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Abstract
It has long been debated whether targeting systemic inflammation can lessen the burden of
obesity-related  cardiometabolic  complications.  In  the  cardiovascular  field,  various
pharmacological approaches using anti-inflammatory agents as preventive strategies have
been  conducted,  but  results  have  been  mixed.  In  this  context,  understanding  the
pathophysiology  of  meta-inflammation  remains  incomplete,  as  the  problem  must  be
approached from multiple perspectives. The molecular pattern regulated by the purinergic
receptor P2X7 and the subsequent activation of the inflammasome play a crucial role in
inflammatory  responses  and  could  serve  as  a  target.  Specifically,  the  P2X7  receptor
pathway appears to be involved in the development of cardiovascular, hepatic, and renal
abnormalities associated with metabolic syndrome. In this review, we briefly outline the
current state of knowledge and our perspective on the role of the P2X7 receptor in obesity
and  its  related  complications,  as  highlighted  in  the  new  definition  of
cardiovascular-kidney-metabolic syndrome. Since P2X7 receptor antagonists are currently
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under  development,  particularly  for  rheumatological  diseases,  this  approach  merits  investigation  in  future
translational  studies,  especially  in  combination  with  incretin-based  therapies.

INTRODUCTION
Beyond its well-established roles in energy storage and mechanical protection, adipose tissue - particularly

white adipose tissue (WAT) - is increasingly recognized as a key regulator of endocrine and immune

functions
[1]

. WAT can modulate hormonal responses, as demonstrated by abnormalities of the reproductive

system observed both in conditions of excess adiposity, such as obesity and metabolic syndrome
[2]

, and in

conditions of adiposity scarcity, such as anorexia nervosa or lipodystrophy syndromes. WAT also

contributes to immune responses, as both very high and very low body mass index (BMI) are associated with

reduced immune system efficacy. These properties relate to the biochemical machinery of adipocytes and

other resident cells in WAT, such as fibroblasts, macrophages, and endothelial cells, which can synthesize

molecules including chemokines, cytokines, and specific adipose-derived factors - collectively called

adipokines - that act as endocrine hormones
[3]

. When adipose depots expand abnormally in obesity, WAT

becomes hyperactive, and local inflammatory reactions can spread systemically, affecting the function and

even the structure of distant organs and tissues. In this context, the alterations in WAT lead to abnormalities

responsible for the onset of obesity-related clinical (and sub-clinical) complications. Obesity is the most

significant risk factor for developing cardiometabolic diseases such as type 2 diabetes (T2DM)
[4]

, coronary

artery disease (CAD), heart failure (HF)
[5]

, and a trigger for chronic kidney disease (CKD) progression
[6]

. In

this regard, the expression of meta-inflammation (inflammation triggered by metabolic abnormalities) has

been coined. Therefore, a better understanding of the inflammatory responses activated during WAT

dysfunction and their potential pharmacological modulation may have a significant impact on clinical

practice.

In addition to well-established pathways, other inflammatory signaling routes are involved in adipose tissue

biology and pathophysiology. One such pathway is the purinergic system, which includes extracellular

nucleosides and nucleotides - such as adenosine (A) and adenosine triphosphate (ATP) - that function as

regulatory molecules by interacting with specific surface receptors. Multiple purinergic receptor subtypes

exist, each with unique properties. Identifying purinergic receptors on the surface of adipocytes has paved

the way for characterizing a purinergic system also within adipose tissue. Consequently, a new avenue in

obesity pathophysiology research has opened. Since WAT dysfunction is characterized by the development

and progression of inflammatory reactions, ranging from local cytokine release and inflammatory cell

recruitment to fibrogenesis and abnormalities in extracellular matrix (ECM) deposition
[7]

, with subsequent

systemic complications, particular attention has been paid to defining the features of the purinergic system

within adipose tissue. To date, the receptor subtype P2X7 (P2X7R) has been recognized as playing a key role

in WAT inflammation as it is specifically involved in the inflammatory process, and is a central component

of the complex cellular machinery called “inflammasome”.

