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Abstract

Obesity is a systemic metabolic disorder characterized by chronic low-grade inflammation
and insulin resistance, with growing evidence indicating that the brain represents a pri-
mary and particularly vulnerable target organ. Beyond peripheral metabolic consequences,
obesity induces region-specific structural, functional, and biochemical alterations within
the central nervous system, contributing to cognitive impairment, dysregulated energy
homeostasis, and increased susceptibility to neurodegenerative diseases. This narrative
review examines key neurometabolic and neuroinflammatory mechanisms underlying
obesity-related brain vulnerability, including downstream neuroinflammation, impaired in-
sulin signaling, mitochondrial dysfunction, oxidative stress, blood–brain barrier disruption,
and impaired brain clearance mechanisms. These processes preferentially affect frontal and
limbic networks involved in executive control, reward processing, salience detection, and
appetite regulation. Advanced neuroimaging has substantially refined our understanding
of these mechanisms. Magnetic resonance spectroscopy provides unique in vivo insight
into early neurometabolic alterations that may precede irreversible structural damage and
is complemented by diffusion imaging, volumetric MRI, functional MRI, cerebral perfusion
imaging, and positron emission tomography. Together, these complementary modalities
reveal microstructural, network-level, structural, hemodynamic, and molecular alterations
associated with obesity-related brain vulnerability and support the concept that such brain
dysfunction is dynamic and potentially modifiable. Integrating neurometabolic and multi-
modal neuroimaging biomarkers with metabolic and clinical profiling may improve early
risk stratification and guide preventive and therapeutic strategies aimed at preserving
long-term brain health in obesity.

Keywords: obesity; brain vulnerability; neuroinflammation; neurometabolism; magnetic
resonance spectroscopy; multimodal neuroimaging; insulin resistance; cognitive impairment

1. Introduction
Obesity exerts widespread effects on human health through complex metabolic and

inflammatory mechanisms that affect multiple organ systems, including the central ner-
vous system [1]. Beyond its systemic consequences, obesity is increasingly recognized as a
condition that profoundly alters brain structure and function, establishing the brain as a
vulnerable target organ in the pathogenesis of obesity-related complications [2–4]. Recent
evidence highlights that obesity-associated low-grade inflammation disrupts key periph-
ery–brain communication pathways, particularly by impairing blood–brain barrier (BBB)

Int. J. Mol. Sci. 2026, 27, 958 https://doi.org/10.3390/ijms27020958

https://crossmark.crossref.org/dialog?doi=10.3390/ijms27020958&domain=pdf&date_stamp=2026-01-21
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9086-116X
https://orcid.org/0000-0002-6007-7072
https://doi.org/10.3390/ijms27020958


Int. J. Mol. Sci. 2026, 27, 958 2 of 26

integrity and promoting maladaptive neuroimmune signaling across central–peripheral
interfaces [5,6]. Beyond hypothalamic circuits, systemic metabolic inflammation can in-
duce region-specific neuroinflammatory responses through cytokine-mediated signaling
and vascular–immune interactions [7]. Figure 1 schematically illustrates the integrative
metabolic, inflammatory, and vascular pathways through which obesity exerts multisystem
effects and promotes brain vulnerability.

 

Figure 1. Systemic pathways linking obesity to brain vulnerability. Integrative schematic illustrat-
ing how obesity-related metabolic dysregulation, systemic low-grade inflammation, and vascular
dysfunction converge to impair periphery–brain communication. Metabolic disturbances, including
insulin resistance, hyperglycemia, and altered adipokine signaling, together with chronic immune
activation and elevated pro-inflammatory cytokines, and vascular alterations such as endothelial
dysfunction, cerebral hypoperfusion, and blood–brain barrier (BBB) impairment, synergistically
promote structural, cognitive, and affective brain alterations. Peripheral organ dysfunction further
amplifies systemic metabolic and inflammatory stress, increasing the risk of cognitive decline and
dementia. Abbreviations: BBB, blood–brain barrier; CHD, coronary heart disease; CNS, central
nervous system; CV, cardiovascular; NAFLD, non-alcoholic fatty liver disease; T2DM, type 2 diabetes
mellitus. This figure represents an original schematic illustration created by the authors, providing a
conceptual synthesis informed by the literature.

Importantly, the relationship between obesity and brain dysfunction is bidirectional.
While altered central regulation of appetite, reward processing, and executive control may
contribute to weight gain, obesity itself represents a major upstream driver of neurolog-
ical vulnerability. Chronic low-grade systemic inflammation, metabolic dysregulation,
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hormonal imbalance, and vascular dysfunction associated with obesity promote BBB im-
pairment, microglial activation, and sustained neuroinflammatory signaling [8–10]. These
mechanisms contribute to structural, metabolic, and functional brain alterations, thereby
positioning obesity primarily as an upstream driver of neurological vulnerability while
acknowledging the bidirectional interactions between central dysregulation and metabolic
disease.

2. Neuroinflammation as a Central Mechanism
Chronic low-grade systemic inflammation represents a hallmark of obesity and a key

mechanism linking excess adiposity to brain dysfunction [4,11]. Unlike acute inflammatory
responses, obesity-related inflammation is persistent and low in intensity, yet sufficient to
disrupt metabolic homeostasis and neural function. The hypothalamus, a central regulator
of energy balance, is particularly susceptible to inflammatory insults induced by high-fat
diets [12].

Experimental and clinical studies indicate that hypothalamic inflammation may de-
velop early during exposure to high-calorie diets, even before overt weight gain becomes
apparent [13]. Activation of microglia within the hypothalamus leads to increased pro-
duction of pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α),
interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), which interfere with leptin and insulin
signaling and impair central regulation of energy homeostasis [14–16].

These processes contribute to the development and amplification of central insulin
and leptin resistance, which may represent both predisposing factors for obesity and down-
stream consequences of chronic metabolic dysregulation [17–20]. Importantly, emerging
evidence suggests that obesity-related neuroinflammatory changes are not confined to
hypothalamic circuits but involve broader periphery–brain communication pathways.
Systemic metabolic inflammation, vascular dysfunction, and BBB alterations facilitate
neuroimmune signaling and promote region-specific neuroinflammatory responses [21].

The integrative mechanisms linking obesity-related systemic metabolic inflammation
to neuroinflammatory and neurovascular brain vulnerability are illustrated in Figure 2. Mi-
croglial activation in obesity spans a functional spectrum, ranging from pro-inflammatory,
M1-like phenotypes to repair-associated, M2-like phenotypes. In parallel, obesity-
associated vascular dysfunction and cerebral hypoperfusion may induce ischemia-like
metabolic stress, further amplifying neuroinflammatory signaling and contributing to
neuronal dysfunction [21,22].

