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Obesity has been a systemic disease that has been underrecognized for years.
Obesity-related chronic kidney disease (Ob-CKD) is a multifaceted disorder that
affects patients with CKD to varying degrees. Among the structural changes
associated with obesity, obesity-related glomerulopathy (ORG) stands out
(glomerular hypertrophy, podocytopathy, mesangial matrix expansion, focal
segmental glomerulosclerosis, tubulointerstitial fibrosis, vascular lesions, and
tubular atrophy) associated with other kidney diseases. There are direct and
indirect mechanisms that affect the kidneys of obese patients. Among the direct
mechanisms, several effects may occur: hyperfiltration, activation of the renin-
angiotensin-aldosterone system (RAAS), inflammation, lipotoxicity, and
neurohormonal activation. This is a narrative review that will detail the
inflammatory and lipotoxicity mechanisms involved in the genesis of Ob-CKD.
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1 Introduction

Obesity is a major determinant of premature death and a significant cardiovascular risk
factor that contributes to the development of a broad spectrum of chronic non-
communicable cardiovascular diseases (1). In this context, it is a frequent cause of early
mortality shared by several chronic non-communicable conditions, including diabetes
mellitus (DM), coronary artery disease (CAD), hypertension (HTN), cerebrovascular
disease (CVD), various types of cancer, and chronic kidney disease (CKD) (1, 2). CKD,
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in particular, is associated with poorer clinical outcomes, a marked
decline in quality of life, and serious systemic complications—such
as cardiovascular disease, mineral and bone metabolism disorders,
anemia, acid-base imbalances, and fluid overload—resulting in a
significant healthcare burden (3-5).

According to recent data from the World Health Organization
(WHO), in 2022 approximately 43% of adults worldwide were
overweight, and 16% were living with obesity—equivalent to nearly
890 million individuals (6). Projections indicate that by 2035, over
1.5 billion adults may be affected by obesity, with the greatest
burden expected in low- and middle-income countries (6). This
persistent trend is strongly associated with the rising incidence of
non-communicable diseases, including cardiovascular disease, type
2 diabetes, certain malignancies, and chronic respiratory conditions,
all contributing to increased morbidity and premature mortality.

The global surge in obesity prevalence has been paralleled by a
rise in cases of obesity-related glomerulopathy (ORG). This
condition is morphologically defined by glomerulomegaly and,
frequently, by focal segmental glomerulosclerosis (FSGS) lesions,
predominantly of the perihilar subtype (7, 8). These
histopathological findings are often identified in renal biopsies of
obese individuals, even in the absence of comorbidities such as
diabetes mellitus or hypertension (7, 8). The diagnosis of ORG is
established by excluding other causes of kidney disease through
thorough clinical and histological evaluation in individuals with a
body mass index (BMI) greater than 30 kg/m? (7).

The precise mechanisms by which obesity contributes to the
onset and progression of CKD remain incompletely understood.
Nonetheless, several pathophysiological pathways have been

10.3389/fneph.2025.1684004

proposed, generally categorized into direct and indirect
mechanisms (7, 9). Direct mechanisms include glomerular
hyperfiltration, inflammatory activation, oxidative stress,
hormonal dysregulation, and expansion of perirenal and renal
sinus adipose tissue (10-12). Indirect mechanisms act through the
increased risk of developing metabolic syndrome, type 2 diabetes
mellitus, and hypertension—conditions that collectively accelerate
renal injury (11, 13).

In light of these considerations, and based on the wide clinical
spectrum of CKD—including patients on dialysis or those with
kidney transplants—a recent consensus has proposed a novel
classification system for Obesity-related CKD (Ob-CKD),
categorizing the condition into five distinct subtypes, as shown in
Figure 1 (2, 14).

Recently, increasing attention has been directed toward the role
of chronic inflammation and lipotoxicity as central mediators in the
pathophysiology of Ob-CKD. Within this context, the present
review aims to examine the pathophysiological mechanisms
underlying the development of Ob-CKD, with a particular focus
on the contribution of chronic inflammation and lipotoxicity.

2 Methods

A narrative review was conducted to synthesize relevant
elements and summarize the available evidence on the role of
lipotoxicity and inflammation in the course of obesity-related
kidney disease (Obesity-related glomerulopathy).

