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Abstract

Purpose of Review The gastrointestinal tract acts as an endocrine organ, releasing hormones that regulate glucose homeo-
stasis, appetite, energy expenditure, and gastrointestinal motility. In type 2 diabetes (T2DM) and obesity, this finely tuned
hormonal system is disrupted, contributing to metabolic dysfunction. This review summarizes current evidence on fasting
and postprandial responses to mixed-meal tests (MMT) and oral glucose tolerance tests (OGTT) of proglucagon-derived
peptides (PGDPs), orexigenic and anorexigenic hormones, and less frequently studied gastrointestinal peptides in individu-
als with T2DM and obesity compared with healthy controls.

Recent Findings Studies demonstrate that while GLP-1 levels are often preserved, its insulinotropic and glucagonostatic
actions are impaired in T2DM and obesity. GIP secretion is maintained or increased but exhibits reduced biological effi-
cacy. Oxyntomodulin and GLP-2 show blunted postprandial responses, whereas glicentin, GRPP, and MPGF remain poorly
characterized but appear dysregulated. PYY is reduced in obesity and shows impaired postprandial rises in T2DM, while
PP is frequently elevated in T2DM. CCK resistance may diminish satiety signaling, though secretion data are inconsistent.
Secretin and amylin exhibit complex, stage-specific alterations, whereas ghrelin and obestatin are typically reduced in both
conditions.

Summary Gut hormone alterations in T2DM and obesity include both adaptive and pathogenic features, reflecting disrup-
tions across multiple peptide systems. Standardization of peptide measurements and deeper investigation into their mecha-
nistic roles will be essential for advancing precision-based interventions targeting gastrointestinal hormones in metabolic
disease.
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Postprandial
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GOAT ghrelin O-acyltransferase

GRPP glicentin-related pancreatic polypeptide

HOMA-IR  homeostatic model assessment of insulin
resistance

HbAIC glycated hemoglobin

IAPP islet amyloid polypeptide

IGT impaired glucose tolerance

IP-1 intervening peptide-1

iAUCs incremental areas under the curve

MAFLD metabolic dysfunction-associated fatty liver
disease

MMT mixed-meal test

MPGF major proglucagon fragment

OGTT oral glucose tolerance test

OXM oxyntomodulin

PC prohormone convertase

PGDPs proglucagon-derived peptides

POMC proopiomelanocortin

PP pancreatic polypeptide

PYY peptide YY

RAMPs calcitonin receptor with receptor activity-
modifying proteins

RIA radioimmunoassay

RYGB Roux-en-Y gastric bypass

SCT secretin

SCTR secretin receptor

SG sleeve gastrectomy

T2DM type 2 diabetes mellitus

Introduction

The gastrointestinal tract is traditionally recognized for its
roles in nutrient digestion and absorption; however, it also
functions as a complex endocrine organ. Specialized entero-
endocrine cells distributed along the gut secrete a wide
range of peptides, collectively known as gut hormones or
gut peptides, which orchestrate critical processes in glucose
metabolism, appetite regulation, gastrointestinal motility,
and energy homeostasis [1]. These peptides have attracted
increasing attention due to their relevance in the pathophys-
iology and treatment of obesity, type 2 diabetes mellitus
(T2DM), and related metabolic disorders.

Despite intense focus on incretins such as (glucagon-
like peptide-1) GLP-1 and glucose-dependent insulinotro-
pic polypeptide (GIP), comprehensive evaluation of other
gut peptides—including proglucagon-derived peptides
(PGDPs) beyond GLP-1 and GIP, as well as orexigenic and
anorexigenic hormones—remains lacking.

Among the most studied gut-derived peptides are the
incretins: GLP-1 and GIP. GLP-1, produced by intesti-
nal L-cells in response to food intake, enhances insulin
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secretion, suppresses glucagon, delays gastric emptying,
and promotes satiety [2]. GIP, secreted by K-cells, similarly
stimulates insulin release but loses efficacy in advanced
T2DM [3]. Therapeutics based on these peptides—includ-
ing GLP-1 receptor agonists and dual GLP-1/GIP receptor
agonists like tirzepatide—have shown significant benefits in
glycemic control and weight reduction [4].

GLP-1, along with other PGDPs such as oxyntomodu-
lin (OXM), glucagon-like peptide-2 (GLP-2), glicentin,
and glucagon, is encoded by the proglucagon (Gcg) gene
[5]. In pancreatic alpha cells, proglucagon is processed by
prohormone convertase 2 (PC2) to generate glucagon, gli-
centin-related pancreatic polypeptide (GRPP), intervening
peptide-1 (IP-1), and major proglucagon fragment (MPGF)
[5]. In contrast, in intestinal L-cells and specific neurons,
prohormone convertase 1/3 (PC1/3) mediate the production
of GLP-1, GLP-2, OXM, glicentin, and IP-2 [5]. Interest-
ingly, alpha cells may also express PC1/3, contributing to
local islet-derived GLP-1 that augments insulin secretion
in a paracrine manner [6]. Each PGDP has distinct roles:
GLP-2 supports intestinal health, glucagon regulates blood
glucose and appetite, OXM acts on both GLP-1 and gluca-
gon receptors to reduce appetite and body weight, and gli-
centin influences gut growth and motility [4, 6].

Beyond PGDPs, other gut-derived peptides such as
peptide YY (PYY), pancreatic polypeptide (PP), secretin
(SCT), amylin, ghrelin, and obestatin contribute to meta-
bolic regulation. PYY and PP are key satiety signals, while
SCT is involved in appetite suppression, bile secretion, and
thermogenesis [7-9]. Amylin, co-secreted with insulin,
modulates postprandial glucose levels and gastric emptying
but may exacerbate beta cell stress when dysregulated [10].
Ghrelin, a stomach-derived hormone, stimulates appetite
and opposes insulin action, whereas obestatin, derived from
the same precursor as ghrelin, may counteract its orexigenic
effects [11]. Notably, ghrelin and PYY influence not only
appetite but also insulin secretion and action, with ghrelin
inhibiting and PY'Y potentially supporting beta cell function
over time [12, 13].

There is growing evidence that the secretion and action
of these peptides are altered in metabolic disease. T2DM
is characterized by hyperglucagonemia, impaired postpran-
dial suppression of glucagon, and reduced responsiveness
to incretins—a phenomenon known as the “incretin defect”
[14]. Although the secretion of GLP-1 and GIP may not be
markedly reduced, beta cell sensitivity to their insulinotro-
pic effects is diminished [14]. In contrast, exogenous GLP-1
at pharmacological doses can overcome this resistance,
unlike GIP [15]. Patients with T2DM also display blunted
postprandial responses of OXM, glicentin, and PYY, along
with paradoxically lower fasting ghrelin levels, possibly
reflecting hormonal resistance or compensatory adaptations
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[16—18]. Moreover, fasting ghrelin has been inversely corre-
lated with insulin sensitivity, further linking it to metabolic
dysregulation [19].

Despite their biological importance, many gut-derived
peptides remain understudied in clinical contexts, and their
secretion dynamics, receptor distributions, and physiologi-
cal actions differ substantially between healthy individuals
and those with obesity or T2DM, with important therapeutic
implications. Although alterations in individual gut peptides
have been widely reviewed, no prior review has comprehen-
sively integrated evidence on all gut-derived peptides across
both obesity and T2DM, and analyses of fasting and post-
prandial dynamics across peptide classes remain limited.
In this narrative review, we synthesize current evidence on
classical incretins and less frequently examined gastrointes-
tinal hormones—including PGDP beyond GLP-1 and GIP,
as well as orexigenic and anorexigenic peptides—compar-
ing individuals with obesity or T2DM with healthy controls.
Importantly, we examine gut peptide responses not only in
the fasting state but also following physiological stimuli,
distinguishing findings from mixed-meal tests (MMT) and
oral glucose tolerance tests (OGTT) and highlighting the
influence of meal composition on postprandial hormone
secretion. By integrating dispersed literature across experi-
mental conditions and peptide classes, this review aims to
clarify inconsistencies in reported responses and to provide
a physiological framework relevant to emerging multi-ago-
nist incretin-based therapies.