Recent study emphasizes that obesity-related neuroinflammation extends beyond the
hypothalamus and involves widespread cortical and subcortical regions through immune–
metabolic signaling pathways [21]. The BBB, particularly specialized hypothalamic inter-
faces involving tanycytes, plays a crucial role in regulating the entry of peripheral metabolic
and inflammatory signals into the brain. Hypothalamic regions exhibit barrier plasticity
and are anatomically predisposed to peripheral signal exposure, enabling dynamic commu-
nication with key hypothalamic nuclei involved in metabolic regulation [23–25]. Increased
permeability facilitates the entry of inflammatory factors into the brain parenchyma, ampli-
fying neuroinflammatory responses and neuronal stress.

Both microglia and astrocytes actively participate in obesity-induced neuroinflamma-
tion. Activated microglia initiate and propagate inflammatory signaling cascades, while
astrocytes further amplify these responses through the release of pro-inflammatory me-
diators [26–30]. In obesity, metabolic disturbances, including elevated dietary saturated
fatty acids, hyperglycemia, and oxidative stress, act as upstream triggers of innate immune
signaling within the central nervous system.
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Figure 2. Integrative mechanisms linking systemic metabolic inflammation to neuroinflammatory
and neurovascular brain vulnerability in obesity. Schematic representation of the periphery–brain
pathways through which obesity-related metabolic and inflammatory disturbances promote central
nervous system vulnerability. Peripheral dietary and metabolic drivers induce systemic metabolic
inflammation characterized by immune activation, oxidative stress, and elevated pro-inflammatory
cytokines. These signals converge at the blood–brain barrier interface, leading to neurovascular dys-
function, including endothelial oxidative stress, pericyte impairment, and disruption of intercellular
junctions. Within the central nervous system, convergent mechanisms involving microglial activa-
tion, cytokine-mediated neuroinflammation, ischemia-like metabolic stress, and altered microglial
functional states contribute to synaptic dysfunction, altered neuronal metabolism, and increased
susceptibility to cognitive decline. Abbreviations: CNS, central nervous system; ROS, reactive oxygen
species. This figure represents an original schematic illustration created by the authors, providing a
conceptual synthesis informed by the literature.

These metabolic stimuli activate Toll-like receptor 2/4 (TLR2/4)-mediated pathways
in glial cells, leading to sustained activation of nuclear factor kappa B (NF-κB), a central
regulator of inflammatory gene transcription. Chronic NF-κB signaling promotes persistent
nuclear transcriptional activity, resulting in overexpression of pro-inflammatory cytokines
and induction of suppressor of cytokine signaling 3 (SOCS3), thereby driving neuroin-
flammatory amplification through a self-reinforcing metabolic–immune loop [31–34]. The
molecular signaling cascade linking obesity-related metabolic stimuli to chronic neuroin-
flammatory activation is schematically illustrated in Figure 3.

https://doi.org/10.3390/ijms27020958

https://doi.org/10.3390/ijms27020958


Int. J. Mol. Sci. 2026, 27, 958 5 of 26

 
Figure 3. Chronic metabolic activation of NF-κB signaling in obesity-related neuroinflammation.
Schematic representation of sustained, metabolically driven NF-κB activation in glial cells within the
central nervous system. Obesity-related metabolic stimuli engage Toll-like receptor 2/4 signaling,
resulting in persistent NF-κB activity characterized by prolonged IκB kinase (IKK) activation, im-
paired IκB re-synthesis, and continuous nuclear transcriptional signaling. The diagram highlights
cytokine overexpression, SOCS3 induction, and a self-amplifying neuroinflammatory feedback loop,
illustrating a chronic, obesity-specific inflammatory state. Abbreviations: TLR2/4, Toll-like receptor
2/4; NF-κB, nuclear factor kappa B; IKK, IκB kinase; IκB, inhibitor of κB; SFA, saturated fatty acids;
IL-1β, interleukin-1 beta; TNF-α, tumor necrosis factor alpha; IL-6, interleukin-6; SOCS3, suppressor
of cytokine signaling 3; CNS, central nervous system; ROS, reactive oxygen species. This figure
represents an original schematic illustration created by the authors, providing a conceptual synthesis
informed by the literature.

3. Neuroendocrine Regulation of Neuroinflammation in Obesity
Beyond metabolic and immune mechanisms, obesity-related neuroinflammation is

modulated by neuroendocrine pathways. Dysregulation of the hypothalamic–pituitary–
adrenal (HPA) axis and altered glucocorticoid metabolism have been implicated in obesity
and metabolic disease, particularly through enhanced local cortisol regeneration mediated
by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) [35]. These neuroendocrine
alterations may influence neuroinflammatory signaling and stress-responsive brain circuits.
In parallel, the brain is not merely a passive target of peripheral hormones but is capable of
autonomous steroid metabolism, including the local synthesis and interconversion of neu-
roactive steroids such as dehydroepiandrosterone (DHEA) and dehydroepiandrosterone
sulfate (DHEAS), which modulate inflammatory and neuroprotective processes within the
central nervous system [36].

Glucocorticoid (type 1) and mineralocorticoid (type 2) receptors are widely expressed
in the hippocampus, prefrontal cortex, and limbic regions, where they play a central role in
regulating stress responsivity, synaptic plasticity, neurogenesis, and inflammatory signal-
ing [37]. Alterations in glucocorticoid signaling, including changes in receptor density and
sensitivity, have been documented with aging and chronic stress exposure, contributing to
increased vulnerability to neuroinflammatory processes and neurodegenerative conditions
such as Alzheimer’s disease [37]. In the context of obesity and metabolic disease, dysregu-
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lated glucocorticoid availability, partly mediated by enhanced local cortisol regeneration
via 11β-HSD1, may further exacerbate these stress-related and inflammatory pathways [35].

Obesity-related neuroinflammation extends beyond resident microglial activation
and involves complex interactions with circulating and infiltrating immune cells [21].
Chronic low-grade systemic inflammation associated with obesity is linked to alterations
in BBB function, which may facilitate enhanced peripheral immune-to-brain signaling and
contribute to central neuroinflammatory responses [21,38]. Monocytes and macrophages
represent key mediators of this process, as obesity favors a shift toward pro-inflammatory
phenotypes that amplify cytokine production and sustain neuroinflammatory signaling
within vulnerable brain regions [21].

In addition to monocyte-derived cells, adaptive immune components contribute to
obesity-associated inflammatory dysregulation [21,39]. Altered T-lymphocyte profiles,
including a shift toward pro-inflammatory subsets and a relative reduction in regulatory
T-cell populations, have been implicated in sustaining chronic inflammatory responses in
obesity [39]. Moreover, antigen-presenting cells, including dendritic cells and macrophages,
may further contribute to immune signaling by enhancing antigen presentation and shaping
cytokine-dependent T-cell polarization, thereby influencing inflammatory amplification
and its regulation [39].

Importantly, peripheral immune cells may exert dual roles within the brain, con-
tributing not only to inflammatory injury but also to tissue repair and immune regulation,
depending on their activation state and the local microenvironment [21,39]. Dysregulation
of this finely balanced immune response in obesity may favor persistent neuroinflammation,
oxidative stress, and synaptic dysfunction, thereby strengthening the association between
systemic metabolic disturbances and central nervous system vulnerability [21,38,39].