Obesity is a complex, systemic disease. The local and systemic activation of the P2X7 pathway, resulting from

WAT enlargement and dysfunction and resembling interorgan crosstalk, may contribute to the development

of obesity-associated comorbidities, including cardiovascular, renal, and hepatic complications, now

collectively referred to as cardiovascular-kidney-metabolic syndrome. In this review, we briefly present the

current state of the art and our perspective on the evidence regarding the P2X7R-inflammasome axis in

obesity pathophysiology and associated cardiovascular-kidney-metabolic complications, as well as its

potential implications for future pharmacological interventions.
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Table 1. Classification of the purinergic receptors

Purinergic receptor type Purinergic receptor subtype Endogenous agonist

P1

A1
A2a
A2b
A3

Adenosine
Adenosine
Adenosine
Adenosine

P2X

P2X1
P2X2
P2X3
P2X4
P2X5
P2X6
P2X7

ATP
ATP
ATP
ATP
ATP
ATP
ATP

P2Y

P2Y1
P2Y2
P2Y4
P2Y6
P2Y11
P2Y12
P2Y13
P2Y14

ADP
ATP, UTP
ATP, UTP
UDP
ATP
ADP
ADP
UDP

UTP: Uridine triphosphate; UDP: uridine diphosphate; ADP: adenosine diphosphate.

THE INFLAMMASOME, THE INTERLEUKIN-1β, AND THE P2X7 RECEPTOR
Interleukin-1β (IL-1β) is one of the major effectors of the inflammatory cascade, first identified in 1980, but

only after decades, its pathway of secretion was described. IL-1β is produced as an inactive cytoplasmic

precursor cleaved to the mature active form by the enzyme caspase-1, a component of the inflammasome

arrangement
[8]

. Inflammasomes are constituted by cytosolic multiprotein complexes that activate in response

to noxa patogena, such as microbes or other inflammatory stimuli, such as extracellular molecules related to

pathogen activity defined as pathogen-associated molecular patterns (PAMPs). The lipopolysaccharide (LPS),

mannose, and other microbial components, such as portions of nucleic acids, represent classic examples of

PAMPs. However, inflammasomes are also responsive to self-derived molecules released from stress-induced

cell damage, such as uric acid, nucleotides, and nucleosides, termed danger-associated molecular patterns

(DAMPs). Different inflammasome complexes can be distinguished; among them, (NOD-, LRR- and pyrin

domain-containing protein 3) NLRP3 is the most studied since its first identification in 2004
[9]

.

In tissue damage areas, purine nucleotides are continuously released. Acting as DAMPs
[10]

, ATP constitutes a

significant mediator of inflammation, whose effects are mediated by interaction with purinergic receptors.

The purinergic receptor subtypes include P1 receptors, which are selective for adenosine, and P2 receptors

(P2Rs), which are preferentially selective for ATP and adenosine diphosphate (ADP) but are also sensitive to

other ATP-related nucleotides; this is particularly true for the P2Y subtypes [Table 1]. All cells potentially

express P2Rs, although it is generally considered that P2Rs are primarily expressed by components of the

immune system. Among them, the P2X7R is the main purinergic receptor involved in inflammation and

immunity
[11]

.

The P2X7R is expressed on cell types such as blood cells, endothelial cells, muscle, renal, and skin cells
[12]

. It is

the main stimulus for the NLRP3 inflammasome activation, gaining attention as a potential target for

anti-inflammatory therapy
[13,14]

. P2X7R-mediated assembly of the NLRP3 inflammasome complex promotes

IL-1β[15]
 as part of a “two-signal” model. In this model, the first signal involves stimulation of Toll-like

receptors, leading to accumulation of cytoplasmic pro-IL-1β, followed by a second, ATP-dependent phase in

which P2X7R stimulation triggers inflammasome-related caspase-1 activation
[16]

. Consequently, P2X7R

represents the rate-limiting step for IL-1β release and the subsequent downstream inflammatory cascade. A
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Figure 1. P2X7R-caspase 1-IL-1β axis activation, inflammatory cascade, and resulting clinical scenarios in cardiovascular-kidney-metabolic
syndrome. (Created in BioRender; Di Vincenzo A, 2025. https://BioRender.com/frz4vwz). MASH: Metabolic-associated steatohepatitis;
IL-1β: interleukin-1β.

summary of the potential downstream effects of P2X7R activation in cardiovascular-kidney-metabolic

syndrome is shown in Figure 1, and tissue expression of P2X7R is reported in Table 2.

