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Abstract

Introduction: Multiple sclerosis (MS) is a chronic autoimmune inflammatory disorder of the
central nervous system (CNS) that leads to demyelination of CNS neurons and is influenced
by genetic, environmental, and lifestyle factors, including diet and obesity. Methods: This
review aims to analyze at the molecular level the relationship between obesity, as a chronic
inflammatory condition, and the pathophysiology of MS, as a chronic autoimmune in-
flammatory disease, in order to understand the complex links between obesity and MS
through a search of the PubMed and Google Scholar databases. Discussion: Chronic in-
flammation and OS are interconnected processes, causing a toxic state, which contributes
to the development of CNS neuroinflammation and neuronal damage, resulting in neu-
ronal demyelination and the onset of MS. Adipose tissue is a complex endocrine organ;
in addition to being a lipid storage organ, it secretes cytokines and adipokines, which are
involved in the regulation of hormones, metabolism, inflammation, and whole-body home-
ostasis. Obesity triggers chronic low-grade inflammation, disruption of the blood–brain
barrier (BBB) and brain metabolism, infiltration of the CNS by immune cells, production of
ROS, and generation of oxidative stress (OS). Anti-inflammatory and pro-inflammatory
adipokines are also implicated in MS and obesity. Conclusions: Obesity affects MS through
common underlying mechanisms and seems to be a modifiable risk factor. Antioxidant and
anti-inflammatory compounds with multi-functional characteristics could be additional
tools to slow the progression of MS and its promotion through obesity while also offering
potential treatment options for both conditions via their multi-targeting characteristics.

Keywords: obesity; multiple sclerosis; oxidative stress; inflammation; cytokines; adipokines;
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1. Introduction
Obesity is characterized by an abnormal or excessive accumulation of body fat as-

sociated with adverse health outcomes [1]. It reflects a chronic, low-grade inflammatory
state linked to a wide range of pathological conditions, including MetS and IR, and various
diseases such as T2DM, elevated BP, CVDs, NAFLD, kidney and musculoskeletal disorders,
infertility, psychological disorders, certain cancers, and autoimmune diseases [2–7]. Dietary
shifts in recent years, marked by increased intake of high-fat and high-sugar foods, have
contributed significantly to the global obesity epidemic [4,8]. As reported by the WHO, an
estimated 59% of the global population falls into the overweight (BMI: 25–30 kg/m2) or
obese (BMI > 30 kg/m2) categories [9].

MS is a chronic, autoimmune, inflammatory disease of the CNS, involving
demyelination—the loss of the myelin sheath surrounding nerve fibers—and neurodegen-
eration, which disrupts or blocks the transmission of nerve impulses along axons [10]. MS
can be clinically categorized into three forms: (a) RRMS, (b) SPMS, and (c) PPMS [11]. The
disease mainly affects young adults, with onset most commonly between 20 and 50 years
of age and an average age at onset of approximately 30 years [12]. However, MS can also
develop in childhood or after the age of 60 [10], with its global prevalence steadily rising in
recent decades, particularly among women [13–16].

MS is considered to arise from the complex interaction of genetic, environmental, and
lifestyle factors, including diet and obesity [17–19]. Overweight and obese individuals are
reported to face a markedly elevated risk of developing MS [20]. Obesity at the time of
diagnosis in women with MS has been linked to a relapsing disease course [21]. Moreover, a
positive correlation has been observed between obesity and disability severity in individuals
with MS, as indicated by higher EDSS scores [22]. Additionally, comorbidities including
T2DM, hypertension, hypercholesterolemia, and peripheral vascular disease appear to
independently contribute to increased disability in individuals with MS [21]. Evidence also
suggests that obesity during childhood, adolescence, and early adulthood is associated
with an increased risk of developing MS [19,23]. Furthermore, obesity may influence both
disease progression and treatment outcomes [10]. Notably, a correlation has been reported
between the extent of disability and oxidative stress (OS) in MS patients [22].

The aim of the present study is to investigate at the molecular level the potential
pathophysiological link between obesity, as a chronic inflammatory condition, and the
pathogenesis of MS, which is likewise a chronic inflammatory autoimmune disease of
the CNS. This includes the analysis of mechanisms such as the release of pro- and anti-
inflammatory adipokines and cytokines, activation of inflammasomes, alterations in gut
microbiota, and OS. Additionally, the present study examines the complementary role of
multi-functional antioxidant compounds in the treatment of MS, particularly by mitigating
chronic inflammation and OS, while also exploring the interrelation of these conditions
from the perspective of treatment strategies.

2. Materials and Methods
A comprehensive literature search was conducted to identify studies investigating

pathophysiological and molecular mechanisms shared between obesity and multiple scle-
rosis (MS), as well as the effects of natural antioxidant compounds for MS. The databases
PubMed and Google Scholar were searched, focusing primarily on publications from the
past fifteen years to ensure inclusion of up-to-date evidence. Search terms combining
keywords related to “obesity”, “multiple sclerosis”, “chronic inflammation”, “adipokines”
(adiponectin, apelin, leptin, visfatin, resistin, plasminogen activator inhibitor-1 [PAI-1],
chemerin, fatty acid-binding protein 4 [FABP-4]), “cytokines (TNF-α, IL-6, IL-8, IL-18,
IL-1β, IL-10)”, “NLRP3 inflammasome” and “antioxidants (vitamin D, vitamin A, cur-
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cumin, resveratrol, quercetin) were used. Both original research and review articles were
considered. Titles and abstracts were screened for relevance, and full texts of eligible articles
were assessed to extract data relating to the proposed subsections: (i) pathophysiological
associations between obesity and MS; (ii) the role of chronic inflammation; (iii) anti- and
pro-inflammatory adipokines and cytokines; (iv) NLRP3 inflammasome activation; and
(v) antioxidant compounds in the management of MS. Reference lists of the included
articles were also examined to identify additional relevant studies.

3. Pathophysiological Association Between Obesity and
Multiple Sclerosis
3.1. The Contribution of Chronic Inflammation to the Development of MS

Obesity and MS share common pathophysiological mechanisms that interconnect
them, particularly through the promotion of chronic inflammation, alterations in adipokine
and cytokine secretion, associations with oxidative stress, and dysregulation of both the
inflammasome and the gut microbiota [24,25].

Obesity is a metabolic condition characterized by adipocyte enlargement (hypertro-
phy) and proliferation (hyperplasia) [7,26]. This expansion of adipose tissue promotes the
release of several chemotactic molecules into the bloodstream—including MCP-1, -2, -3,
and -4, CXCL10, eotaxin, and CCL5/RANTES—thereby facilitating the recruitment of im-
mune cells from the circulation [7] (Figure 1). These monocytes are subsequently activated
into M1 pro-inflammatory macrophages, replacing the M2 anti-inflammatory phenotype
typically present among those with a normal body weight range [7]. In adipose tissue, M1
macrophages release an increased amount of pro-inflammatory cytokines (such as IL-6,
IL-1β, and TNF-α) and adipokines (such as leptin, visfatin, resistin, and PAI-1). Obesity
leads to reduced secretion of anti-inflammatory adipokines (such as adiponectin and apelin)
and cytokines (like IL-10) [7]. Overall, these adipose-tissue inflammatory shifts promote
chronic, systemic, low-grade inflammation, a key factor in MetS, IR, T2DM, and other
obesity-related diseases, including MS [7,27]. Obesity further increases pro-inflammatory
Th1, Th17, and CD8+ T cells, as well as neutrophils [28], and reduces anti-inflammatory Th2
and Treg cells, needed for immune balance [29]. Furthermore, there is a decrease in iNKT
cells and ILC2, along with diminished expression of PPAR-γ, a key regulator of adipose tis-
sue homeostasis [30]. Chronic inflammation in adipose tissue leads to an altered adipokine
profile marked by increased secretion of leptin, visfatin, resistin, and PAI-1 and decreased
adiponectin, an adipokine with anti-inflammatory properties [7,27]. Similarly, early stages
of MS are characterized by chronic inflammation within the CNS, which progresses to
neurodegeneration in the later phases of the disease [31]. Chemokines, including MCP-1,
-2, -3, and CCL5/RANTES, are key contributors in the pathophysiology of MS [32,33].
The immune profile seen in MS resembles that of obesity, characterized by elevated Th1
and Th17 cell levels and a concurrent reduction in Th2 and Treg lymphocytes [28]. The
dominance of Th17 cells is particularly implicated in promoting autoimmune inflammation
within the CNS, thereby contributing to MS pathogenesis [16]. In addition, increased con-
centrations of pro-inflammatory adipokines may exacerbate disease progression in obese
individuals with MS [29]. The abnormal secretion of pro-inflammatory cytokines from
adipocytes and macrophages in obesity is believed to contribute to MS development [16].
Moreover, excessive lipolysis in obesity, driven by AIM, in an attempt to counteract disease
progression, leads to the secretion of significant quantities of SFAs [16]. These SFAs activate
TLR-4, triggering CNS demyelination and inflammation through NF-κB signaling, thus pro-
moting MS pathogenesis [16,34]. Finally, obesity is linked with enhanced generation of IgG
autoantibodies that are implicated in the development of several autoimmune disorders,
such as MS [16].
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Figure 1. Schematic representation of the main mechanisms by which chronic inflammation con-
tributes to the pathogenesis of multiple sclerosis in obesity.