Sex-related differences represent an important but often underappreciated modifier of
neuroinflammatory processes relevant to obesity-related brain vulnerability. Experimental
and clinical evidence indicates that males and females exhibit distinct neuroimmune re-
sponses, driven largely by the modulatory effects of sex hormones on microglial activation,
cytokine production, and cellular metabolic signaling pathways [40,41]. Estrogens exert
predominantly anti-inflammatory and neuroprotective effects by attenuating microglial
reactivity and supporting neuronal and mitochondrial function, whereas androgens and
progesterone display context-dependent immunomodulatory actions within the central
nervous system [40].

In females, the decline in estrogen levels during menopause is associated with in-
creased central inflammation, oxidative stress, and heightened vulnerability to metabolic
and neurodegenerative disorders [41]. Obesity may further exacerbate these processes by
amplifying hormonal imbalance and systemic inflammation, potentially contributing to
sex-specific differences in cognitive performance and brain vulnerability [41,42]. These
observations underscore the importance of considering biological sex and hormonal status
when interpreting neuroinflammatory mechanisms and neuroimaging findings in obesity.

4. Insulin Resistance and Neurodegenerative Pathways
Insulin resistance represents a central biological link between obesity, metabolic syn-

drome, and brain vulnerability; however, it should not be viewed exclusively as a down-
stream consequence of excess adiposity. Genetic predisposition, receptor-level alterations,
and impaired intracellular insulin signaling may precede weight gain and can be further ag-
gravated by obesity-related inflammation and lipid overload, thereby amplifying metabolic
and neurocognitive risk [17,18]. Within the central nervous system, insulin resistance dis-
rupts neuronal glucose utilization, synaptic plasticity, and neurotrophic signaling, thereby
increasing susceptibility to neurodegenerative processes and cognitive dysfunction [43].
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Similarly, leptin resistance exhibits a bidirectional relationship with obesity. While
chronic hyperleptinemia associated with increased adipose tissue mass promotes receptor
desensitization, hypothalamic leptin resistance may also arise from genetic variability,
impaired leptin transport across the blood–brain barrier, or saturation of leptin recep-
tors within key appetite-regulating nuclei [19,20]. Under physiological conditions, leptin
acts as a critical protective signal limiting food intake and promoting energy homeosta-
sis. Disruption of this signaling axis therefore contributes to both the development and
persistence of obesity and may have downstream consequences for brain function and
metabolic regulation.

Insulin plays an essential role in brain function, particularly in regions involved in
learning and memory, such as the hippocampus [44,45]. In obesity, progressive peripheral
insulin resistance leads to impaired insulin transport across the BBB and the development of
central insulin resistance [46,47]. This condition is associated with reduced cerebral glucose
utilization, diminished neuronal activity, and impaired cognitive performance [47,48].

Structural imaging studies have linked insulin resistance to reductions in brain volume
and poorer performance on memory and visuospatial tasks, especially in middle-aged and
older individuals [49,50]. Aging and type 2 diabetes mellitus (T2DM) further exacerbate
these effects by reducing insulin availability in the brain and impairing insulin receptor
signaling at the neuronal level [51,52].

Mitochondrial dysfunction and oxidative stress represent tightly interconnected and
mutually reinforcing mechanisms linking insulin resistance to neurodegeneration. Im-
paired mitochondrial oxidative phosphorylation promotes excessive production of reactive
oxygen species (ROS), while sustained oxidative stress further damages mitochondrial
DNA (mtDNA), proteins, and membranes, thereby exacerbating mitochondrial dysfunc-
tion [53,54]. Rather than a unidirectional process, this vicious cycle amplifies neuronal
vulnerability under conditions of chronic metabolic stress.

In obesity and insulin-resistant states, inflammatory signaling further accelerates mi-
tochondrial dysfunction and energetic failure [54]. Activated microglia and infiltrating
immune cells generate reactive oxygen and nitrogen species, intensifying oxidative damage
and disrupting neuronal energy metabolism [55]. These processes impair synaptic func-
tion, calcium homeostasis, and axonal transport, thereby facilitating neurodegenerative
cascades [54,55].

Cellular resilience to oxidative stress critically depends on the availability of nicoti-
namide adenine dinucleotide (NAD+) and its phosphorylated form NADPH. NAD+ de-
pletion compromises mitochondrial bioenergetics and sirtuin-mediated protective path-
ways, whereas reduced NADPH availability limits antioxidant defenses, including glu-
tathione regeneration and redox buffering. In the context of metabolic dysfunction, altered
NAD+/NADH and NADP+/NADPH ratios may therefore represent key mediators linking
insulin resistance, inflammation, and progressive neuronal injury [53,56].

5. Structural, Functional, and Cognitive Consequences
Neuroimaging studies employing magnetic resonance imaging (MRI) have consis-

tently demonstrated obesity-related alterations in brain structure and function, particularly
involving hypothalamic injury [26,57]. Reduced gray matter volume has been observed in
the prefrontal cortex, hippocampus, and temporal regions, changes that are associated with
impaired executive function, decision-making, and impulse control [58,59]. Importantly,
recent pediatric neuroimaging study indicates that differences in hippocampal volume and
memory performance can already be detected in childhood among individuals at increased
familial risk for obesity, even in the absence of overt overweight or obesity, suggesting
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that obesity-related brain vulnerability may emerge early in life [60]. Disruption of BBB
integrity further exacerbates neuroinflammation and neuronal vulnerability [24,61].

Functional alterations include dysregulation of dopaminergic reward pathways, par-
ticularly reduced D2 receptor activity in the nucleus accumbens, which may promote
compensatory overeating and preference for energy-dense foods [62]. Magnetic resonance
spectroscopy (MRS) studies complement these findings by demonstrating reductions in N-
acetylaspartate (NAA), a marker of neuronal integrity and metabolic efficiency, suggesting
impaired cerebral energy metabolism in obesity [63,64].

Clinically, obesity-related neurobiological alterations manifest as cognitive deficits
involving attention, memory, and executive function, along with an increased prevalence of
mood disorders and sleep disturbances [65,66]. These outcomes arise from the cumulative
effects of chronic neuroinflammation, central insulin resistance, vascular dysfunction, and
impaired cerebral perfusion, which together increase vulnerability to neurodegenerative
processes, particularly Alzheimer’s disease [67–69]. While dopaminergic alterations have
been described in obesity, current evidence does not support a consistent association with
an increased risk of Parkinson’s disease [70,71].

Figure 4 provides an integrative schematic of the neuroimmune interfaces through
which obesity-related peripheral immune disturbances are transmitted to the central ner-
vous system, highlighting the bidirectional interactions between systemic immune activa-
tion and central neuroimmune responses that underlie brain vulnerability.

