheless, the implementation of AI-driven diagnostic
platforms such as EyeArt raises critical ethical considerations,
particularly concerning data privacy and security vulnerabil-
ities.427 Furthermore, while cloud-based deployment enhances
screening accessibility, it concomitantly introduces risks of
unauthorized third-party data access.428

CONCLUSION AND FUTURE PERSPECTIVES
The mechanisms associated with diabetic complications involve
complex interactions across multiple organs and systems.
Although spatial multiomics and single-cell omics techniques
can provide a deeper understanding of tissue and cellular
heterogeneity, elucidation of the molecular and phenotypic
heterogeneity in disease pathways underlying diabetic compli-
cations and the complex interplay of risk factors, such as
obesity, aging, and inflammation, poses significant challenges
to the discovery of biomarkers and the development of
standardized therapeutic strategies. Machine learning models
using these data sets show promise but still require validation in
diverse cohorts.
MSCs and MSC-derived exosomes may represent a cutting-edge

therapeutic approach for managing diabetic complications,
offering regenerative benefits with reduced risks. Despite
encouraging preclinical and early clinical results, several critical
gaps must be addressed before MSC- and MSC-derived exosome-
based therapies for diabetic complications can be developed. First,
the long-term biosafety of MSC-derived exosomes is still
undetermined. Rigorous toxicology assessments are needed to
identify and eliminate off-target effects or harmful components,
ensuring the safety of exosome-based therapies.440 Second, there
is an urgent need to establish optimal dosing regimens,
biodistribution patterns, and treatment schedules for exosome
administration in diabetic complications. To date, most work has
been limited to exosome administration in vitro, so comprehen-
sive preclinical investigations including extended follow-up to
evaluate both efficacy and safety in vivo are urgently needed.
Although AI has been widely applied in the diagnosis, prognosis
prediction, and personalized treatment of diabetic complications,
its translation into healthcare demands additional scrutiny. AI
systems depend heavily on the breadth and diversity of their
training data sets, rendering models less reliable for populations
underrepresented in the data and raising concerns about their
generalizability and the introduction of bias.441 Furthermore,
machine learning models limit clinicians’ ability to interpret
decisions, detect errors, and build confidence in AI-driven
recommendations. Nevertheless, integrating AI with bioinfor-
matics may accelerate the elucidation of the underlying mechan-
isms of diabetic complications and drive the creation of
personalized treatments through large-scale data analytics.
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