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Abstract: The global prevalence of obesity and metabolic syndrome (MetS) is rising worldwide, and increasing evidence suggests that
chemical exposures—particularly endocrine disruptors (EDs)—represent a significant contributing factor. EDs can act as obesogens,
increasing the risk of weight gain and related metabolic conditions, including type 2 diabetes, dyslipidemia, hypertension, and
cardiovascular disease. They may also alter the basal metabolic rate, gut microbiota composition, and hormonal regulation of appetite
and satiety. EDs are reported to exert their effects mainly through the peroxisome proliferator-activated receptor gamma pathway, which
is primarily expressed in adipose tissue and is a key regulator of adipogenesis. Common consumer products such as plastic bottles, metal
food cans, detergents, toys, cosmetics, and pesticides frequently contain EDs. Humans can be exposed to these chemicals via multiple
routes, including transplacental transfer, breast milk, inhalation, ingestion, and dermal absorption. Bisphenols, tributyltin, phthalates,
per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, and heavy metals are among the known EDs that have been
associated with obesity and MetS. The need for further investigation and stricter regulations to mitigate the public health consequences
of environmental exposure to EDs is consistently emphasized in recent literature. Understanding the mechanisms by which EDs affect
various hormones and systems is essential for developing effective prevention and intervention strategies. In this review, we discuss the

relationship between obesity, MetS, and EDs, along with exposure pathways and preventive strategies.

Key words: Bisphenols, phthalates, tributyltin, insulin resistance, metabolic syndrome, obesity

1. Introduction

The global prevalence of obesity is rising rapidly. Over 600
million individuals, including approximately 40 million
children under the age of 5, currently suffer from obesity.
Furthermore, studies indicate that approximately 80%
of children with obesity remain affected into adulthood
[1]. Numerous studies have demonstrated that obesity
adversely impacts both life expectancy and quality of life
[2]. Although lifestyle factors such as diet and physical
activity are major contributors, growing evidence suggests
that other factors, particularly chemical exposures, may
also play a role [3]. Chemicals known as “obesogens” are
thought to promote weight gain by affecting the endocrine
system, which regulates metabolism, energy balance, and
appetite. Thisleads to excessbody fatand associated adverse
health outcomes [4,5]. Animal studies have demonstrated
that exposure to endocrine disruptors (EDs) during early
life increases susceptibility to weight gain and metabolic
comorbidities, including alterations in lipid metabolism,
type 2 diabetes (T2D), and cardiovascular disease [6].
Additionally, recent literature has identified associations
between arterial hypertension and specific EDs [7]. Obesity
and related comorbidities together constitute metabolic
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syndrome (MetS), which is considered a strong predictor
of cardiovascular morbidity and mortality [8]. MetS is
defined as the presence of at least three of the following
five clinical criteria: (I) increased waist circumference;
(II) elevated triglyceride levels; (III) decreased HDL
concentrations; (IV) high blood pressure; (V) elevated
fasting glucose levels [9]. The reported prevalence of MetS
varies according to the diagnostic criteria, ranging from
12.5% to 31.4% [10].

This review aims to provide an overview of EDs in
relation to obesity and MetS, focusing on molecular
mechanisms and newly recognized aspects such as
mixture interactions, gut microbiota alterations, and
multigenerational effects. Building on previous reviews,
this paper emphasizes new mechanistic evidence and
preventive approaches, linking exposure pathways,
chemical groups, and regulatory measures to broader
clinical and public health implications.

2. Materials and methods

A narrative literature search was conducted using the
PubMed, Scopus, and Web of Science databases, focusing
on studies published within the past 15 years—a period
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marked by a notable rise in ED-related research. The
search terms included “endocrine disruptors”, “obesogens’,
“obesity”, “metabolic syndrome”, and specific chemical
groups such as “bisphenols’ “phthalates”, “PFAS
“pesticides’, and “heavy metals”. The titles and abstracts
were independently screened by two authors, and full-text
articles addressing the relationship between EDs, obesity,
and MetS were included. Human and experimental
studies, review articles, and regulatory reports were all
included to ensure a comprehensive overview. Studies
were excluded if they were not available in English, if the
full text could not be accessed, or if they did not directly
address the relationship between EDs and obesity or MetS.
Conference abstracts, editorial letters, and commentaries

were also excluded.