3.1.1. Anti-Inflammatory Adipokines in MS

Adiponectin

Adiponectin is a key adipokine with anti-inflammatory effects. It is a 30 kDa peptide
hormone predominantly secreted by white adipose tissue [7]. Its actions include (a) sup-
pression of NF-κB activity, (b) reduction in TNF-α and IL-6 secretion from macrophages,
(c) reduction of ROS production, (d) reduction of glucose levels in tissues, (e) increase
in insulin secretion, (f) inhibition of hepatic gluconeogenesis, (g) cardioprotection, (h) in-
crease in NO synthesis in the vascular endothelium, and (i) promotion of angiogene-
sis [7] (Figure 2). Serum adiponectin levels are reduced in individuals with obesity, IR,
T2D, dyslipidemia, and CVDs [7]. Moreover, adiponectin synthesis is suppressed by pro-
inflammatory cytokines such as TNF-α and IL-6 [7]. In a mouse model of EAE, adiponectin
deficiency was shown to intensify lymphocyte activation and worsen disease severity [35].
Clinical studies demonstrated an “adiponectin paradox” in MS, where higher levels of
adiponectin are associated with worse disease severity and prognosis, despite its expected
anti-inflammatory and neuroprotective effects. Tehrani et al. found that female patients
with RRMS exhibited higher adiponectin levels than healthy controls [36]. Similarly, Düzel
et al. reported consistent findings [37]. Furthermore, elevated serum adiponectin lev-
els at the time of MS diagnosis—before any treatment—have been linked to a greater
risk of disease progression and disability [38]. Lower adiponectin levels have been ob-
served in MS patients compared with healthy controls [39–41]. Therefore, adiponectin
may be a valuable biomarker at the onset of MS, potentially assisting in predicting dis-
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ease progression and severity [42]. The “adiponectin paradox” in MS requires further
investigation, as adiponectin—typically anti-inflammatory—may exhibit pro-inflammatory
effects in the context of MS. This “adiponectin paradox” highlights a complex phenomenon,
suggesting that under certain conditions, such as those present in the MS environment,
adiponectin may promote inflammatory immune responses instead of exerting its usual
anti-inflammatory effects.

Figure 2. Protective actions of adiponectin in obesity and its controversial role in MS (negative effects
on MS indicated in red color). Adiponectin serves as a biomarker for monitoring MS progression
and severity.

Apelin

Apelin is a small-molecular-weight peptide classified among the anti-inflammatory
adipokines and is primarily secreted by adipocytes [7]. Its main actions include (a) pro-
moting the differentiation and metabolic activity of brown adipocytes and inducing the
browning of white adipose tissue; (b) increasing glucose uptake by cells; (c) enhancing in-
sulin sensitivity; (d) inhibiting lipogenesis, lipolysis, and fatty acid oxidation; (e) promoting
the synthesis of antioxidant enzymes; and (f) reducing OS [7] (Figure 3). Elevated serum
apelin levels have been observed in individuals with obesity. This may be due either to
peripheral apelin resistance or to a compensatory mechanism intended to counteract insulin
resistance in peripheral tissues [7]. A preclinical study in N9 microglial cells demonstrated
that apelin-13, the active form of apelin, can suppress LPS-induced production of iNOS
and IL-6 while promoting an anti-inflammatory environment through the upregulation of
anti-inflammatory markers such as IL-10 and arginase-1 [43]. Several clinical studies have
reported conflicting findings regarding apelin levels in MS patients. Tehrani et al. reported
decreased apelin levels in women with very early-stage RRMS, which showed a positive
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correlation with both EDSS scores and the number of relapses [36]. In contrast, Alpua et al.
observed elevated apelin levels in RRMS patients compared to controls, although these
levels did not correlate with disease severity or duration [44]. These discrepancies in clinical
studies on apelin as a biomarker are likely attributable to variations in study design, patient
populations, disease stages, and measurement methods, making it challenging to establish
a consistent role for apelin in MS. Apelin and its receptor, APJ, are widely expressed in
the CNS, particularly in neurons and oligodendrocytes [45]. However, preclinical studies
indicate that apelin may promote remyelination in the context of MS. Specifically, Ito et al.
suggested that APJ activation can enhance remyelination by modulating myelin-associated
regulatory factors, particularly in demyelinating conditions in mouse models [46]. Fur-
thermore, apelin seems to promote the differentiation of neural stem cells in an animal
model of SCI [47]. These preclinical findings indicate that apelin may represent a potential
therapeutic strategy for MS by supporting myelin repair, even while its role as a reliable
biomarker in human studies remains unclear.

Figure 3. Protective actions of apelin in obesity and its potency towards obesity-associated MS (with
blue arrows depicting the secondary positive effects of apelin on reducing OS).

3.1.2. Pro-Inflammatory Adipokines in MS

Leptin

Leptin is classified among the pro-inflammatory adipokines [48]. It is a peptide consist-
ing of 167 amino acids with a molecular weight of 16 kDa [48]. Leptin is primarily secreted
by white adipose tissue, and its circulating levels correlate directly with the mass of adipose
tissue [49]. Its main functions include (a) control of appetite and metabolism through
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signaling to the CNS via specific receptors [48]; (b) upregulation of pro-inflammatory
cytokines, including TNF-α and IL-6 [7]; (c) stimulation of pro-inflammatory Th1 and Th17
cell proliferation; and (d) promotion of OS [50,51] (Figure 4). In obesity, leptin resistance
develops, leading to increased serum leptin levels [52], which may be linked to changes in
the BBB observed in obese individuals [53]. Furthermore, increased leptin concentrations
have been found in the CSF of patients with RRMS [54,55]. Ouyang et al. demonstrated that
removal of leptin receptors reduced leukocyte infiltration into the CNS and alleviated BBB
disruption in an EAE mouse model, suggesting that leptin receptor levels could potentially
serve as a prognostic marker for disease progression [56]. However, it remains unclear
whether CNS leptin receptor levels are primarily driven by peripheral inflammation and
BBB penetration or by local production within the brain [56].

Figure 4. Actions of leptin related to the pathophysiology of multiple sclerosis (MS) (with red and
green arrows depicting the negative and the positive effects, respectively).

Visfatin

Visfatin is a 52 kDa pro-inflammatory adipokine secreted by macrophages in visceral
adipose tissue, bone marrow, skeletal muscles, liver, lungs, pancreas, heart, brain, and
various other organs [7]. Visfatin upregulates the expression of chemokines CCL2, CXCL2,
and CXCL8 (IL-8), as well as adhesion molecules such as ICAM-1 and VCAM-1, acting as a
chemoattractant for monocytes and lymphocytes [57]. Moreover, it induces (a) secretion of
pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α; (b) endothelial dysfunction via
NF-κB signaling pathway; and (c) OS through NF-κB signaling [7] (Figure 5). Elevated vis-
fatin levels have been reported in obesity, T2DM, MetS, and CVDs, while weight reduction
in obese patients has been shown to decrease visfatin concentrations [7]. A preclinical study
in microglial cells demonstrated that visfatin increases the synthesis of pro-inflammatory
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mediators, including IL-1β, IL-6, and iNOS in response to LPS stimulation [58]. This effect
is associated with visfatin-induced activation of the inflammatory NF-κB pathway, leading
to increased production of ROS and NO in these cells [58]. Visfatin levels have been re-
ported to be increased in MS patients compared to healthy individuals [59], particularly in
those with RRMS, and these levels show a positive correlation with TNF-α and a negative
correlation with FoxP3 mRNA in T cells [60]. The elevated visfatin levels observed in MS
patients suggest that visfatin may enhance neuroinflammatory processes within the CNS,
thereby contributing to increased demyelination and progressive neurodegeneration.

Figure 5. The negative effects of visfatin on chronic inflammation and oxidative stress associated
with obesity and multiple sclerosis (MS).

Resistin

Resistin is a 12.5 kDa pro-inflammatory adipokine, mainly secreted by macrophages
in adipose tissue [7]. Resistin (a) stimulates the production of pro-inflammatory cytokines,
including IL-1β, IL-6, and TNF-α; (b) increases the expression of several adhesion molecules;
and (c) enhances OS [7]. Some studies have reported that elevated serum resistin levels
are associated with obesity, IR, and T2DM, while other studies have not confirmed these
findings [7]. Moreover, Hossein-Nezhad et al. reported higher serum resistin levels in MS
patients compared to controls, accompanied by increased IL-1β, TNF-α, and CRP levels [61].
In addition, in patients with RRMS, elevated serum resistin levels are correlated with
decreased Treg activity, potentially contributing to a more severe disease progression [41]
(Figure 6). Thus, resistin may adversely affect MS by acting as a pro-inflammatory cytokine
that exacerbates disease progression. It promotes inflammation and autoimmune responses
by activating inflammatory pathways, increasing the production of other pro-inflammatory
cytokines, and recruiting inflammatory immune cells to the CNS. These effects can amplify
neurodegeneration and demyelination, ultimately worsening MS pathology.

https://doi.org/10.3390/pathophysiology33010005
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Figure 6. Promoting activities of resistin in chronic inflammation and OS associated with obesity
and MS.

PAI-1

PAI-1 is a tPA [7,62,63]. Elevated activity of PAI-1 is linked to impaired fibrinolysis,
leading to an increased risk of CVDs [7]. PAI-1 is produced by adipose tissue, fibroblasts,
vascular endothelial cells, and immune cells, and its serum levels are elevated in obese
individuals, showing correlations with IR, MetS, and atherosclerosis [7]. Elevated PAI-1
levels have also been observed in the serum and CSF of MS patients [64]. Furthermore,
serum PAI-1 levels were higher in patients with active MS compared to those with stable
disease and showed a positive association with neurological deterioration and disability,
with the results not being definite and conclusive [64].