 
Figure 4. Neuroimmune interfaces mediating obesity-related brain vulnerability. Schematic overview
of the neuroimmune interfaces through which obesity-related peripheral immune disturbances
contribute to central nervous system vulnerability. Peripheral metabolic–immune dysregulation
promotes systemic immune activation, which signals to the brain primarily via the neurovascular
and choroid plexus interfaces. These interfaces mediate bidirectional communication with the central
neuroimmune response, facilitating glial activation, immune cell infiltration, and neuroinflammatory
processes that contribute to neuronal and oligodendrocyte dysfunction. A dashed bidirectional loop
between systemic immune activation and the central neuroimmune response indicates feedback
amplification of inflammatory signaling. Abbreviations: CNS, central nervous system; Th1, T helper
1 cells; Th17, T helper 17 cells. This figure represents an original schematic illustration created by the
authors, providing a conceptual synthesis informed by the literature.
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6. Implications for Prevention and Intervention
Interventions such as caloric restriction have been shown to benefit brain aging and

slow progression of neurodegenerative processes, possibly via metabolic and neuroprotec-
tive mechanisms, highlighting the potential of metabolic regulation strategies for long-term
brain health [72].

Emerging evidence suggests that weight loss and metabolic interventions may par-
tially reverse obesity-related alterations in brain metabolic signaling, particularly within
hypothalamic circuits, supporting the concept of dynamic and potentially modifiable brain
vulnerability [16].

Recent longitudinal neuroimaging study further supports this concept by demonstrat-
ing that weight loss–associated improvements in metabolic and low-grade inflammatory
markers are accompanied by favorable shifts in brain aging trajectories, as reflected by
reductions in brain-predicted age difference, and are paralleled by improvements in specific
domains of cognitive performance [73].

Importantly, several obesity-related inflammatory pathways discussed above have
direct or indirect neurometabolic correlates detectable by magnetic resonance spectroscopy
(MRS). Pro-inflammatory cytokines and innate immune signaling, including TNF-α, IL-6,
and TLR2/4 activation, are associated with neuronal metabolic stress, altered membrane
turnover, and glial activation. These processes may manifest on MRS as reductions in NAA,
reflecting neuronal dysfunction, and increases in choline-containing compounds (Cho) and
myo-inositol (mI), which are commonly interpreted as markers of membrane remodeling
and glial reactivity. Thus, MRS provides a non-invasive window into the downstream
neurometabolic consequences of obesity-related neuroinflammation.

7. Magnetic Resonance Spectroscopy as a Tool for Assessing
Obesity-Related Brain Vulnerability

MRS represents a non-invasive neuroimaging technique that enables in vivo assess-
ment of brain metabolism by quantifying specific neurometabolites associated with neu-
ronal integrity, membrane turnover, glial activity, and energy metabolism [74]. Unlike con-
ventional MRI, which primarily provides structural information, MRS offers biochemical
insights into pathophysiological processes that may precede overt structural brain changes.
Recent systematic review has consolidated the role of MRS in identifying neurometabolic
alterations in obesity and related metabolic disturbances. The most consistently reported
changes include reduced NAA and increased mI across multiple brain regions, which
may reflect obesity-related metabolic dysregulation and neuroinflammatory signaling and
contribute to altered cerebral biochemistry [75].

Proton MRS (1H-MRS) is the most widely used spectroscopic approach in clinical
and research settings due to its high sensitivity and compatibility with standard MRI sys-
tems [74]. By analyzing metabolite concentrations or metabolite ratios within selected brain
regions, MRS allows indirect evaluation of neuronal and glial function under physiological
and pathological conditions. In the context of obesity, this technique is particularly valuable,
as metabolic and inflammatory brain alterations may occur before irreversible neuronal
damage becomes apparent.

Among the neurometabolites detectable by MRS, NAA is considered a marker of neu-
ronal integrity and mitochondrial function. NAA is synthesized in neuronal mitochondria
and reflects both neuronal viability and metabolic efficiency [76]. Reduced NAA levels have
been consistently reported in conditions associated with neuronal dysfunction or energy
failure, including ischemia, neurodegeneration, and inflammatory brain disorders [77].
In obese individuals, decreases in NAA, particularly within frontal and subcortical re-
gions, suggest impaired neuronal metabolism and increased vulnerability to metabolic
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stress [78,79]. Importantly, reductions in NAA do not necessarily indicate irreversible neu-
ronal loss, as reversible decreases have been documented in several neurological conditions
following metabolic or inflammatory stabilization [80–82].

Choline-containing compounds (Cho) reflect membrane phospholipid turnover and
cellular membrane remodeling. Elevated Cho levels are commonly observed in disorders
characterized by increased membrane synthesis or breakdown, including neuroinflam-
mation, demyelination, and gliosis [83–87]. In obesity, increased Cho concentrations are
thought to reflect chronic low-grade neuroinflammation and glial activation, consistent
with evidence of inflammatory signaling within the central nervous system [14,15]. Re-
gional variability in Cho levels further suggests differential susceptibility of brain regions
to obesity-related inflammatory stress [74].

Creatine (Cr) plays a central role in cellular energy metabolism and is often used as an
internal reference in MRS analyses due to its relative stability across many physiological
conditions [88,89]. Although absolute Cr concentrations are typically preserved in obesity,
altered ratios involving Cr may indicate subtle disturbances in cerebral energy homeostasis,
particularly in the setting of insulin resistance and mitochondrial dysfunction [90,91].

An illustrative comparison of neurometabolic profiles between an obese individual
and a healthy control is shown in Figure 5, highlighting reduced NAA/Cr in frontal white
matter as a potential imaging-based marker of obesity-related brain vulnerability.

 

Figure 5. Representative multivoxel MRS spectra in obesity and healthy control [91]. Representative
long echo time 1H-MRS spectra acquired from deep frontal white matter using a multivoxel approach.
The spectra are original data generated by the authors. (a,b) Spectrum obtained in an obese subject
demonstrates a reduced N-acetylaspartate (NAA) to creatine (Cr) ratio [NAA/Cr = 1.71] with a
preserved choline (Cho) to Cr ratio (Cho/Cr = 0.99), suggesting neuronal metabolic stress without
prominent membrane turnover. (c,d) Spectrum obtained in a healthy control subject from the
same region shows preserved neurometabolic balance, with normal NAA/Cr (2.90) and Cho/Cr
(1.08) ratios.
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Myo-inositol (mI) is regarded as a glial marker and is involved in osmoregulation and
intracellular signaling pathways. Elevated mI levels have been associated with astrocytic
activation and neuroinflammation in several neurological disorders, including Alzheimer’s
disease and demyelinating conditions [92–96]. Increased mI concentrations observed
in obesity provide further evidence for glial involvement and sustained inflammatory
processes within the brain.

At higher magnetic field strengths, MRS also allows partial assessment of glutamate
and glutamine (Glx), key components of excitatory neurotransmission and cerebral energy
metabolism. Disruptions in the glutamate–glutamine cycle may contribute to excitotoxicity,
impaired synaptic plasticity, and cognitive dysfunction in obesity, particularly within
frontal and hippocampal regions [97,98].