Classification of Obesity-related chronic kidney disease (Ob-CKD)

Classification according the kidney alterations and the CKD patient stage (either CKD, dialysis or kidney transplant)
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FIGURE 1

Classification Ob-CKD. Ob-CKD, obesity-related chronic kidney disease; CKD, chronic kidney disease; NA, not applicable. Adapted from Rico-

Fontalvo et al. (2).
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A literature search was conducted in PubMed starting January
1, 2000, with no date or country restrictions. However, only full-text
articles published in English were included. The following
combination of MeSH terms and keywords was used in PubMed:
“Inflammation” OR “lipotoxicity” OR “cytokines” OR “obesity” OR
“chronic kidney disease” OR “enfermedad renal cronica asocia a
obesidad” OR “of obesity-related glomerulopathy.” This search
yielded 417,148 results in PubMed. After the review, 54 articles
were included based on relevance.

3 Obesity and kidney disease:
histopathological and
pathophysiological changes

Obesity is a condition characterized by excessive fat
accumulation accompanied by adipocyte hyperplasia and
hypertrophy. It has a multifactorial etiology and is phenotypically
defined by a body mass index (BMI) greater than 30 kg/m? (15). In
recent decades, we have witnessed an exponential rise in its
prevalence, with obesity now recognized as a leading cause of
chronic kidney disease (CKD) after diabetes mellitus, as well as a
frequent contributor to its development (15).

Obesity adversely affects renal function through a complex
network of both direct and indirect pathophysiological
mechanisms, all of which ultimately converge in structural
deterioration of the renal parenchyma (16). Direct mechanisms
are primarily linked to excessive adipose tissue accumulation and
include hemodynamic alterations, hormonal dysfunction, and
localized inflammatory responses. In contrast, indirect
mechanisms are mediated by comorbidities closely associated
with obesity—such as hypertension, type 2 diabetes mellitus, and
atherosclerosis—which collectively accelerate the progression of
CKD (16-19).

3.1 Lipids and glomerulus

Renal damage induced by obesity is both structural and
functional in nature (20). Structurally, glomerulomegaly is
identified as the primary histopathological alteration associated
with obesity-related glomerulopathy (ORG), representing a key
morphological finding for its diagnosis (13). Glomerular
hypertrophy constitutes an early and critical lesion that
precipitates podocyte dysfunction and effacement, promoting a
localized inflammatory response with the release of
proinflammatory cytokines (8). This cascade ultimately leads to
focal segmental glomerulosclerosis, predominantly affecting the
perihilar region of the glomerulus (7, 20).

Additionally, the activation of profibrotic signaling pathways
facilitates the accumulation of extracellular matrix, contributing to
glomerular basement membrane thickening, glomerulosclerosis,
and tubulointerstitial fibrosis (7).

As the disease progresses, the expansion of the glomerular
surface area exceeds the podocytes’ capacity to maintain adequate
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coverage, leading to their dysfunction and subsequent loss of
filtration barrier integrity, along with overload of the remaining
cells. This process ultimately results in renal injury characterized by
glomerular hyperfiltration and proteinuria (7, 8, 20).

However, not all individuals with obesity or an elevated body
mass index (BMI) develop CKD, suggesting that an increased BMI
alone is insufficient to trigger the disease. Additional metabolic
disturbances appear to be required for its onset and progression (7).

Another common histological alteration associated with ORG is
focal segmental glomerulosclerosis (FSGS), which is defined by the
presence of segmental sclerotic lesions affecting a subset of
glomeruli, with partial collapse of the involved glomerular
capillaries (21). Among the morphological variants of FSGS, the
perihilar subtype is the most frequently observed in the context of
ORG, likely as a consequence of associated glomerulomegaly—a
characteristic feature of chronic glomerular hypertension and
hyperfiltration induced by obesity (22).

In addition, hypertrophied podocytes or podocytes displaying
vacuolar changes may be observed, along with proliferating parietal
epithelial cells lining sclerotic areas, further contributing to the
altered glomerular architecture characteristic of FSGS lesions in
ORG (22).