Chemerin

Chemerin is a pro-inflammatory adipokine involved in regulating adipocyte differ-
entiation and is associated with obesity and MetS [65]. It functions as a chemoattractant
for pDCs and macrophages activated through TLR-9 and HMGB1, thereby promoting
type I interferon production [66]. Chemerin binds to the G protein-coupled receptors
CMKLR1, GPR1, and CCRL2. The binding of chemerin to CCRL2 promotes macrophage
infiltration and contributes to IR [67]. CMKLR1 is predominantly expressed on infiltrat-
ing lymphocytes, dendritic cells, and macrophages [68]. Studies on chemerin levels in
MS have yielded conflicting results, possibly due to differences in patient populations,
metabolic status, and research methods. Tomalka-Kochanowska et al. reported increased
chemerin levels in MS patients, which are associated with obesity and higher body weight,
reflecting chemerin’s strong link to adiposity and metabolic inflammation [69]. In contrast,
Koskderelioglu et al. did not observe these associations, which may be attributed to dif-
ferences in BMI distribution, disease stage, sample size, or the clinical characteristics of
their study participants [70]. These discrepancies emphasize the multifactorial regulation
of chemerin and highlight the necessity for further, larger, well-controlled clinical studies
to elucidate its role in MS pathophysiology.

https://doi.org/10.3390/pathophysiology33010005
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FABP-4

FABP-4 is a pro-inflammatory adipokine produced by adipocytes, monocytes, and
macrophages [71]. FABP-4 expression is enhanced in response to TLR-2 stimulation [71].
FABP-4 levels are elevated in obese individuals compared to those who are overweight
or of normal weight [72]. FABP-4 deficiency decreases the secretion of pro-inflammatory
cytokines by suppressing the NF-κB pathway [73], whereas administration of recombi-
nant FABP-4 promotes pro-inflammatory cytokine secretion through the p38/NF-κB path-
way [74]. Moreover, FABP-4 is released from lipolysis of fat droplets into the bloodstream,
reaching various organs, including the CNS [75,76]. Conversely, FABP-4 knockout mice
exhibit reduced clinical severity in EAE, and their dendritic cells produce lower levels of
pro-inflammatory cytokines [77,78]. Additionally, in pediatric MS patients, FABP-4 and
leptin positively correlate with RRMS, suggesting that these adipokines may contribute to
disease progression [74]. Furthermore, in adult MS patients, FABP-4 has been associated
with greater disability independently of BMI [72]. Similarly, in women, higher serum
FABP-4 levels correlate with elevated EDSS scores [72], whereas reduced miR-34a expres-
sion has been detected in PBMCs from patients with RRMS [79]. Taken together, these
findings suggest that FABP-4 may serve as a prognostic marker for MS, especially in obese
patients, due to its role at the intersection of metabolic regulation and neuroinflammation.
Its involvement in adipokine networks, immune signaling, and lipid homeostasis further
indicates that FABP-4 could contribute to both MS-related inflammation and neurodegen-
eration. Nevertheless, further experimental studies and well-designed clinical trials are
required to elucidate the precise relevance of FABP-4 to MS pathophysiology.

3.1.3. Pro-Inflammatory Cytokines in MS

TNF-α

TNF-α is a pro-inflammatory adipokine primarily generated by a wide range of cell
types, including macrophages, T and B lymphocytes, adipocytes, vascular endothelial cells,
astrocytes, neurons, and muscles [7,80,81]. Its biological actions are mediated through two
receptors: TNF-R1 and TNF-R2 [7,81]. TNFR1 is ubiquitously expressed across virtually all
cell types [82], while TNFR2 is predominantly localized to neurons, endothelial cells, and
several immune cell populations [83]. Activation of TNFR1 is associated with pathogenic
outcomes, while TNFR2 signaling is generally linked to protective effects [84]. In particular,
soluble TNF-α predominantly signals via TNFR1, promoting processes such as cellular
apoptosis, including oligodendrocytes [85], and driving chronic inflammation. In contrast,
membrane-bound TNF-α primarily engages TNFR2, leading to the activation of genes
involved in cell survival and resolution of inflammatory responses [81]. In conditions of
obesity and IR, TNF-α expression is elevated, and its levels have been shown to decline
following weight reduction [7]. Experimental studies indicate that TNF-α administration
enhances IR in adipocytes [7]. Its actions include (a) stimulating MCP-1 and IL-6 secretion
from preadipocytes [86]; (b) inhibiting adiponectin synthesis [87]; (c) promoting the release
of FFAs from adipocytes [87]; (d) activating NF-κB, which increases adhesion molecule
expression on endothelial and vascular smooth muscle cells, thereby contributing to athero-
genesis [87]; (e) impairing insulin-mediated peripheral glucose uptake [7]; (f) enhancing
lipolysis in adipocytes [7]; and (g) inducing ROS production, including superoxide anion
radical, leading to OS [7] (Figure 7). TNF-α also appears to be involved in MS activa-
tion [88,89]. Sharief and Henges reported increased TNF-α levels in the CSF of patients
with active MS [90], which correlated with disease severity and progression [90]. SNPs in
the TNFR1 gene (TNFRSF1A), encoding TNFR1, have been associated with an increased
risk of developing MS [91]. In EAE mouse models, TNF-α expression is upregulated, and
exogenous TNF-α administration exacerbates disease progression [89,92,93]. Conversely,
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EAE mice lacking TNFR1 either show full resistance or develop milder disease [94,95].
Furthermore, TNFR2 deficiency aggravates disease severity [96–98]. Thus, TNF-α plays a
pivotal role in MS, acting both as an inflammatory mediator and a neuroprotective factor
through receptor-specific pathways. Its pro-inflammatory effects are primarily mediated by
TNFR1, whereas TNFR2 activation supports remyelination and immune regulation. These
opposing actions highlight the complexity of targeting TNF-α in MS and help explain the
failure of non-selective TNF-α blockade in clinical trials. Future therapies will need to
precisely modulate TNF-α signaling, inhibiting TNFR1-mediated detrimental effects while
preserving or enhancing the neuroprotective functions of TNFR2.

 

Figure 7. Harmful actions of TNF-α in chronic inflammation and OS, associated with obesity and MS.

IL-6

IL-6 is a pro-inflammatory cytokine that triggers the acute-phase inflammatory re-
sponse [7,99,100]. It is produced by a variety of cell types, including adipocytes, endothelial
cells, monocytes, T and B lymphocytes, fibroblasts, microglia, neurons, and pancreatic
beta cells [7,99,100]. IL-6 signals either via its membrane-bound receptor IL-6Rα (classical
signaling) or through the soluble receptor, sIL-6R [7,99]. Signaling through gp130 acti-
vates the JAK1/STAT3 pathway, promoting gene transcription [99], and also engages the
MAPK pathway, leading to transcription of additional genes [99]. Serum IL-6 levels are
elevated in obese individuals, as well as in patients with chronic inflammatory conditions
and dyslipidemia, with adipose tissue contributing approximately one-third of circulating
IL-6 [63,101]. The hypothalamus shows the highest expression of IL-6 receptors, suggesting
a possible role for IL-6 in the regulation of appetite and food intake [63,101]. IL-6 also
contributes to the differentiation of Th17 lymphocytes [99]. Notably, IL-6-deficient mice
show resistance to EAE, although these findings are preliminary and require further inves-
tigation before definitive conclusions can be drawn [102,103]. Future studies are required
to elucidate the precise mechanisms through which IL-6 contributes to MS progression
and to develop strategies that selectively inhibit its pathogenic effects while preserving its
essential physiological functions. Targeted therapies are particularly important, as IL-6 is
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also critical for normal immune responses and CNS homeostasis, and complete blockade
could result in unintended adverse effects.

IL-8

IL-8 is a pro-inflammatory cytokine predominantly produced by monocytes and
macrophages [101]. Oxidized LDL (ox-LDL) stimulates IL-8 production and release from
macrophages derived from human atherosclerotic plaques and foam cells [101]. Addition-
ally, IL-8 promotes the release of MMP-9 from neutrophils [104]. Elevated IL-8 levels have
been found in obese individuals, as well as in patients with T2DM and MetS [105,106].
IL-8 contributes to BBB disruption and facilitates immune cell migration into the CNS,
with MS patients exhibiting lower serum but higher CSF IL-8 levels compared to healthy
controls [107]. Lund et al. demonstrated significantly higher serum IL-8 in untreated MS pa-
tients relative to controls, with levels decreasing following interferon-beta-1a therapy [108].
Similarly, Neuteboom et al. found that elevated IL-8 during pregnancy was associated with
an increased risk of postpartum relapse [109].

IL-18

IL-18 is produced by both hematopoietic and non-hematopoietic cells, including
monocytes, macrophages, keratinocytes, and mesenchymal cells [110]. A member of the
IL-1 cytokine family, which consists of 11 cytokines that enhance innate immune responses,
IL-18 plays a role in stimulating both innate and adaptive immunity [110]. It has also
been implicated in the pathogenesis of MS and in the development of EAE [111]. Elevated
IL-18 expression has been found in the serum and PBMCs of MS patients, as well as
in the brain and spinal cord tissues of mice with EAE [112,113]. IL-18 exerts its pro-
inflammatory effects by binding to the IL-18 receptor (IL-18R), activating NF-κB signaling,
and promoting Th1 differentiation, which leads to IFN-γ induction. Nevertheless, the
precise mechanisms by which IL-18 regulates MS and EAE progression remain incompletely
understood [111,114,115].

