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Obesity’s metabolic heterogeneity is not fully captured by body mass
index (BMI). Here we show that deep multi-omics phenotyping of 1,408
individuals defines a metabolome-informed obesity metric (metBMI)
that captures adipose tissue-related dysfunction across organ systems. In
an external cohort (n =466), metBMI explained 52% of BMI variance and
more accurately reflected adiposity than other omics models. Individuals
with higher-than-expected metBMI had 2-5-fold higher odds of fatty
liver disease, diabetes, severe visceral fat accumulation and attenuation,
insulin resistance, hyperinsulinemia and inflammation and, in bariatric
surgery (n="75), achieved 30% less weight loss. This obesogenic signature
aligned with reduced microbiomerichness, altered ecology and functional

potential. A 66-metabolite panel retained 38.6% explanatory power, with 90%
covarying with the microbiome. Mediation analysis revealed abidirectional,
metabolite-centered host-microbiome axis, mediated by lipids, amino

acids and diet-derived metabolites. These findings define an adipose-linked,

microbiome-connected metabolic signature that outperforms BMlin
stratifying cardiometabolic risk and guiding precision interventions.

Obesity is increasingly recognized as a chronic, multifactorial and
progressive disease, driven by excess adiposity and leading to dys-
function at the tissue, organ and whole-body levels'’. It is the lead-
ing cause of type 2 diabetes (T2D) and a significant contributor to
cardiometabolic morbidity and mortality’. However, diagnosis still
relies on BMI—-asurrogate with limited capacity to capture individual
cardiometabolic risk*. Indeed, 20-30% of individuals with T2D do
not suffer from BMI-defined obesity®, and a significant number of
global cardiovascular deaths linked to abnormal BMI occur in those
below the obesity threshold®. This has prompted calls to refine diag-
nostic criteria to prevent undertreatment of at-risk individuals not
identified by BMI*’.

Although BMI may miss functional changes associated with obe-
sity, multi-omics approaches offer a metabolically informed view of
health by integrating signals across organs and systems, enabling
more precise characterization of obesity-related risk and clinically
meaningful obesity heterogeneity®’. Circulating metabolites, shaped
by host genetics, diet and the gut microbiome, offer a systems-level
readout of metabolic health beyond excess weight®'°: an obesogenic
metabolite signature is linked to a two-fold higher risk of future T2D,
uptoafive-foldincreasein cardiovascular eventsand an 80%increase
in mortality’, highlighting the potential of metabolomics for early risk
stratification®’. However, the phenotypic diversity underlying this
signature and its drivers remains insufficiently defined.
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The gut microbiome is interlinked with host metabolism and
contributes to approximately 15% of circulating metabolite levels in
healthy individuals™'?, rising nearly to 30% in prediabetes and T2D",
with several microbiota-derived metabolites causally implicated in
cardiometabolic risk™. Conversely, up to 60% of the variation in gut
microbiome diversity is explained by the circulating metabolome®,
underscoring bidirectional host-microbial metabolic interplay. In
obesity and related metabolic disorders, bacterial diversity is reduced
and functional capacity altered" 8. Accordingly, the circulating meta-
bolome may serve as a proxy for microbiome-derived signals, with
disrupted interactions contributing to the metabolic heterogeneity
across the BMIspectrum.

Here we hypothesize that a metabolome-informed BMI predic-
tion provides a more precise and biologically grounded measure of
adiposity-related risk than traditional BMI. Using machinelearning and
deep phenotyping from two Swedish cohorts (n =1,408 and n =466;
Extended Data Fig. 1), we integrate computed tomography-based
adipose tissue quantification and metabolomic, proteomic, genomic
and metagenomic data with comprehensive clinical, lifestyle, dietary
and physical activity measures. We demonstrate that metBMI cap-
tures metabolic dysfunction across the BMI spectrum, predicts bari-
atric surgery response in an independent cohort (n =75) and reveals
potentially causal microbiome-metabolome interactions linked to
cardiometabolic risk. This integrative framework advances precision
phenotyping of obesity, illuminates inter-organ and inter-organismal
disease pathways and may enable earlier, more targeted interventions
beyond BMI-defined thresholds.

Results

Multi-omics-based modeling of obesity

We first sought to determine which molecular domains—circulating
metabolome and proteome, gut metagenome and dietary intake—
were most strongly associated with obesity (operationally defined
as excess weight relative to height, as still widely applied) and adi-
posity (reflecting adipose tissue quantity and distribution) in a
well-characterized, cross-sectional cohort (Impaired Glucose Tol-
erance and Microbiota Study (IGT-microbiota); n =1,408; Methods,
Supplementary Table1and Extended DataFig.1). This cohort, compris-
ingat-riskindividuals without established cardiovascular disease or
diagnosed T2D, enables the delineation of preclinical obesity-related
signatures that may generalize to populations with more
advanced disease.

Using nested ridge regression with 10-fold cross-validation to
optimize model regularization, we trained predictive models for
BMI, waist-to-hip ratio (WHR), waist circumference and computed
tomography-derived visceral and subcutaneous adipose tissue (VAT
and SAT) areas. Models were constructed using individual omics
layers—circulating metabolites (n =1,190); proteins (n =1,462); micro-
biome features such as gut bacterial species (metagenome-assembled
genomes (MAGs) (n = 2,820)); gut microbial modules (GMMs) (n =117);
Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologues
(n=11,411, corresponding to 384 pathways); and dietary variables
(including dietary indices, macro-nutrient and micro-nutrient intake
andfood groups)—and further integrated into acombined multi-omics
model (n =5,420 variables, including metabolome, proteome, meta-
genome and diet).

MAGs explained a similar proportion of variance in cen-
tral adiposity traits (44% for waist circumference and approxi-
mately 50% for VAT area, Bonferroni-adjusted P =1, Wilcoxon
rank-sum test against metabolite-based estimates; Fig. 1a,
Supplementary Table 2 and Extended Data Fig. 2a), suggesting shared
links with visceral fat. However, for BMI, metabolites explained nearly
twice the variance captured by MAGs (60% versus 30%, respectively;
Fig. 1a and Extended Data Fig. 2b), indicating that the metabolome
better represents broader obesity-related processes.

Consistently, the circulating metabolome provided the most phys-
iologically informative signal for predicting obesity among individual
omicslayers, particularly in capturing the strongest associations with
adiposity-related traits (Fig. 1a,b): metabolite-predicted BMI showed
significantly stronger correlations with ground truth measures, such as
waist circumference and VAT and SAT area, than BMI estimates derived
from the proteome, diet or even the combined multi-omics model
(Fig.1b). These results position the metabolome as amore biologically
grounded proxy of obesity-related fat accumulation.

The combined multi-omics model achieved the highest overall
predictive performance (median variance explained (VE,,q) 0.8 for
SAT areato 0.85for BMI; Fig.1a and Supplementary Table 2). However,
contributions across layers were not additive, reflecting overlapping
molecular signals. The second-highest overall predictive performance
was observed for the proteome, which explained substantial variance
for several traits (for example, VE,.4 0.74 for BMI and waist and 0.71-
0.74 for VAT and SAT; Fig.1a and Supplementary Table 2). Nonetheless,
its performance did not significantly exceed that of the metabolome
for several traits (for example, SAT area; Bonferroni-adjusted P=0.3),
and the associations with central adiposity traits were less pronounced
(Fig.1b). This observationis further supported by recent intervention
data, where proteome-predicted BMI remained stable despite reduc-
tions in BMI, metabolite-predicted BMland improvementsin metabolic
health, suggesting proteome stability at the expense of metabolic
responsiveness to intervention'.

Finally, inter-omic comparisons highlighted the broader integra-
tive capacity of the metabolome: metabolites explained up to 76% of the
variance of individual proteins (median 35%). In comparison, proteins
explained up to 74% of individual metabolites with a similar median of
34% (Extended Data Fig. 2c and Supplementary Table 3). Microbiome
generichness was best explained by metabolites, with a median vari-
ance of 61%, compared to 44% for proteins (Extended Data Fig. 2d).
Similarly, metabolites outperformed proteins in explaining indi-
vidual species abundances, reaching a maximum of 82% variance
explained for specific MAGs versus a maximum of 51% for proteins
(Extended Data Fig. 2e). However, the VE, .4 for MAGs was simi-
lar for both metabolites and proteins (22% and 24%, respectively;
Extended DataFig. 2e).

These results underscore strong covariance across omics layers
and highlight the metabolome’s central role as a clinically relevant
integrator of host, microbial and dietary signals.

Uncoupling the obesogenic signature from BMI

To improve the parsimony of the model while addressing col-
inearity, we trained a ridge regression model using the 267
metabolites most stringently associated with BMI (Methods and
Supplementary Table 4). The resulting metBMIwas highly correlated
with the measured BMI (Fig. 2a; Pearson’sr = 0.62, Spearman’s p = 0.63,
P<2.2x107%), explaining 39% of BMI variance in the held-out test set
ofthe IGT-microbiota cohort (Extended Data Fig. 3a). Similar results
were obtained using least absolute shrinkage and selection operator
(LASSO) regression (Methods).