Taken together, MRS offers a sensitive approach for detecting early neurometabolic
and neuroinflammatory brain alterations associated with obesity. By capturing biochemical
changes that precede structural damage, MRS-derived biomarkers provide valuable insight
into brain vulnerability and may serve as potential imaging-based markers for monitoring
disease progression and therapeutic response in obesity-related brain dysfunction.

7.1. Single-Voxel and Multi-Voxel MRS Findings in Obesity

Both single-voxel and multivoxel proton magnetic resonance spectroscopy (1H-MRS)
have been used to investigate neurometabolic alterations associated with obesity. Single-
voxel MRS provides detailed, region-focused metabolic information, whereas multivoxel
MRS enables the simultaneous assessment of neurometabolic profiles across multiple brain
regions, allowing the detection of subtle, region-specific alterations that may precede overt
neurological manifestations. Compared with earlier studies that predominantly relied on
single-voxel approaches, multivoxel MRS offers a more comprehensive characterization of
regional cerebral metabolic vulnerability in obesity [78,91,99,100].

7.2. Neuronal Integrity and Energy Metabolism: NAA and Creatine-Related Effects

In obesity, alterations in NAA-related metrics appear to be regionally heterogeneous.
Several studies have reported preserved global NAA/Cr ratios in obese individuals, sug-
gesting relative neuronal stability at the whole-brain level [100–103]. However, focal
reductions in NAA/Cr have been observed in frontal and parietal white matter, indicating
selective vulnerability of frontostriatal and executive networks [78,104,105].

Importantly, analyses based on absolute metabolite concentrations provide additional
insight. While absolute NAA levels are often preserved in obesity and T2DM [106,107],
discrepancies between absolute NAA and NAA/Cr ratios suggest that Cr, commonly used
as a reference metabolite, may not be metabolically stable under conditions of chronic
metabolic stress [91,108]. Emerging evidence indicates that increased Cr levels may reflect
enhanced glial energy metabolism rather than purely neuronal activity, particularly in
the context of neuroinflammation and metabolic overload [109]. This phenomenon may
explain region-specific reductions in NAA/Cr without corresponding decreases in absolute
NAA concentrations.

7.3. Choline Metabolism: Neurodegeneration Versus Neuroinflammation

In metabolic disorders, Cho alterations appear to reflect a balance between neurode-
generative and neuroinflammatory processes. Studies in insulin resistance and T2DM have
reported increased Cho/Cr ratios across cortical and subcortical regions, consistent with
glial activation and neuroinflammation [100–102,105].

In obesity without overt glucose metabolism disturbances, Cho findings are less
consistent. However, decreased Cho/Cr ratios in frontal white matter, particularly when
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accompanied by parallel reductions in NAA/Cr, have been interpreted as markers of early
neurodegenerative processes rather than inflammation [91].

7.4. Myo-Inositol as a Marker of Glial Activation

In obesity without metabolic comorbidities, mI/Cr ratios may remain preserved,
suggesting that isolated obesity may not be sufficient to trigger significant astroglial
activation [110]. However, elevated mI/Cr levels have been consistently reported in
individuals with T2DM and metabolic syndrome, particularly in frontal and cingulate
regions, supporting a role for insulin resistance and chronic inflammation in glial activa-
tion [100,101,106,111,112].

Interestingly, reductions in mI/Cr following weight loss interventions, such as intra-
gastric balloon placement, further support the reversibility of obesity-related neuroinflam-
matory changes and highlight mI as a potential marker of therapeutic response [110].

Myo-inositol is commonly regarded as a glia-associated metabolite on proton MRS and
plays an important role in osmoregulation and intracellular signaling pathways. Elevated
cerebral mI levels are frequently interpreted as reflecting astrocytic activation and gliosis
and have been consistently associated with neuroinflammatory processes across a range of
neurological and metabolic conditions [94,113].

Importantly, this neuroimaging interpretation should be clearly distinguished from
the systemic metabolic effects of mI observed in peripheral tissues. Reduced plasma mI con-
centrations have been reported in insulin-resistant states, including obesity and polycystic
ovary syndrome, and mI supplementation has been shown to improve insulin sensitivity
and metabolic parameters in these conditions [114,115]. These beneficial peripheral effects
primarily reflect its role as an insulin-sensitizing molecule and should not be conflated with
direct anti-inflammatory actions within the central nervous system.

Consequently, increased cerebral mI concentrations detected by MRS in obesity should
not be interpreted as contradictory to its therapeutic metabolic effects. Instead, they likely
represent region-specific glial responses to chronic metabolic and inflammatory stress
within the brain. This distinction underscores the importance of contextual interpretation
of mI findings, integrating neuroimaging biomarkers with systemic metabolic status.

7.5. Regional Brain Vulnerability in Obesity

Across MRS studies, frontal white matter, particularly deep frontal regions, emerges
as a key site of metabolic vulnerability in obesity [91]. Alterations in NAA/Cr and Cho/Cr
within these regions may reflect early disturbances in executive and cognitive control
networks, which are known to play a critical role in appetite regulation, impulse control, and
decision-making [116]. These findings align with functional and structural neuroimaging
studies demonstrating frontostriatal dysfunction in individuals with elevated body mass
index (BMI).

The observed regional specificity underscores the importance of multivoxel ap-
proaches, as single-voxel studies may overlook localized metabolic changes that precede
global brain involvement.

7.6. Associations with Anthropometric and Metabolic Parameters

Beyond categorical group comparisons, MRS studies have explored associations be-
tween neurometabolite levels and anthropometric and metabolic parameters, although
findings remain heterogeneous. BMI has shown modest and inconsistent correlations with
neurometabolites, likely reflecting its limited ability to capture body fat distribution and
metabolic phenotype [91]. In contrast, markers of central obesity, such as waist circumfer-
ence, appear to demonstrate stronger associations with reduced NAA/Cr ratios in frontal
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white matter, suggesting that visceral adiposity may be more closely linked to cerebral
metabolic vulnerability [91,117].

Notably, these observations are not uniform across studies. Gazdzinski et al. [99]
reported a strong negative correlation between absolute NAA concentrations and BMI
in frontal, parietal, and temporal white matter, as well as in frontal gray matter, indicat-
ing a potential association between increasing adiposity and reduced neuronal metabolic
integrity. In contrast, our multivoxel MRS study [91], did not demonstrate significant corre-
lations between absolute NAA concentrations and BMI. These discrepancies likely reflect
methodological differences, including different metabolite quantification methods, regional
selection, and heterogeneity of metabolic profiles within obese populations. Collectively,
these findings suggest that central obesity–related measures may provide more sensitive
indicators of obesity-associated brain metabolic vulnerability than BMI alone.