IL-1β

IL-1β is a pro-inflammatory cytokine primarily secreted by M1 macrophages [7]. In
the context of obesity, IL-1β contributes to multiple pathologic processes, including (a) pro-
moting ectopic fat accumulation, (b) elevating blood glucose levels, (c) impairing insulin
secretion, (d) inducing IR, (e) increasing the risk of T2DM, (f) facilitating atherosclerotic
plaque formation, (g) causing hepatic steatosis, (h) promoting liver cirrhosis, (i) suppressing
PPARγ expression, (j) increasing cytokine and chemokine expression, and (k) inducing
OS [7] (Figure 8). IL-1β mediates neuroinflammation by enhancing innate immune re-
sponses during MS pathophysiology [116]. A hallmark of EAE or MS progression is the
disruption of the BBB and BSCB, which facilitates IL-1β release, tissue permeation, and
subsequent neuroinflammation [117–119]. Notably, mice deficient in IL-1β or the IL-1R
exhibit resistance to EAE [120,121]. Although the precise mechanisms by which IL-1β
contributes to EAE or MS remain unclear, evidence indicates that it plays a key role in
driving neuroinflammation processes [119]. Elevated IL-1β levels appear to play a piv-
otal role in MS pathophysiology by activating microglia and astrocytes, disrupting the
BBB, recruiting peripheral immune cells, and exacerbating demyelination and neuronal
damage through the promotion of reactive T-cell responses. Consequently, targeting IL-1β
signaling represents a promising therapeutic strategy to modulate neuroinflammation
and potentially slow MS progression. Overall, IL-1β serves not only as a key mediator of
neuroinflammation in MS but also as a potential biomarker of disease activity.
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Figure 8. Harmful actions of IL-1β in chronic inflammation and OS associated with obesity and MS.

3.1.4. Anti-Inflammatory Cytokines in MS

IL-10

IL-10 is an anti-inflammatory cytokine that plays a crucial role in preventing in-
flammatory and autoimmune pathologies [122]. It is primarily produced by activated
myeloid cells and lymphocytes, with lower levels produced by other cell types during
inflammation [123]. IL-10 functions by dimerizing and binding to the extracellular do-
mains of two IL-10R1 subunits within the IL-10 receptor complex, which is a tetramer
composed of two IL-10R1 and two IL-10R2 subunits [123]. The IL-10R1 subunit associates
with JAK1, whereas IL-10R2 is linked to TYK2 [123]. Activation of the IL-10 receptor
complex triggers phosphorylation and activation of STAT1, STAT3, STAT5, and SOCS1/3,
ultimately inhibiting NF-κB-mediated signaling [123]. IL-10 suppresses the production of
pro-inflammatory cytokines, including IL-1β, IL-6, IL-12, IL-18, and TNF-α, while promot-
ing the synthesis of anti-inflammatory mediators such as the IL-1β receptor antagonist [123].
Its anti-inflammatory effects have been demonstrated in experimental models of MS, where
it attenuates neuroinflammation [123,124]. In EAE mouse models, IL-10-deficient mice
developed more severe disease compared to wild-type mice, whereas mice overexpressing
IL-10 were resistant to EAE [125,126]. These findings indicate that IL-10 functions as a
protective and immunoregulatory cytokine in MS, maintaining immune balance by sup-
pressing pro-inflammatory cytokine production, inhibiting T-cell responses, and promoting
regulatory T-cell activity. Reduced IL-10 levels or signaling are associated with increased
disease severity, highlighting its critical role in preventing inflammation and tissue dam-
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age. Consequently, strategies that enhance or mimic IL-10 activity may offer a promising
therapeutic approach for managing MS progression.

3.2. Activation of the NLRP3 Inflammasome in Obesity and MS

Inflammasomes are large cytoplasmic multiprotein complexes that function through
PRRs to promote the maturation and secretion of pro-inflammatory cytokines, including
IL-1β and IL-18, which are key mediators of inflammation [25,127]. Structurally, inflam-
masomes are composed of three main components: (a) a sensor protein, such as members
of the NLR family; (b) an adaptor protein ASC (also known as PYCARD), which contains
a caspase recruitment domain; and (c) caspase-1 [128]. TLRs and NLRs are members of
the PRR family, recognizing PAMPs and DAMPs, respectively [128]. Activation of PRR
initiates inflammasome assembly and triggers NF-κB signaling. The adaptor protein ASC
links NLR to caspase-1, enabling complex formation [128]. Activation of the NLRP3 in-
flammasome occurs when PAMPs or DAMPs engage NLR receptors in response to various
metabolic disturbances, including lysosomal disruption, release of mtDNA, increased ROS,
and elevated intracellular calcium (Ca2+) levels [128]. This leads to NLR oligomerization
through PYD or CARD interactions, followed by caspase-1 activation, which promotes
the maturation and secretion of IL-1β and IL-18 [128]. Caspase-1 activation also induces
pyroptosis, a form of programmed inflammatory cell death [128].

NLRP3 inflammasomes belong to the NLR family and are composed of an LRR do-
main, a nucleotide-binding site (NBS), and a PDC-3 domain [128]. Esser et al. found
elevated expression of NLRP3 and IL-1β in macrophages infiltrating the visceral fat of
obese individuals with MetS, compared with obese individuals without MetS [129]. In
obesity, NLRP3 inflammasomes are activated by an excess of metabolic DAMPs such as
ATP, glucose, FAs, ceramides, ox-LDL, crystallized uric acid, cholesterol crystals, and
monosodium urate. Additionally, pro-inflammatory adipokines such as leptin, resistin,
and TNF-α further promote NLRP3 activation, resulting in caspase-1-mediated maturation
and secretion of IL-1β and IL-18 [16,130]. Palmitic acid, a saturated fatty acid, activates
the NLRP3-PYCARD inflammasome through mechanisms involving mitochondrial ROS,
AMPK inhibition, and the ULK1-dependent autophagy signaling pathway, ultimately
leading to caspase-1 and the production of IL-1β and IL-18. These findings support a link
between high-fat diets and inflammation [131]. In contrast, oleic acid, an unsaturated fatty
acid, counteracts the inflammatory effects of palmitic acid by enhancing AMPK activation
and reducing ER stress [132]. Long-chain PUFAs, such as omega-3 fatty acids, also inhibit
caspase-1 activation via their receptor GPR120, which recruits β-arrestin-2 to form a com-
plex that interacts with and inhibits NLRP3 inflammasome activation [133]. Conversely,
cholesterol crystals activate NLRP3 through lysosomal destabilization [134], while ox-LDL
promotes inflammasome activation via NF-κB signaling [135]. Hyperglycemia can also
activate the NLRP3 inflammasome in human adipose tissue through upregulation of TXNIP,
leading to increased IL-1β expression and contributing to IR [136]. Elevated glutamate
levels during glucose deprivation and hypoxia induce ER stress, raise intracellular calcium
(Ca2+) levels, and further enhance TXNIP expression [137]. LPSs, potent endotoxin PAMPs,
are increased in conditions such as obesity and T2DM due to alterations in gut microbiota
and enhanced intestinal permeability. LPS are taken up by macrophages and adipocytes,
where they activate NLRP3 inflammasomes and pro-IL-1β production through TLR4- and
NF-κB-dependent pathways, initiating robust inflammatory responses [138]. Additionally,
ATP, beyond its role as an intracellular energy carrier, is a major activator of the NLRP3
inflammasome via the NF-κB signaling [139]. NLRP3 inflammasomes also play a significant
role in MS pathophysiology [25]. Increased expression of NLRP3 and IL-1β has been found
in MS lesions, accompanied by elevated serum levels of ASC, caspase-1, and IL-18 [140,141].
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In EAE models, both NLRP3 mRNA and protein levels are upregulated [111,142], whereas
Nlrp3−/− mice display reduced Th1 and Th17 lymphocyte infiltration in the spinal cord
and peripheral lymphoid tissues, along with markedly attenuated disease severity com-
pared with wild-type mice [111,143]. Moreover, Yu et al. reported that TSLP-deficient mice
(Tslpr−/− mice) exhibit decreased NLRP3 expression and lower EAE scores [144]. Thus,
the activation of the NLRP3 inflammasome represents a key mechanistic link between
obesity and neuroinflammation in MS, mediating inflammatory responses to metabolic
disturbances. In obesity, NLRP3 activation within adipose tissue increases the production
of pro-inflammatory cytokines, which can enter the circulation and contribute to CNS
neuroinflammation, thereby exacerbating MS symptoms. Targeting the NLRP3 inflamma-
some pathway offers a promising strategy to reduce both systemic and CNS inflammation.
Inhibiting NLRP3 activation has the potential to alleviate obesity-related complications,
MS, and a range of other inflammatory diseases. Consequently, modulation of this pathway
may provide meaningful benefits in controlling disease severity and progression in MS.