Literature Search

This is a narrative review, and the literature search was
conducted up to June 2025 to capture relevant evidence on
gut peptide alterations in obesity and T2DM rather than to
perform a systematic review. A search was performed using
PubMed and Google Scholar, as well as the reference lists
of relevant review and research articles. Key search terms
included “obesity,” “type 2 diabetes mellitus,” “GLP-1,”
“GLP-2,” “proglucagon,” “glucagon,” “oxyntomodulin,”
“glicentin,” “major proglucagon fragment or MPGE,”
“glicentin-related pancreatic polypeptide or GRPP,” “GIP,”
“incretins,” “peptide YY,” “cholecystokinin,” “secretin,”
“amylin,” “ghrelin,” “obestatin,” “fasting,” “postprandial,”
and “meal.” Only original research articles and meta-analy-
ses published in English were included. No strict time frame
was applied; however, very old studies (pre-1980) or stud-
ies that used measurement methods no longer considered
valid were generally excluded when more recent, reliable
evidence was available, with a few exceptions when data
were limited. This search strategy was used to capture fast-
ing and postprandial data on both classical and less-studied
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gut peptides in individuals with obesity or T2DM. Given
the breadth of the available literature, it was not possible to
discuss all relevant studies in detail. Therefore, emphasis
was placed on representative, recent and methodologically
robust evidence.

The PGDPs
Glucagon

Glucagon is a 29-amino acid peptide hormone produced by
pancreatic alpha cells through the action of PC2 on proglu-
cagon, with trace amounts also detected in brain neurons
[5]. Its primary stimulus is hypoglycemia, though mixed
meals, amino acids, and various peptides and hormones also
promote its release [5]. Notably, sympathetic and parasym-
pathetic signaling, along with neuropeptides, enhance glu-
cagon secretion [5]. Glucagon exerts autocrine effects on
alpha cells to stimulate its own production, while insulin,
somatostatin, gamma-aminobutyric acid (GABA), amylin,
serotonin, and GLP-1 suppress its release [5, 20]. It has
a short half-life, with hepatic and renal clearance playing
major roles in its metabolism [5]. Upon secretion, glucagon
binds to its G-protein-coupled receptor (GCGR), primar-
ily expressed in the liver and kidneys, leading to increased
cyclic AMP (cAMP) levels [5]. This cascade promotes gly-
cogenolysis and gluconeogenesis while inhibiting glycoly-
sis and glycogenesis, resulting in elevated blood glucose
levels [5]. Glucagon also stimulates fatty acid oxidation and
ketogenesis under low-glucose conditions [5]. However,
its role in glucose metabolism is complex, as GCGRs are
also found in beta cells, where glucagon enhances glucose-
mediated insulin secretion [5]. Recent data suggest that glu-
cagon may support glucose production during fasting but
promote insulin secretion postprandially [6]. On the other
hand, newer data support that the insulin-secreting action of
glucagon is mediated by its binding to the GLP-1R receptor
on beta cells, while the increase in glucose results from the
stimulation of GCGR in extra-pancreatic tissues [6]. Addi-
tionally, miniglucagon, a glucagon-derived peptide, inhibits
insulin release, potentially modulating metabolic responses
[21]. Beyond glucose regulation, glucagon suppresses appe-
tite, increases energy expenditure, and has cardioprotective
effects, possibly through brown adipose tissue activation
and lipolysis [5].

There is substantial evidence supporting that patients with
T2DM or impaired glucose tolerance (IGT) exhibit mildly
elevated fasting glucagon levels [22-28]. Under conditions
of poor glycemic control or diabetic ketoacidosis, glucagon
levels are significantly higher [29-32]. Moreover, individu-
als with T2DM or IGT appear to have a reduced suppression

@ Springer



8 Page 4 of 26

Current Obesity Reports (2026) 15:8

of glucagon secretion by glucose [22, 24, 27, 28, 33-36], or
mixed meals [36—-39] compared to healthy controls. Conse-
quently, both fasting and postprandial glucagon levels have
been negatively associated with insulin sensitivity [35, 40,
41]. Faerch et al. found that in T2DM, insufficient early glu-
cagon suppression followed by delayed intense suppression
(30-120 min post-glucose) correlates with insulin resistance
[22]. Others have reported similar early suppression deficits
[25], while Wagner et al. found that reduced glucagon at
120 min correlated with higher insulin sensitivity in non-
diabetic individuals, revealing inconsistencies in the data
[42]. On the other hand, glucagon response to arginine or
glucose has been linked to future risk of developing IGT
according to two prospective studies [43, 44]. However,
other studies have found no differences in fasting glucagon
levels [35, 38, 45], or in glucagon response following glu-
cose ingestion [46] or a MMT [47] between individuals with
T2DM and healthy controls. Additionally, most studies on
postprandial glucagon response in T2DM have focused on
values obtained after OGTT or carbohydrate-rich meals [22,
25,33, 37, 48]. This highlights a gap in the literature regard-
ing glucagon fluctuations after fat- and protein-rich meals in
individuals with T2DM and prediabetes. Given that amino
acids and fatty acids stimulate glucagon secretion while car-
bohydrates suppress it [49], further research is needed to
explore alpha cell responses to meals of varying macronu-
trient composition.

Additionally, in individuals with diabetes, glucagon
secretion in response to hypoglycemia is diminished, indi-
cating alpha cell dysfunction [50]. Thus, T2DM is associ-
ated with elevated fasting glucagon levels and abnormal
glucagon responses to both hyperglycemic and hypoglyce-
mic states.

Hyperglucagonemia is observed in obesity, with studies
reporting higher fasting [47, 51-55] and post-MMT or post-
OGTT glucagon levels correlated with BMI [47, 54-56].
Stefanakis et al. noticed that fat-rich meals induced a greater
incremental area under the curve (iIAUC) and slower glu-
cagon decline than carbohydrate-rich meals [52]. Similarly,
Knop et al. found that although fasting glucagon levels were
higher in individuals with obesity and normal glucose toler-
ance, glucagon responses to OGTT did not differ from those
of lean subjects [14]. Several studies have also reported no
abnormalities in fasting glucagon [23] or postprandial glu-
cagon areas under the curve (AUC) [34] in individuals with
obesity versus their lean counterparts. There is currently no
consensus regarding the postprandial glucagon response in
obesity. It has also been suggested that obesity and hepatic
fat deposition may be more strongly associated with hyper-
glucagonemia than T2DM [51].
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OXM and Glicentin

OXM is a 37-amino acid peptide containing glucagon and
IP-1, secreted mainly by intestinal L-cells postprandially,
with additional central nervous system (CNS) expression
[57]. It is rapidly degraded by dipeptidyl peptidase-4 (DPP-4)
[57]. Although no specific receptor has been identified, OXM
binds weakly to GLP-1 and glucagon receptors, thereby
modulating glucose metabolism [57, 58]. It may stimulate
glucose production and enhance intestinal glucose absorption
via the glucagon receptor, while promoting insulin secretion
and weight loss through GLP-1 receptor activation [57-59].
Exogenous OXM improves glycemic control and insulin
secretion in both animals and humans with obesity or T2DM,
although its concurrent glucagon receptor activity may atten-
uate its glucose-lowering effects relative to GLP-1 receptor
agonists [57, 59]. OXM also stimulates endogenous gluca-
gon, partially offsetting its insulinotropic effect [S57].

Beyond glycemia, OXM reduces food intake and
increases energy expenditure, contributing to weight loss
that may surpass GLP-1 receptor agonists [57, 59, 60].
These effects appear to be mediated by both the glucagon
and GLP-1 receptors [57, 59, 61]. It also suppresses appetite
and reduces gastric and pancreatic secretions [57].

Glicentin, comprising GRPP, glucagon, and IP-1, is also
secreted by L-cells in response to nutrients [62]. It supports
intestinal growth, slows motility, and suppresses gastric acid
secretion [62]. Glicentin may enhance insulin secretion and
inhibit glucagon, though its mechanism remains unclear,
with possible action via GLP-1 receptors [62, 63]. Fasting
glicentin levels have been associated with activation of brain
reward centers, suggesting a role in appetite regulation [64].