P2X7R IN WHITE ADIPOSE TISSUE FUNCTION AND DYSFUNCTION
Obesity complications arise when adipocytes in WAT progressively expand, reaching a threshold beyond

which a series of detrimental biochemical abnormalities occur. Among the two distinct phenotypic patterns

of WAT deposition - subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) - VAT is more

frequently implicated in the systemic consequences of obesity
[17]

. The adipocytes of VAT become

dysfunctional, leading to the synthesis of hypoxia-induced mediators and pro-inflammatory molecules
[18]

.

When reaching the circulation, the high concentrations of these adipokines establish a chronic, low-grade

inflammation, the meta-inflammation responsible for the development of systemic comorbidities
[19,20]

. VAT

inflammation may also account for local effects. The biochemical abnormalities arising in dysfunctional

adipocytes contribute to reduced insulin sensitivity, increasing the risk of developing T2DM. Beyond this

autocrine effect, both abdominal and ectopic VAT depots also act in a paracrine manner, influencing the

function and structure of neighboring tissues and cells. This is the case of the epicardial fat, whose

abnormalities are associated with the development of CAD and HF
[21]

, but also of perirenal adipose tissue,

whose dysfunction has been hypothesized to contribute to CKD
[22]

.

P2X7 signaling contributes to VAT dysfunction in obesity and metabolic syndrome. Accumulating evidence

shows that adipocytes express purinergic components
[23,24]

; see also Figure 2, with A and P2Rs involved in

lipolysis, lipogenesis, and glucose intake
[25]

. In bone-derived mesenchymal progenitor cells from P2X7R

knockout (KO) mice, higher expression of adipogenic markers has been observed compared with cultures

from wild-type mice
[26]

. Furthermore, some reports indicate that P2X7R is involved in the regulation of

energy homeostasis in animal models. However, results have often been conflicting, with some studies
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Table 2. P2X7 receptor distribution and potential effects across the different tissues and organs

Tissue/Organ Action Potential effects

White adipose tissue Activation/Agonism/Overexpression
Adipogenesis and lipogenesis modulation[24,29,33]

Triggering inflammation[34]

Immune Cells Recruitment and Cytokine Release[34]

Inhibition/Antagonism/Genetic KO Reduction in whole-body energy expenditure (? limited evidence)[26-28]

Brown adipose tissue Activation/Agonism/Overexpression Reduction/Null effect in UCP-1 activity (? limited evidence)[41-44]

Inhibition/Antagonism/Genetic KO
Increased UCP-1 expression and reduction in whole-body energy
expenditure[45]

Vessels and endothelium Activation/Agonism/Overexpression
Arterial hypertension[49]

Atherosclerotic Plaque Progression[51,52]

Aggravating ischemia/Reperfusion damage[53]

Inhibition/Antagonism/Genetic KO
Blood pressure reduction[49,50]

Cardiovascular risk reduction (indirect effects)[50]

Myocardium Activation/Agonism/Overexpression
Cell hypertrophy[53,54]

Increased extracellular matrix deposition and fibrosis[53,54]

Inhibition/Antagonism/Genetic KO
Improved cardiomyocyte function[55]

Anti-arrhythmic effect[56,57]

Amelioration of cardiac dysautonomia[58,59]

Kidney Activation/Agonism/Overexpression
Increased sodium reabsorption [64]

RAAS Modulation [68]

Fibrotic Progression [66]

Inhibition/Antagonism/Genetic KO
Anti-inflammatory effect [67,70,71,72]

Slowing proteinuria progression [73]

Liver Activation/Agonism/Overexpression
Enhancement of sepsis-related and drug-associated toxicity[86,87]

Activation of Kupfer cells[89]

Inhibition/Antagonism/Genetic KO Blunting inflammatory and fibrotic responses[91,92,96,97,100]

UCP: Uncoupling proteins; RAAS: renin-angiotensin-aldosterone system; KO: knockout.

reporting benefits of P2X7R antagonism on whole-body energy expenditure
[27]

, while others do not
[28]

.