To capture the metabolic signature of obesity across the BMI spec-
trum, we extracted metBMI residuals for each participant, adjusted
forage, sexand BMI. Individuals with disproportionately high (> +2.5)
or low (< -2.5) residuals were classified as HmetBMI and LmetBMI,
respectively, each representing approximately 10% of the cohort. These
groups exhibited distinct metabolomic profiles (P=1.2x107, post
hoc Wilcoxon rank-sum test; Fig. 2b). LmetBMI individuals clustered
with those of normal weight, whereas HmetBMIindividuals clustered
with those with obesity, despite similar BMI ranges (range, LmetBMI:
18.98-46.27 kg m =, HmetBMI: 20.59-39.92 kg m 2, P=0.28, Wilcoxon
rank-sum-test; Extended Data Fig. 3b-d) and similar broad clinical
characteristics (for example, age, sex, fasting glucose and blood pres-
sure; Fig. 2c).
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Fig.1|Multi-omics prediction of adiposity. a, Proportion of variance explained
(hold-out R?) for traits predicted from single omics layers: GMMs, diet, KEGG
orthologues, MAGs, plasma metabolites and proteins or their combination within
the IGT-microbiota cohort. Points show the per-fold R?, and bars summarize the
median across ridge regression cross-validation folds (n =10). Letters denote
pairwise differences, with bars sharing a letter not differing significantly (two-
sided Wilcoxon rank-sum test, Benjamini-Hochberg corrected). Exact Pvalues

arein Supplementary Table 2. b, Two-sided Pearson’s correlations between
omics-predicted BMI and ground truth adiposity traits. The line represents the
linear regression fit, and each point representslindividual with atotal n =1,408.
Pearson’s r correlation coefficient and the corresponding nominal Pvalue are
shownin each panel. Abd VAT, abdominal visceral adipose tissue; Abd VAT att,
abdominal visceral adipose tissue and attenuation; att, attenuation.

HmetBMIindividuals exhibited hallmarks of metabolic dysfunction,
including higher WHR, more severe VAT area and attenuation, elevated
triglycerides, insulin resistance (Homeostatic Model Assessment of
Insulin Resistance (HOMA-IR)), inflammation (C-reactive protein (CRP)),
pooreradherenceto ananti-inflammatory diet (Anti-Inflammatory Diet
Index (AIDI))" and reduced gut microbiome gene richness compared
to LmetBMI (Fig. 2c and Supplementary Table 5). These patterns were
consistent across sex and BMI class, highlighting that metBMI captures
metabolicriskindependent of body size (Supplementary Tables5and 6).

Some differences between the HmetBMI and LmetBMI, however,
were sex specific: lower physical activity was more pronouncedin males,
and elevated inflammation and poor adherence to ananti-inflammatory
diet were more evident in females (Supplementary Table 6), despite bal-
anced modeltrainingand theindependence of metBMlIresiduals from BMI
andsex (Methods). Crucially, key discriminators, such as lower gut micro-
biome gene richness, more pronounced VAT attenuation, insulin resist-
anceand insulinhypersecretion, were consistently observedinHmetBMI
across both sexes and BMI classes (Supplementary Tables 5 and 6),
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Fig. 2| MetBMI corresponds with distinct metabolome entities and clinical
phenotypes. a, Two-sided Pearson’s correlation between ground truth BMI
and metBMI (n =1,408). Each dot represents one individual, colored by metBMI
group (sample size per group as described in the legend). Pearson’s coefficient
(r) and the corresponding Pvalue are shown. b, Principal component analysis
(PCA) of whole plasma metabolome. Each point represents one individual,
colored by metBMI group. Large points denote group medoids. Side box plots
display metBMI group distributions along PC1and PC2 (two-sided Kruskal-
Wallisderived, n=1,408 and per metBMI group as described in the top legend;

nfor normal weight = 313, overweight = 487, obesity =307, LmetBMI =147,
HmetBMI =154). Box plots display the median; interquartile range (IQR) with
whiskers specify +1.5x IQR; and plotted points denote outliers. ¢, Comparisons
of z-score-transformed anthropometric, metabolic and lifestyle features across
metBMI groups (two-sided Kruskal-Wallis tests with Benjamini-Hochberg
adjustment). VAT attenuation is shown as absolute values. n per group and box
plotasinb.oGTT, oral glucose tolerance test; FINDRISC, Finnish Diabetes Risk
Score; PC, principal component.
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emphasizing the unique contribution of hyperinsulinemia, insulin
resistance and impaired glucose uptake/utilization in metabolic obe-
sity beyond actual BMI.

These findings were replicated in the independent Swedish
Cardiopulmonary Bioimage Study (SCAPIS) cohort (n=466;
Supplementary Table 7), where metBMI and BMI remained strongly
correlated (r=0.72, p=0.71, P< 2.2 x 107, out-of-sample R*= 0.52;
Extended Data Fig. 4a,b). This cohort had a more balanced sex distri-
bution but was slightly older and showed higher disease burden than
the IGT-microbiota cohort. Notably, it included a three-fold higher
prevalence of metabolic syndrome, 11% with newly diagnosed T2D at
screening and more severe dyslipidemia, despite more intensive treat-
mentwithlipid-lowering agents, thus suggesting afurther progression
of metabolic dysfunction (Supplementary Tables 7 and 8). Within
SCAPIS, HmetBMlindividuals had slightly higher ground truth BMI than
LmetBMI (27.5 kg m2 versus 26.2 kg m™) but a markedly higher met-
BMI than the LmetBMI (median 31 kg m™versus 23 kg m™) and amore
adverse cardiometabolic profile, including elevated triglyceride-
glucose (TyG) index and fasting glucose and a higher prevalence of
incident T2D (Extended Data Fig. 4b and Supplementary Table 8).

Clinical risk stratification and intervention response using
metBMI and its residuals

To evaluate the predictive utility of metBMI, we tested its ability to clas-
sify six cardiometabolic outcomesin the SCAPIS cohort using logistic
regression adjusted for age and sex (Methods). For each outcome, we
compared three models: one with BMI, one with metBMI and anested
modelincluding both. Likelihood ratio tests (LRTs) assessed whether
metBMI added explanatory power beyond BMI in the nested model.
MetBMl yielded the strongest predictive performance for metabolic
syndrome (MetS), metabolic dysfunction-associated steatotic liver
disease (MASLD), combined impaired fasting and postprandial glucose
(Combined Glucose Intolerance and Type 2 Diabetes (CGI-T2D)) and
screen-detected T2D (Fig. 3a). In metBMI-only models, the predicted
odds ratios per 1-s.d. metBMI increase were substantial and statisti-
cally significant (MetS: odds ratio = 5.36 (95% confidence interval:
3.88-7.66, P=2.6 x10%%); MASLD: odds ratio = 4.95 (95% confidence
interval:3.36-7.65, P=2.3 x10™); CGI-T2D: odds ratio = 2.40 (95% con-
fidence interval:1.88-3.11, P= 6.9 x 10?); screen-detected T2D: odds
ratio =2.6 (95% confidence interval: 1.83-3.77, P=2.7 x107)). Nested
models demonstrated a significantly improved fit compared to BMI
alone (Fig. 3a), suggesting that metBMI captures additional disease
signals. However, neither BMI nor metBMI predicted subclinical ath-
erosclerosis (Coronary Artery Calcium (CAC) score and carotid plaque
presence; P> 0.3 for LRTs).

The associations remained robust after adjusting for traditional
risk factors (lipids, glucose, blood pressure, WHR and statin use).
MetBMIremained a strong and independent predictor of MetS (odds
ratio =2.12, 95% confidence interval: 1.43-3.24, P=3.1x107*), MASLD
(odds ratio =4.24, 95% confidence interval: 2.69-6.95, P=2.1x10°)
and CGI-T2D (odds ratio =1.76, 95% confidence interval: 1.28-2.43,
P=5.0 x10*) risk (Extended Data Fig. 5a); continued to add predictive
value over BMlin nested models for MetS (LRT P=0.0005) and CGI-T2D
(LRT P=1.6 x107%); and, unexpectedly, reduced carotid plaque burden
(LRT P=0.017) (Extended Data Fig. 5a).

In an independent bariatric surgery cohort®® (n =75; Methods),
baseline metBMI residuals were inversely correlated with BMI loss/
reduction at 12 months (r=-0.30, P= 0.008; Fig. 3b), despite no sig-
nificant difference in baseline or follow-up BMI between HmetBMI
and LmetBMI (Extended Data Fig. 5b). As expected, a higher BMI was
associated withgreater absolute BMIloss (Extended DataFig. 5c). These
findings highlight a dissociation between BMI and metBMI: whereas
higher BMI predicts greater weight loss, higher metBMI residuals
predict poorer response, suggesting that metBMI captures aspects of
metabolicresistance tointervention that are not reflected in BMl alone.

Together, these findings establish metBMI and its residuals as
biomarkers of a metabolically adverse obesogenic signature, captur-
ing risk and intervention response beyond BMI and other traditional
risk factors.

Characterizing clinical and multi-omics signatures of
metBMIresiduals

Next, we assessed how metBMI residuals relate to metabolic, anthro-
pometric and omics data to identify the biological features behind the
metabolic obesogenic signature. These residuals, orthogonal to BMI,
ageand sex, correlated more strongly with VAT attenuation, animaging
proxy for adipose tissue lipid content and fibrosis*, than with VAT area
or liver attenuation, bothindicators of ectopic fat. Additionally, metBMI
residuals correlated more strongly than BMI with insulin resistance,
B-cell-linked insulin hypersecretion (Homeostatic Model Assessment
of B cell function (HOMA-B), fasting insulin) and impaired glucose
tolerance (Extended Data Fig. 6a). Mediation analysis revealed that
metBMIresiduals mediated 38% of the effects of VAT attenuation (that
is, adipose tissue architecture) on 3 cell function (HOMA-B; bootstrap
95% confidenceinterval: 0.28-0.51, P <2 x 107%), supporting their role
ininter-organ metabolic regulation.

Inline with these results, metBMI residuals positively associated
with steroidal metabolites implicated ininsulinresistance and cardio-
metabolic disease (for example, metabolomic lactone sulfate?” and
cortolone glucuronide) as well as with glutamate and inversely with
glutamine. The balance between these two amino acids, previously
identified as a marker of adipose tissue dysfunction®, is highly pre-
dicted by the microbiomein our cohort (Supplementary Table 3). Other
metabolites positively associated with metBMI residuals included
branched-chain and aromatic amino acids as well as several phos-
phoinositol and phosphatidylethanolamine species. Inverse corre-
lations included phosphatidylcholines, acetyl-carnitines, gut and
diet-derived carotene diols and cinnamoylglycine (Fig. 3c and
Supplementary Table9).