3.2 Renal blood vessels, renal tubule and
lipids effects

Regarding the involvement of renal blood vessels, characteristic
morphological changes have been identified in the small renal
arteries. These include dilation of the glomerular arterioles and
peripheral capillaries adjacent to the glomerular vascular pole,
which have been attributed to increased intraglomerular flow as
well as elevated local perfusion and plasma pressure (22). Although
findings such as arterial intimal thickening and arteriolar hyalinosis
have been documented in some cases, no specific histopathological
lesions have yet been described in arteries, arterioles, peritubular
capillaries, or renal veins that are exclusive to ORG.

On the functional level, obesity can induce direct glomerular
damage through hemodynamic alterations, primarily mediated by
afferent arteriolar vasodilation and increased proximal tubular
sodium reabsorption. These changes lead to sustained glomerular
hyperfiltration, which in advanced stages clinically manifests as
proteinuria—typically in the subnephrotic range—constituting a
key clinical feature in patients with Ob-CKD (7, 23).

Lipotoxicity at the renal level has been associated with both
structural and functional alterations in various renal cell types,
including mesangial cells, podocytes, and proximal tubular
epithelial cells (24). In podocytes, lipotoxicity impairs insulin
signaling, a pathway essential for maintaining their structural
integrity and cellular viability. This disruption promotes podocyte
apoptosis and triggers a compensatory hypertrophic response by
the remaining podocytes, contributing to the progressive
deterioration of the glomerular filtration barrier (20).

Among the pathophysiological mechanisms involved in Ob-
CKD, hemodynamic and metabolic overload of the kidney induced
by obesity stands out, promoting glomerular hyperfiltration,
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increased proximal tubular sodium reabsorption, thickening of the
glomerular basement membrane, and ultimately the development
of glomerulosclerosis (25). It is worth noting that this pattern of
hyperfiltration-related injury is also observed in other conditions
such as arterial hypertension, further supporting its role as a
common mechanism in the progressive deterioration of renal
function. Table 1 summarizes the principal histopathological and
physiological changes that characterize Ob-CKD.

4 Inflammation, obesity, and chronic
kidney disease

It has been established that obesity is a disease characterized by
a chronic proinflammatory state with multiple associated
comorbidities (26). In addition to serving as an energy reservoir,
adipose tissue functions as an endocrine organ and is infiltrated by
various cellular populations, including macrophages and other
immune-active cells such as T and B lymphocytes and dendritic
cells (26). In fact, most of the total body fat is functionally
considered part of the endocrine organ system. The dysfunction
of this tissue, in response to sustained positive caloric balance in
genetically susceptible individuals, contributes both directly and
indirectly to the development of cardiovascular and metabolic
diseases, including CKD. This dysfunction, known as

TABLE 1 Different pathways of nephrotoxicity in obesity.

Effect on the
kidney

Pathway or

. Description
mechanism

Excess free fatty acids and

1lul function,
triglycerides are deposited in Cellular dysfunction
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. stress, and apoptosis
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Mitochondrial mitochondrial function and infl " & d cell
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Activation of
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NF-kB, Nuclear factor kappa B; TNF-a, Tumor necrosis factor alpha; IL-6, Interleukin 6;
MCP-1, Monocyte chemoattractant protein-1; CKD, Chronic kidney disease; GFR,
Glomerular filtration rate.
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“adiposopathy,” is supported by three main pathophysiological
mechanisms: hemodynamic alterations, metabolic disruptions,
and a chronic inflammatory response—hallmarks of obesity (27).

The persistent inflammatory state that characterizes obesity
leads to maladaptive mechanisms that generate oxidative stress
and cellular damage, affecting peripheral tissues beyond adipose
tissue, including the kidneys. In this context, white adipose tissue is
a complex and highly functional endocrine organ, which includes
various cellular populations such as adipocytes, endothelial cells,
preadipocytes, leukocytes, macrophages, monocytes, and fibroblasts
(28). These cells mediate the release of various inflammatory
processes through the endogenous production of cytokines and
nephrotoxic adipose tissue-derived mediators, such as tumor
necrosis factor-alpha (TNF-o), leptin, interleukin-6 (IL-6),
monocyte chemoattractant protein-1 (MCP-1), resistin, visfatin,
and plasminogen activator inhibitor-1 (PAI-1), all of which exert
deleterious effects on the kidney (1).