3.3. Gut Microbiota Dysbiosis in Obesity and Multiple Sclerosis (MS)

Significant differences have been identified between the gut microbiota of obese in-
dividuals and those of normal-weight individuals [16], reflecting alterations in both the
composition and functional capacity of the host microbiome [145]. The gut microbiota in
obesity can increase intestinal and BBB permeability [16,146,147]. As a result, LPSs derived
from the outer membrane of Gram-negative bacteria can translocate across the intestinal mu-
cosa and subsequently cross the BBB, where they act on astrocytes and microglia [146–150].
This microbial translocation contributes to shifts in the Treg/Th17 cell balance within the
CNS, thereby promoting neuroinflammation [151]. In obesity, certain bacterial groups, such
as Archaea, are present in greater abundance, whereas others, including members of the
Firmicutes and Bacteroidetes phyla, are reduced or absent [152]. In MS, the presence of
specific gut microbial taxa, such as Fusobacteria, has been associated with an increased risk
of disease relapse [153]. However, therapeutic strategies for modifying the gut microbiota
in MS, including probiotics and fecal microbiota transplantation, have thus far shown
limited success [154]. Furthermore, MS patients have been found to exhibit reduced levels
of propionic acid in both feces and blood samples [155]. Exogenous administration of
propionic acid as an adjunct therapy in MS has been found to significantly reduce Th1
cell activity and enhance Treg function, resulting in decreased disability and fewer disease
relapses [155]. These findings suggest that many of the detrimental effects associated with
obesity and MS progression may be mediated through alterations in the gut microbiome.
Conversely, several therapeutic approaches for these conditions may, at least in part, ex-
ert their benefits by modulating this microbiome–immune axis, ultimately influencing
neuronal function and systemic inflammatory profiles.

4. OS in Obesity and MS
OS in obesity arises primarily through two main mechanisms. The first involves

chronic inflammation in adipose tissue, where excessive production of pro-inflammatory
cytokines such as TNF-α, IL-6, and IL-1β stimulates mitochondrial and peroxisomal ox-
idative phosphorylation, leading to the generation of FRs, mitochondrial DNA damage,
ATP depletion, and lipotoxicity [7,60]. This chronic inflammation is further amplified by
activation of PGE2, COX-2, and MAPK pathways [156]. Moreover, obesity is associated
with reduced expression of PPAR-γ due to the influence of FAs and their metabolites,
impairing its ability to upregulate antioxidant genes and suppress pro-inflammatory me-
diators [157]. The second pathway of OS in obesity involves NADPH oxidase formation,
which is promoted both by pentose phosphate pathway signaling and by increased NADPH
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oxidase expression in macrophages [156]. These enzymes transfer electrons from NADPH
to molecular oxygen, generating superoxide anion radicals (O2

•−), which are subsequently
converted to H2O2 [156]. H2O2 is further detoxified into water and oxygen by antioxidant
enzymes such as catalase (CAT) and glutathione peroxidase (GPx); in cases of antioxi-
dant enzyme deficiency, ROS accumulate [156,158]. Consequently, ROS overproduction in
obesity arises from both NADPH oxidase activity and mitochondrial oxidative phosphory-
lation. Within mitochondria, molecular oxygen (O2) is reduced to H2O through the flavin
mononucleotide and ubiquinone cycle, producing both O2

•− and H2O2 [159]. Excessive
ROS generation leads to OS, which is reflected by increased levels of MDA, a biomarker of
cellular damage and lipid peroxidation [156].

In MS, neuroinflammation activates the MAPK signaling pathway within the nuclei
of macrophages and dendritic cells, leading to the overproduction of pro-inflammatory
cytokines, including TNF-α, IFN-γ, IL-1β, IL-12, IL-6, and IL-23 [160]. Concurrently, activa-
tion of the transcription factor NF-κB in CNS cells such as T lymphocytes, macrophages,
microglia, astrocytes, and oligodendrocytes amplifies neuroinflammation and drives MS
pathogenesis [161]. Neuroinflammation signaling also activates JNK pathways, resulting in
demyelination and neuronal apoptosis [162], while disruption of the PI3K/AKT pathway
further contributes to disease exacerbation [163]. Neuroinflammation promotes the exces-
sive production of ROS and NO by glial cells and activates the arachidonic acid pathway
in the CNS via COX and LOX, leading to OS [164,165]. OS can damage DNA, lipids, and
proteins, ultimately causing cell death [166]. It can also impair mitochondrial function
and sodium-potassium pump activity, reducing ATP production, causing intracellular
potassium accumulation, and triggering apoptosis [167]. Furthermore, overproduction of
ROS and NOS in neural cells contributes to myelin sheath damage and compromises BBB
integrity [168–170] (Figure 9).

Figure 9. Schematic representation of the interaction between obesity, chronic inflammation, and
oxidative stress in the pathogenesis of multiple sclerosis (MS), emphasizing that OS in obesity arises
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via two mechanisms. The first mechanism originates from chronic inflammation in adipose tissue,
where excessive secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β stimulates
mitochondrial and peroxisomal oxidative phosphorylation, resulting in ROS production. This inflam-
matory state is further amplified by activation of PGE2, COX-2, and MAPK pathways. Additionally,
obesity is associated with reduced expression of PPAR-γ due to the influence of FAs and their metabo-
lites, impairing the induction of antioxidant enzymes, including catalase, glutathione peroxidase, and
superoxide dismutase. The second mechanism of OS in obesity involves NADPH oxidase formation.
These enzymes transfer electrons from NADPH to molecular oxygen, generating superoxide anion
radicals (O2

•−), which are subsequently converted to H2O2. H2O2 is then detoxified into H2O by
antioxidant enzymes such as CAT and GPx. In the absence of sufficient antioxidant defenses, ROS
accumulate. Consequently, ROS overproduction in obesity arises from both NADPH oxidase activity
and mitochondrial oxidative phosphorylation. This OS is characterized by elevated MDA levels and
increased lipid peroxidation, which promote chronic low-grade inflammation. Moreover, OS further
activates PGE2, COX-2, and MAPK pathways, amplifying inflammatory responses. Together, chronic
inflammation and OS contribute to the pathogenesis of MS.

5. Antioxidant Compounds in the Management of Multiple Sclerosis
A key regulator of the antioxidant response is Nrf2 [171]. Under basal conditions,

Nrf2 is sequestered in the cytoplasm by Keap1, which targets it for degradation via the
ubiquitin-proteasome system [171]. Under OS, Nrf2 dissociates from Keap1 and translo-
cates to the nucleus, where it binds to AREs to induce the transcription of genes encoding
antioxidant enzymes and detoxification proteins. This process protects cells from ROS-
induced damage and helps maintain redox homeostasis [172]. The Nrf2 signaling pathway
represents a promising target for enhancing antioxidant defenses in MS, as it regulates the
expression of several antioxidant enzymes [173]. Moreover, the JNK and ERK pathways
can phosphorylate Nrf2, promoting its translocation to the nucleus [174,175]. Endogenous
antioxidant defenses, including enzymatic antioxidants such as glutathione peroxidase,
catalase, SOD, and PON2, and free radical scavengers such as alpha-tocopherol (vitamin E)
and glutathione [164,176]. Nrf2 regulates several key enzymes, including SOD, HO-1, GPxs,
and catalase [172]. Catalase, a primary defense against ROS and OS, has been found at
increased levels in the gray matter of MS patients compared to controls, suggesting a com-
pensatory response to elevated OS [177]. Similarly, SOD serves as a primary defense against
OS, and reduced SOD activity has been associated with excessive ROS production [172].
Obradovic et al. reported elevated SOD activity in the serum of MS patients, reflecting
ongoing oxidative and inflammatory damage [178]. Additionally, the coenzyme CoQ10
may provide dose-dependent benefits in mitigating OS and inflammation in MS [179].
Several non-enzymatic compounds, including PUFA, glutathione, NAC, alpha-lipoic acid,
melatonin, L-carnitine, and various polyphenols, including epigallocatechin, quercetin,
curcumin, and resveratrol, have demonstrated protective effects against obesity-related
metabolic disturbances [180] and may serve as adjunctive therapies in MS [181]. Similarly,
trace elements such as Fe, Zn, Mn, and Cu may confer beneficial effects on obesity-related
metabolic disorders, as imbalances of these elements have been found in patients with
metabolic abnormalities [182]. They may also play a supportive role in MS management.
However, their potential pro-oxidant effects and capacity to induce cellular damage should
not be overlooked, particularly in the case of iron and copper, which can promote oxidation
of cellular components and contribute to the formation of advanced glycation end products
via Fenton reaction propagation [183,184]. Targeting inflammatory mediators represents a
promising therapeutic strategy for MS, though the safety and efficacy of such interventions
require further validation in clinical trials. Anti-inflammatory approaches include (a) IL-1R
antagonists [7,185], (b) recombinant anti-IL-1β antibodies [7], (c) NF-κB inhibitors [7],
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(d) anti-TNF-α agents [7], (e) inflammasome-targeting compounds [127,186–188], and (f)
thiazolidinediones, which act as potent and selective PPAR activators [7,186–188]. Addi-
tionally, anti-obesity drugs with anti-inflammatory and antioxidant properties may offer
potential as adjunct therapies in MS management [189].

5.1. Antioxidants as Complementary Therapy in MS
5.1.1. Vitamin D

Vitamin D reduces the number of activated autoreactive T lymphocytes in the
CNS [190], which are responsible for attacking the myelin sheath and contributing to
MS pathogenesis [191]. It also appears to inhibit the differentiation of dendritic cells
in vitro [192,193], cells that play a key role in innate immune responses involved in MS [194].
Furthermore, vitamin D decreases macrophage accumulation in the CNS in EAE models,
suggesting potential neuroprotective effects [195–198]. In parallel, vitamin D has been
shown to enhance Treg activity in EAE models [199], which helps suppress autoreactive T
lymphocytes [200]. Additionally, vitamin D promotes a shift from Th1 to Th2 cells [201],
thereby altering T-cell cytokine profiles from pro-inflammatory Th1 cytokines such as
TNF-α, IFN-γ, and IL-2 [201] to anti-inflammatory Th2 cytokines, including IL-4, IL-5, and
IL-10 [202]. Moreover, vitamin D reduces NO production [203] and suppresses the iNOS
pathway [204] in microglia, macrophages, and astrocytes in vitro [205]. This is particularly
important, as NO contributes to BBB disruption, oligodendrocytes and axonal damage,
and demyelination [206]. Overall, vitamin D exerts a protective role in MS onset, mitigates
disease severity, and decreases relapse frequency [207,208] (Figure 10). However, the opti-
mal dose of vitamin D supplementation as an adjunct therapy in MS remains uncertain.
A significant knowledge gap also exists regarding the extent to which obesity alters the
immunological and clinical effects of vitamin D in MS. Although obese patients may require
higher vitamin D doses due to altered vitamin D metabolism and sequestration in adipose
tissue, this has not been confirmed in clinical trials. Therefore, careful evaluation of the
long-term safety of high-dose vitamin D supplementation in obese individuals with MS is
essential, particularly since their pharmacokinetic profile may differ substantially from that
of non-obese patients.