MetBMI residuals were also associated with proteome features
involvedininsulinresponsiveness and energy regulationacross central,
hepatic and adipose tissues. Positively correlated proteins included
oxytocin, carboxylesterase 1 (ref. 24), leptin® and asialoglycoprotein
receptor1, thelatter reported toimpair hepatic cholesterol clearance,
thereby elevating circulating lipids™. In agreement, metBMI residu-
als were inversely correlated with insulin-like growth factor binding
protein 2, whose deficiency exacerbates hepatic steatosis and worsens
MASLD phenotypes?.

To assess heritability, we tested polygenic risk scores (PRSs)
related to insulin secretion, adipose tissue distribution, circulating
lipids and ectopic fat accumulation®: although each PRS correlated
with its respective trait, neither metBMI nor its residuals was signifi-
cantly captured by any PRS (Extended Data Fig. 6b).

These findings indicate that metBMI residuals reflect a non-
genetic, acquired metabolic signature characterized by ectopic fat
accumulation, hepatic and adipose tissue dysfunction and altered insu-
linsignaling across omics. This aligns with the Twin Cycle Hypothesis™,
whereby, depending on a personal fat threshold, liver and pancreatic
interactions contribute to theindividual pathogenesis of insulin resist-
ance and metabolic disease, independent of BMI-defined obesity and
across the entire BMI range.

Microbiome features of the obesogenic signature

Given the links between host metabolism and the gut microbiome™",
we examined how metBMI and its residuals relate to gut microbiome
diversity, ecological structure, composition and function. MetBMI
and its residuals were more strongly and negatively correlated with
gene richness than BMI (p = -0.19, —0.24 and —0.3 for BMI, metBMI
residuals and metBMI, respectively; P< 2.2 x107 for all correlations
and false discovery rate (FDR) < 0.05, adjusted for age and sex as well
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Fig. 3| MetBMI and its residuals are associated with higher disease odds,
reduced benefit from intervention and consistent molecular phenotypes.

a, Forest plot for six cross-sectional outcomes in the SCAPIS cohort (CAC

score, carotid plaque, MetS, MASLD, CGI-T2D and screen-detected T2D). Data
are presented as odds ratio estimated (center points) with 95% confidence
intervals (horizontal bars), with lower and higher confidence interval limits from
multivariable logistic regression per 1-s.d. increase in the predictor (BMI, metBMI
orbothinthe nested model). The dashed line marks odds ratio = 1. Pvalues

are derived from two-sided Wald tests for BMl/metBMI. For the nested model,
Pisderived froman LRT versus BMI-only model. Sample sizes per outcome:
CACscore (n=212), carotid plaque (n = 268), MetS (n =163), MASLD (n=78),

CGI-T2D (n=136) and T2D (n =52).b, Two-sided Spearman’s correlation for
metBMI residuals with BMI loss 12 months after bariatric surgery (n = 75), with

its corresponding P value. Each dot represents one individual, and the dashed
linerepresents the linear regression. ¢, Two-sided partial Spearman’s correlation
between metBMI residuals and all available circulating metabolites, proteins and
clinical chemistry, corrected for age, sexand BMIin the IGT-microbiota cohort
(n=1,408). Positive correlations are in pink; negative correlations are in blue.
Metabolites with variance explained >20% (ref. 32) or predominantly predicted by
the microbiome™ are highlighted in green. Only Benjamini-Hochberg-adjusted
significant correlations are shown (g < 0.05). ApoAl, apolipoprotein AL; TG,
triglycerides.

as BMIwhere appropriate; Extended Data Fig. 7). In multivariable mod-
els, the addition of metBMI eliminated the significant correlation of
generichness and 359 metabolic, dietary and inflammatory markers,
including BMI, HOMA-IR, MetS, WHR, CRP, renal function, leptin and

dietary variables (Supplementary Table 10), highlighting metBMI as
aconcise summary of inter-organ and inter-organismal interactions.
Notably, the generichness of individuals with normal weight but high
residuals (HmetBMI) was as low as that of individuals with obesity in
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the LmetBMI group (P = 0.06; Fig. 4a,b), indicating that erosion of
microbiome diversity accelerates with metabolically adverse adiposity.

Beyond gene richness, HmetBMI and LmetBMI groups exhibited
distinct microbiome community structures. Principal coordinate
analysis (PCoA) revealed clear compositional separation and clustering
of HmetBMI with obesity and LmetBMI with normal weight (Fig. 4¢),
consistent with the observed metabolome patterns (Fig. 2b). These dif-
ferences extended to ecological order, as indicated by network analy-
ses. We observed low similarity betweenthe two clusterings and denser,
more modular consortiain LmetBMI, with agreater degree of eigenvec-
tor centrality (P=0.000009 and P= 0.000008]1, respectively, adjusted
Rand index = 0.0001), indicating a larger number of interactions
between nodes, anchored by Christensenellales (for example, Phill
sp001940855) and Methanobrevibacter smithii (Extended DataFig. 8a
and Supplementary Table 11). HmetBMI networks were sparser and
centered around taxa linked to metabolic dysfunction (for example,
Blautia, Bacteroides, Flavonifractor, Erysipeloclostridium ramosum and
Ruminococcus gnavus), which exhibited more negative interactions
with health-related taxa, such as Faecalibacterium and Eubacterium
(Extended DataFig. 8b and Supplementary Table 11).

Species-level modeling, adjusted for medication and mutually
controlling for BMI, VAT area and attenuation, identified 774 taxa
associated with metBMI residuals (Supplementary Table 12 and
Extended DataFig.9a,b). Of the 104 species shared with other adipos-
ity metrics, 100 were primarily driven by metBMI residuals (Fig. 4d),
withR. gnavusbeingthe only species enriched across all traits and cor-
related withimpaired glucose tolerance and the TyGindex (Fig.4d and
Extended Data Fig. 9¢). To exclude that changes in microbiome com-
position at the species level were secondary to decreasing microbiome
richness, we adjusted for the latter. We observed that 45 taxa remained
significantly associated with metBMI residuals, most notably Fae-
calibacterium prausnitzii and Oscillospiraceae (decreased) and oral/
aerotolerant species (Streptococcus anginosus, Streptococcus mitis,
Gemella and Granulicatella), which increased with metBMI residuals
(Extended Data Fig. 9d). These species associated with low-grade
inflammation and shifts infatty acid, bile acid and environmental expo-
sures, suchasthe plasticizer methyladipate (Supplementary Table 13).
Although oral taxa tracked with proton pump inhibitor (PPI) levels,
their enrichment with increasing residuals was independent of medi-
cation, suggesting parallel ecological changes created by drugs'® and
metabolicinjury.

Functionally, 57 GMMs associated with metBMI residuals inde-
pendently of BMI or other adiposity traits (Supplementary Table 14).
Residuals were marked by reduced butyrate production, mannose/
glycerol utilization and increased trimethylamine production from
y-butyrobetaine and methanogenesis from trimethylamine. Even after
adjusting for gene richness, two hydrogenotrophic processes remained
significant along metBMlI residuals—decreased methanogenesis from
carbon dioxide and increased homoacetogenesis—indicating a shift
in microbial carbon dioxide and hydrogen utilization, converted to
acetatein HmetBMI or dissipated to methane in LmetBMI.

Together, these data suggest that metBMI residuals reflect a
microbiome signature characterized by reduced diversity, altered
network structure and functional shifts toward pro-inflammatory and
atherogenesis-associated metabolism, capturing aspects of metabolic
disruption not explained by BMI alone.

Metabolite-mediated microbiome-phenotype interactions

Gut bacteria substantially influence the circulating metabolome”,
as also seen in our study (26% of inter-individual metabolite vari-
ance explained by MAGs in median; Supplementary Table 3 and
Extended Data Fig. 2c) and in SCAPIS (27% variance explained)®. Given
the strong covariance in metabolome and microbiome compositions,
we postulated that metabolites driving the underlying metBMI sig-
nature might be closely related to the microbiome. We generated a

clinically tractable signature by applying recursive feature elimina-
tion (RFE) and LASSO across 10 resamples, retaining 66 metabolites
that best captured metBMI residuals (Supplementary Table 15). This
reduced panel explained 38.6% of BMI variance, similar to the per-
formance of the full 267-metabolite model (40%) and markedly more
than a model comprising age, sex, triglycerides, high-density lipo-
protein (HDL), low-density lipoprotein (LDL), total cholesterol and
insulin (26%).

For 61 of 66 metabolites, microbial species accounted for
more variance than diet or host genetics (FDR < 0.05; Fig. 5a,b and
Supplementary Table 15). Of these, metabolites enriched with met-
BMI residuals included multiple sphingomyelins, ceramides and the
microbial fatty acid derivative cis-3,4-methyleneheptanoylcarnitine,
previously linked to insulin resistance and T2D*. Conversely, lower
metBMI residuals were associated with 33-hydroxy-5-cholestenoate,
N-acetylglycine, indolepropionate and carotene diols, the latter two
being diet-dependent bacterial metabolites with protective effects
against cardiovascular risk and T2D*** (Fig. 5b, Extended Data Fig.10a
and Supplementary Table 15). Building on the correlations between
bacterial species specific to metBMIresiduals and the selected metabo-
lites (absolute p > 0.1, FDR < 0.05; Extended Data Fig.10b), we explored
how bacteria may influence host phenotypes by conducting bidirec-
tional mediation analyses among microbiome species, metabolites
and clinical traits.