Limited data are currently available regarding the impact
of diabetes and prediabetes on endogenous OXM levels. In
a study by Wewer Albrechtsen et al., both OXM and gli-
centin levels in the blood following an OGTT were signifi-
cantly lower in the T2DM group compared to the control
group [17]. However, in the same study, no differences were
observed between individuals with and without obesity
[17]. Similarly, Stafeev et al. found that fasting and post-
prandial OXM levels were lower in patients with T2DM
and obesity compared to those with obesity alone, with-
out diabetes [65]. It is worth noting, however, that in this
study, patients with diabetes underwent a MMT, whereas
the control group underwent an OGTT [65]. Furthermore,
in patients with newly diagnosed prediabetes or diabetes
due to acute pancreatitis, postprandial OXM levels after
an MMT were approximately 24% lower than in healthy
controls [66]. On the other hand, Bharmal et al. observed
that OXM levels after a MMT were lower in patients with
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diabetes or prediabetes secondary to pancreatitis compared
to those with pre-existing T2DM or prediabetes before the
onset of pancreatitis [67]. They suggested that OXM could
be used in the differential diagnosis of these conditions [67].
In both diabetic and prediabetic groups, postprandial OXM
levels were lower than in healthy controls [67].

To our knowledge, studies that compared directly oxyn-
tomodulin levels between subjects with obesity and those
with normal weight are meager. Two research groups how-
ever failed to show any significant difference in OXM levels
between lean subjects and those with obesity [17, 68].

With regard to glicentin, various findings indicate that
patients with IGT or T2DM have lower fasting glicentin
levels than healthy controls [69]. Notably, in one study,
even acute IGT due to acute pancreatitis was associated
with reduced fasting glicentin levels [70]. Manell et al.
observed significantly lower postprandial glicentin levels
after an OGTT in adolescents with obesity and IGT, and
marginally lower levels when obesity was combined with
T2DM, compared to individuals with obesity alone [69]. As
previously mentioned, post-OGTT glicentin levels in adults
with T2DM were also lower than in healthy controls [17].
In the study by Manell et al., fasting glicentin levels had
good predictive value for diagnosing IGT in adolescents
with obesity and normal fasting glucose level [69]. Simi-
larly, Hoffmann et al. monitored patients with prediabetes
over a year and observed that although there were no initial
differences, those who developed T2DM during the study
exhibited lower post-OGTT glicentin and GLP-1 stimula-
tion, reduced postprandial glucagon suppression, and lon-
gitudinal changes in glicentin and GLP-1 AUCs that were
predictive of T2DM onset [16]. However, other researchers
failed to demonstrate a statistically significant association
between fasting glicentin and insulin resistance [71].

Individuals with obesity also appear to have lower fasting
[71] and postprandial [52, 68] glicentin levels compared to
lean controls, although this observation is not consistently
confirmed across studies [17, 69].

In summary, both OXM and glicentin tend to be lower
in individuals with diabetes and/or obesity. However, it
should be noted that the measurement of both OXM and
glicentin have been technically challenging, requiring years
of research to develop reliable methodologies. As a result,
comparisons between studies utilizing different measure-
ment techniques remain difficult.

GLP-1

GLP-1 is primarily secreted by intestinal L-cells in response
to food intake, with a biphasic release pattern postprandi-
ally [2]. Factors such as meal composition and size influ-
ence GLP-1 secretion, with lipids inducing a delayed but

prolonged response [2]. Additionally, GLP-1 is secreted at
basal levels during fasting and may also be regulated by
the autonomic nervous system and ghrelin [2]. Beyond the
intestine, GLP-1 production has been identified in pancreatic
alpha cells under metabolic stress and in certain neurons of
the central nervous system [2]. However, its biological activ-
ity is rapidly terminated by degradation via DPP-4, with only
10-15% of the secreted hormone reaching the pancreas [2].

GLP-1 exerts its effects through the GLP-1 receptor
(GLP-1R), which is primarily expressed in pancreatic beta
and delta cells, as well as in neurons, myocardial cells,
and other tissues [72]. Its primary function is to enhance
glucose-dependent insulin secretion while suppressing glu-
cagon release, thereby reducing hepatic glucose production
and maintaining glycemic homeostasis [2, 73]. It also pro-
tects beta cells by inhibiting apoptosis, slows gastric emp-
tying, reduces appetite via central mechanisms, and may
influence lipid metabolism [2, 72, 73]. Emerging evidence
also suggests roles in cardiovascular and renal function
[74]. However, while GLP-1-based therapies are effective
for glycemic control and weight loss, their full physiologi-
cal impact requires further elucidation [73].

Several studies have reported a reduced basal [75] and
postprandial secretion of GLP-1 in patients with T2DM,
however, recent meta-analyses have not confirmed a sig-
nificant impairment in GLP-1 secretion in individuals
with T2DM or prediabetes compared to healthy controls,
whether assessed after OGTT or a mixed meal [76-78].
Calanna et al. observed in a post-hoc analysis that higher
glycated hemoglobin (A1C) levels were associated with a
lower iAUC for GLP-1 [76]. Conversely, in some studies,
patients with T2DM who had a shorter disease duration and
lower A1C levels exhibited a higher postprandial GLP-1
response compared to healthy controls, possibly as a com-
pensatory mechanism due to reduced GLP-1 action [76, 79].
This suggests that glycemic control and diabetes duration
may influence postprandial GLP-1 secretion [76].

The meta-analysis by Watkins et al. indicated that differ-
ences in GLP-1 measurement methods might account for
discrepancies between studies comparing individuals with
T2DM and controls [78]. Additionally, medications such as
metformin and colesevelam, which increase GLP-1 levels,
may contribute to the heterogeneity observed across stud-
ies [80—82]. Furthermore, although not extensively studied,
GLP-1 secretion appears to vary by sex and age, potentially
affecting study outcomes. For instance, Faerch et al. found a
positive correlation between lower GLP-1 levels in individ-
uals with prediabetes or T2DM and female sex, attributing
this partially to higher GLP-1 levels in female controls com-
pared to males [83]. The same study reported higher GLP-1
levels in older individuals, possibly due to impaired renal
function and reduced GLP-1 clearance [83].
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Even if GLP-1 levels remain unaffected by diabetes status,
evidence suggests that its insulinotropic effect and suppres-
sion of glucagon secretion are impaired in individuals with
T2DM compared to both healthy controls and those with
IGT [34, 84] However, some studies have reported no sig-
nificant difference in GLP-1-mediated glucagon suppression
between T2DM patients and healthy individuals [85]. Other
researchers have noted a general incretin defect in T2DM
and prediabetes, without differentiating whether this is due
to impaired GLP-1 function, GIP function, or both [86].

In individuals with obesity, postprandial GLP-1 secretion
appears to be reduced following OGTT [87], independent
of the presence of IGT or overt T2DM [34, 83]. GLP-1 lev-
els after a MMT have been negatively associated with body
weight in some studies [8§7-90], while others found no corre-
lation [91, 92]. Interestingly, Perakakis et al. and Bowen et al.
observed a positive correlation between BMI and both fasting
and postprandial GLP-1 levels [54, 93]. It is also possible that
basal active GLP-1 secretion is diminished in obesity [94].
Weight loss through dietary interventions improves postpran-
dial GLP-1 levels, though they do not reach those observed
in individuals with normal body weight [89, 95]. However,
some studies, such as those by Sumithran et al., have reported
no significant changes in GLP-1 levels despite one year of
weight loss [96]. Sloth et al. observed an initial decrease in
GLP-1 levels after eight weeks of dieting, but levels returned
to baseline by six months [97].

A study on monozygotic and dizygotic twins suggested
that approximately 67% of the GLP-1 response after OGTT
is genetically determined [98]. In the same study, GLP-1 lev-
els after both OGTT and MMT were lower in twins with
higher body weight compared to their leaner siblings, with
associations to insulin resistance and hepatic fat deposition
[98]. The authors concluded that obesity alone is insufficient
to impair incretin responses; other metabolic syndrome com-
ponents may also contribute [98]. However, a limitation of
this study was the lack of glucagon measurements. Muscelli
et al. found that incretin function was negatively correlated
with both body weight and the presence of T2DM, indepen-
dently of one another [34]. Some researchers, however, have
found no significant differences in GLP-1 levels between
individuals with obesity and those with normal weight
[99]. Collectively, the available data suggest that postpran-
dial GLP-1 secretion may be impaired in obesity; however,
whether this is a consequence of increased body weight or
contributes to the pathogenesis of obesity remains unclear.