Figure 10. Schematic representation of the beneficial effects of vitamin D against MS.
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5.1.2. Vitamin A

Vitamin A, particularly through its active metabolite retinoic acid, enhances the in-
tegrity of the BBB [209], thereby limiting the entry of peripheral pro-inflammatory me-
diators and immune cells into the brain parenchyma [181,210]. In addition, vitamin A
exhibits anti-inflammatory and antioxidant effects within the CNS [181,211]. It suppresses
the secretion of pro-inflammatory cytokines such as IL-1, IL-12, TNF-α, and NO [181,212].

Vitamin A also increases the in vitro secretion of the anti-inflammatory cytokine IL-10
by B cells in MS and enhances the production of antioxidant enzymes, thereby protecting the
brain from OS [181,213]. Furthermore, in experimental models, vitamin A activates PPARs,
modulating the phenotype of CNS macrophages and consequently reducing neuroinflam-
mation, neuronal OS, and axonal demyelination [181]. In addition, preclinical studies show
that vitamin A inhibits the transcription factors NF-κB and AP-1, both involved in T-cell
activation, as well as STAT-1, a key regulator of neuroinflammation [181,214]. Vitamin A
also promotes the differentiation of T cells into Th2 cells, which produce anti-inflammatory
cytokines, an effect supported by preclinical studies [181,215]. Likewise, retinoic acid,
the active metabolite of vitamin A, increases the number of Treg cells, which suppress
autoreactive T lymphocytes that attack the myelin sheath and contribute to MS pathogene-
sis [181,216]. At the same time, vitamin A inhibits the differentiation of CD4

+ T cells into
Th1 and Th17 subsets, thereby protecting against neuroinflammation [181,216] (Figure 11).
Consistent with these actions, vitamin A reduces the ability of CD4

+ T cells to induce EAE
and exerts a protective role in MS onset [181,216]. Despite preclinical evidence suggesting
that vitamin A and its active metabolite, retinoic acid, may benefit MS by modulating T-cell
responses and reducing neuroinflammation, the influence of obesity on these therapeutic
outcomes remains poorly understood. To date, no studies have investigated how obesity
may alter the immunomodulatory or neuroprotective effects of vitamin A in MS, which is
crucial to establishing safe and effective supplementation strategies.

 

Figure 11. Schematic representation of the beneficial effects of vitamin A against MS.
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5.1.3. Curcumin

Curcumin is capable of crossing the BBB, where it protects the brain from inflamma-
tory damage [217,218]. It prevents the degradation of tight junction proteins [219], thereby
maintaining BBB integrity and limiting the infiltration of peripheral immune cells and
inflammatory mediators into the brain parenchyma [181]. In addition, curcumin has been
shown to promote neuronal remyelination in animal models of MS [220]. It also exhibits
anti-inflammatory and antioxidant effects in the CNS, enhances the clearance of ROS,
and chelates metal ions such as manganese, iron, copper, and zinc, as demonstrated in
preclinical studies [181,221,222]. Additionally, curcumin inhibits the in vitro expression
of pro-inflammatory cytokines such as IL-1β, IL-6, IL-8, IL-17, and TNF-α in the CNS, as
well as COX-2, MCP-1, and MIP-1α [223,224]. It also suppresses NF-κB activation, thereby
attenuating pro-inflammatory signaling pathways involved in the pathogenesis of both
MS and EAE, as demonstrated in preclinical studies [181]. Likewise, curcumin inhibits the
differentiation of Th17 cells, which play a key role in MS pathogenesis, according to preclin-
ical research [225]. Furthermore, curcumin has been shown to restore Treg function [226],
supporting the suppression of autoreactive T lymphocytes that attack the myelin sheath
and drive MS development [227]. Curcumin also activates Nrf2, providing protection
against OS, mitochondrial dysfunction, neuroinflammation, and neurodegeneration in
MS, as demonstrated in preclinical studies [221,228]. Additionally, preclinical evidence
indicates that curcumin exerts neuroprotective effects in neurodegenerative diseases by
upregulating antioxidant systems, such as Hsp70s, HO-1, and thioredoxin, which are essen-
tial for maintaining mitochondrial ROS homeostasis [218,228,229] (Figure 12). However,
despite these promising findings, curcumin’s poor bioavailability, limited solubility, and
rapid metabolism and excretion significantly hinder its therapeutic potential, underscoring
the need for improved pharmaceutical formulations and adjuvants to enhance its pharma-
cokinetics [230]. Moreover, its potent biological activity in vivo, combined with suboptimal
pharmacokinetics, suggests that part of its effectiveness may involve actions within the
gastrointestinal tract and modulation of the microbiota–gut–brain axis [230].

 

Figure 12. Schematic representation of the beneficial effects of curcumin against MS.
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5.1.4. Resveratrol

Preclinical evidence indicates that resveratrol enhances BBB integrity in EAE mouse
models, thereby limiting the infiltration of peripheral pro-inflammatory mediators and
immune cells into the brain parenchyma [231]. It also exerts potent anti-inflammatory
and antioxidant effects within the CNS, reducing ROS and pro-inflammatory cytokines
such as TNF-α, IL-1β, IL-9, IL-12, IL-17, IL-23, and IFN-γ [181,228]. Moreover, some
preclinical studies show that resveratrol suppresses the expression of MIP-1α [228] and
inhibits Th17 cell responses, which are central to MS pathogenesis [232]. At the same time,
resveratrol promotes a shift from Th1 cells toward Th2 cells, thereby altering T lymphocyte
cytokine production from pro-inflammatory mediators such as TNF-α, IFN-γ, and IL-2 to
anti-inflammatory cytokines, including IL-4, IL-5, and IL-10 in EAE models [232]. More-
over, resveratrol activates SIRT1, an NAD+-dependent deacetylase whose overexpression
appears to exert neuroprotective effects in the CNS [181,232,233]. It also enhances neuronal
remyelination in EAE models [228]. Through its combined anti-inflammatory, antioxidant,
and anti-apoptotic actions, resveratrol reduces neuronal damage and attenuates the severity
of MS [228] (Figure 13). Despite extensive resveratrol research in obesity and MetS models,
there is a notable lack of preclinical studies investigating its effects in combined obesity–MS
models. This represents a critical gap in understanding how resveratrol might influence
MS pathogenesis in the context of metabolic dysfunction. Without such combined-model
data, predicting patient safety, treatment efficacy, and optimal dosing of resveratrol in obese
MS patients remains challenging, posing significant implications for the design of future
clinical trials.

 

Figure 13. Schematic representation of the beneficial effects of resveratrol against MS.

5.1.5. Quercetin

Quercetin strengthens the BBB, limiting the infiltration of peripheral pro-inflammatory
substances and immune cells into the brain parenchyma [234]. Preclinical studies indi-
cate that quercetin exerts anti-inflammatory and antioxidant properties in the CNS by
promoting ROS clearance, inhibiting the secretion of pro-inflammatory cytokines such
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as IL-1β, IL-12, and TNF-α, and chelating metal ions [181,234]. Additionally, quercetin
has been shown to suppress NOS activity in macrophages and astrocytes and inhibits
the proliferation of autoreactive T cells, which attack the myelin sheath and contribute to
MS pathogenesis [234]. Quercetin also inhibits the differentiation of Th1 helper T cells,
thereby reducing demyelination and promoting remyelination [234]. However, its poor
pharmacokinetics may limit its clinical applicability, a challenge shared with other natu-
rally derived compounds such as resveratrol, which, despite high membrane permeability,
exhibits low bioavailability due to rapid phase II metabolism (even at the intestinal level)
and structural instability under UV light, high temperature, pH fluctuations, and oxidative
enzymes [235,236]. Additionally, quercetin reduces IFN-γ production and inhibits calcium-
mediated signaling in CNS cells, exerting neuroprotective effects [181]. It also inhibits
xanthine oxidase, an enzyme implicated in axonal and myelin damage in EAE models [181].
Quercetin also inhibits the phosphorylation of JAK2, TYK2, and STAT3, thereby exerting
anti-inflammatory and anti-apoptotic effects in the CNS [181] (Figure 14). While preclinical
studies support the anti-inflammatory and antioxidant effects of quercetin in MS models,
there remains a pronounced gap in research exploring its role in the context of MS coexist-
ing with obesity or MetS. Given that obesity can exacerbate neuroinflammation and alter
immune responses, understanding the interplay between quercetin, MS pathogenesis, and
obesity-associated metabolic disturbances is essential. Addressing this knowledge gap is
crucial for predicting therapeutic efficacy, optimizing dosing strategies, ensuring patient
safety, and informing the design of future preclinical and clinical studies.

Figure 14. Schematic representation of the beneficial effects of quercetin against MS.