As WAT inflammation persists and the concentration of extracellular ATP increases, the P2X7R pathway

remains activated
[29]

. P2X7R is overexpressed in the adipocytes of patients with obesity compared to healthy

subjects, enhancing the burden of WAT dysfunction
[30]

. This increased expression may also be quantified by

detecting in the blood portions of the P2X7R shed from the cell surface, identified as soluble P2X7R

(sP2X7R)
[31]

. Our lab showed increased levels of sP2X7R in the blood plasma of patients with severe obesity,

and the reduction following weight loss by bariatric surgery as a result of the loss of dysfunctional fat mass
[32]

.

However, it is still not clear if sP2X7R could represent a reliable biomarker of systemic inflammation, and

further studies are required to justify its application in clinical practice.

The P2X7R expression in adipocytes is related to the severity of tissue dysfunction, suggesting a potential

pharmacological target: in models of diet-induced obesity, the antagonism of the P2X7R pathway through

the inhibition of caspase-1 seems to be protective
[33]

. However, the overall biological role of the P2X7R in

obesity is far from being completely elucidated. The P2X7R activation may be more relevant when WAT

dysfunction has occurred, as it promotes a pro-inflammatory secretory profile in activated M1 macrophages;

however, it also appears to exhibit anti-inflammatory activity in the context of inflammation resolution
[34]

.

Furthermore, P2X7R activity is complex and modulated by multiple factors. For example, a sex dimorphism

has been observed: in male P2X7R-KO mice, increased ectopic lipid deposition in the kidney and pancreas

has been reported, whereas this effect is not seen in female animals, suggesting that P2X7R regulates

adipogenesis and lipid metabolism in a sex-dependent manner
[35]

. The relationship between P2X7R and sex

hormones seems dichotomous, as the exposure of human-derived adipocytes to androgens enhances the
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Figure 2. Evaluation of P2X7R expression (green; antibody APR004, 0.8 mg/mL, overnight at 4 °C) on human mature adipocytes by
immunofluorescence assay (IFA). Nuclei were stained with DAPI. The image shows a merge of the fluorescent channels with the
bright-field image. The scale bar is indicated in the image. P2X7R: Receptor subtype P2X7.

P2X7R expression when incubated with an inflammatory agent
[36]

. These reports merit further investigation,

as in obesity sex hormone abnormalities are common
[37]

.

P2X7R IN BROWN ADIPOSE TISSUE ACTIVATION
On the opposite of the dysfunctional WAT, brown adipose tissue (BAT) has protective effects for

cardiovascular health
[38]

. Several attempts have been made so far to enhance BAT activation in vivo. Both

physical exercise and cold exposure are known to activate BAT through sympathetic stimulation, so

pharmacological adrenergic stimulation, mainly through β3-receptor agonism, has been proposed; however,

to date, it has been limited in its clinical applicability. Mirabegron, the only β3-adrenergic receptor agonist

approved for human use, has shown promising results
[39]

; however, there are still some perplexities regarding

the safety profile due to the risk of tachycardia and other adverse cardiovascular effects. Therefore, the

identification of other approaches is awaited.