GLP-2
Glucagon-like peptide-2 (GLP-2), a 33-amino acid peptide

co-secreted with GLP-1, which exhibits a biphasic release
pattern and is rapidly inactivated by DPP-4 [100]. Though
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not a major regulator of glucose, GLP-2 maintains intestinal
integrity via its receptor (GLP-2R), promoting enterocyte
proliferation, reducing apoptosis, and enhancing barrier
function and blood flow [100]. It also decreases gastric acid
and intestinal motility, though its physiological relevance
remains under investigation [100].

GLP-2 also affects the pancreas, with pharmacological
doses stimulating glucagon secretion in humans and mice,
though results are inconsistent under varying glycemic con-
ditions [100, 101]. In GLP-2R-deficient ob/ob mice, ele-
vated glucagon levels, alpha cell mass, and hyperglycemia
were observed, along with reduced beta cell mass, indicat-
ing a complex role in obesity and glucose regulation [101].

Additional GLP-2 effects include reduced bone resorp-
tion, enhanced lipid absorption, and CNS-mediated regula-
tion of blood pressure and neuroprotection [100]. Although
rodent data suggest anorexigenic effects, peripheral GLP-2
analogs do not significantly alter food intake in humans
[100, 102].

Few studies have compared GLP-2 levels between indi-
viduals with diabetes and healthy controls. In a study by
Cazzo et al., the GLP-2 AUC following a MMT was sig-
nificantly lower in participants with both T2DM and class
I obesity, as well as in those with class III obesity without
diabetes, compared to lean, healthy controls [103]. Con-
versely, Gelonese et al. reported a negative correlation
between postprandial GLP-2 levels and insulin sensitivity
[104]. However, in a study by Higgins et al., while fasting
GLP-2 levels were not associated with insulin resistance,
postprandial GLP-2 responses were negatively correlated
with homeostatic model assessment of insulin resistance
(HOMA-IR) [105].

Obesity appears to be associated with a reduced post-
prandial GLP-2 response [103], possibly due to increased
DPP-4 activity [87], which may partly explain the findings
of Cazzo et al. In contrast, fasting GLP-2 levels were sig-
nificantly higher in individuals with obesity compared to
lean individuals in two other studies [52, 106], while a third
study found no difference in fasting GLP-2 levels between
individuals with elevated versus normal body weight [105].
The macronutrient composition of test meals used in dif-
ferent studies may also influence outcomes, as protein-rich
meals appear to elicit a greater GLP-2 increase compared
to carbohydrate-rich meals and, even more so, compared to
high-fat meals [107].

MPGF and GRPP

Few researchers have measured MPGF levels across differ-
ent populations, and data on GRPP are nearly nonexistent.
Since MPGF contains the GLP-1 sequence in its structure,
older analytical methods may have falsely measured it as
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GLP-1 [45]. Stefanakis et al. examined individuals with
obesity, overweight, and normal body weight and observed
a positive correlation between MPGF—both fasting and
postprandial—and body mass index (BMI) [54]. Weight
loss following a three-month treatment with either liraglu-
tide or bupropion/naltrexone resulted in a reduction of the
postprandial MPGF response, with the effect being more
pronounced in the bupropion/naltrexone group and inde-
pendent of changes in body weight. However, this reduc-
tion correlated negatively with changes in lean mass [108].
Notably, the decrease in fasting glucose levels following the
three-month intervention and weight loss was negatively
associated with the reduction in MPGF AUC [108].

Similarly, in a recent study by the same group, no dif-
ferences in MPGF levels were observed between lean indi-
viduals and those with obesity when consuming a balanced,
low-calorie meal [52]. However, following a high-calorie,
high-fat meal, the postprandial MPGF response was greater
in the obesity group [52]. Additionally, participants in the
high-fat meal study arm exhibited differences in fasting
MPGEF levels, with higher values observed in the obesity
group [52]. MPGF levels also showed a positive correla-
tion with body weight, body fat and male sex [52]. In the
same study, a comparison between a high-fat meal and a
carbohydrate-rich meal revealed that MPGF exhibited a
more prolonged elevation following fat consumption [52].

Furthermore, in a study by Polyzos et al., where partici-
pants underwent liver biopsy, MPGF levels were positively
associated with hepatic steatosis in the early stages of meta-
bolic dysfunction-associated fatty liver disease (MAFLD)
[109]. On the other hand, Kokkinos et al. did not observe
a significant difference in either fasting or postprandial
MPGF levels between patients with obesity and lean ones
[68]. Direct evidence comparing MPGF levels between
individuals with and without diabetes is lacking, and the
same is true for GRPP.

Other Gut Peptides
GIP

The GIP gene, located on chromosome 17, encodes proGIP,
which is processed to the active form GIP (1-42) by PC
1/3 [3]. GIP is secreted by the K-cells of the small intestine
in response to nutrients, particularly fats and carbohydrates,
and has a short half-life due to DPP-4 degradation [3].
Unlike GLP-1, GIP remains more stable and is also cleared
by the kidneys [110].

GIP promotes insulin secretion, synthesis, beta cell prolif-
eration, and survival [3]. It also stimulates glucagon release,

contributing to glucose regulation under both hypoglycemic
and hyperglycemic conditions [3]. Thus, GIP plays a comple-
mentary role in maintaining glucose homeostasis [3]. Unlike
GLP-1, GIP does not slow gastric emptying but can inhibit
gastric acid secretion at high concentrations [111]. GIP
receptors are expressed in the CNS, bone, and adipose tissue,
where GIP promotes anabolic effects and may enhance bone
formation [3]. Its influence on memory, liver fat, and appetite
regulation remains less clearly defined [3, 112].

In individuals with T2DM, both basal and postprandial
GIP secretion has been reported to be slightly increased in
some studies [34, 113, 114]. However, a meta-analysis of
22 studies indicated no significant difference in GIP secre-
tion following an OGTT or MMT between individuals with
and without T2DM, a finding also reported for GLP-1[115].
According to the same meta-analysis, BMI was positively
associated with the GIP response, whereas age and A1C
levels showed a negative correlation [115]. Given the het-
erogeneity among studies and measurement methodologies
for GIP, it remains possible that as T2DM progresses, GIP
synthesis may ultimately decline. Even if GIP production is
maintained, all available evidence suggests that in individu-
als with T2DM of various etiologies, GIP loses its ability to
stimulate insulin secretion from beta cells [15, 116, 117].
This loss of GIP’s incretin effect could be either a conse-
quence or a cause of diabetes. Evidence suggests that the
impairment in GIP-induced insulin secretion occurs after,
rather than before, the onset of insulin resistance, making it
more likely a consequence of the metabolic disorder leading
to T2DM [118, 119]. Two potential mechanisms have been
proposed to explain the loss of GIP function: a reduction in
beta cell mass due to the progression of diabetes and glu-
cotoxicity or a decrease in GIP receptor (GIPR) expression
on beta cells [120]. On the other hand, improving glycemic
control to near-normal levels may partially, but not fully,
restore the GIP’s incretin action [121, 122].