6. Conclusions
MS is a degenerative disease characterized by a complex and multifactorial patho-

physiology, posing significant challenges for affected individuals. Consequently, effective
treatment and prevention of disease progression remain major clinical and research priori-
ties. Growing evidence indicates that MS progression shares common pathophysiological
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pathways with obesity and related metabolic disorders [30]. These overlapping pathways
contribute to key disease manifestations, including chronic inflammation, OS, IR, cellular
degeneration, and apoptosis [30]. In the brains of obese individuals, elevated levels of ROS
are generated as a result of persistent neuroinflammation. These high ROS levels impair
brain mitochondrial ATP production, which is essential for the proper function of neurons
and glial cells. Moreover, excessive ROS cause damage to the phospholipid membranes of
neural cells. Both chronic neuroinflammation and OS contribute to the pathophysiology of
MS, and the two processes interact and exacerbate one another. OS arises from an imbalance
between ROS and the antioxidant defense system, wherein ROS levels exceed antioxidant
capacity, leading to oxidative damage. OS is also associated with inflammasome activation,
gut microbiota dysbiosis, cytokine-induced synaptic hyperexcitability, abnormal iron accu-
mulation in the brain, and microglial activation, all of which contribute to neuronal injury.
OS biomarkers measured in serum or CSF may hold diagnostic and prognostic value in MS.
MS manifests in distinct forms, including RRMS, PPMS, and SPMS. The impact of obesity
on these subtypes and on overall disease progression remains an important area of inves-
tigation, as the obesity-associated metabolic and inflammatory factors may differentially
influence relapse rates, neurodegeneration, and long-term outcomes. In RRMS, obesity
is associated with elevated serum and CSF levels of pro-inflammatory cytokines such as
IL-6 and adipokines, including leptin, resistin, and chemerin, alongside reduced levels of
the anti-inflammatory adipokine adiponectin [237]. This heightened inflammation state is
thought to result from metabolic and immunological alterations associated with obesity.
Moreover, higher BMI correlates with an increased risk of relapses and greater disability in
MS patients, as reflected by EDSS scores of 3 and 4 [238]. In individuals with CIS, obesity
predicts faster conversion to definite MS and higher annual relapse rates [239]. In patients
with PPMS or SPMS, obesity at the time of diagnosis is associated with faster accumulation
of disability over time, as reflected by EDSS scores [240]. Moreover, sustained elevated
BMI from early adulthood through the time of diagnosis correlates with a higher risk of
long-term disability progression, suggesting that prolonged obesity may exacerbate disease
severity [241]. Although growing evidence highlights important links between obesity and
potentially worse MS progression, substantial gaps remain in understanding the under-
lying mechanisms and the consistency of these effects, particularly in males and across
different disease stages. Much of the existing research focuses on RRMS or CIS, leaving
PPMS and SPMS comparatively understudied, particularly regarding long-term disease
progression and treatment considerations. Future targeted research is therefore essential
to elucidate how obesity may differentially influence disease onset, progression, and out-
comes across MS subtypes [242–244]. Table 1 summarizes the effects of anti-inflammatory
and pro-inflammatory adipokines and cytokines on inflammation, OS, obesity, and MS.
Although demyelination and inflammatory processes are partially interlinked (given that
MS involves both central and peripheral inflammation), they are not directly or consistently
correlated. Consequently, correlations between adipokines and inflammatory markers
cannot be established with complete certainty at this time. This limitation highlights the
need for further research to clarify these complex interactions. Anti-inflammatory strate-
gies show considerable promise for slowing MS progression. These approaches include
blocking the IL-1 receptor, inhibiting IL-1β or NF-κB signaling, modulating TNF/TNFR1
activity [245], regulating inflammasome activation, and stimulating PPAR pathways. By
targeting these inflammatory mediators, such interventions aim to suppress neuroinflam-
mation and correct immune dysregulation, potentially improving clinical outcomes and
mitigating long-term disease progression. Despite their promise, these therapeutic strate-
gies require further investigation, both fundamental studies to elucidate mechanisms and
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biomarkers and translational studies for drug development and clinical trials, because the
immune system in the brain is complex and tightly regulated.

Table 1. Comparative effects of various anti- and pro-inflammatory adipokines and cytokines on
inflammation, OS, obesity, and MS.

Adipokines and
Cytokines Inflammation OS Obesity MS

Anti-inflammatory
adipokines

Adiponectin
It suppresses NF-κB activity
and reduces TNF-α and IL-6

secretion from macrophages [7].

It decreases ROS
production and

OS [7].

Clinical studies show low
adiponectin baseline levels in obese

patients [7].

Clinical studies demonstrate an
“adiponectin paradox”, where low

adiponectin baseline levels may be a sign
of a less active MS disease [41], and high
adiponectin overall levels may predict

worse disease progression [38].

Apelin

It suppresses iNOS and IL-6
production and upregulates
arginase-1 and IL-10 in N9

microglial cells [43].

It promotes the
synthesis of

antioxidant enzymes
and inhibits FA
oxidation and
reduces OS [7].

It promotes the differentiation and
metabolic activity of brown

adipocytes, induces the browning of
white adipose tissue, and inhibits

lipogenesis and lipolysis [7].
Clinical studies show high apelin
serum levels in obese patients [7].

Preclinical studies indicate that apelin can
promote remyelination in MS research

[46,47]. Clinical studies showed
conflicting findings on apelin levels in MS
patients. Tehrani et al. found lower serum
apelin levels in women with early-stage

RRMS than in healthy individuals. Apelin
levels were positively linked to higher
EDSS scores and more relapses [36]. In

contrast, Alpua et al. found higher apelin
levels in RRMS patients compared to

controls, though they did not find a link to
MS severity or duration [44].

Pro-inflammatory
adipokines

Leptin

It upregulates TNF-α and IL-6
from macrophages [7] and

promotes the proliferation of
Th1 and Th17 cells [50,51].

It promotes OS by
increasing FA
oxidation and

inflammation [7].

Serum leptin levels are directly
correlated with the mass of the

adipose tissue [49]. In obesity, leptin
resistance occurs, causing elevated

serum leptin levels that fail to
reduce appetite [53]. Leptin
resistance is associated with
impaired BBB function and

decreased leptin transport across the
BBB [53].

A preclinical study demonstrated that
removing leptin receptors attenuated

leukocyte infiltration into the CNS and
improved the integrity of the BBB [56].

Clinical studies showed that serum and
CSF leptin levels are increased in patients
with RRMS, particularly during the acute

phase of MS [54,55].

Visfatin

It upregulates the expression of
chemokines such as CCL2,

CXCL2, and CXCL8;
upregulates the expression of
adhesion molecules such as
ICAM-1 and VCAM-1; and

induces the release of
pro-inflammatory cytokines

such as IL-1β, IL-6, and
TNF-α [7].

It promotes OS
through the

inflammatory NF-κB
signaling

pathway [7].

Elevated visfatin levels are often
found in people with obesity,

particularly those with central
obesity and metabolic issues such

as IR and T2DM [7].

It increases the synthesis of
pro-inflammatory mediators such as

IL-1β, IL-6, and iNOS in microglial cells
in response to LPS stimulation [58]. There

are increased visfatin levels in MS
patients [59], particularly in those with

RRMS, and these levels correlate
positively with TNF-α and negatively

with FoxP3 mRNA in T cells [60].

Resistin

It promotes the activation of
pro-inflammatory cytokines,

such as IL-1β, IL-6, and TNF-α,
and upregulates several
adhesion molecules [7].

It promotes OS and
inhibits endothelial

nitric oxide synthase
(eNOS)

expression [7].

In animal models, it promotes IR;
however, there are inconsistent

findings regarding the association
between resistin levels and obesity,

IR, and T2DM [7].

Serum resistin levels are significantly
elevated in MS patients compared to

healthy individuals [61]. This elevation is
observed alongside increased levels of
other inflammatory markers, such as

IL-1β, TNF-α, and CRP [61]. In patients
with RRMS, the higher serum resistin

levels correlate with reduced Treg activity,
which can potentially exacerbate the

negative progression of the disease [41].

Pro-inflammatory
cytokines

TNF-α

It induces chronic inflammation
via TNFR1 signaling and

promotes immune regulation
via TNFR2 signaling [81],

stimulates MCP-1 and IL-6
secretion from preadipocytes

[86], inhibits adiponectin
synthesis [87], and activates the

NF-κB pathway [87].

It promotes ROS
production,
including

superoxide anion
radical [7].

Elevated TNF-α levels are strongly
associated with obesity and IR [7];

they increase FFA release from
adipocytes [87], reduce insulin

action on peripheral glucose uptake
[7], and increase lipolysis in

adipocytes [7].

There is a correlation between increased
TNF-α levels and active MS, disease

severity, and progression [10]. SNPs in
the TNFR1 gene (TNFRSF1A) have been
linked to increased MS risk [91]. In EAE

mouse models, TNFR1 deficiency leads to
protection or milder disease [94,95], while
TNFR2 deficiency results in more severe

disease [96–98].
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Table 1. Cont.

Adipokines and
Cytokines Inflammation OS Obesity MS

IL-6
It induces the acute-phase

response of
inflammation [7,99,100].

It promotes ROS
production by

activating
JAK1/STAT3 and

MAPK
pathways [99].

Elevated serum IL-6 levels are
found in obese individuals [63,101].

High expression of IL-6 in the
hypothalamus suggests a role for

IL-6 in regulating appetite and food
intake [63,101].

IL-6-deficient mice exhibit resistance to
EAE [102,103].

IL-1β It increases the expression of
cytokines and chemokines [7].

It promotes
mitochondrial OS

and calcium
release [7].