Among the 116 microbiome-to-phenotype pathways mediated
by metabolites, bacteria from the Oscillospiraceae family (for exam-
ple, uncharacterized taxa in NK3B98, UMGS902 and UMGS1865) and
Christensenellales exerted protective effects via anti-inflammatory
and lipid-based metabolites. For example, 1-(1-enyl-palmitoyl)-2-
linoleoyl-GPC (P-16:0/18:2)* mediated the impact of Oscillospiraceae
on VAT attenuation, improved circulating lipid profiles and lower met-
BMIL. Similarly, cinnamoglycine, ametabolite associated with microbial
diversity"”, carotene diols and palmitoyl sphingomyelin (d18:1/16:0),
connected several Clostridiaspecies, Christensenellales and the lysine
degradation pathway of the microbiome, involved in butyrate produc-
tion, with reduced WHR, improved insulin sensitivity and lower liver
fat (Fig. 5c and Supplementary Tables 16-18). By contrast, bacterial
species linked to higher adiposity markers and metBMlI residuals, such
as R. gnavus and aerotolerant/oral bacteria, exerted effects through
depletion of these protective metabolites, reported reduced with
escalating cardiometabolic and vascular disease” (Fig. 5¢).

Notably, 186 reverse linkages (phenotype-to-microbiome) were
identified, implicating systemic inflammation (for example, CRP),
dietary vitamin B6 and lipid traits in shaping microbial functions.
These effects were direct (147 linkages), mediated by metabolites
(sevenlinkages) oracombination of both (32 linkages) and were asso-
ciated with functional shifts, including increased triacylglycerol and
glutamine degradation and reduced dissimilatory nitrate reduction
(Supplementary Table 18).

These findings demonstrate that metBMI residuals capture a
bidirectional host-microbiome axis, suggesting that circulating
metabolites may not only serve as functional proxies for microbiome
composition butalso mediate the effects of bacterial species on meta-
bolicrisk phenotypes. Disruptions in these microbiome-metabolome
interactions may contribute to the metabolic dysfunction observed
in subclinical adiposity-driven changes along the BMI spectrum,
independent of obesity-defining thresholds (Fig. 6). This putative
mechanistic link also explains the superior risk stratification of met-
BMIl over BMI.

Discussion

In this study, we demonstrate that metBMI and its residuals capture
the metabolic signature of obesity across the BMI spectrum. MetBMI
outperforms other omics-derived BMI models in aligning with con-
temporary definitions of obesity?, emphasizing central adiposity over
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conventional BMIthresholds. MetBMIresiduals provide arefined meas-
ure of metabolic burden, independent of measured BMI, yet strongly
linked to visceral fat distribution, insulin resistance and hypersecretion,
impaired glucose tolerance andincreased cardiometabolic risk for T2D
and fatty liver disease, consistent with the Twin Cycle Hypothesis® and

recent reports linking metabolically predicted BMI to elevated T2D
morbidity and mortality’.

Our metBMI also compares favorably with previous efforts. Cirulli
etal.®used 650 metabolites to explain approximately 50% of BMI vari-
ance, retaining 43% explanatory power with 49 metabolites without
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external validation. Gerlet al.”’ reported 47% variance explained using
75 lipidomic features (with age and sex included), whereas Beyene
et al.”® achieved 52% in external validation using 575 lipid species.
Watanabe et al.”° reported R? of 0.7 internally but only 0.3 in external
validation. Although their metabolite-based BMI decreased after inter-
vention (as opposed to protein-predicted BMI), its predictive value
for outcomes was not assessed. In this context, our 66-metabolite
signature retains 38.6% of the 40% explanatory power observed for
the full 267-metabolite model, and residuals were linked to poorer
post-surgical weight loss, underscoring the model’s clinical utility. Dis-
criminative metabolites in our model, including branched-chainamino
acids, long-chain fatty acids and phospholipids, have been associated
with higher BMI predictionsinlarge cohorts®°, and several have been

mechanistically linked to insulin resistance and T2D*, underscoring
robustness in our findings.

Detailed phenotypinginthe IGT-microbiota cohortidentified VAT
as akey driver of metBMI. Notably, metBMI residuals correlated with
VAT area and even more strongly with VAT attenuation, a computed
tomography-derived proxy for adipocyte hypertrophy, mirroring find-
ings that multi-omics-derived BMlisinfluenced by adipokines such as
leptin'®, ahormone associated with adipocyte size”, VAT attenuation
and increased cardiovascular risk®.

A still-underexplored dimension of obesity’s metabolic hetero-
geneity is its relationship with the gut microbiome and its extensive
metabolic capacity'. MetBMI was robustly captured by microbiome
composition, and several signature metabolites were microbially

Nature Medicine


http://www.nature.com/naturemedicine
http://BioRender.com

Article

https://doi.org/10.1038/s41591-025-04009-7

produced or highly predictable from microbial features. Forinstance,
cinnamoylglycine mediated potentially causal microbiome links to
reduced WHR, improved insulin sensitivity and lower liver fat. Elevated
metBMIwas associated with microbial networks of reduced connecti-
vity and modularity, suggesting agreater susceptibility to environmen-
tal influences, alongside decreased fermentative activity, increased
potential for anaerobic respiration (for example, nitrate reduction)
and altered methanogenesis patterns. These shifts have been linked to
gut inflammation and ectopic oral bacterial colonization*°. Reduced
methanogenesis from carbon dioxide, on the other hand, with com-
pensatory trimethylamine and increased trimethylamine production
potential may promote trimethylamine N-oxide generation by the
host and heighten cardiovascular risk**. Concomitantly, the increased
potential forhomoacetogenesis (thatis, reductive acetogenesis from
carbondioxide and hydrogen scavenging under conditions of impaired
methanogenesis) may elevate acetate availability, promoting hepatic
lipogenesis*. These findings align with previous studies associat-
ing enhanced methanogenic potential with leanness and improved
metabolic health'**%,

In the altered gut microbial ecology associated with HmetBMI,
R.gnavus abundance was increased despite astable prevalence across
individuals, tracking closely with VAT area, consistent with previous
studies®, and associating with insulin resistance and cardiovascular
risk, independent of gene richness. This may implicate R. gnavus in
metabolic dysfunction via tryptophan** and bile acid* metabolism.
By contrast, higher richness attenuated R. gnavus’s pro-inflammatory
links, suggesting that its role as a mucin glycan forager may be
more pronounced in low-diversity gut environments, highlighting
context-dependent and strain-dependent effects that reflect substan-
tial intra-species genomic heterogeneity®.

We also confirmed that Christensenellaceae are enriched and
co-occur with methanogens, and we demonstrated that this microbial
constellation was enriched in LmetBMIand more strongly associated
with metabolic health than with body mass per se*¢, likely through
lipid-mediated effects. Similarly, several uncharacterized members of
the Oscillospiraceae family were associated with favorable metabolic
profiles and reduced inflammation. These associations appear to be
mediated via metabolites such as N-acetylglycine, which is linked to
improved adipose tissue immune tone in vivo*, and microbial lipids
involved in intestinal cholesterol metabolism*.

Disentangling the effects of quantifiable obesity metrics and
adjusting for bacterial gene richness revealed that metBMlI residuals
were primarily associated with aerotolerant, facultative anaerobic
and species of oral origin—for example, Streptococcus anginosus—
uniquely linked to systemic inflammation in our cohort and to sub-
clinical atherosclerosisin SCAPIS*. Although these microbial features
were also correlated with circulating levels of PPIs, their association
with metBMIresiduals persisted after adjusting for PPl use, suggesting
that the frequently reported enrichment of oral taxa in the gut, often
interpreted as a marker of preclinical disease*, is not solely driven
by medication exposure but reflects depletion of endogenous gut
commensals®’. Notably, the enrichment of these species across the
full spectrum of gene richness highlights that alterations in micro-
bial network structure and function may be more informative than
diversity metrics alone.

Taken together, our findings suggest that the gut microbiome
both reflects and potentially contributes to the metabolic derange-
ments of obesity, particularly via circulating metabolites. The met-
BMl signature captured a constellation of clinically relevant features,
including central adiposity, insulin resistance and hypersecretion,
kidney dysfunction, dietary composition and physical activity—traits
not fully captured by anthropometry or standard risk assessment
tools. Lack of association between PRSs and metBMI underscores
environmental and lifestyle influences over genetic predispositionin
shaping metabolic obesity.

Limitations of our study include its applicability to predominantly
European white populations, reliance on semiquantitative metabolite
data, which limits our ability to define universal ranges for the retained
metabolites, and the potential exclusion of biologically relevant but
non-significant findings. Although we performed mediation analyses,
these do not prove biological causation. Finally, we rely on surrogate
markers of insulin secretion and resistance and recognize that incor-
porating gold standard techniques, such as clamping for dynamic
measurements, might provide more insights into metabolic obesity.

Insummary, a defined, microbiome-linked metabolite panel cap-
tures the metabolic injury associated with obesity, stratifies clinical
risk and predicts surgical outcomes more effectively than BMI. This
signature provesrobust and replicable across omics layers and cohorts,
reflecting bidirectional interplay between host metabolism and the
gut microbiome. Recent metabolome studies underscore the value
of integrated multi-omics approaches in predicting obesity-related
disease risk®’, and our findings support the notion that metBMl is a
more sensitive indicator of individual disease burden, particularly
among individuals who fall below conventional screening thresholds.

From a translational perspective, using large-scale metabolite
panels to derive obesogenic signatures is impractical in clinical set-
tings. Our results suggest that the metBMI signature is tightly linked to
insulinresistance and hypersecretion and shaped by VAT distribution
and cellular characteristics. As definitions of obesity evolve, especially
in light of the recent consensus to include measures of adiposity in
diagnostic criteria’, multi-omics tools such as metBMI can provide
surrogate markers and mechanisticinsightsinto underdefined disease
pathways. Among promising clinically relevant markers are dynamic
insulin resistance and secretion indices, which are poorly captured
by genetics alone due to their complex regulation but are essential
for precision prevention and therapy. Our results lay the groundwork
for experimental validation and future clinical application of this
biological framework.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41591-025-04009-7.