GIP has an anabolic effect on adipose tissue, promoting
subcutaneous fat deposition while also enhancing the release
of pro-inflammatory cytokines from adipose tissue—distur-
bances commonly observed in obesity [3]. However, data
on the effect of obesity on GIP levels remain limited. Some
evidence suggests that individuals with overweight/obesity
exhibit increased fasting and postprandial GIP secretion fol-
lowing an OGTT or MMT [14, 99, 123-125]. A positive
correlation between body weight and GIP levels has also
been observed in patients with T2DM [115]. Conversely,
other studies have reported no difference [87, 89, 98, 126—
128] in GIP levels in individuals with obesity compared to
lean ones. The discrepancies among studies may be attrib-
uted to differences in methodology and GIP measurement
techniques.
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PYY and PP

PYY, composed of 36 amino acids, is primarily produced
by intestinal L-cells and plays a key role in appetite regula-
tion and metabolism [7]. It is released in response to food
intake, reaching peak levels two hours postprandially, with
its secretion influenced by meal composition and vagal
nerve activity [7]. PYY(1-36) is metabolized by DPP-4 into
PYY(3-36), its more active form, which primarily binds to
Y2 receptors in the brain, suppressing appetite by inhibit-
ing agouti-related peptide and neuropeptide Y (AgRP/NPY)
neurons and activating proopiomelanocortin (POMC) neu-
rons [7]. Additionally, PYY increases energy expenditure
by enhancing thermogenesis, reduces gastric motility, and
increases intestinal absorption of water and sodium [7, 129].
Regarding its effects on metabolism, PY'Y appears to sup-
press glucose-stimulated but not basal insulin secretion and
also inhibits lipolysis [13]. The exact mechanism by which
PYY reduces glucose-induced insulin secretion remains
unclear, though both direct and indirect actions on beta cells
have been proposed [13]. Experimental studies suggest that
PYY administration enhances insulin sensitivity [13, 130].
While both forms exhibit anorexigenic effects, PYY(1-36)
plays a greater role in insulin suppression, whereas PYY(3—
36) primarily enhances insulin sensitivity [13]. Together,
they ultimately lower insulin levels and insulin resistance,
although this effect is not yet well-documented [13]. Overall,
it contributes to energy balance and has been proposed as a
potential therapeutic target for obesity and diabetes [13].
The available data so far are inconclusive regarding the
actual status of PYY levels in individuals with T2DM. Fast-
ing PYY levels have been found to be elevated in individu-
als with T2DM or IGT compared to healthy controls [131,
132], and they correlated positively with A1C levels [131].
In another study however, first degree relatives of patients
with T2DM had lower basal PYY than the control group,
which was negatively correlated with insulin resistance
[133]. English et al. observed that while fasting PYY was
higher in individuals with T2DM, the postprandial PYY
response was attenuated compared to weight-matched
healthy controls [132]. In individuals with a combination of
obesity and T2DM/IGT, the PY'Y response to fat intake was
also diminished compared to the control group; however, in
this case, the coexistence of severe obesity may have influ-
enced the results [134]. Conversely, the PYY AUC follow-
ing a MMT was higher in individuals with T2DM compared
to those with IGT; however, this study did not include a com-
parison with healthy controls [135]. Additionally, Viardot
et al. reported a lower PYY response after a carbohydrate-
rich meal in individuals with a family history of T2DM but
without IGT, compared to those without a family history of
T2DM, whereas neither fasting PYY levels nor PYY AUC
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after a fat-rich meal differed between the two groups [136].
Furthermore, according to Belinova et al., meal composi-
tion plays a role in the PY'Y response [137]. A carbohydrate-
based meal induced greater PYY responses in individuals
with T2DM compared to a fat- and protein-rich meal, while
the opposite was observed in healthy controls [137].

However, other studies have not found a significant cor-
relation between fasting PYY and insulin resistance [138,
139], while Brownley et al. reported a positive correlation
between PYY AUC and insulin sensitivity [140].

On the other hand, existing data consistently indicate
that PYY levels, both fasting [141-145], and postprandial
[140-144, 146, 147] are lower in individuals with obesity
compared to lean individuals. PYY has also been found to
be negatively associated with BMI [139, 141]. There does
not appear to be resistance to PY'Y action in individuals with
obesity, as exogenous administration led to appetite sup-
pression similar to that observed in healthy controls [142].
Additionally, the ratio of PYY(1-36) to PYY(3-36) did not
differ between individuals with normal and increased body
weight, suggesting an overall reduction in PYY produc-
tion in obesity rather than a selective decrease in its frac-
tions [142]. Given that PYY suppresses appetite, its lower
concentrations in individuals with obesity may contribute
to increased food intake and weight gain. However, some
researchers did not observe a significant difference in fast-
ing PYY levels [140, 147—150] or postprandial PYY levels
[145, 149] or following an OGTT [150] between individu-
als with and without obesity. Others paradoxically found a
positive correlation between PYY levels and body weight
[131]. Stock et al., despite not recording a significant differ-
ence in PYY AUC after a mixed meal between individuals
with obesity and controls, observed an earlier postprandial
increase in PYY at 15 min in healthy controls, which was
absent in the obesity group [149].

Overall, based on the above, PYY has a strong anorexi-
genic effect, and its levels are likely suppressed in individu-
als with obesity, which may at least partially explain their
increased food intake and weight gain. Conversely, exoge-
nous PYY administration has been found to reduce appetite
[141]. Finally, in individuals with T2DM, there is evidence
of elevated fasting PYY levels but an inadequate post-
prandial increase. PYY suppresses insulin secretion while
simultaneously enhancing tissue insulin sensitivity. There-
fore, its diminished postprandial response may be linked to
the hypersecretion of insulin observed in individuals with
T2DM and insulin resistance.

Pancreatic polypeptide (PP) is a 36-amino acid peptide
secreted by F-cells of the pancreatic islets in response to
food intake, particularly fats, though other factors such as
cholecystokinin (CCK), GIP, adrenaline, and somatosta-
tin also regulate its release [9]. PP levels remain elevated
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for about six hours post-secretion and it is metabolized by
DPP-4 and neprilysin [9]. It binds to Y4 receptors in the
brainstem, hypothalamus, and other tissues, reducing appe-
tite, pancreatic exocrine secretion, gastric emptying, and
gallbladder motility [9]. In mice, PP has been linked to
increased energy expenditure, likely due to enhanced loco-
motion [9]. While it suppresses insulin secretion, it also
exerts a protective effect on beta cells [151]. PP administra-
tion in animals, and humans, including those with Prader-
Willi syndrome, reduces appetite and food intake [151].

Limited human studies have shown that fasting and post-
prandial PP levels are elevated in individuals with T2DM
compared to healthy controls. Among T2DM patients, those
not receiving insulin therapy exhibit higher PP levels than
insulin-treated individuals [152]. In diabetes secondary to
chronic pancreatitis, both basal and postprandial PP secre-
tion are increased compared to patients with chronic pancre-
atitis without diabetes [153]. However, in individuals who
developed diabetes or prediabetes after acute pancreatitis,
PP secretion does not differ from healthy controls [154].
Another study reported higher PP levels in T2DM patients
without pancreatic disease compared to those with diabetes
due to pancreatic exocrine dysfunction [155]. Weight loss in
T2DM patients is associated with reduced PP levels, and PP
changes correlate inversely with insulin sensitivity [156].

In Prader-Willi syndrome-related obesity, both fasting
and postprandial PP levels are reduced [157]. However,
findings in non-syndromic obesity are inconsistent, with
some studies reporting decreased fasting and postprandial
PP levels [158, 159], while others found no difference com-
pared to lean individuals [160]. Diet-induced weight loss
has been linked to increased fasting PP in children with obe-
sity [158], and exercise has been shown to enhance post-
prandial PP response [161]. In contrast, a study by Kahleova
et al. reported that diet-induced weight loss led to reduced
fasting and postprandial PP levels in adults with T2DM,
with no additional effect from exercise [156].

CCK

CCK is produced by I cells in the duodenum, as well as by
neurons in the gut and brain [8, 162]. Food intake, particu-
larly lipids and proteins, stimulates CCK secretion, which
subsequently binds to CCK-1 receptors in peripheral tis-
sues and CCK-2 receptors in the CNS [8]. CCK receptors
are G protein-coupled, and their activation facilitates nutri-
ent absorption in the intestine, slows gastric emptying and
gastric acid secretion, stimulates the exocrine pancreas to
produce digestive enzymes, enhances gallbladder contrac-
tion, reduces energy intake, and increases insulin secretion
[8, 162]. Many of these effects are mediated by activation of

the vagus nerve, suppression of ghrelin, and stimulation of
leptin by CCK [8, 162].