BAT is a highly vascularized tissue rich in mitochondria, capable of burning energy from fat (“fat-burning”

tissue) and generating heat through the activation of uncoupling protein 1 (UCP1), which uncouples

mitochondrial respiration and the electron transport chain from ATP generation, leading to non-shivering

thermogenesis
[40]

. Considering P2X7R as a sensor of extracellular ATP, a possible role in BAT activity has

been suggested. To date, evidence regarding the ability of P2X7R to modulate energy expenditure remains

limited and conflicting. P2X7R genetic depletion - and, to a lesser extent, pharmacological inhibition -
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appears to reduce energy expenditure and metabolic rate in mice; in contrast, receptor hyperactivation shows

no effect
[ 4 1 , 4 2 ]

. Other reports described a non-relevant, or even negative, effect of the P2X7R on

thermogenesis
[43,44]

. In primary adipocytes, inflammasome activation attenuates UCP-1 function
[45]

, whereas

extracellular ATP activates purinergic receptors on BAT-resident myeloid cells, impairing the thermogenic

profile
[46]

.

P2X7R IN CARDIOVASCULAR DISEASE
It is widely accepted that atherosclerosis and cardiovascular diseases (CVDs) involve inflammatory reactions

in their pathophysiology, with meta-inflammation representing the underlying condition that places patients

with metabolic syndrome at higher atherosclerotic risk. In this context, it should be emphasized that obesity

is a risk factor per se, independent of other conditions such as arterial hypertension or T2DM, and that

careful attention is warranted when defining metabolically healthy obesity, as inflammatory processes may

begin well before overt clinical manifestations.

Different inflammatory pathways contribute to the distinct abnormalities in various vascular beds
[47]

, yet all

are characterized by local recruitment of inflammatory cells and the release of inflammatory cytokines.

Among these, IL-1β plays a pivotal role; accordingly, the involvement of P2X7R in CVD has been

investigated. It is plausible that P2X7R activation within the visceral adipose depot, leading to increased

circulating IL-1β levels, promotes peripheral vascular damage. In addition, the paracrine role of perivascular

adipose tissue must be considered, as local IL-1β release from depots surrounding the vasculature may

contribute significantly. Adipose P2X7R expression may also be influenced bidirectionally by classical

cardiovascular risk factors. Notably, one study reported higher P2X7R expression in perivascular adipocytes

from smokers compared with healthy non-smokers
[48]

.

P2X7R has a defined localization and role in the cardiovascular system, as it is expressed on endothelial cells,

contributing to vascular tone regulation. In animal models, hyperactivation of the NLRP3 inflammasome

promotes arterial hypertension, and in humans, both elevated IL-1β levels and P2X7R polymorphisms have

been associated with an increased risk of developing hypertension
[49]

. However, whereas IL-1β antagonism

effectively reduces blood pressure in mice, treatment with the anti-IL-1β agent canakinumab does not

control hypertension in humans, despite reducing major cardiovascular events in high-risk patients
[50]

.

P2X7R appears to be involved in both the development and stability of atherosclerotic plaques. Basic studies

have demonstrated that P2X7R activation increases plaque size. Furthermore, oxidized low-density

lipoproteins that cross the endothelial layer stimulate NLRP3 and P2X7R, enhancing the recruitment of

monocytes and leukocytes into the plaque and creating a self-sustaining inflammatory cycle. P2X7R may also

promote plaque rupture by modulating ECM deposition and metalloproteinase activation
[51]

. In this context,

differential expression of P2X7R has been observed in vascular regions near atherosclerotic plaques

compared with healthy vessels
[52]

, suggesting a role for P2X7R in the progression from simple fatty deposition

to unstable plaque. Following plaque rupture and consequent myocardial ischemia, the release of large

amounts of intracellular ATP further amplifies P2X7R activation, exacerbating ischemia/reperfusion injury.