It promotes ectopic fat
accumulation, increases blood

glucose levels; causes IR, induces
T2DM, contributes to the formation

of atherosclerotic plaques and
hepatic steatosis, and

downregulates PPARγ expression
[7]. Its blockade increases insulin

secretion and reduced insulin
requirements clinically [7].

IL-1β plays an important role in
neuroinflammation and the development

of EAE and MS [119]; mice deficient in
IL-1β or IL-1R exhibit significant

resistance to EAE [120,121].

Anti-inflammatory
cytokines

IL-10

It prevents inflammatory and
autoimmune pathological

conditions [122] and binds to its
IL-10R complex, activating the

STAT1, STAT3, STAT5, and
SOCS1/3 signaling pathway.

As a result, IL-10 signaling leads
to inhibition of

NF-κB-mediated transcription;
suppresses the production of
pro-inflammatory cytokines
like IL-1β, IL-6, IL-12, IL-18,

and TNF-α; and promotes the
production of IL-1Ra [123].

It has antioxidant
effects by the

activation of PI3K
signaling [237].

It is paradoxically upregulated in
obesity and IR [238]. It seems to
play a complex role in metabolic
conditions and obesity despite its
anti-inflammatory nature, as its
ablation improves IR, protects

against diet-induced obesity, and
promotes the browning of white

adipose tissue [239].

It reduces neuroinflammation in
experimental models of MS [123,124];

IL-10-deficient mice develop more severe
EAE compared to wild-type mice,

whereas those overexpressing IL-10
exhibit resistance to EAE [125,126].

Substantial reduction in obesity through individualized dietary strategies, modula-
tion of the gut microbiota, and targeted nutritional supplementation may offer important
benefits for patients with MS [246]. Such approaches typically involve reducing saturated
fat intake together with a higher consumption of plant-based foods, especially fruits and
vegetables rich in antioxidants, including polyphenols, vitamins, and trace elements [246].
Complementary supplementation with compounds of high antioxidant bioavailability
may further enhance neuroprotection and anti-inflammatory effects [246]. Together, these
nutritional interventions could complement anti-inflammatory symptomatic treatments,
potentially contributing to improved MS management and reduced relapse frequency.
Moreover, anti-obesity drugs with demonstrated anti-inflammatory and antioxidant prop-
erties, such as orlistat, liraglutide, semaglutide, and tirzepatide [247], may modulate key
mechanisms underlying MS. Emerging evidence suggests that several anti-diabetic and
weight-loss medications, particularly the GLP-1 receptor agonists semaglutide, dulaglutide,
and liraglutide; the SGLT2 inhibitor empagliflozin; and the biguanide metformin, may
be inversely associated with MS risk of progression [248]. However, these observations
require confirmation through rigorous, well-designed prospective studies. Further research
is also needed to evaluate the safety and efficacy of combining anti-obesity medications
with anti-inflammatory and antioxidant properties alongside novel antioxidant compounds
as complementary therapies in MS. Polyphenols represent a particularly promising ad-
junctive strategy at the interface of obesity and MS due to their potent antioxidant and
anti-inflammatory activities, which can counteract the chronic low-grade inflammation char-
acteristic of obesity. They may also reduce the risk and severity of obesity-related comor-
bidities, including mechanisms that influence MS pathogenesis and progression [30,248].
By inhibiting key pro-inflammatory pathways, such as NF-κB and MAPK signaling, while
simultaneously promoting anti-inflammatory responses, polyphenols provide a biologi-
cally plausible mechanism for modulating neuroinflammatory processes [30]. Although
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current findings are encouraging, further mechanistic studies and well-designed clinical
trials are essential to clarify their therapeutic potential, optimal dosing, and long-term
safety. Taken together, the available evidence positions polyphenols as a compelling target
for future research and a potential complementary approach in managing both obesity
and MS.
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Abbreviations

AIM: macrophage apoptosis inhibitor; AMPK: AMP-activated protein kinase; AP-
1: activator protein 1; AREs: antioxidant response elements; BBB: blood–brain barrier;
BMI: body mass index; BP: blood pressure; BSCB: blood–spinal cord barrier; CARD:
caspase recruitment domain; CAT: catalase; CCL2: chemokine (C-C motif) ligand 2; CCL5-
RANTES: C-C motif chemokine ligand 5-regulated upon activation, normal T-cell ex-
pressed and secreted; CCRL2: C-C chemokine receptor-like 2; CD4+ T lymphocytes: also
known as helper T cells; CIS: clinically isolated syndrome; CMKLR1: chemokine-like re-
ceptor 1; CNS: central nervous system; CSF: cerebrospinal fluid; COX-2: cyclooxygenase-2;
CRP: C-reactive protein; Cu: copper; CVDs: cardiovascular diseases; Cu2+: copper cation;
CXCL2: chemokine (C-X-C motif) ligand 2 (also known as interferon-gamma-inducible pro-
tein 10); CXCL8: chemokine (C-X-C motif) ligand 8; DAMPs: damage-associated molecular
patterns; EAE: experimental autoimmune encephalomyelitis; EDSS: Expanded Disabil-
ity Status Scale; ER: endoplasmic reticulum; FA: fatty acid; FABP-4: fatty acid-binding
protein 4; Fe2+: ferrous cation; FFAs: free fatty acids; FRs: free radicals; GLP-1: glucagon-
like peptide-1; GPCRs: G protein-coupled receptors; GPR1: G protein-coupled receptor 1;
GPR120: G-protein-coupled receptor 120; gp130: glycoprotein 130; GPx: glutathione per-
oxidase; HMGB1: high-mobility group box 1 protein; HMOX-1: heme oxygenase 1; HO-1:
heme oxygenase-1; H2O2: hydrogen peroxide; Hsp70s: heat shock proteins 70; ICAM-1: in-
tercellular adhesion molecule 1; IL-1β: interleukin-1β; IL-6: interleukin-6; IL-9: interleukin-
9; IL-10: interleukin-10; IL-12: interleukin-12; IL-17: interleukin-17; IL-18: interleukin-18,
also known as interferon-gamma (IFN-γ); IL-23: interleukin-23; IL-1Ra: Interleukin-1 re-
ceptor antagonist; IL-10R: interleukin-10 receptor; ILC2: type 2 innate lymphoid cells;
IL-6: interleukin-6; INF-γ: interferon-gamma; iNKT: invariant natural killer T; iNOS: in-
ducible nitric oxide synthase; IR: insulin resistance; JAK1/STAT3: janus kinase 1/signal
transducer and activator of transcription 3; JKA2: Janus kinase 2; Keap1: Kelch-like ECH-
associated protein 1; LOX: Lipoxygenase; LPS: lipopolysaccharide; LRR: leucine-rich repeat;
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MAPK: mitogen-activated protein kinase; MCP-1: monocyte chemoattractant protein-1;
MDA: malondialdehyde; MetS: metabolic syndrome; MIP-1α: macrophage inflammatory
protein-1α; MMP-9: matrix metalloproteinase-9; Mn2+: manganous cation; MS: multiple
sclerosis; mtDNA: mitochondrial DNA; NAC: N-acetylcysteine; NADPH: nicotinamide
adenine dinucleotide phosphate; NAFLD: non-alcoholic fatty liver disease; NBS: nucleotide-
binding site; NF-κB: nuclear factor-kappa B; NLR: NOD-like receptor; NO: nitric oxide;
Nrf2: nuclear factor erythroid 2-related factor 2; NOS: nitric oxide synthase; OS: oxidative
stress; ox-LDL: oxidized low-density lipoproteins; PAI-1: plasminogen activator inhibitor-1;
PAMPs: pathogen-associated molecular patterns; PBMCs: peripheral blood mononu-
clear cells; PDC-3: pyrin domain-containing component; pDCs: plasmacytoid dendritic
cell; PGE2: prostaglandin E2; PI3K/AKT: phosphatidylinositol 3-kinase/protein kinase B;
PKC: protein kinase C; PON2: paraoxonase 2; PPAR-γ: peroxisome proliferator-activated
receptor gamma; PPMS: primary progressive MS; PRRs: pattern recognition receptors;
PUFAs: polyunsaturated fatty acids; RANTES: regulated upon activation, normal T-cell
expressed and secreted; ROS: reactive oxygen species; RRMS: relapsing-remitting multiple
sclerosis; PYD: pyrin domain; SCI: spinal cord injury; SFAs: saturated fatty acids; SGLT2i:
sodium-glucose cotransporter-2 inhibitor; sIL-6R: soluble IL-6 receptor; SNPs: single nu-
cleotide polymorphisms; SIRT1: sirtuin 1; SOCS1/3: suppressor of cytokine signaling 1 and
3; SOD: superoxide dismutase; STAT1: signal transducer and activator of transcription 1;
STAT3: signal transducer and activator of transcription 3; SPMS: secondary progressive MS;
T2DM: type 2 diabetes mellitus; Th1: T helper 1 cell; Th17: T helper 17 cell; TLRs: Toll-like
receptors; TLR-2: Toll-like receptor 2; TLR-4: toll-like receptor 4; TLR-8: Toll-like receptor 9;
TNF-α: tumor necrosis factor-alpha; TNFR1: tumor necrosis factor receptor 1; tPAs: tissue
plasminogen activators; Treg: regulatory T cell; TSLP: thymic stromal lymphopoietin; TYK2:
tyrosine kinase 2; TXNIP: thioredoxin-interacting protein; ULK1: UNC-51-like kinase;
VCAM-1: vascular cell adhesion molecule 1; WHO: World Health Organization; Zn2+: zinc
cation.
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