In individuals with obesity, there appears to be resis-
tance of vagal neurons to CCK, leading to a diminished
anorexigenic effect [145] and perhaps impaired CCK
secretion. However, a recent meta-analysis found no sig-
nificant differences in CCK levels between lean individ-
uals and people with obesity [163]. On the other hand,
limited data exist regarding potential CCK dysregulation
in individuals with T2DM compared to healthy individu-
als. Milewicz et al. did not observe differences in fasting
CCK levels between participants with and without T2DM,
although CCK was positively correlated with leptin and
insulin [164]. Notably, findings by Rhee et al., who ana-
lyzed intestinal biopsies, indicated that CCK mRNA
expression and the density of CCK-producing cells were
similar between samples from patients with T2DM and
those from healthy controls [165]. In contrast, another
study found that while fasting CCK levels did not differ
between individuals with and without T2DM, the post-
prandial CCK response was significantly lower in the dia-
betes group [166]. However, an opposing set of findings
was reported by another research team [167], highlighting
the inconsistency of available data and the difficulty in
drawing definitive conclusions.

Secretin

Secretin (SCT) is a 27-amino acid peptide primarily pro-
duced by S-cells in the proximal small intestine, with addi-
tional expression in enteroendocrine and dendritic cells
[168, 169]. Its secretion is stimulated by acidic gastric con-
tents, lipids, and proteins, while the role of carbohydrates
remains unclear [168, 169]. Prolonged fasting increases
SCT levels, and a secretin-releasing peptide has been iden-
tified [169]. SCT has a short half-life (2.5-4 min) and is
primarily cleared by the kidneys [169].

SCT exerts its effects through the secretin receptor
(SCTR), a G protein-coupled receptor widely expressed
in the body [168, 169]. Its primary function is to stimulate
pancreatic exocrine secretion, while it also inhibits gastric
acid secretion and gastric emptying [168, 169]. In the hepa-
tobiliary system, SCT promotes bicarbonate-rich bile secre-
tion and relaxation of the sphincter of Oddi, facilitating bile
flow into the duodenum [168]. Emerging evidence suggests
a role for SCT in appetite regulation, as both central and
peripheral SCT administration suppresses food intake, pos-
sibly via activation of POMC neurons in the arcuate nucleus
and the vagus nerve [170]. SCT also exhibits neuroprotec-
tive properties and may be critical for brain development
[168, 169].
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SCT has a weak incretin effect, primarily influencing early-
phase glucose-mediated insulin secretion rather than insulin
synthesis [171]. However, its insulinotropic action appears
significant only at supraphysiological concentrations [171].
It may also suppress glucagon release under hyperglycemic
conditions but not during euglycemia [172]. Additionally,
SCT has been implicated in thermogenesis via UCP-1 activa-
tion in brown adipose tissue [173], and in lipolysis in white
adipose tissue [174]. Beyond metabolic regulation, SCT has
been associated with increased cardiac output, stroke volume,
and coronary and renal blood flow while reducing peripheral
vascular resistance [168, 169]. It may also play a role in air-
way hydration, mucus clearance, smooth muscle relaxation,
and whole-body water balance [168, 169].

In patients with DM, SCT-induced insulin secretion has
been found to be reduced compared to healthy controls
[175-177], although some researchers have reported no
significant difference between individuals with and without
DM [178, 179]. A recent study by Gilliam-Vigh et al., using
intestinal biopsies, also demonstrated that SCT synthesis,
SCTR mRNA expression, and the density of S-cells did
not differ between patients with T2DM and healthy volun-
teers [180]. On the other hand, secretin release in response
to duodenal acidification was found lower in patients with
DM compared with the control group [177]. On the con-
trary, Trimble et al., reported higher fasting as well as post
OGTT secretin values in subjects with newly diagnosed
T2DM compared with healthy controls, although glucose
consumption during OGTT suppressed secretin secretion in
both groups [181].

In individuals with obesity, there is evidence that the SCT
increase in response to prolonged fasting, as well as insu-
lin secretion following an OGTT in response to exogenous
SCT administration, is lower compared to normal weight
individuals [182]. However, other studies have found no
significant differences in fasting SCT levels or postprandial
SCT response following a high-fat meal across individuals
with varying body weights [183, 184], except in cases where
obesity coexisted with IGT, in which case the incretin effect
of SCT was diminished compared to healthy controls [184].
Conversely, according to Erk et al., individuals with obe-
sity required lower doses of exogenous SCT to elicit insulin
release compared to normal weight individuals [179].

Most of the aforementioned studies on individuals with
obesity and DM date back several decades, and SCT mea-
surements were performed using radioimmunoassay (RIA),
which detected porcine SCT. This technique has been criti-
cized for its reliability, potentially explaining the incon-
sistencies in the reported findings [185]. Therefore, the
development of more accurate methods for SCT measure-
ment is necessary to enable reliable comparisons across dif-
ferent populations.
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Amylin

Amylin (formerly known as diabetes-associated peptide) is
a 37-amino acid peptide encoded by the [4PP (islet amy-
loid polypeptide) gene [10]. It is co-secreted with insulin
by pancreatic beta cells, as well as by enteroendocrine and
neural cells [10]. Within pancreatic islets, amylin is stored
with insulin and released in response to food intake, regu-
lated by signals such as GLP-1 [10, 186]. Structurally simi-
lar to calcitonin, amylin acts via its receptor, formed by the
heterodimerization of the calcitonin receptor with receptor
activity-modifying proteins (RAMPs 1-3) [10]. Initially
synthesized as a prohormone, it is activated through proteo-
lytic processing by proconvertases, akin to PGDPs [186].
Amylin suppresses appetite by acting directly on the
brain and enhancing leptin’s effects, while also promot-
ing increased energy expenditure [10, 187]. It plays a dual
role in glucose homeostasis and T2DM progression. It sup-
presses postprandial glucagon release, hepatic glucose pro-
duction, pancreatic enzyme secretion, and gastric emptying,
lowering postprandial blood glucose levels [186]. However,
in early T2DM, excessive amylin production due to insu-
lin resistance leads to amyloid aggregation, contributing to
beta cell dysfunction and disease progression [10]. Beyond
its metabolic functions, amylin may have neuroprotective
and cardiovascular effects, while also being implicated in
amyloid-related diseases, such as Alzheimer’s [186, 187].
With regard to T2DM, Harter et al., observed that indi-
viduals with T2DM on insulin treatment exhibited lower
fasting amylin levels, as expected considering that exoge-
nous insulin suppresses b-cell insulin/amylin co-excretion,
while subjects on oral antidiabetic medications had higher
basal amylin values than the control group [188]. In the same
study, amylin response to OGTT was higher in the group with
diabetes [188]. On the other hand, Hanabusa et al., reported
similar fasting amylin in T2DM- lean patients on oral hypo-
glycemic agents and lower fasting amylin in insulin-treated
T2DM subjects, along with decreased amylin responses to
OGTT compared with healthy controls [189]. Fasting amylin
values were also found to be lower in T2DM patients on met-
formin and higher in those on glibenclamide, in comparison
to healthy controls [190]. Higher fasting [191-193], as well
as lower post OGTT [193, 194] and higher post MMT [79]
amylin levels have been reported by other research groups.
Some studies however did not observe differences in either
fasting [194, 195] or postprandial [195] amylin secretion
in subjects with T2DM compared with healthy controls. It
is important to highlight that all the aforementioned stud-
ies involved patients receiving treatment with metformin,
sulfonylureas, insulin, or dietary interventions. The impact
of newer antidiabetic agents on amylin secretion remains
unexplored. Additionally, during the early stages of T2DM,
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insulin resistance and compensatory hyperinsulinemia may
lead to elevated amylin secretion. As beta cell dysfunction
progresses, however, the production of both insulin and
amylin declines. This dynamic may, at least in part, account
for the inconsistencies observed across existing studies.
Trials in humans have demonstrated that individuals
with obesity exhibit elevated fasting amylin levels [191,
194-196] and greater postprandial amylin responses com-
pared to lean individuals [194, 196, 197], even when obesity
co-exists with T2DM on oral hypoglycemic agents [189]. A
positive correlation has also been reported between amy-
lin levels and both body weight [198] and insulin resistance
[196]. This suggests that amylin may either increase in par-
allel with body weight as a compensatory mechanism aimed
at reducing adiposity or that obesity-induced resistance to
amylin’s effects leads to its upregulation. Notably, weight
loss through diet and exercise has been shown to reduce
fasting amylin levels in both normal-weight individuals and
people with obesity [199], and similar were the results with
combined training in a group of patients with T2DM [198].