Biochemical components of the metabolic syndrome further modulate neuroimmune
and neurometabolic vulnerability. Elevated circulating lipids may contribute to region-
specific metabolic alterations through lipid-driven inflammatory signaling pathways within
the CNS [32]. Conversely, higher high-density lipoprotein cholesterol (HDL-C) choles-
terol levels appear to exert a protective effect on neuronal metabolism, particularly in
frontal white matter, consistent with its anti-inflammatory and vasculoprotective proper-
ties [91,118]. Associations with fasting glucose are generally weak in non-diabetic pop-
ulations, suggesting that prolonged metabolic dysregulation may be required to induce
detectable cerebral metabolic changes [91].

In addition to anthropometric and lipid-related parameters, markers of insulin resis-
tance represent a critical metabolic component influencing brain neurometabolism. Fasting
insulin levels and the homeostasis model assessment of insulin resistance (HOMA-IR)
have been examined in relation to MRS-derived neurometabolites, although available data
remain limited and region-specific. In our multivoxel MRS study using long echo time
acquisitions, associations between insulin resistance markers and neurometabolic ratios
are generally weak or absent at the global level. However, focal effects have been iden-
tified, indicating selective regional vulnerability rather than uniform cerebral metabolic
impairment [91].

Importantly, our multivoxel MRS study [91] provided detailed region-specific evidence
linking insulin resistance to cerebral neurometabolic alterations. Specifically, predominantly
strong negative correlations were observed between fasting insulin levels and HOMA-IR
and absolute concentrations of NAA and Cho in the posterior portion of the left anterior
cingulate gray matter and in deep frontal white matter. In these regions, HOMA-IR
demonstrated moderate associations with Cho levels, suggesting a combination of neuronal
metabolic stress and altered membrane turnover. Given the pivotal role of the anterior
cingulate cortex and frontal regions in cognitive and emotional regulation [119], these
findings highlight selective susceptibility of higher-order cognitive networks to insulin
resistance–related metabolic stress.

These observations are partly consistent with the study by Sahin et al. [101], who
reported negative correlations between insulin levels and NAA/Cr in the frontal cortex, as
well as between HOMA-IR and NAA/Cr in parietal white matter. Notably, apart from the
study by Sahin et al. [101], our investigation [91] remains one of the very few studies to
systematically explore associations between insulin resistance markers and both absolute
and ratio-based neurometabolite measures using a multivoxel MRS approach, underscoring
its contribution to this emerging research field.

From a pathophysiological perspective, insulin resistance is increasingly recognized
as a contributor to neuronal dysfunction through mechanisms involving mitochondrial
impairment, increased oxidative stress, disrupted intracellular signaling, and DNA damage,
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processes that may facilitate neurodegenerative cascades [120]. Available evidence indicates
that insulin resistance–associated brain metabolic changes are focal, method-dependent,
and preferentially affect frontal and cingulate regions, reinforcing the importance of com-
prehensive metabolic profiling when assessing obesity-related brain vulnerability [91].

7.7. Implications for Imaging-Based Biomarkers

Collectively, MRS findings suggest that obesity-related brain alterations are subtle,
region-specific, and strongly modulated by metabolic comorbidities such as insulin re-
sistance and dyslipidemia. Rather than reflecting uniform neuronal loss, these changes
likely represent a dynamic interplay between altered energy metabolism, glial activation,
and early neurodegenerative processes. Multivoxel MRS-derived markers, particularly
NAA/Cr, Cho/Cr, and mI/Cr in frontal and cingulate regions, hold promise as imaging-
based biomarkers for identifying early brain vulnerability and monitoring metabolic and
therapeutic interventions in obesity-related brain dysfunction.

An overview of MRS-derived neurometabolic alterations, their regional specificity,
and associated findings from complementary neuroimaging modalities is summarized in
Table 1.

Table 1. Overview of MRS-derived neurometabolic alterations in obesity and their multimodal correlates.

MRS Metabolite

Typical
Direction of
Change in

Obesity

Predominant Brain
Regions

Interpretation
Consistent with the

Present Review

Associated Findings
from Other

Neuroimaging
Modalities

Potential Clinical
Relevance

N-acetylaspartate
(NAA) Decrease

Frontal cortical and
white matter regions,

particularly the
anterior cingulate

cortex

Neuronal metabolic
stress and reduced
neuronal integrity

Reduced gray matter
volume, white matter

microstructural damage,
and disrupted executive

network connectivity

Cognitive
dysfunction and
increased brain

vulnerability

Choline-containing
compounds (Cho) Increase

Frontal white matter
and subcortical

regions

Increased membrane
turnover associated

with
neuroinflammatory

processes

White matter
microstructural

alterations, increased
white matter

hyperintensities, and
perfusion abnormalities

Marker of
neuroinflammatory

activity

Myo-inositol (mI) Increase Frontal and cingulate
regions

Glial activation and
low-grade

neuroinflammation

Markers of
neuroinflammation,

impaired glymphatic
clearance, and partial

reversibility after
weight loss

Indicator of glial
reactivity

Glutamate/
Glutamine (Glx) Variable Frontal and limbic

regions

Altered excitatory
neurotransmission

and metabolic
imbalance

Altered functional
connectivity in limbic

and executive networks
and neurotransmitter

modulation

Cognitive and
behavioral alterations

Creatine (Cr) Relatively stable Frontal white matter
Cellular energy

buffering reference
metabolite

Altered cerebral
metabolic activity and
diffusion-based energy

metabolism changes

Limited specificity;
internal reference

7.8. Effects of Therapeutic Interventions on MRS and Multimodal Neuroimaging Biomarkers

Therapeutic interventions targeting obesity-related metabolic and inflammatory dys-
regulation may induce measurable changes in brain neurometabolism detectable by MRS,
including partial normalization of spectroscopic markers associated with diabetes [110].
Lifestyle modification, caloric restriction, and weight-loss interventions have been associ-
ated with partially reversible obesity-related hypothalamic dysfunction and altered brain
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activity, supporting the concept that obesity-related brain vulnerability is dynamic and
potentially modifiable [16].

Structural MRI evidence indicates that both overall and central obesity are associ-
ated with premature brain ageing, lower gray matter volume, and higher white matter
hyperintensity burden, with these associations partially mediated by cardiometabolic and
inflammatory measures, supporting a metabolically linked and potentially modifiable brain
phenotype [121].

7.9. Limitations of Magnetic Resonance Spectroscopy in Obesity Research

Despite its unique ability to provide in vivo insight into brain neurometabolism, MRS
has several important limitations that should be considered when interpreting findings
in obesity research. MRS is characterized by relatively low spatial resolution and limited
anatomical specificity, which may obscure regionally heterogeneous metabolic alterations.
Quantification of neurometabolites can be influenced by technical factors, including mag-
netic field strength, voxel placement, partial volume effects, and acquisition parameters,
contributing to inter-study variability. Furthermore, MRS-derived changes are indirect
and require cautious biological interpretation, as alterations in metabolite levels may re-
flect overlapping neuronal, glial, and metabolic processes. These limitations underscore
the importance of standardized acquisition protocols and the integration of MRS with
complementary neuroimaging modalities to improve interpretability and translational
relevance [122].