3. Endocrine disruptors

Endocrine disruptors are exogenous substances that
adversely affect the endocrine system by interfering with
hormonal activity at specific doses [11]. According to the
U.S. Environmental Protection Agency, EDs are agents
that disrupt the synthesis, secretion, transport, binding, or
elimination of hormones in the body [12]. These hormones
play essential roles in maintaining homeostasis, regulating
reproduction and development, and influencing behavior.
Consequently, an endocrine-disrupting substance is any
compound—natural or synthetic—that can interfere with
the normal hormonal functions through environmental
exposure [13].

According to the Endocrine Society’s scientific
statement, EDs are highly diverse, encompassing synthetic
chemicals used as industrial solvents and lubricants, along
with their byproducts such as polychlorinated biphenyls
(PCBs), per- and polyfluoroalkyl substances (PFAS),
polybrominated biphenyls (PBBs), and dioxins. They also
include plastics such as bisphenol A (BPA), plasticizers
like phthalates, pesticides including methoxychlor,
chlorpyrifos, and  dichlorodiphenyltrichloroethane,
fungicides such as vinclozolin, and pharmaceutical agents
like diethylstilbestrol. Additionally, naturally occurring
compounds found in human and animal diets—such as
phytoestrogens including genistein and coumestrol—can
also act as EDs [14].

4. Exposure to endocrine disruptors

EDs may be present in a wide range of commonly
used products, including plastic bottles, metal food
cans, detergents, flame retardants, toys, cosmetics, and
pesticides [15]. Humans are often exposed to multiple
environmental chemicals simultaneously rather than
to a single compound. The term “cocktail effect of Eds”
refers to the combined consequences of such exposure.
Combining chemicals can result in additive, antagonistic,
or synergistic effects. These interactions may be stronger

or qualitatively different from the effects of each individual
chemical [16].

Humans may be exposed to these substances via
transplacental transfer, breast milk, inhalation, ingestion,
or dermal absorption [17]. Exposure to EDs begins
during the neonatal period and persists throughout life.
Exposure to EDs is particularly prevalent during critical
stages such as gestation, infancy, and early childhood,
increasing the likelihood of disease development later in
life and potentially impacting future generations [18]. This
increased risk arises because fetuses and infants experience
greater tissue exposure than adults. In addition, they have
lower levels of cytochrome P450 enzymes that metabolize
xenobiotics [19]. Exposure to obesogenic substances
during pregnancy or early-life lactation can disrupt critical
physiological processes, including energy metabolism,
appetite regulation, and adiposity development [20].

Multigenerational effects of EDs occur when exposure
in utero leads to transmission to subsequent generations,
persisting across several generations [21,22]. For an effect
to be classified as transgenerational, it must manifest
in individuals who were never directly exposed to EDs
[23,24]. Transgenerational effects of EDs are usually
mediated through epigenetic changes. DNA methylation,
histone modifications, and the involvement of noncoding
RNAs constitute key mechanisms underlying epigenetic
alterations in the germline [25,26]. For instance, prenatal
exposure to tributyltin in mice has been shown to increase
adipose tissue mass and adipocyte size, as well as induce
fatty liver across three subsequent generations [27]. The
mechanisms underlying the transmission of ED effects
across generations remain poorly understood, warranting
further investigation—particularly in human studies. A
deeper understanding of these multigenerational and
transgenerational effects may help mitigate their adverse
impacts on human health.

5. Most common endocrine disruptors in relation to
obesity and metabolic syndrome

5.1. Bisphenols

Bisphenol A (BPA) was synthesized through the
condensation of acetone with phenol [28]. BPA is currently
used extensively in the production of epoxy resins and
polycarbonate plastics, which are found in various food
and beverage storage products such as bottles, containers,
and cans [29]. Dietary intake accounts for approximately
99% of total BPA exposure, as these plastics can leach small
amounts of BPA into stored foods and beverages [29]. BPA
has a biological half-life of approximately 6 h in humans,
with peak plasma concentrations occurring within 80 min
following oral administration. [30]. Studies have identified
BPA and its metabolites in the urine of approximately
92.6% of the population [31]. BPA has also been detected
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in breast milk and amniotic fluid, indicating that exposure
begins in utero and persists postnatally [32]. Currently,
there is no globally standardized acceptable limit for BPA
exposure [33]. The former temporary tolerable daily intake
(TDI) of 4 ug/kg body weight/day has been revised to 0.2
ng/kg body weight/day for BPA exposure by the European
Food Safety Authority (EFSA) [34].