Ghrelin and Obestatin

Ghrelin was initially identified for its role in growth hor-
mone (GH) regulation rather than appetite stimulation
[200]. While GH release is primarily regulated by growth
hormone-releasing hormone (GHRH) and somatostatin,
ghrelin acts independently through the GH secretagogue
receptor (GHS-R) [11]. It is mainly produced in the stom-
ach but is also synthesized in the pancreas, placenta, and
other tissues [11]. Ghrelin is derived from preproghrelin and
becomes active through acylation by the enzyme ghrelin
O-acyltransferase (GOAT) [201]. It circulates in both acyl-
ated (active) and desacylated (inactive) forms, with secre-
tion influenced by fasting, insulin, and body weight [11].

Ghrelin binds to GHS-R 1a in the hypothalamus and periph-
eral tissues, stimulating GH secretion and appetite via AgRP/
NPY neurons [11]. It also activates AMP-activated protein
kinase (AMPK) and interacts with vagal and dopaminergic
pathways [11]. In addition to promoting food intake, ghrelin
reduces energy expenditure by suppressing thermogenesis in
brown adipose tissue and increasing fat storage [11].

In the pancreas, ghrelin may inhibit glucose-stimulated
insulin secretion from beta cells, resulting in higher blood
glucose levels [12]. Exogenous ghrelin administration in
humans has shown similar effects [202]. The mechanism is
unclear but may involve somatostatin signaling and reduced
intracellular calcium in beta cells [203]. Ghrelin may also
contribute to insulin resistance through increased free fatty
acid release and hepatic gluconeogenesis [204].

Though not essential for growth, ghrelin plays a key
role in maintaining glucose homeostasis and preventing

hypoglycemia during energy deficiency [205]. Beyond
metabolism, ghrelin supports cardiovascular health,
enhances gastric motility, and shows neuroprotective effects
in models of Parkinson’s disease [206].

Desacyl ghrelin, previously thought inactive, may coun-
teract acyl ghrelin by improving insulin sensitivity and
modulating fat distribution [207].

While ghrelin promotes weight gain in rodents [208],
paradoxically, individuals with obesity tend to have lower
fasting ghrelin levels than lean individuals [209, 210]. Lean
individuals have higher fasting ghrelin levels than those
with obesity [211, 212], with the highest levels observed
in patients with anorexia [213, 214]. This paradox has led
to the hypothesis of ghrelin resistance, characterized by
decreased ghrelin receptor (GHS-R) expression in the hypo-
thalamus and reduced AgRP/NPY peptide production [215].
Additionally, while total and acylated ghrelin levels are
lower in obesity, the enzyme GOAT—responsible for ghre-
lin acylation—appears to be upregulated in severe obesity,
possibly as a compensatory response to low ghrelin levels
[216]. On the other hand, postprandial suppression of ghre-
lin, a crucial mechanism for satiety, is impaired in obesity,
contributing to prolonged food intake and increased caloric
consumption [147, 217].

Obesity is often associated with insulin resistance and
hyperinsulinemia, which may explain the inverse rela-
tionship between ghrelin and BMI. Several studies have
reported lower fasting ghrelin levels in patients with
T2DM compared to healthy controls [137, 218, 219] and
many data support a negative correlation between fasting
ghrelin and insulin resistance, independently of BMI [19,
220, 221]. Postprandial ghrelin responses in T2DM remain
understudied. Some findings suggest that individuals with
T2DM exhibit diminished postprandial ghrelin suppres-
sion and a transient postprandial drop, potentially linked
to fasting ghrelin levels [137, 222]. On the contrary, Erd-
mann et al., reported that diabetes alone did not influence
postprandial ghrelin responses [219]. Notably, lower fasting
ghrelin levels correlate with an increased risk of T2DM and
hypertension, even in individuals with a family history of
T2DM [223]. Genetic factors also play a role, with specific
polymorphisms in the ghrelin and GHS-R genes linked to
increased susceptibility to obesity and T2DM [223-227].

Most evidence indicates that weight loss increases ghre-
lin levels in individuals with obesity [228, 229], while oth-
ers found neutral effect of weight loss on ghrelin [230, 231].
However, once body weight stabilizes post-weight loss,
ghrelin tends to return to its original low levels [232].

Obestatin is a 23-amino acid peptide derived from the
proghrelin molecule, similar to ghrelin, with the stomach
as its primary site of synthesis [233, 234]. It is also secreted
in smaller amounts by the intestine and pancreatic e-cells
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[233, 234]. Obestatin binds to the orphan receptor GPR39,
expressed in various tissues, including the gastrointestinal
tract, liver, adipose tissue, pituitary gland, and hypothala-
mus [233, 234]. However, its low specificity for GPR39
makes it unlikely to mediate its effects through this recep-
tor. Instead, obestatin exhibits high affinity for GLP-1R, as
well as for HIT-T15 and INS-1E beta cell receptors, though
its precise mechanism of action remains unclear [233, 234].

Initial studies suggested that obestatin suppressed appe-
tite and food intake in mice [235], leading to its classifica-
tion as a ghrelin antagonist. However, subsequent research
failed to confirm its anorexigenic effects [236, 237], and
showed no impact on pituitary hormones such as GH
[238], or leptin [235]. Lagaud et al. reported a U-shaped
relationship between obestatin levels and appetite, with no
anorexigenic effects observed at either high or low doses,
potentially explaining conflicting study results [239]. Ani-
mal and ex vivo experiments further suggest a dose-depen-
dent interaction between obestatin and insulin [233, 234].

Obestatin administration appears to have a dose-depen-
dent effect on insulin secretion, inhibiting glucose-stim-
ulated insulin release at low doses while enhancing it at
higher doses [240]. Additionally, glucose levels influence
obestatin’s impact on beta cells [233]. Evidence also sug-
gests that obestatin slows gastric emptying, promotes beta
cell survival, increases pancreatic juice secretion, stimulates
glucagon release, inhibits somatostatin secretion, and may
play a role in sleep regulation, memory function, and thirst
suppression [233, 234].

Limited data are available on obestatin levels in individ-
uals with metabolic syndrome. Reduced fasting obestatin
[241] and postprandial [242] concentrations have been
reported in patients with T2DM and insulin resistance while
a positive correlation between fasting obestatin and insulin
sensitivity has been observed in healthy adults [243, 244].
Fasting obestatin levels are also lower in individuals with
obesity compared to those with normal body weight [245—
247]. Postprandial obestatin responses were also lower in
people with obesity than in lean individuals [245]. One study
reported an increased ghrelin-to-obestatin ratio in individu-
als with obesity [248], whereas another has observed the
opposite trend [249], leading to inconclusive findings.

The main findings of this review are summarized in
Fig. 1; Table 1.

Clinical Translation: Bariatric Surgery and
Emerging Pharmacotherapies
Alterations in endogenous gut peptide secretion have direct

clinical relevance, particularly in the context of bariatric
surgery and emerging pharmacotherapies for obesity and
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T2DM. Each bariatric procedure is characterized by a dis-
tinct hormonal signature, with Roux-en-Y gastric bypass
(RYGB) and sleeve gastrectomy (SG) inducing rapid and
pronounced increases in postprandial gut hormone secre-
tion [232, 250]. Enhanced GLP-1 and PYY responses after
RYGB and SG act synergistically to promote satiety, reduce
food intake, and improve glycemic control, with GLP-1
also contributing to restoration of the impaired incretin
effect in T2DM [129, 232]. These hormonal adaptations
occur early after surgery, preceding substantial weight loss,
although their interpretation is partly confounded by con-
current caloric restriction and later by weight-loss—depen-
dent effects.

Beyond classical incretins, postprandial changes in less-
studied PGDPs such as oxyntomodulin and glicentin have
emerged as potential markers of surgical outcomes. Post-
prandial glicentin and oxyntomodulin responses have been
associated with postoperative weight loss after bariatric
surgery [250, 251], while fasting glicentin levels may pre-
dict postprandial hypoglycemia following RYGB [252].
Similarly, post-meal GLP-1 and PYY dynamics have cor-
related with long-term weight loss outcomes after SG [253].
These findings suggest that specific endogenous gut peptide
profiles may help identify individuals at risk of suboptimal
weight loss or metabolic complications and could serve as
early biomarkers to guide postoperative monitoring and
supportive interventions.