References

1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in
underweight and obesity from 1990 to 2022: a pooled analysis of
3663 population-representative studies with 222 million children,
adolescents, and adults. Lancet 403, 1027-1050 (2024).

2. Busetto, L. et al. A new framework for the diagnosis, staging
and management of obesity in adults. Nat. Med. 30, 2395-2399
(2024).

3. \Virani,S.S., Alonso, A., Benjamin, E. J. & Bittencourt, M. S.

Heart disease and stroke statistics—2020 update: a report from
theAmerican Heart Association. Circulation 141, €139-e596 (2020).

4. Coral, D.E. et al. Subclassification of obesity for precision prediction
of cardiometabolic diseases. Nat. Med. 31, 534-543 (2025).

5. National diabetes statistics report. Centers for Disease Control
and Prevention https://www.cdc.gov/diabetes/php/data-research/
index.html (2024).

6. GBD 2015 Obesity Collaborators et al. Health effects of
overweight and obesity in 195 countries over 25 years. N. Engl. J.
Med. 377, 13-27 (2017).

7.  Rubino, F. et al. Definition and diagnostic criteria of clinical
obesity. Lancet Diabetes Endocrinol. 13, 221-262 (2025).

8. Cirulli, E. T. et al. Profound perturbation of the metabolome in
obesity is associated with health risk. Cell Metab. 29, 488-500
(2019).

Nature Medicine


http://www.nature.com/naturemedicine
https://doi.org/10.1038/s41591-025-04009-7
https://www.cdc.gov/diabetes/php/data-research/index.html
https://www.cdc.gov/diabetes/php/data-research/index.html

Article

https://doi.org/10.1038/s41591-025-04009-7

10.

mn

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Ottosson, F. et al. Metabolome-defined obesity and the risk of
future type 2 diabetes and mortality. Diabetes Care 45, 1260-1267
(2022).

Watanabe, K. et al. Multiomic signatures of body mass index
identify heterogeneous health phenotypes and responses to a
lifestyle intervention. Nat. Med. 29, 996-1008 (2023).

Bar, N. et al. A reference map of potential determinants for the
human serum metabolome. Nature 588, 135-140 (2020).

Diener, C. et al. Genome-microbiome interplay provides insight
into the determinants of the human blood metabolome. Nat.
Metab. 4,1560-1572 (2022).

Wu, H. et al. Microbiome-metabolome dynamics associated with
impaired glucose control and responses to lifestyle changes. Nat.
Med. 31, 2222-2231(2025).

Chakaroun, R. M., Olsson, L. M. & Bdckhed, F. The potential

of tailoring the gut microbiome to prevent and treat
cardiometabolic disease. Nat. Rev. Cardiol. 20, 217-235 (2022).
Wilmanski, T. et al. Blood metabolome predicts gut microbiome
a-diversity in humans. Nat. Biotechnol. 37, 1217-1228 (2019).

Wu, H. et al. The gut microbiota in prediabetes and diabetes: a
population-based cross-sectional study. Cell Metab. 32, 379-390
(2020).

Fromentin, S. et al. Microbiome and metabolome features of the
cardiometabolic disease spectrum. Nat. Med. 28, 303-314 (2022).
Forslund, S. K. et al. Combinatorial, additive and dose-dependent
drug-microbiome associations. Nature 600, 500-505 (2021).
Kaluza, J., Harris, H., Melhus, H., Michaélsson, K. & Wolk, A.
Questionnaire-based anti-inflammatory diet index as a predictor
of low-grade systemic inflammation. Antioxid. Redox Signal. 28,
78-84(2018).

Patt, M. et al. FGF21 and its underlying adipose tissue-liver axis
inform cardiometabolic burden and improvement in obesity after
metabolic surgery. eBioMedicine 110, 105458 (2024).

Coté, J. A. et al. Computed tomography-measured adipose
tissue attenuation and area both predict adipocyte size and
cardiometabolic risk in women. Adipocyte 5, 35-42 (2016).

Das, S. K. et al. Metabolomic architecture of obesity implicates
metabolonic lactone sulfate in cardiometabolic disease.

Mol. Metab. 54, 101342 (2021).

Lecoutre, S. et al. Reduced adipocyte glutaminase activity
promotes energy expenditure and metabolic health. Nat. Metab.
6, 1329-1346 (2024).

Lian, J. et al. Genetic variation in human carboxylesterase CES1
confers resistance to hepatic steatosis. Biochim. Biophys. Acta
Mol. Cell Biol. Lipids 1863, 688-699 (2018).

Machinal, F. In vivo and in vitro ob gene expression and leptin
secretion in rat adipocytes: evidence for a regional specific
regulation by sex steroid hormones. Endocrinology 140,
1567-1574 (1999).

Wang, J.-Q. et al. Inhibition of ASGR1 decreases lipid levels by
promoting cholesterol excretion. Nature 608, 413-420 (2022).
Zhai, T. et al. IGFBP2 functions as an endogenous protector
against hepatic steatosis via suppression of the EGFR-STAT3
pathway. Mol. Metab. 89, 102026 (2024).

Xie, T. et al. Genetic risk scores for complex disease traits in youth.
Circ. Genom. Precis. Med. 13, 002775 (2020).

Mansour Aly, D. et al. Genome-wide association analyses highlight
etiological differences underlying newly defined subtypes of
diabetes. Nat. Genet. 53, 1534-1542 (2021).

De Vincentis, A. et al. A polygenic risk score to refine risk
stratification and prediction for severe liver disease by clinical
fibrosis scores. Clin. Gastroenterol. Hepatol. 20, 658-673 (2022).
Taylor, R. The Twin Cycle Hypothesis of type 2 diabetes aetiology:
from concept to national NHS programme. Exp. Physiol. 110,
984-991 (2025).

32. Dekkers, K. F. et al. An online atlas of human plasma metabolite
signatures of gut microbiome composition. Nat. Commun. 13,
5370 (2022).

33. Mihalik, S. J. et al. Increased levels of plasma acylcarnitines in
obesity and type 2 diabetes and identification of a marker of
glucolipotoxicity. Obesity 18, 1695-1700 (2010).

34. Qiao, J., Zhang, M., Wang, T., Huang, S. & Zeng, P. Evaluating
causal relationship between metabolites and six cardiovascular
diseases based on GWAS summary statistics. Front. Genet. 12,
746677 (2021).

35. Qi, Q. et al. Host and gut microbial tryptophan metabolism and
type 2 diabetes: an integrative analysis of host genetics, diet, gut
microbiome and circulating metabolites in cohort studies. Gut 71,
1095-1105 (2022).

36. Lind, L. et al. The plasma metabolomic profile is differently
associated with liver fat, visceral adipose tissue, and pancreatic
fat. J. Clin. Endocrinol. Metab. 106, €118-e129 (2021).

37. Gerl, M. J. et al. Machine learning of human plasma lipidomes
for obesity estimation in a large population cohort. PLoS Biol. 17,
e3000443 (2019).

38. Beyene, H. B. et al. Metabolic phenotyping of BMI to characterize
cardiometabolic risk: evidence from large population-based
cohorts. Nat. Commun. 14, 6280 (2023).

39. Crossland, H. et al. Exploring mechanistic links between
extracellular branched-chain amino acids and muscle insulin
resistance: an in vitro approach. Am. J. Physiol. Cell Physiol. 319,
C1151-C1157 (2020).

40. Rojas-Tapias, D. F. et al. Inflammation-associated nitrate facilitates
ectopic colonization of oral bacterium Veillonella parvula in the
intestine. Nat. Microbiol. 7, 1673-1685 (2022).

41. Karekar, S., Stefanini, R. & Ahring, B. Homo-acetogens: their
metabolism and competitive relationship with hydrogenotrophic
methanogens. Microorganisms 10, 397 (2022).

42. Ruaud, A. et al. Syntrophy via interspecies H, transfer between
Christensenella and Methanobrevibacter underlies their global
cooccurrence in the human gut. mBio 11, e03235-19 (2020).

43. Grahnemo, L. et al. Cross-sectional associations between the gut
microbe Ruminococcus gnavus and features of the metabolic
syndrome: the HUNT study. Lancet Diabetes Endocrinol. 10,
481-483 (2022).

44. Zhai, L. et al. Gut microbiota-derived tryptamine and
phenethylamine impair insulin sensitivity in metabolic
syndrome and irritable bowel syndrome. Nat. Commun. 14,

4986 (2023).

45. Crost, E. H., Coletto, E., Bell, A. & Juge, N. Ruminococcus gnavus:
friend or foe for human health. FEMS Microbiol. Rev. 47, fuad014
(2023).

46. Goodrich, J. K. et al. Human genetics shape the gut microbiome.
Cell159, 789-799 (2014).

47. Fluhr, L. et al. Gut microbiota modulates weight gain in mice
after discontinued smoke exposure. Nature 600, 713-719
(2021).

48. Li, C. et al. Gut microbiome and metabolome profiling in
Framingham heart study reveals cholesterol-metabolizing
bacteria. Cell 187, 1834-1852 (2024).

49. Sayols-Baixeras, S. et al. Streptococcus species abundance in
the gut is linked to subclinical coronary atherosclerosis in 8973
participants from the SCAPIS cohort. Circulation 148, 459-472
(2023).