The activation of inflammatory pathways such as NF-kB, the
increase in reactive oxygen species (ROS), and the involvement of
protein kinase cascades—including the mitogen-activated protein
kinase (MAPK) pathway and JAK-STAT-mediated signaling—play
a central role in the pathophysiology of obesity-associated kidney
damage (29, 30). Among the proinflammatory adipokines, TNF-o.
stands out as one of the key mediators of inflammation in adipose
tissue and renal dysfunction. Overexpression of TNF-o has
frequently been associated with increased production of MCP-1, a
chemokine secreted by both adipocytes and macrophages, which
has been implicated in adipose tissue expansion. Studies in diet-
induced obese animal models have demonstrated elevated levels of
cytokines such as IL-6, TNF-a, IL-1, and MCP-1 in renal tissue,
correlating with increased interstitial fibrosis and glomerular
sclerotic lesions (30, 31). Notably, TNF-o. inhibition or deficiency
in these models confers protection against obesity-induced
albuminuria and structural renal deterioration (10).

Finally, it has been concluded in various CKD models that
inflammation and immune system activation share common
pathophysiological mechanisms regardless of the underlying
etiology, including obesity. Several experimental studies have
demonstrated that, in response to pathological stimuli targeting
podocytes, there is an upregulation of proinflammatory gene
expression, including IL-6, MCP-1, cyclooxygenase-2 (COX-2),
and TNF-o; in addition, activation of the nuclear factor kappa B
(NF-xB) signaling pathway—a key regulator of inflammation—has
been identified. The overexpression of these molecules, particularly
in the context of lipid overload as seen in individuals with obesity,
promotes a sustained inflammatory response in renal cells,
contributing to the maintenance and progression of glomerular
damage (24).

5 Nephrotoxicity and lipid signaling
pathways

In individuals with obesity, chronic energy excess promotes a
microenvironment characterized by metabolic stress and persistent
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inflammation, leading to adipose tissue expansion until adipocytes
reach their maximal growth capacity (20). At that point, the excess
of toxic lipid species accumulates ectopically in various organs,
inducing a harmful effect known as lipotoxicity (32, 33).

In this context, lipotoxicity refers to a condition in which the
harmful accumulation of lipids leads to organelle dysfunction,
cellular injury, or cell death. Among the deleterious lipids that
can potentially accumulate are triglycerides, free fatty acids (FFAs),
cholesterol, lysophosphatidylcholine, and ceramides (26, 34).
However, the precise mechanisms through which lipids exert
adverse effects on the kidney remain unclear (26, 35-37).
Lipotoxicity contributes to the intracellular accumulation of toxic
lipid intermediates in non-adipose tissues, resulting in cellular
dysfunction and, potentially, cell death (lipoapoptosis) (31).
Organs most commonly affected include the kidney, liver, heart,
pancreas, and skeletal muscle; involvement of these tissues
contributes to the development of chronic diseases such as
chronic kidney disease (CKD), heart failure, and diabetes
mellitus (38).

Under normal circumstances, de novo lipid synthesis is very low
in renal cells, but ectopic lipid accumulation in the kidney is
increasingly common in the obese population. The molecular
basis for renal lipid accumulation is poorly understood. The
involvement of FXR, SREBP-1c, and PPARa in lipid biosynthesis
in the kidney has been identified. Recently, the role of ATP-citrate
lyase (ACL), an enzyme that converts citrate to acetyl-CoA, has
been identified, demonstrating its role in vivo in ectopic renal lipid
accumulation and the subsequent renal injury associated with
obesity and T2DM (39).

Excessive fat intake contributes to the progression of metabolic
diseases through cellular damage and inflammation, processes that

10.3389/fneph.2025.1684004

promote lipotoxicity (40, 41). Several studies have highlighted the
role of lysosomal dysfunction and autophagy in the development of
lipotoxicity. In mouse models, a high-fat diet has been shown to
cause phospholipid accumulation within lysosomes of renal
proximal tubular cells (40). Moreover, this elevated fat intake in
obese mice has been associated with stimulation of autophagy, a
phenomenon not observed in non-obese mice. Recently, other
elements involved in the stimulation of these pathophysiological
pathways leading to lipotoxicity have been explored, such as the role
of FGF21 (fibroblast growth factor 21), a hormone-like member of
the FGF family, which has been linked to impaired renal function
(42) Figure 2.