Insights from these surgery-induced endocrine adapta-
tions have directly informed the development of modern
pharmacotherapies for obesity and T2DM. While bariatric
procedures induce coordinated increases in multiple gut
peptides, pharmacological strategies aim to reproduce key
elements of this hormonal milieu without surgery [254].

Early efforts to target glucagon signaling achieved glu-
cose lowering but were limited by adverse effects, includ-
ing hypoglycemia and hepatic toxicity. In contrast, the
amylin analogue pramlintide has achieved clinical use as
an adjunct to insulin therapy, exerting beneficial metabolic
effects through delayed gastric emptying and appetite sup-
pression in addition to indirect glucagon inhibition [186].
GLP-1 receptor agonists now represent a cornerstone of
therapy for both T2DM and obesity, with consistent ben-
efits on glycemic control, body weight, and cardiovascular
and renal outcomes [129, 255]. The transition from short-
acting exendin-based compounds to long-acting human
GLP-1 analogues has improved therapeutic durability,
while newer dual incretin agonists, such as GLP-1/GIP
receptor agonists, achieve superior metabolic efficacy by
engaging complementary hormonal pathways [129, 255].
Building on the physiology of bariatric surgery and endog-
enous peptides such as oxyntomodulin, emerging dual
and triple agonists targeting GLP-1, GIP, and glucagon
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Fig. 1 Secretion sites and action of key gut-derived peptides. Abbrevi-
ations: OXM: oxyntomodulin, GLP-1: Glucagon-like peptide-1, GLP-
2: Glucagon-like peptide-2, CCK: cholecystokynin, MPGF: major
proglucagon fragment, GRPP: glicentin-related pancreatic polypep-
tide, PYY: peptide tyrosin-tyrosin, PP: pancreatic polypeptide, GIP:

receptors seek to combine appetite suppression, improved
glycemic control, and increased energy expenditure. Early
clinical data suggest potential benefits for obesity, T2DM,
and metabolic-associated steatotic liver disease [255].
However, interindividual variability in treatment response
remains incompletely understood. Importantly, while base-
line glucagon levels may influence glycemic responses
to certain oral glucose-lowering agents, such as acarbose
[256], evidence directly linking baseline or postprandial

W

Glucose-dependent insulinotropic polypeptide, PC: prohormone con-
vertase, IP-1: intervening peptide-1, aa: amino acids. Graphical sym-
bols used in the figure: 1 and dark red indicate stimulatory actions of
gut peptides, whereas | and black indicate inhibitory actions;? denotes
insufficient or inconclusive evidence

endogenous gut peptide levels to responsiveness to exoge-
nous incretin therapies is currently lacking. Pharmacologi-
cal studies of GLP-1 receptor agonists and dual GLP-1/GIP
agonists indicate that clinical characteristics—including
baseline body weight, BMI, HbA lc, age, sex, and treatment
duration—are currently stronger predictors of therapeu-
tic response than endogenous peptide levels [257]. Taken
together, these findings highlight the need for future studies
to directly evaluate whether baseline or postprandial gut
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Table 1 (continued)

Obesity

T2DM
Fasting

Obestatin  |[[241]

Peptide

Post-prandial
1[245IMMT

Fasting

Post-prandial
1[242] MMT

1[245-247]

—[242]

1[217, 219] but impaired suppression after MMT

1[147] MMT

11209, 210, 212, 217]

—[147]

1[137] but impaired suppression after MMT

1[218] OGTT

—[219] MMT
Abbreviations: carbo carbohydrates, CCK cholecystokynin, GIP Glucose-dependent insulinotropic polypeptide, GLP-I Glucagon-like peptide-1, GLP-2 Glucagon-like peptide-2, MM T mixed-

meal test, MPGF major proglucagon fragment, OGTT oral glucose tolerance test, OHA oral hypoglycemic agents, OXM oxyntomodulin, PP pancreatic polypeptide, PYY peptide tyrosin-

tyrosin, SU sulfonylureas, 72DM Type 2 diabetes mellitus

1[137, 218, 219]

Ghrelin

1, | and < denote increased, decreased or similar levels of the examined peptide between subjects with T2D or obesity and healthy controls

peptide profiles can inform individualized treatment strate-
gies for obesity and T2DM, particularly in the context of
multi-agonist therapies.

Conclusions

The gastrointestinal tract serves as a crucial endocrine
organ, releasing hormones that regulate glucose metabo-
lism, appetite, energy balance, and gastrointestinal motility.
In T2DM and obesity, this hormonal network is disrupted,
leading to altered secretion and impaired action of key
peptides. Importantly, PGDPs like oxyntomodulin, GLP-2,
GLP-1, glicentin, MPGF, and GRPP are increasingly rec-
ognized as modulators of gut—pancreas signaling. Oxynto-
modulin and GLP-2 responses appear blunted in metabolic
disease, while data on glicentin, MPGF, and GRPP remain
limited but suggest disrupted secretion. Importantly, most
studies on these peptides have been conducted in Euro-
pean or North American populations, and data from non-
European cohorts are scarce, highlighting a clear need for
research in ethnically diverse populations to determine
whether gut peptide dynamics differ across populations.
GLP-1 levels are often preserved in T2DM, but its insuli-
notropic and glucagon-suppressing effects are diminished.
In obesity, postprandial GLP-1 responses are inconsistently
reduced.

GIP secretion is generally intact or slightly increased in
both conditions, yet its metabolic efficacy is blunted, likely
due to beta cell or receptor dysfunction. Anorexigenic pep-
tides such as PYY and PP also show altered dynamics.
Obesity is associated with reduced fasting and postpran-
dial PYY levels, while T2DM shows blunted postprandial
rises despite variable fasting levels. PP is often elevated in
T2DM but less well-studied in obesity. Other hormones —
including CCK, secretin, amylin, ghrelin, and obestatin—
exhibit condition-specific changes. While CCK resistance
may impair satiety in obesity and T2DM, inconsistent find-
ings regarding its secretion and expression limit definitive
conclusions. Secretin and amylin have complex roles in
metabolism, with amylin initially elevated and later defi-
cient in T2DM. Ghrelin and obestatin levels are reduced in
both diseases, potentially reflecting resistance and impaired
metabolic control.

These hormone alterations may represent both adaptive
responses and drivers of metabolic dysfunction. By inte-
grating fasting and postprandial evidence across classical
and less-studied gut peptides and distinguishing responses
to mixed meals and oral glucose challenges, this review
provides a physiological framework for interpreting gut
hormone dysregulation in obesity and T2DM and for con-
textualizing emerging multi-agonist incretin therapies.
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Future Perspectives

Despite growing evidence of altered gut peptide secretion
in obesity and T2DM, important knowledge gaps remain.
Future studies should expand investigation beyond classical
incretins to include less-studied PGDPs (oxyntomodulin,
glicentin, MPGF, GRPP, GLP-2) and other gastrointesti-
nal hormones such as CCK, secretin, and obestatin, ideally
across diverse populations and metabolic phenotypes.

Progress will require more standardized and physiologi-
cally relevant study designs. Harmonization of mixed-meal
and OGTT protocols, together with methodological consis-
tency in peptide measurement, including validated assays
and concurrent assessment of multiple gut peptides within
the same study, will be essential to improve comparability
and to capture coordinated hormonal responses.

Most existing studies emphasize circulating hormone
levels rather than functional relevance. Integrating fasting
and postprandial gut peptide profiles with outcomes related
to appetite, energy intake, and glucose metabolism is nec-
essary to clarify their physiological and clinical signifi-
cance. Finally, building on insights from bariatric surgery
and incretin-based therapies, future research should directly
examine whether endogenous gut peptide patterns can pre-
dict responsiveness to GLP-1-based, dual, or multi-agonist
treatments, thereby supporting more personalized therapeu-
tic approaches in obesity and T2DM.
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