50. Liao, C. et al. Oral bacteria relative abundance in faeces increases
due to gut microbiota depletion and is linked with patient
outcomes. Nat. Microbiol 9, 1555-1565 (2024).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Nature Medicine


http://www.nature.com/naturemedicine

Article https://doi.org/10.1038/s41591-025-04009-7

Open Access This article is licensed under a Creative Commons indicated otherwise in a credit line to the material. If material is not
Attribution 4.0 International License, which permits use, sharing, included in the article’s Creative Commons licence and your intended use
adaptation, distribution and reproduction in any medium or format, is not permitted by statutory regulation or exceeds the permitted use, you
as long as you give appropriate credit to the original author(s) and the will need to obtain permission directly from the copyright holder. To view
source, provide a link to the Creative Commons licence, and indicate a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless © The Author(s) 2026

'Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden. 2Medical
Department Ill - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany. *Department of Clinical Physiology
Region Vastra Gétaland, Sahlgrenska University Hospital, Gothenburg, Sweden. “Center for Health and Performance, Department of Food and Nutrition
and Sport Science, University of Gothenburg, Gothenburg, Sweden. *Center for Lifestyle Intervention, Department of Molecular and Clinical Medicine,
Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. éSahlgrenska University Hospital, Region Vastra Gétaland,
Gothenburg, Sweden. "Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden. 8Department of
Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden. °Department of Cardiology, Clinical Sciences, Lund University and Skane University
Hospital, Lund, Sweden. °Wallenberg Center for Molecular Medicine and Lund University Diabetes Center, Lund University, Lund, Sweden. "Department
of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden. Institute of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy,
University of Gothenburg, Gothenburg, Sweden. ®*Department of MGAO, Sahlgrenska University Hospital, Region of Vastra Gétaland, Gothenburg,
Sweden. “Helmbholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum Miinchen at the University of Leipzig and
University Hospital Leipzig, Leipzig, Germany. ®LeiCeM - Leipzig Center of Metabolism, Leipzig University, Leipzig, Germany. ®Science for Life Laboratory,
Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden. "Novo Nordisk Foundation Microbiome Health Initiative and the
National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark. < e-mail: rima.chakaroun@wlab.gu.se; fredrik@wlab.gu.se

Nature Medicine


http://www.nature.com/naturemedicine
http://creativecommons.org/licenses/by/4.0/
mailto:rima.chakaroun@wlab.gu.se
mailto:fredrik@wlab.gu.se

Article

https://doi.org/10.1038/s41591-025-04009-7

Methods

Description of study cohorts

IGT-microbiota cohort. We used participants from the Impaired Glu-
cose Tolerance and Microbiota Study (IGT-microbiota), a prospective,
non-interventional community-based cohort that ran between 2014
and 2018. 0f 26,009 invited adults (50-65 years) without known T2D
from the greater Gothenburg area, 5,152 underwent oral glucose tol-
erance test (0GTT), and 1,868 provided stool samples. Standardized
phenotypingincluded anthropometrics; computed tomography-based
body composition; venous blood for metabolomics, proteomics and
clinical chemistry; health, lifestyle and dietary questionnaires; as well
as fecal sampling, as previously described'*".

Dietary intake was assessed with the MiniMealQ* food frequency
questionnaire (2-month reference period) to derive micronutrients/
macronutrients, food items and anti-inflammatory/pro-inflammatory
diet indices (AIDI and Pro-Inflammatory Diet Index (PIDI), respec-
tively)*. Additional diet-related factors, including major food items
and physical activity variables (total volume and total intensity)**, were
derived from principal component analysis (PCA). Physical activity was
measured using a hip-wornaccelerometer (ActiGraph models GT3X+,
wGT3X+and wGT3X-BT) over 10 days and categorized as sedentary
(sed), light (Ipa), moderate (mpa), moderate-to-vigorous (mvpa) and
vigorous (vpa)¥, and the average time per day in that state was calcu-
lated after processing in ActiLife software.

Body composition (subcutaneous, (intra)abdominal, intermuscu-
lar and intrahepatic fat depots) was quantified from dual-source com-
puted tomography (Siemens Medical Solutions, Somatom Definition
Flash; dual-energy for the liver) as previously described”’.

Weincluded participants with complete clinical, metabolome and
microbiome data and without known or presumed cardiovascular dis-
ease (accordingto history, medication or electrocardiogram), resulting
inatotal of 1,408 individuals (794 females and 614 males; 50-65 years
of age; BMI18.3-46.3 kg m, mean = 27.1 kg m Extended DataFig. 1).
Multi-omics encompassed clinical laboratory tests, 1,190 metabolites,
1,462 proteins, whole fecal metagenome sequencing (over 15 million
bacterial genes) and genotyping for PRSs related to body composition,
BMI and lipid metabolism. Cardiovascular risk was estimated using
the Framingham risk score®, insulin resistance by the TyG index*” and
HOMA-IR* and B cell function by HOMA-B*’.

SCAPIS cohort. The validation cohort was derived from SCAPIS*, a
prospective population-based cohort of 30,154 adults aged 50-65 years
living in six municipalities between 2014 and 2018. Visits included
anthropometrics, dietary questionnaires, blood draw, blood pressure
measurement, fecal sampling and health/lifestyle questionnaires
aligned with IGT standard operating procedures.

For validation, we analyzed data from 466 individuals with avail-
able BMI and complete metabolomics used in the metBMI model
(Supplementary Table 7).

Bothstudies adhered to the Declaration of Helsinki with approvals
from the Swedish Ethics Review Authority/regional ethics review board
inGothenburg (IGT: Swedishinstitutional review board study number
Dnr560-13; SCAPIS: Etikprovningsmyndigheten Dnr 2010-228-31M and
Dnr2018-315). All participants provided writteninformed consent, and
no compensation was provided.

Bariatric surgery cohort. From a published cohort*’, 189 individuals
underwent metabolic surgery. Baseline datawere collected 2 months
prior to surgery. Exclusions were inflammatory disorders, chronic
kidney disease, coronary artery disease, pregnancy or breastfeeding.
Asubset of 75 participants had metabolon profiling available, enabling
pre-surgery metabolome-based predictions associated with12-month
outcomes. Study protocols were approved by the University of Leipzig
ethics committee (applications 017-12-23012012 and 047-13-28012013),
with all participants providing written informed consent.

Data generation and preprocessing

Plasma metabolome. Plasma samples were randomized and pro-
filed by Metabolon (high-performance liquid chromatography-mass
spectrometry (HPLC-MS)). Processing and quality control followed
established procedures with peaks identified/quantified using internal
standards and software, as previously described®. Sampleswere runin
144-sample batches, and peak areas were divided by the batch’s median
peak area. Metabolites were annotated against Metabolon’s library.
Consistently detected but not annotated metabolites are denoted
by ‘X’ followed by a unique identifier. After log transformation, batch
normalization and block correction, 1,190 metabolites were retained
for analysis (two metabolites missing in the entire IGT cohort, and
156 missing for 61% of the cohort). In SCAPIS, only metabolites from
the main model for metBMI prediction were included, and none was
missing in the validation sample.

Plasma proteome. Proteins were quantified with Olink PEA (1,462
proteins in four separate 384-plex panels related to inflammation,
cardiometabolic disease and neurological and oncological disorders
as described elsewhere)®®. Samples were randomized. Buffer-only
negatives were used to determine background and detection limits.
Normalized protein expression (NPX, log,) was generated after qual-
ity control and normalization to standards and inter-plate plasma
sample controls.

Genomics. Whole blood DNA was genotyped on an lllumina GSA-MDv3
array. Genotype clustersfromthefirstbatchwereapplied across batches
for consistency (GenomeStudio 2.0.3). Quality controlincluded checks
forsex discordance, missing data, heterozygosity and batch effects. Call
rate filters were 290% (markers/individuals), followed by amore strin-
gent 98% call rate requirement. Hardy-Weinberg equilibrium test was
performed on samples of Swedish origin at1x 1078, and a minor allele
frequency (MAF) cutoff of >0.1% was implemented. Pre-imputation
harmonization was conducted using Will Rayner’s preparation script
(HRC-1000Gcheck-bim-v4.3.0, https://www.chg.ox.ac.uk/~wrayner/
tools/) toalignstrand/alleles/positions as well as frequency differences.
Palindromic single-nucleotide polymorphisms (SNPs) with MAF > 0.4
were removed to mitigate the risk of allele switching, and SNPs with
allele mismatches or >0.2 frequency difference between the data and
the reference panel were removed. Imputation to HRC rl.1 reference
panel (Sanger imputation service; EAGLE2 + PBWT) retained variants
with =0.7 and MAF > 0.01. PRSs were built using publicly available
genome-wide association study (GWAS) summary statistics on the
phenotypes of interest*.

Fecal microbiome. Participants collected chemically preserved stool
samples at home using pre-packed collection kits. Samples were kept
at room temperature for <36 hours and then stored at =80 °C at the
research facility. DNA extraction and quality control followed pre-
viously described established protocols®. Library preparation and
sequencing were performed using Illumina chemistry on HiSeq 4000
instrumentation (150-bp paired-end reads; GATC Biotech)™®.

Reads with a Phred score less than 20 and human-mapped reads
(GRCh37) wereremoved, yielding, onaverage, 26.5 million high-quality
paired-end reads (range, 5.3-69 million per sample). A 15,186,403
non-redundant microbial gene catalog was assembled as previously
described", to which, in mean, 75.1% of reads could be mapped back
(MEDUSA pipeline®). Gene abundance profiles across samples were
rarefied to 22 million reads per sample, and mean gene abundances
were obtained over 50 repeated rarefactions. Gene richness equaled the
number of genes detected inthe rarefied set. Taxonomic profiles were
generated by mapping against the Unified Human Gastrointestinal
Genome (UHGG) version 2.0 (ref. 62) catalog with Kraken2¢ version
2.1.2atthe specieslevel, and abundance profiles were estimated using
Bracken®2.6.2.
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BLASTX®* was used to derive functional annotations of the newly
assembled genes against the KEGG database®®, and the previously
described customized GMM set was expanded by six trimethylamine
(TMA) and 20 phenylpropanoid metabolism modules”’. Omixer-
RPM® version 1.1 was used for GMM abundance computation with
module presence requiring >60%, as detailed elsewhere".