Adapted from: Rico-Fontalvo J, et al. (11). Adipose tissue is an
important source of production of various active protein factors,
known as adipocytokines, which are involved in various metabolic
processes. Alterations in the secretion and signaling of adipose-
derived molecules during obesity may largely mediate the
pathogenesis of metabolic disorders. Adiponectin is a protein
secreted primarily by WAT adipocytes. Adiponectin’s main
biological functions include increased fatty acid biosynthesis and
inhibition of hepatic gluconeogenesis. In patients with CKD,
regardless of the presence of obesity, it is associated with elevated
serum leptin levels. On the other hand, in obese patients,
adiponectin production is decreased, which is why it is believed
that it may have a protective effect on the kidney. The imbalance
between these adiponectins promotes inflammation. Furthermore,
CKD patients show elevated levels of C-reactive protein (CRP), IL-
6, and TNEF-a. The effects on the glomerulus include hyperfiltration,
albuminuria, and oxidative stress. TNF-o: Tumor necrosis factor
alpha;IL-1: Interleukin 1; IL-6: Interleukin 6; PAIL: Plasminogen
activator inhibitor 1.
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Perirenal adipose tissue (PF), which externally surrounds the
kidneys, is recognized as a metabolically active fat compartment.
This fat depot not only serves as an energy reservoir but also
performs relevant endocrine and paracrine functions in the
regulation of glucose and lipid homeostasis, as well as in the
modulation of inflammatory processes through the synthesis and
secretion of various adipokines (15, 43).

Recent evidence has demonstrated an association between PF
thickness and an increased risk of developing chronic kidney
disease (CKD), suggesting that its quantification could serve as a
useful prognostic marker for predicting decreased glomerular
filtration rate (GFR) and the presence of proteinuria in
individuals with overweight or obesity (15, 44).

Excessive accumulation of perirenal fat (PF) can exert direct
mechanical effects on the renal parenchyma and vasculature,
generating compression that increases interstitial hydrostatic
pressure as this tissue expands, particularly in patients with
obesity (45). This condition promotes activation of the renin-
angiotensin—-aldosterone system (RAAS), as well as increased
glomerular filtration and tubular sodium reabsorption—events
that contribute to the accelerated progression of kidney disease
and the progressive decline in glomerular filtration rate (GFR) (46).

Additionally, PF functions as an active secretory organ,
releasing pro-inflammatory mediators and adipokines both
paracrinally and systemically. The release of adipokines such as
leptin and adiponectin, and cytokines including TNF-o. and IL-6,
can alter renal hemodynamics and impair the integrity of the
vascular endothelium, promoting pathological glomerular
hyperfiltration and increased urinary albumin excretion—two key
pathophysiological changes in Ob-CKD (43).

First, adiponectin levels are decreased in individuals with
obesity, which reduces its anti-inflammatory effects. Several
observational clinical studies have demonstrated an independent
inverse association between adiponectin levels and albuminuria;
obese patients with low adiponectin levels excrete significantly more
urinary albumin than obese patients with high adiponectin
levels (47).

In contrast, leptin levels are elevated in patients with chronic
kidney disease (CKD); this adipokine promotes increased oxidative
stress and endothelial dysfunction, contributing to CKD
progression. Several studies have shown that serum leptin levels
are significantly higher in individuals with obesity compared to
those with normal weight (48). This hyperleptinemic state has been
implicated in the pathogenesis of renal injury by inducing
profibrotic effects and contributing to the development of
glomerulosclerosis through mesangial cell activation (16, 32).
Furthermore, leptin levels have been observed to progressively
increase as renal function declines, suggesting a bidirectional
relationship between renal dysfunction and leptin accumulation
(16). In advanced stages of CKD, this accumulation may contribute
to the development of cachexia, likely through catabolic
mechanisms mediated by this adipokine.