Recent metaanalyses have indicated a significant
relationship between exposure to BPA and obesity in both
children and adults [35,36]. Some studies have suggested
a stronger association between bisphenol analogues such
as bisphenol F (BPF) and obesity, particularly among
boys [37]. Another study reported no association between
BPA and obesity; however, bisphenol analogues such as
bisphenol S (BPS) and BPF were linked to obesity [38].
BPA has also been linked to MetS in the literature [39].
In a cross-sectional study of 2104 participants from the
NHANES database, a positive correlation was observed
between BPA exposure and the risk of MetS, independent
of potential confounders such as age, sex, ethnicity,
smoking, alcohol consumption, physical activity, and
urinary creatinine levels [40].

BPA and its analogues (e.g., BPE, BPS) are thought to
act as obesogens through multiple molecular mechanisms
that disrupt metabolic homeostasis. A major pathway
involves direct activation of peroxisome proliferator-
activated receptor gamma (PPAR-y), the key transcription
factor regulating adipocyte differentiation. PPAR-y
promotes adipocyte differentiation and induces the
expression of enzymes involved in lipid synthesis [41]. It
also maintains metabolic homeostasis by regulating genes
associated with energy balance. Recent studies confirmed
that BPA can bind to the PPAR-y ligand-binding domain,
enhancing adipogenesis and lipid accumulation [42,43].
Furthermore, due to its hormone-like properties, BPA
can bind to estrogen receptors. Although traditionally
regarded as a weak estrogen compared with 17p-estradiol,
BPA can exert potent endocrine-disrupting effects
even at very low concentrations, acting through both
classical genomic and rapid nongenomic signaling
pathways. These actions influence not only adipose tissue
function but also body weight regulation, cardiovascular
physiology, and reproductive health [44]. BPA has also
been shown to impair pancreatic P-cell function and
insulin secretion, contributing to glucose intolerance and
insulin resistance [45]. Epigenetic modifications represent
another key mechanism: BPA exposure alters DNA
methylation of metabolic genes, including the PPAR-y
promoter, potentially resulting in persistent adipogenic
programming and transgenerational effects [46]. In
addition, experimental studies have demonstrated that
BPA increases oxidative stress and induces chronic low-
grade inflammation in adipose tissue, both of which are
central drivers of insulin resistance and cardiometabolic
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dysfunction [47]. Through these converging molecular
pathways, bisphenols may substantially contribute to
obesity, dyslipidemia, hypertension, and other key features
of metabolic syndrome.

Although the association between bisphenols and
glucose metabolism impairment is well established, data
on their effects on lipid metabolism remain inconclusive
[48,49]. Furthermore, several studies have linked BPA
exposure to the development of hypertension [50,51]. In
conclusion, findings from observational studies suggest
that BPA exposure may be a risk factor for obesity and
several components of MetS.

5.2. Tributyltin

Tributyltin (TBT) is one of the most extensively studied
obesogens [52]. It is primarily used in the marine
industry to prevent the growth of algae and other marine
organisms. It can also be found in pesticides [52,53]. The
primary sources of human exposure to TBT include the
consumption of contaminated seafood, occupational
contact in industries utilizing TBT-containing products,
and exposure to contaminated water. [53].

TBT exposure promotes adipocyte differentiation by
activating PPAR-y and retinoid X receptor [33]. In vivo
studies have demonstrated that TBT exposure induces the
differentiation of preadipocytes, resulting in dysfunctional
adipocytes with altered lipid metabolism and gene
expression [54]. Additionally, TBT exposure has been
associated with fat accumulation and the development
of hepatic steatosis in snails, fish, and rodents [55,56].
Numerous studies have shown that prenatal exposure
to TBT leads to increased adipose tissue deposition in
offspring, with these effects persisting across generations.
This suggests that epigenetic mechanisms may play a role
in these outcomes [57,58].

5.3. Phthalates

Phthalates are one of the most commonly used plasticizers
worldwide, with a yearly consumption of 7.5 million
tons [39]. Food packaging, vinyl flooring, detergents,
lubricants, adhesives, automotive plastics, children’s toys,
textiles, and wallpapers are among the many products that
contain phthalates [59].