8. Complementary Neuroimaging Biomarkers Beyond MRS
While MRS provides direct insight into obesity-related neurometabolic alterations, in-

creasing evidence indicates that obesity-associated brain vulnerability is best characterized
through a multimodal neuroimaging framework. Complementary imaging techniques,
including diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI),
volumetric MRI, cerebral perfusion imaging, and positron emission tomography (PET),
capture distinct yet interconnected aspects of brain structure, function, and molecular
signaling. Together, these modalities extend beyond neurometabolic changes alone and
help contextualize MRS findings within broader pathophysiological processes such as
impaired tissue microstructure, network-level dysfunction, brain aging, and altered neuro-
transmission. Recent population-based MRI study emphasizes the complementary value
of integrating structural brain measures with cardiometabolic and inflammatory profiling
to capture obesity-related brain vulnerability and potential premature brain ageing across
biological scales [121].

8.1. Diffusion Tensor Imaging and Glymphatic Dysfunction

Recent DTI studies have expanded the scope of obesity-related brain research by
targeting the glymphatic system, a perivascular clearance pathway essential for the re-
moval of metabolic waste and neurotoxic proteins. Using diffusion tensor image analysis
along the perivascular space (DTI-ALPS), Park et al. demonstrated that neurologically
healthy individuals with obesity exhibit significantly reduced DTI-ALPS index values
compared with normal-weight and overweight controls, suggesting impaired glymphatic
clearance efficiency [123]. Importantly, these alterations were detected in the absence of
overt neurological disease, suggesting that glymphatic dysfunction may represent an early
and subclinical marker of obesity-related brain vulnerability.

The glymphatic system plays a critical role in maintaining cerebral homeostasis, par-
ticularly during sleep, and its dysfunction has been implicated in the accumulation of
amyloid-β and other neurotoxic metabolites [124]. In this context, reduced glymphatic
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efficiency in obesity may provide a mechanistic link between chronic metabolic stress,
neuroinflammation, and increased susceptibility to neurodegenerative processes [123].
These findings complement MRS-based evidence of early metabolic stress by highlighting
impaired clearance mechanisms as an additional pathway contributing to obesity-related
cerebral vulnerability. Consistent with this broader pattern of microstructural vulner-
ability, recent DTI study has demonstrated obesity-related alterations across multiple
subcortical gray matter regions, including the hypothalamus, hippocampus, pallidum,
and basal ganglia, supporting the concept that obesity-associated brain changes extend
beyond focal pathways and reflect widespread microstructural involvement [125]. Recent
diffusion-based spectrum imaging study further supports this concept by demonstrating
that increased visceral and subcutaneous abdominal adiposity is associated with elevated
markers of neuroinflammation and reduced axonal density across widespread white matter
tracts in cognitively normal midlife individuals, highlighting a direct link between systemic
adiposity and brain microstructural inflammation [126]. Recent quantitative MRI evidence
further supports this concept by demonstrating early, region-specific microstructural and
neuroinflammatory alterations within metabolically vulnerable regions such as the hy-
pothalamus and hippocampus in individuals with obesity, even in the absence of overt
cognitive impairment [127].

8.2. Volumetric MRI and Cardiometabolic Mediation

Volumetric MRI analyses provide further evidence that obesity is associated with
adverse structural brain outcomes, particularly when cardiometabolic dysregulation is
present. In a large population-based study, Zhou et al. reported that both general and
central obesity were associated with reduced gray matter volume and increased white
matter hyperintensity burden, corresponding to an estimated acceleration of brain aging
by several years [121]. These findings suggest that excess adiposity may contribute to
cumulative structural brain changes over time.

Crucially, mediation analyses revealed that cardiometabolic and inflammatory factors,
including glycemic indices, blood pressure, triglycerides, leukocyte count, and high-density
lipoprotein cholesterol, accounted for a substantial proportion of the observed associations
between obesity and brain structural measures. This indicates that volumetric brain al-
terations are not solely driven by adiposity itself, but rather by its downstream metabolic
and inflammatory consequences [121]. In the context of multimodal imaging, volumetric
changes may represent relatively late manifestations of prolonged metabolic stress [121],
while neurometabolic alterations detectable by MRS could emerge earlier in the disease
con-tinuum [91].

8.3. Functional MRI and Network-Level Alterations

Functional MRI studies have provided important insights into obesity-related alter-
ations in brain network organization, particularly within systems involved in reward
processing, salience detection, and executive control. A comprehensive review by Drelich-
Zbroja et al. summarized consistent abnormalities in both task-related activation and
resting-state functional connectivity in individuals with obesity [128]. Task-based fMRI
studies frequently demonstrate altered neural responses to food-related visual and gusta-
tory stimuli within the orbitofrontal cortex, anterior cingulate cortex, insula, striatum, and
limbic regions, reflecting dysregulated reward valuation and impaired cognitive control of
eating behavior [70,128].

Resting-state fMRI findings further indicate disrupted connectivity within the default
mode, salience, and executive control networks, suggesting that obesity-related functional
alterations extend beyond stimulus-driven responses and reflect more generalized net-
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work reorganization [128]. Notably, many of these regions overlap with areas showing
neurometabolic and structural vulnerability, supporting the notion that metabolic stress
may translate into altered network dynamics [91,128]. Functional MRI thus provides a
critical link between biochemical and structural brain changes and their behavioral and
cognitive consequences.

8.4. Cerebral Perfusion Imaging and Neurovascular Dysfunction

Cerebral perfusion imaging provides complementary insight into obesity-related brain
dysfunction by capturing alterations in regional cerebral blood flow (rCBF), a sensitive
marker of neurovascular and metabolic coupling. Using resting-state single-photon emis-
sion computed tomography (SPECT) imaging, Silvah et al. demonstrated significant rCBF
alterations in obese individuals compared with lean controls, characterized by reduced
perfusion within frontoparietal regions involved in cognitive control, alongside increased
rCBF within the default mode and salience networks [129].

Importantly, perfusion abnormalities were observed in regions overlapping with net-
works implicated in executive control, salience detection, and reward processing, including
the anterior cingulate cortex, insula, prefrontal cortex, and limbic structures [129]. As-
sociations between cerebral perfusion changes and metabolic parameters, together with
evidence linking metabolic dysregulation to subclinical brain aging, further support a
link between neurovascular dysfunction and systemic metabolic dysregulation [50,129].
Recent evidence further supports this association, demonstrating that higher intake of ultra-
processed foods is linked to altered cerebral perfusion patterns and increased inflammatory
burden, underscoring the sensitivity of perfusion imaging to diet-related neurovascular
and inflammatory changes [130]. Consistent with these human findings, translational
models demonstrate that diet-induced obesity accelerates age-related disturbances in cere-
bral perfusion, white matter microstructure, and functional connectivity, accompanied by
enhanced neuroinflammatory activation and earlier cognitive decline [131].