Statistical analyses

Analyses of variance explained. Variances explained for each covari-
atewere estimated using both ridge and LASSO regression with nested
10-fold cross-validation (glmnet version 4.1.6). The final results are
based solely on ridge regression, as both methods yielded similar
performance. Still, BMI prediction with ridge regression yielded a
slightly improved prediction (Methods: ‘Ridge and LASSO regression
onBMI'). Ridge regression models were conducted in the 1,408 study
participants, excluding those with missing data, using microbial spe-
cies abundances (MAGs, center log ratio (CLR) transformed), scaled
GMMs, KEGG modules, metabolomics, proteomeomics, diet and
metadata. Feature spaces focused on BMI and adiposity measures
(waist circumference, WHR, areas and attenuations for abdominal
VAT attenuation and SAT), microbiome richness and other omics
space variables.

In each nested iteration, nine folds were used to train a ridge
modelwithaninner10-fold grid search to identify the optimallambda
value. The test fold (held-out fold) was then used to calculate the
out-of-bag prediction, R? and the test error. When predicting a vari-
able, the entire feature space containing that variable was excluded
(for example, no metabolome data were used to predict single
circulating metabolites).

Ridge and LASSO regression on BMI. BMI was modeled with ridge
and LASSO regression. Only metabolites significantly associated with
BMI (Spearman’s p > 0.1) were included in the model. To balance the
sex and BMI groups, equal numbers were sampled from the World
Health Organization (WHO) BMI categories (BMI 18.5-24.9 kg m2,
25-29.9 kg m2and =30 kg m™), limited by the smallest stratum (129
men with a BMI of 18.5-24.9 kg m™), yielding 774 individuals. These
were split randomly into a 75% training set and a 25% test set. Remain-
ing participants not within the BMIbins were allocated to the ‘non-test’
set, which, together with the test set, constituted the ‘extended test
set’. After \-parameter optimization, ridge regression was performed
using cv.glmnet with 10-fold cross-validation to minimize the mean
squared error (glmnet version 4.1.6, lengthA =100, range 10 t0 107).
Hold-out R*onthe BMI-binned test set quantified performance. Ridge
and LASSO achieved R?=0.39 and R*= 0.35, respectively. The final
ridge model was used to predict BMI (henceforth, metBMI) in the
entire cohort. Residuals from a model adjusting for age, sex and BMI
were extracted for further downstream analyses. Participants with
residuals <-2.5 were classified as having a predicted metabolic BMI
lower (LmetBMI, n=147), and participants with residuals > 2.5 were
classified as having a higher predicted than their ground truth BMI
(HmetBMI, n =154). Others were classified according to their WHO
BMI categories: normal weight (n = 313), overweight (n = 488) or with
obesity (n=307). Residual distributions were similar across training
and test sets and BMI categories. MetBMI was modestly lower at very
high BMI (Extended Data Fig. 3d).

Logistic regression for disease prevalence. Associations between
binary cardiometabolic outcomes and BMI or metBMI were assessed
using logistic regression, adjusted for age and sex (binomial glm, stats
version4.1.1). For each outcome, three models were constructed: one
thatincluded BMI, one thatincluded metBMI and a nested model that
includedboth. Independence from conventional risk factors was tested
in a second set, adjusting for WHR, HDL, LDL, triglycerides, systolic
and diastolic blood pressure, glucose and statin use. The added value

of metBMI beyond BMI was tested using LRTs (ANOVA function) that
compared nested models with BMI-only models.

PCA on metabolite levels. PCA on the complete metabolomics data
was performed using prcomp and visualized using fviz_eig (factoextra
version 1.0.1 (ref. 69)). Resulting Euclidean distances were extracted
and plotted using ggplot2 version 3.4.0 (ref. 70).

Correlations and regression. Partial Spearman’s correlations for gene
richness and metabolic BMI residuals were used to derive estimates
adjusted for age, sex and BMI and multiple testing (ppcor version 1.1,
p.adjust in stats version 4.1.1 at 5% FDR). The categorical sex variable
was converted into adummy variable prior to analysis. Linear regres-
sionmodels of gene richness included diabetes status, MetS presence”
and BMlasindependent variablesin one model. MetBMIwas added in
asecond model. Pvalues were obtained using the F-test, and P < 0.05
was considered significant. Similarly, individual linear regressions of
gene richness against available variables were performed iteratively,
correcting for BMI, age and sex or metBMI, age and sex. Variables with
near-zero variance (estimated using caret version 6.0.93 (ref. 72))—for
example, N-acetyl sulfapyridine, rocuronium, rivaroxaban, cefazolin
and X-21628—were excluded from the model. Normality was assessed
with the Andersen-Darling test (nortest version 1.0.4 (ref. 73)), and
non-normally distributed variables were log transformed.

RFE and bidirectional mediation analysis. Torefine the variables for
subsequent downstream analyses, including bidirectional mediation,
weimplemented RFE on the metabolome and metadatadatasets. These
datasets comprised variables related to diet, physical activity, clini-
cal chemistry and anthropometry, including body composition. We
applied Boruta (version 8.0.0 (ref. 74), 999 importance source runs).
This process narrowed down the most pertinent metabolites to 66,
with10 consistently selected initerative LASSO models across all tested
models, 51identifiedin the ridge regression model and five additional
metabolites (Supplementary Table 15). Similarly, the clinical features
tested from the metadata were reduced to 63 variables.

For mediation, we first computed Spearman’s correlationsamong
(1) microbiome species overlapping across obesity traits and associated
withmetBMI residuals after adjusting for other obesity measures and
richness (68 species) and (2) 57 GMMs associated with metBMlI residu-
als. We then correlated these with (3) the 66 metabolites and (4) the 63
metadata variablesidentified through RFE. We retained only those vari-
ablesfromthethree feature sets that exhibited significant correlations
with variables from the other sets, adhering to a minimum absolute
Spearman’s correlation threshold of 0.1 and a maximum adjusted P
value threshold of 0.05, following the Benjamini-Hochberg correction.

As aresult, 66 bacterial species, 51 GMMs, 56 metabolites and all
63 metadatavariables were kept for further mediation analysis. Using
these variables, three grids containing all possible variable combi-
nations were constructed. The combinations were arranged in the
following sequence: microbiome feature > metabolite > phenotype
variable; microbiome feature > phenotype variable > metabolite;
and phenotype variable > metabolite > microbiome feature. These
sequences were used to test for direct and reverse mediation effects
for microbiome features viametabolites and phenotypes, respectively,
and to assess reverse causation in the third configuration.

The mediation analysis was conducted separately for each grid
by fitting the model y =x + m, where ‘y’ is the outcome variable (phe-
notype in direct mediation and metabolite in reverse mediation), ‘m’
is the mediator (metabolite in direct mediation and phenotype in
reverse mediation) and ‘x’is the exposure variable (microbiome feature
in both direct and reverse mediations). In the third mediation grid,
‘y’represents the microbiome feature, and ‘x’ represents the phenotype
variable. Unstandardized indirect effects were computed (mediation
version 4.5.0 (ref. 75),1,000 bootstrap). The average causal mediation
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effect (ACME), reflecting theisolated effect of the mediator, was deter-
mined for each direction, and its P values were adjusted for multiple
comparisons using the Benjamini-Hochberg method.

Microbiome-phenotype linkages via metabolites were identi-
fied after excluding linkages with reverse mediation and direct
phenotype-bacteria effect by FDR-ACME < 0.05, bacteria > pheno-
type > metabolite (P value-ACME.inverse > 0.05), phenotype >
metabolite > bacteria (P value-ACME.inverse2 > 0.05) as well as
phenotype - bacteria (P value-average direct effect (ADE) > 0.05).
Microbiome-metabolome linkages via phenotypes were estab-
lished based on FDR-ACME.reversel < 0.05, P value-ACME > 0.05,
Pvalue-ACME.reverse2 > 0.05and Pvalue-ADE.reverse2 > 0.05. Pheno-
type-bacterialinkages, either direct or viametabolites, were identified
with Pvalue-ACME and P value-ACME.reversel > 0.05 and FDR-ACME.
reverse2 and/or FDR-ADE.reverse2 < 0.05 for mediated effect or com-
bined mediated and direct effects, respectively.

Microbiome analyses
Species-level data were filtered at 5% prevalence filter and combined
intoaphyloseqobject (phyloseq version1.42.0 (ref. 76),2,820 unique
taxa/MAGs from 1,408 samples, 22 phylaand 790 genera, non-filtered:
3,331). PCA was performed using metric multidimensional scaling
(MDS) and Aitchison distances on CLR-transformed taxa counts, con-
structed with the vegdist function from vegan. Adonis2 was used to
estimate the contribution of the metBMI group to the community vari-
ation, followed by a pairwise multilevel comparison using the wrapper
pairwise.adonis with Bonferroni adjustment (Supplementary Table 19).
Differential abundance analyses were performed at the species
level using ANCOM-BC version 1.4.0 (ref. 77) with covariates age and
sex added to the formula (FDR < 0.05). We then evaluated medica-
tion confounding on the reported differentially abundant features
using metadeconfoundR, reporting only non-confounded (that is,
no impact of the confounder) or strictly de-confounded (that is, the
effect of the variable isindependent of the confounder) features atan
FDR of <0.1. Overall, the effect sizes and their direction were congru-
ent between ANCOM-BC and metadeconfoundR, and all significant
features reported in ANCOM-BC displayed a significant effect size in
metadeconfoundR. MetadeconfoundR was similarly used to eluci-
date whether the effect of a particular variable (for example, metBMI
residuals) on a specific taxon was more closely related to another
obesity measure. Similarly, gene richness was included as a predictor
to understand whether changes in overall gene richness underlie dif-
ferentially abundant features or whether these are indeed unlinked to
the general loss of richness observed in obesity and metabolic health
deterioration. Low-abundant taxa were defined as less than 5% of the
mean total abundance. Differential abundance of rarefied GMMs was
conducted along with de-confounding directly in metadeconfoundR’®.
Partial Spearman’s ranked-sum correlations are reported between
the overlapping 46 differentially abundant taxain all four obesity fea-
tures and other covariates. Heatmaps were produced using the package
ComplexHeatmap’® and show only taxa with at least one significant
correlation in the set of metadata variables given at an FDR-adjusted
significance of less than 0.1. Tiles showing FDR < 0.01and FDR < 0.05
are depicted with“* and ‘+’, respectively.