The literature reports associations between phthalate
exposureand obesity-related factors, glucose dysregulation,
and hypertension [60-62]. In children, a systematic
review and metaanalysis revealed significant associations
between individual phthalate metabolites and body mass
index (BMI), waist circumference, and serum glucose
levels [60]. Some studies have also reported associations
between phthalate exposure and childhood hypertension,
although one study found no significant relationship
between phthalate metabolites and lipid parameters
such as triglycerides or high-density lipoprotein levels in
children and adolescents [63,64].
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Phthalate exposure is increasingly associated with
metabolic disorders; however, the precise mechanisms
underlying these effects remain unclear. Phthalates may
promote the differentiation of preadipocytes into mature
adipocytes and enhance intracellular fat storage by
activating PPAR-y, a key regulator of adipogenesis and
adipose tissue function [65]. In liver tissue, phthalates
also stimulate the constitutive androstane receptor, which
plays an important role in xenobiotic metabolism and can
modulate lipid and glucose homeostasis, contributing
to hepatic steatosis and systemic insulin resistance [66].
Furthermore, phthalate exposure induces oxidative stress,
mitochondrial dysfunction, and endoplasmic reticulum
stressin hepatocytes, therebyimpairing metabolic signaling
[67]. These alterations may enhance gluconeogenesis,
inhibit fatty acid oxidation, and exacerbate hepatic lipid
accumulation, ultimately contributing to features of
metabolic syndrome.

5.4. Per- and polyfluoroalkyl substances (PFAS)

Per- and polyfluoroalkyl substances (PFAS) are a group
of synthetic chemicals valued for their resistance to water,
oil, and heat. They are found in a wide range of products,
including nonstick cookware, water-repellent fabrics, food
packaging, and firefighting foams. PFAS are also used in
industrial processes such as electronics manufacturing and
metal plating [68]. Due to their environmental persistence,
PFAS can bioaccumulate in ecosystems and the human
body, leading to potential health risks including endocrine
disruption [69].

A recent review reported associations between PFAS
exposure and the development of obesity, diabetes, and
metabolic dysfunction-associated steatotic liver disease
(MASLD) [70]. Furthermore, a study investigating
MetS outcomes among mother—child pairs exposed to
perfluorooctanoate (PFOA) through drinking water
found that perfluorononanoic acid was associated with
increased MetS risk, greater waist circumference, elevated
triglyceride levels, and reduced high-density lipoprotein
(HDL) concentrations [71]. Another notable finding from
that study was that concentrations of both PFOA and
perfluorooctane sulfonate (PFOS) were higher in children
than in their mothers, persisting until approximately age
12 for PFOA and age 19 for PFOS [71].

The mechanisms linking PFAS to MetS are complex
and not yet fully understood. Most studies have focused on
PFOA and PFOS. Evidence from animal and human studies
indicates that PFAS activate peroxisome proliferator-
activated receptor alpha (PPAR-a) and, to a lesser extent,
PPAR-y, thereby disrupting lipid and glucose metabolism
and promoting adipogenesis [72,73]. They can also
interfere with thyroid hormone transport and signaling,
as PFOS and PFOA competitively bind to transthyretin,
potentially disrupting systemic thyroid regulation [74].

In addition, PFAS exposure disrupts bile acid metabolism
and promotes hepatic lipid accumulation, thereby linking
these compounds to MASLD [75].

5.5.  Polychlorinated  biphenyls
polybrominated biphenyls (PBBs)
PCBs have been extensively used in industry due to
their electrical insulation properties, high boiling point,
chemical stability, and resistance to fire. PBBs were
primarily used as flame retardants in various consumer
products to minimize fire risk [76]. Several studies have
highlighted that exposure to PCBs and PBBs may be
associated with an increased incidence of cardiovascular
disease, endothelial and endocrine dysfunction,
hypertension, and hyperlipidemia [77-79].

Similar to PFAS, PCBs and PBBs are persistent
organic pollutants that accumulate in adipose tissue,
disrupt thyroid hormone signaling, and induce oxidative
stress and inflammation, thereby contributing to insulin
resistance and metabolic dysfunction [72,75]. In addition,
they may activate the aryl hydrocarbon receptor, thereby
altering xenobiotic metabolism and further disturbing
lipid and glucose homeostasis [80].