8.5. Positron Emission Tomography and Molecular Targets

Positron emission tomography enables in vivo assessment of molecular pathways
implicated in obesity-related brain dysfunction that are not accessible through MRI-based
techniques. Using a serotonin 5-HT6 receptor–targeted PET tracer, Courault et al. demon-
strated increased cerebral tracer binding following high-fat diet exposure, particularly
within the hippocampus, striatum, cingulate cortex, temporal cortex, and brainstem [132].
These findings indicate obesity-associated modulation of central serotonergic signaling,
a system closely involved in appetite regulation, reward processing, mood, and cogni-
tive function.

Alterations in 5-HT6 receptor availability may reflect adaptive or maladaptive neu-
rochemical responses to chronic metabolic stress and dietary factors. Importantly, PET
imaging provides molecular-level evidence that complements MRS-detected metabolic
changes and fMRI-observed functional alterations, supporting the role of neurotransmitter
dysregulation in obesity-related brain dysfunction [133]. However, recent multimodal
PET study indicate that obesity is associated with increased cerebral metabolic activity
and resting-state brain activity without corresponding increases in translocator protein
(18 kDa; TSPO) availability, suggesting that PET-based markers of neuroinflammation may
have limited sensitivity in detecting obesity-related inflammatory processes and should be
interpreted with caution [134]. Together, these findings highlight the value of PET as a tool
for identifying specific neurotransmitter systems that may serve as therapeutic targets in
obesity-related brain dysfunction.
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The integration of MRS-derived neurometabolic markers with structural, functional,
perfusion, and molecular imaging findings underscores the value of a multimodal frame-
work for characterizing obesity-related brain vulnerability (Figure 6).

 

Figure 6. Representative examples of neuroimaging modalities used to assess obesity-related brain
alterations. The figure presents representative images illustrating the principles and types of informa-
tion provided by different neuroimaging techniques discussed in this review: (a) magnetic resonance
spectroscopy (MRS) demonstrating regional neurometabolic profiles; (b) diffusion-based imaging
illustrating microstructural tissue properties; (c) volumetric MRI depicting regional brain volume
and cortical morphology; (d) functional MRI showing patterns of brain activation and functional
connectivity; (e) cerebral perfusion imaging illustrating regional cerebral blood flow and neurovascu-
lar coupling; and (f) positron emission tomography (PET) demonstrating molecular and metabolic
brain processes. The images are provided for illustrative purposes and do not represent original
experimental data generated within a single study.

9. Conclusions and Future Perspectives
Obesity is increasingly recognized as a systemic disorder with profound effects on

brain structure, function, and metabolism. Accumulating evidence indicates that chronic
low-grade inflammation, insulin resistance, mitochondrial dysfunction, vascular impair-
ment, and altered brain clearance mechanisms converge to promote cerebral vulnerability
in individuals with obesity. These processes preferentially affect brain regions involved
in metabolic regulation, cognition, and reward processing, contributing to cognitive dys-
function and increased susceptibility to neurodegenerative disease. Integrative evidence
further suggests that obesity-related memory impairment arises from converging metabolic,
inflammatory, and insulin signaling disturbances affecting hippocampal and fronto-limbic
circuits, reinforcing obesity as a biological contributor to cognitive vulnerability [135].

Advanced neuroimaging techniques have substantially improved our understanding
of obesity-related brain alterations. MRS provides unique in vivo insight into early neu-
rometabolic and neuroinflammatory processes that may precede overt structural damage,
while complementary modalities, including DTI, volumetric MRI, fMRI, cerebral perfusion
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imaging, and PET, reveal microstructural, functional, hemodynamic, and molecular alter-
ations that together define a multimodal signature of obesity-related brain vulnerability.

From a clinical perspective, the integration of MRS-derived neurometabolic mark-
ers with other neuroimaging biomarkers holds promise for identifying early and poten-
tially reversible brain changes in obesity, supporting risk stratification and monitoring of
therapeutic interventions. Perfusion and diffusion-based imaging further highlight neu-
rovascular and microstructural dysfunction as complementary pathways linking metabolic
dysregulation to cerebral vulnerability.

Overall, neuroinflammation should be regarded primarily as a downstream conse-
quence of systemic metabolic, hormonal, vascular, and genetic disturbances associated with
obesity, rather than as an isolated primary cause of brain pathology. Although neuroin-
flammatory changes typically arise secondary to chronic metabolic dysregulation, insulin
resistance, vascular dysfunction, and impaired brain clearance mechanisms, they may
subsequently amplify neuronal and glial dysfunction, contributing to a self-perpetuating
cycle that increases vulnerability to cognitive decline and neurodegenerative disease.

Despite its considerable potential, MRS must be interpreted in light of important
methodological and biological limitations, including limited spatial resolution, partial
volume effects, inter-study variability, and the indirect nature of neurometabolic markers.
These considerations underscore the need for longitudinal, multimodal neuroimaging
studies that integrate MRS with structural, diffusion-based, functional, perfusion, and
molecular imaging to clarify the temporal dynamics of obesity-related brain alterations
and their responsiveness to therapeutic interventions. Emphasis on clinically meaningful
outcomes, such as cognitive performance, metabolic improvement, cardiovascular risk re-
duction, and long-term neurological health, may facilitate early identification of potentially
reversible brain changes and support the development of personalized prevention and
intervention strategies.
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Abbreviations
The following abbreviations are used in this manuscript:

IL-6 interleukin-6
IL-1β interleukin-1 beta
TNF-α tumor necrosis factor alpha
ROS reactive oxygen species
CNS central nervous system
SFA saturated fatty acids
TLR2/4 Toll-like receptor 2/4
IKK IκB kinase complex

IκB inhibitor of κB
NF-κB nuclear factor kappa B
SOCS3 suppressor of cytokine signaling 3
MRI magnetic resonance imaging
MRS magnetic resonance spectroscopy
PET positron emission tomography
NAA N-acetylaspartate
Cho Choline-containing compounds
Cr Creatine
mI Myo-inositol
Glx glutamate and glutamine
1H-MRS proton magnetic resonance spectroscopy
T2DM type 2 diabetes mellitus
BMI Body mass index
HDL-C high-density lipoprotein cholesterol
HOMA-IR homeostasis model assessment of insulin resistance
DTI diffusion tensor imaging
fMRI functional magnetic resonance imaging
DTI-ALPS diffusion tensor image analysis along the perivascular space
rCBF cerebral blood flow
SPECT single-photon emission computed tomography
HPA hypothalamic–pituitary–adrenal
11β-HSD1 11β-hydroxysteroid dehydrogenase type 1
DHEA dehydroepiandrosterone
DHEAS dehydroepiandrosterone sulfate
mtDNA mitochondrial DNA
NAD+ Nicotinamide adenine dinucleotide
NADPH Nicotinamide Adenine Dinucleotide Phosphate
TSPO translocator protein (18 kDa)
NAFLD non-alcoholic fatty liver disease
BBB blood–brain barrier
CHD coronary heart disease
CV cardiovascular
Th1 T helper 1 cells
Th17 T helper 17 cells
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