Correlations and metadeconfoundR analysis for species-host
associations. We computed Spearman’s correlations between selected
microbial species and host features (metabolites, diet, physical activ-
ity and clinical metrics), retaining associations with FDR < 0.1 and
Spearman’s p > 0.1. A subsequent metadeconfoundR'® analysis was
employed to filter associations that were unconfounded by other
variables, including gene richness.

Comparative microbiota network analysis. Signed networks were
constructed using NetCoMi version1.1.0 (ref. 79) using the 500 species

exhibiting the highest variance in HmetBMI and LmetBMI subsets.
Associations were analyzed using atwo-sided Spearman’s correlation
with athreshold of 0.3 after total sum scaling (TSS) normalization and
multiplicative zero replacement. Network properties were analyzed
and visualized using the netAnalyze function. A differential network
was constructed using the diffnet function, with Fisher tests and local
FDR adjustment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The IGT-microbiota and SCAPIS deidentified datasets used in this
study are accessible to qualified researchers viaa data use agreement
for research purposes after consideration from the data accession
committee. For data access inquiries, please contact Fredrik Back-
hed; responses will be provided within seven business days. The raw
whole metagenome shotgun (WMGS) data are available upon reason-
able request. Whole metagenomic data are deposited at the Euro-
pean Nucleotide Archive under accession numbers PRJEB100670
and ERP174669.

Code availability

No specialized in-house code was used for this study. All software
used for the data analyses in this study is publicly available and cited
inMethods.
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Extended Data Fig. 2 | Variance explained (R2) across measures of obesity

and adiposity and across omics datasets (inter-omics). a. Bar plots show the
proportion of variance explained (hold-out R?) for each obesity and body-
composition trait when predicted from individual data layers: gut-metabolic
modules (GMMs), diet, KEGG orthologues, metagenome-assembled genomes
(MAGs), serum metabolites, circulating proteins, or their combination (All
omics). Each dot is the RZ obtained in one-fold of ten-fold ridge-regression
cross-validation; bar height is the median across folds (n =10). Letters indicate
pairwise differences: bars that share aletter do not differ significantly (two-sided
Wilcoxon rank-sum test, Benjamini-Hochberg adjusted across all feature-space
comparisons). Pvalues and summary statistics are found under Supplementary
Table 2. b. Boxplots of variances explained by diet, proteins, metabolites, GMMs,
KEGGs, MAGs and all omics combined for BMI. Box plots display the median,
interquartile range (IQR) with whiskers specifying +1.5*IQR of R2 distribution
per feature obtained in the 10-fold cross-validation (n =10) and plotted points
denoting outliers. Source dataunder Supplementary Table 2. c. Density plots

of variance explained (median R?) by predictors across omics layers. Each line
represents the distribution of variances explained for features in either the
metabolites or proteins feature space, stratified by the predictor used. Colors
correspond to the source omics layer used for prediction. d. Bar plots show the
median proportion of variance explained for microbiome gene richness derived
from a10-fold cross-validation (n =10), when predicted from individual data
layers: diet, metagenome-assembled genomes (MAGs), serum metabolites, and
circulating proteins e. Boxplots of variance distribution for single metagenomes
(MAGs), which could be robustly explained by diet, metabolites, and proteins
(1438 MAGs from Diet, 1440 for metabolites and 1440 from proteins). Three R2
values are derived for each MAG in a regression model with 10-fold internal cross-
validation and three repeats (ny;,=4318,n s = 4320, N, ics =4320).
Boxplots show the median and interquartile ranges (IQR); whiskers extend to
+1.5*IQR from the quartiles and plotted points denote outliers. Source Data
under Supplementary Table 3.
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Extended DataFig. 3 | Test diagnostics of the ridge regression model.
a.two-sided Spearman’s correlation (here denoted as R) with its corresponding
PValue between the ground truth and metabolites-predicted BMI (metBMI) in the
IGT-test set (n =192). The dashed black line is the linear regression line. b,c Violin
plots of metBMl residuals distributions within BMI-categories in the entire IGT-
cohort, Pis derived from a two-sided Kruskall Wallis test (b) and between training
and extended test set, the sample size is depicted in the respective boxplot and
Pis derived from a two-sided Wilcoxon rank-sum test (c). d. Boxplot showing the
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each of the metBMI-classification group, and colored according to these groups
(green for normal weight, taupe for individuals with overweight, purple for
individuals with obesity, light green for LmetBMI and light purple for HmetBMI).
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Extended Data Fig. 4 | Validation of the metBMI model in the SCAPIS cohort
and links to metabolic heterogeneity. a. two-sided Spearman’s correlation
(denote here as R) between ground truth BMI and metabolites-predicted BMI

(metBMI). The dashed line is the linear regression line

.Eachdotrepresentsone

individual, colored according to the final metBMI classification group: green for
normal weight (n =79), taupe for individuals with overweight (n =157), purple
for individuals with obesity (n =134), light green for LmetBMI (n = 43), and

light purple for HmetBMI (n = 53). b. Comparisonsin relevant anthropometric,

metabolic, and lifestyle features between the different metBMI groups. Feature
values were Z-score transformed prior to plotting, and Pvalues are derived

from a two-sided Wilcoxon rank-sum test and adjusted for multiple testing,

ad modum Benjamini-Hochberg, across the five metBMI groups. Boxplots are
colored according to these groups and show the median and interquartile ranges
(IQR); whiskers extend to 1.5*IQR from the quartiles and plotted points denote
outliers. Sample size per group asina.
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Extended Data Fig. 8| Bacterial network topology in HmetBMI and LmetBMI
and altered global influence of specific taxain the network structure of
HmetBMIand LmetBMI. a. Species-level bacterial association networks for
high (HmetBMI) and low (LmetBMI) metabolic BMIgroups, based on two-sided
Spearman’s correlations of CLR-transformed abundances (sparsification
threshold > 0.3). Analysis was restricted to the S00 most variable species,

with zerosimputed via multiplicative simple replacement. Node size reflects
eigenvector centrality; node color indicates clusters defined by greedy
modularity optimization. Blue and red edges denote positive and negative
associations, respectively. The Layout from the HmetBMI network was applied
to both groups, with unconnected nodes omitted for abetter overview.

b. Differential association networks showing connected nodes if they are
differentially associated between HmetBMI and LmetBMI. The Fisher’s Z-test is
applied toidentify differentially correlated taxa. Multiple testing adjustment
is performed by controlling the local false discovery rate. Shown are two-sided
Spearman’s rank correlations after clr (centered log-ratio) transformation of
abundances on species levels, applying a sparsification threshold of 0.3 (only
absolute correlations 0.3 are retained). The analysis included the 500 species
with the highest variance, and zeros were replaced using the multiplicative
simple replacement method. Edge colors represent the direction of the
associationsin the two groups asindicated in the legend.
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Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The study includes both sexes. Sex (based on self-reporting) was used throughout the study and included as covariate for
modelling. sex-specific post hoc analyses were performed

Reporting on race, ethnicity, or the term European is used to describe participants in this study.
other socially relevant

groupings

Population characteristics The study has included the population-based cohorts (IGT and SCAPIS) from Gothenburg, Sweden and a bariatric surgery
cohort from Germany. Population characteristics are described in the manuscript in Suppelementary Tables.

Recruitment As a population level study, all participants were randomly invited by letter and thus without any specific selection that might
impact the results. All invited participants were screened with questionnaire and oral glucose tolerance test. participants
undergoing bariatric surgery had to be elligible for surgery according to clinical criteria.

Ethics oversight all studies adhered to the ethical guidelines of the Declaration of Helsinki and were approved by the regional ethics review

board in Gothenburg (IGT: the Swedish Ethics Review Authority, institutional review board study number Dnr560-13) and
Swedish Ethics Review Authority (SCAPIS: Etikprovningsmyndigheten Dnr 2010-228-31M, Dnr 2018-315). All participants
provided written informed consent, and no compensation was provided for their participation. For bariatric surgery The
study protocols were approved by the University of Leipzig's ethics committee (applications 017-12-23012012 and
047-13-28012013), with all participants providing written informed consent.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The complete IGT microbiota cohort included 1833 individuals. Only participants with CT-scans and complete multi-omics were included,
leaving 1408 participants. No a priori Power calculation was conducted. in our previous publication, a subset of this cohort was deemed to
have sufficient power for modest effect sizes (DOI: 10.1016/j.cmet.2020.06.011).

Data exclusions  participants without CT-scans, Microbiome and multi-omics data were excluded from IGT-microbiota and SCAPIS.

Replication The SCAPIS cohort was used for replication.

Randomization  As a cohort-based observational study, the sample collection and measurements were performed in a random order with no further
randomization.

Blinding As a cohort-based observational study, no blinding was performed.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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