(PCBs) and

5.6. Polycyclic aromatic hydrocarbons (PAHs)

Polycyclic aromatic hydrocarbons (PAHs) are carbon-
and hydrogen-based pollutants that are ubiquitous in the
atmosphere, water, and soil. They are formed through the
incomplete combustion of coal, oil, gas, vehicle emissions,
and tobacco smoke. Common household products such
as cosmetics, coatings, and rubber materials may also
contain PAHs. Although inhalation is the primary route
of human exposure, ingestion and dermal absorption can
also occur [81]. Increased waist circumference and obesity
in children have been positively associated with total
urinary PAH and naphthalene metabolites [82]. Benzo[a]
pyrene, a representative PAH, has been reported to inhibit
lipolysis and increase fat deposition in adult mice [83].
PAHs undergo metabolic activation via cytochrome P450
enzymestoformreactivemetabolitesthatgenerate oxidative
stress and DNA adducts. This oxidative and inflammatory
burden contributes to adipocyte dysfunction, insulin
resistance, and endothelial injury [84]. Consequently,
several studies have demonstrated associations between
PAH exposure and T2D, hypertension, and dyslipidemia
[85-87].

5.7. Pesticides

Current literature indicates that global pesticide
production reached 3.5 million tons in 2020 [88].
Organophosphates, carbamates, organochlorine pesticides,
pyrethroids, and triazines are among the most extensively
studied classes of pesticides [89]. Each of these pesticide
classes exerts distinct adverse effects on human health.
However, in real-life scenarios, humans are seldom
exposed to a single chemical agent. Instead, humans are
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simultaneously exposed to multiple pesticides and various
other environmental contaminants. This phenomenon,
often referred to as the “cocktail effect’, describes the
synergistic or additive interactions among multiple
chemicals. Even if the concentration of each pesticide
is below its individual toxic threshold, their combined
presence can disrupt endocrine and metabolic pathways,
amplify oxidative stress, and worsen inflammatory
responses. Such combined exposures have been shown
to impair insulin signaling, alter lipid metabolism, and
contribute to adipocyte dysfunction. Consequently,
simultaneous exposure to multiple pesticides and
contaminants may increase the risk of T2D, dyslipidemia,
and insulin resistance through the so-called “cocktail
effect” [90]. A recent metaanalysis reported that overall
pesticide exposure was associated with a 42% increase in
the risk of metabolic syndrome. It has also been reported
that pesticides accumulate in adipose tissue, and their
adverse effects may intensify with increasing BMI [89].
Current evidence in the literature primarily focuses on
organochlorine pesticide exposure, indicating the need for
further research on other pesticide classes [89].

5.8. Heavy metals

Heavy metals can enter the human body both directly
and indirectly, accumulating over time through the
consumption of food and water or viainhalation [91]. Heavy
metals can disrupt normal endocrine function, induce
oxidative stress, and initiate inflammatory responses.
These effects play an essential role in the development of
obesity and MetS [92]. A recent review suggested that the
four most concerning heavy metal pollutants—arsenic,
cadmium, lead, and mercury—may share common
mechanistic pathways contributing to MetS development.
These metals can promote mitochondrial dysfunction,
disrupt adipokine secretion, and impair insulin signaling,
thereby contributing to metabolic dysregulation [93].
Furthermore, studies have shown that the prevalence of
MetS is higher among individuals exposed to heavy metals
[94]. Studies have revealed that leptin levels in the serum
of offspring from pregnant rodents and women—as well as
in placental tissue and cord blood—significantly increase
following exposure to arsenic-contaminated water, as
demonstrated in both animal and human studies [95-97].
In addition, in a systematic review, Tinkov et al. analyzed
six studies on obesity, five of which reported an association
between mercury exposure and increased obesity risk [98].

6. Additional pathophysiological mechanisms of
endocrine disruptor-induced metabolic dysfunction

In addition to the specific mechanisms described for
each chemical group, several shared biological pathways
are believed to contribute to the metabolic effects of EDs.
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One of these involves interference with neuroendocrine
signaling, which can influence appetite regulation, food
preference, and satiety control [33]. The hypothalamus,
a key brain region regulating feeding behavior, can also
be disrupted by ED exposure [14]. Differences in eating
behavior between normal-weight and obese individuals
may result from hypothalamic dysfunction, which could
alter metabolic set points, particularly during adolescence
and adulthood [99,100]. The structure and function of
dopamine pathways in the developing brain can also be
altered by exposure to EDs. For instance, early exposure
to BPA has been shown to alter dopaminergic activity
in brain regions associated with impulsive and addictive
behaviors [101]. Another human study reported that BPA
levels were inversely associated with ghrelin and positively
correlated with leptin and adiponectin, key hormones
regulating glucose, lipid metabolism, and satiety [102].