Finally, lipotoxicity induces insulin resistance (IR), which
directly impacts the loss of renal function. Insulin exerts effects
on multiple renal cell types, including mesangial cells, podocytes,
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and tubular epithelial cells (16). In the context of obesity and IR,
there is dysregulated activation of the sympathetic nervous system
(SNS) and the renin-angiotensin-aldosterone system (RAAS),
along with greater involvement of adipokines, oxidative stress,
and proinflammatory pathways—all implicated in the progression
of renal dysfunction (16, 46). These mechanisms contribute to
endothelial dysfunction, characterized by reduced nitric oxide
production, overexpression of angiotensin II type 1 receptors in
mesangial cells, and increased synthesis of endothelin-1 and various
growth factors, which exacerbate both structural and functional
damage to the renal parenchyma (16).

6 Clinical perspectives

The understanding that obesity is a proinflammatory and
lipotoxic disease that drives cardiovascular-renal-metabolic
syndrome requires a paradigm shift in clinical practice. The
approach must shift from reactive management of comorbidities
to a proactive strategy focused on risk stratification and early

intervention on the mechanisms of damage.

6.1 Diagnostic and risk strategies

Clinical management should go beyond body mass index (BMI)
and serum creatinine to identify patients at higher risk
of progression.

- Comprehensive metabolic assessment: Since not all
individuals with obesity develop CKD or HF, it is crucial to
identify those with “adiposopathy” or an unhealthy metabolic
profile. This involves actively assessing for the presence of insulin
resistance (e.g., HOMA-IR), dyslipidemia, and inflammatory
markers such as high-sensitivity C-reactive protein (hs-CRP),
which reflect the systemic proinflammatory state induced by
dysfunctional adipose tissue.

- Early detection of kidney damage: Hyperfiltration is one of the
first functional alterations in obesity-associated CKD (Ob-CKD
Type 1). Therefore, monitoring estimated GFR is essential, but it
should be complemented by actively screening for albuminuria.

- Cardiovascular Risk Assessment: In patients with obesity, the
high burden of CKD, hypertension, and heart failure should be
recognized, and relevant complementary studies should be ordered.

6.2 Therapeutic implications

Treatment should focus on modulating central
pathophysiological pathways: chronic inflammation and
lipotoxicity. The most effective intervention is the reduction of
dysfunctional adipose tissue. Weight loss, whether through lifestyle
changes, pharmacological treatment, or bariatric surgery, is
essential to reduce systemic lipotoxicity, reduce the secretion of
proinflammatory adipokines, and improve insulin sensitivity.
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Use of drugs with pleiotropic effects: The selection of
pharmacological management for comorbidities should prioritize
agents with activity on lipotoxicity and inflammation pathways.

- GLP-1 receptor analogs (GLP-1ra): Drugs such as semaglutide
or tirzepatide not only induce significant weight loss but have also
been shown to improve cardiac structure and function in patients
with HFpEF and obesity, likely by reducing inflammation and lipid
overload in cardiomyocytes (49-52).

- Sodium-glucose cotransporter 2 inhibitors (SGLT2i): These
agents have demonstrated robust cardiorenal benefits. Its
mechanisms of action go beyond glycemic control, promoting a
metabolic shift that reduces dependence on fatty acid oxidation,
thus mitigating cardiac and renal lipotoxicity (53, 54).

- Blockade of the Renin-Angiotensin-Aldosterone System
(RAAS): Hyperactivation of the RAAS is a cornerstone of the
pathophysiology of both kidney and heart damage in obesity. The
use of angiotensin-converting enzyme inhibitors (ACEIs) or
angiotensin II receptor blockers (ARBs) is crucial not only for
controlling hypertension but also for reducing glomerular
hyperfiltration, proteinuria, and fibrosis in both organs.

7 Conclusions

Lipotoxicity is a central pathophysiological mechanism in the
progression of chronic kidney disease (CKD), particularly in the
context of obesity and metabolic syndromes. The accumulation of
excess circulating lipids and their ectopic deposition in renal tissue
trigger structural and functional injury through multiple pathways,
including oxidative stress, mitochondrial dysfunction, chronic
inflammation, and activation of profibrotic signaling cascades.
These processes directly impair key renal cell populations—such
as podocytes, mesangial cells, and proximal tubular epithelial cells
—ultimately contributing to progressive nephron loss. A
comprehensive understanding of renal lipotoxicity provides a
foundation for novel therapeutic strategies aimed at preventing or
attenuating kidney injury associated with metabolic derangements,
positioning lipid modulation as a promising target in
CKD management.
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