Furthermore, EDs can disrupt energy homeostasis
by facilitating caloric accumulation through alterations
in basal metabolic rate, gut microbiota composition, and
nutrient storage [4,103,104]. These changes may reduce
overall energy expenditure and promote lipid deposition
in adipose tissue, contributing to insulin resistance. EDs
influence energy expenditure through their effects on
brown adipose tissue activity, skeletal muscle metabolism,
and the synthesis and action of thyroid hormones.
Suppression of thermogenic activity in brown adipose
tissue and decreased mitochondrial respiration can impair
heat generation and energy utilization [105].

Exposure to EDs also induces several alterations,
including the activation of molecular pathways and
disruption of intestinal microbial homeostasis. Dysbiosis
may alter the balance of beneficial and pathogenic
bacteria, leading to increased intestinal permeability,
endotoxin release, and chronic low-grade inflammation.
The host can absorb metabolites produced through
microbial degradation of EDs. Some of these microbial
metabolites—such as short-chain fatty acids, secondary
bile acids, and lipopolysaccharides—can disrupt lipid and
glucose metabolism, thereby exacerbating oxidative stress
and inflammatory signaling [106].

Current evidence on the metabolic effects of endocrine
disruptors remains heterogeneous and, in some cases,
contradictory. Most existing studies are observational
and have relatively short follow-up durations, which
limits causal inference. Furthermore, humans are seldom
exposed to a single compound, and multiple concurrent
exposures make it challenging to determine the individual
contribution of each chemical. These limitations should
be considered when interpreting findings and underscore
the need for long-term, well-designed studies to elucidate
both the independent and combined effects of EDs on
metabolic health.
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7. Prevention strategies to reduce the adverse effects of
endocrine disruptors

Increasing awareness of the sources and hazards of EDs
and promoting public engagement are essential to mitigate
their adverse health effects. Although individual actions
are limited, minimizing exposure by avoiding products
known to contain EDs remains crucial. The most critical
measure, however, is for authorities to implement effective
preventive strategies and enforce appropriate regulations.

Recent regulatory examples highlight the importance
of stronger preventive measures. As mentioned previously,
EFSA recently reduced the TDI for BPA by nearly
20,000-fold, underscoring the growing recognition of its
potential risks [34]. However, discrepancies persist among
regulatory bodies; for instance, the European Medicines
Agency has raised formal objections to several aspects
of EFSA’s proposal [107]. This divergence highlights the
need for closer collaboration among policymakers and
international agencies to develop coherent and effective
preventive strategies.

Metaanalyses have also demonstrated that pesticide
exposure increases the risk of MetS by approximately
42% [89], supporting the need for stricter monitoring and
regulation. In response to strong evidence linking PFAS
with obesity, diabetes, and dyslipidemia, several countries
have established drinking water standards and monitoring
programs' [108].

Practical measures may include substituting BPA with
safer alternatives, restricting the use of phthalates in food
packaging, reducing pesticide residues in agricultural
products, and ensuring regular monitoring of PFAS
contaminationinwatersources. Additionalstrategiesinvolve
advancing detection technologies, applying standardized
methodologies for exposure assessment, encouraging
cross-sectoral collaboration, and incorporating scientific
research into policy development [109]. Consequently,
reducing exposure through increased public awareness,
education, evidence-based environmental policies, and

strengthened occupational safety measures is essential to
mitigate the health risks associated with EDs.

8. Conclusion

Current evidence suggests that EDs contribute to the
development of obesity and MetS by disrupting hormonal
balance, altering adipogenesis, and impairing insulin
signaling. Additionally, the “cocktail effect” of combined
exposures, transgenerational epigenetic modifications,
and gut microbiota dysregulation provide insight into
how even low-dose and lifelong exposures can lead to
persistent health consequences. These findings highlight
that EDs not only affect adiposity but also exacerbate key
components of MetS, such as dyslipidemia, hypertension,
and glucose intolerance. From a public health standpoint,
stricter regulations, continuous monitoring, and targeted
preventive  strategies—particularly  for  vulnerable
populations—are essential to minimize exposure and
reduce the global burden of ED-associated metabolic
disorders.
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