P2X7R is also involved in the pathological remodeling of the myocardium characteristic of CVD. In animal

models, P2X7R promotes structural changes such as cardiac hypertrophy, increased ECM deposition,

fibrosis, and ventricular dilation, all of which predispose to the development of HF
[53]

. P2X7R is expressed in

cardiac fibroblasts, where its activation contributes to the transforming growth factor β (TGF-β)-mediated

myocardial fibrotic process. Consequently, antagonism of the P2X7R-IL-1β axis may reduce the risk of

HF
[54,55]

. Furthermore, aberrant P2X7R signaling has pro-arrhythmogenic potential through mechanisms
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involving both ion channel function and intramyocardial fibrosis. In animal models, inhibition of the

purinergic receptor preserves normal atrial physiology
[56,57]

, suggesting a role in the genesis of atrial

fibrillation and other cardiac rhythm disturbances. In addition, P2X7R inhibition has been shown to protect

against sympathetic hyperinnervation and the resulting pro-arrhythmic milieu following acute myocardial

infarction
[58]

, and to alleviate diabetes-related cardiac dysautonomia, slowing its progression
[59]

.

P2X7R IN CHRONIC RENAL DISEASE
Obesity and metabolic syndrome are well-established risk factors for CKD. As metabolic abnormalities

progress, worsening insulin resistance and the development of T2DM are major contributors; however, this

model does not account for other mechanisms that may also play a role in this relationship.

In central obesity, the kidneys undergo structural and functional changes due to increased abdominal

pressure. In addition, fat accumulation around the kidneys in the para-renal and peri-renal regions,

combined with mechanical compression, promotes deleterious paracrine signaling through the release of

inflammatory mediators
[60,61]

. In this context, a role for P2X7 in metabolic-related CKD has been proposed.

However, it is important to note that, similar to vascular beds, the purinergic system is expressed in various

renal structures, where it may exert distinct biological functions.

Multiple P2R subtypes are expressed in the vasculature and glomerulus. Studies on human renal biopsies

reported increased P2X7R expression in patients with diabetic and non-diabetic kidney disease
[62]

. Notably,

in a healthy kidney, P2X7R expression is usually low and confined to the microvasculature, but inflammatory

responses upregulate this expression. This is highly relevant because repeated kidney injuries increase local

ATP concentrations, promoting renal P2R activation and glomerular and tubular stress
[63]

.

P2X7R polymorphisms are linked to a higher risk of arterial hypertension, due to its modulatory role in

natriuresis and sodium reabsorption along the proximal tubule
[64]

. P2X7R also impairs the effects of

angiotensin II and endothelin-1 on the renal vasculature
[65,66]

. Activation of P2X7R promotes tubular fibrosis

by enhancing the TGF-β pathway
[67]

 and participates in a multi-level renal response to injury, contributing to

hypertension-related damage. In P2X7R KO mice, a high-fat diet used to induce metabolic-associated kidney

disease results in reduced renal inflammation
[68]

. As for CAD, P2X7R also appears involved in acute

ischemia-reperfusion syndrome in the kidney, with early inhibition showing protective effects
[69]

.

Therefore, antagonism of P2X7R represents a potential therapeutic strategy for renal protection, despite

mixed results from clinical trials in rheumatologic disorders. Brilliant Blue G, a P2X7R antagonist, has been

shown to reduce kidney inflammation in mice
[70]

 and also exhibits protective effects against proteinuria and

interstitial fibrosis in salt-sensitive hypertensive rats
[49]

. Additionally, translational studies suggest benefits

from messenger RNA-based therapies targeting P2X7R
[71]

, although other reports present conflicting

findings
[72]

. Recently, a preclinical study introduced a novel, orally administered, long-acting P2X7R

antagonist that demonstrated promising results in slowing CKD progression
[73]

.

P2X7R IN METABOLIC DYSFUNCTION-ASSOCIATED STEATOTIC LIVER DISEASE
Currently, metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as

non-alcoholic fatty liver disease (NAFLD), is the leading cause of liver disease worldwide and is expected to

become the primary indication for liver transplantation starting from 2023
[74]

.

The role of adipose tissue expansion in its development is well established, as MASLD is characterized by

abnormal fat accumulation in the liver, typically defined as at least 5% steatosis, in the absence of pre-existing
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liver disease. Under the influence of genetic predisposition and environmental factors, this condition often

progresses to hepatocyte damage, inflammation, and metabolic-associated steatohepatitis (MASH), and

further advances to liver fibrosis and ultimately cirrhosis
[ 7 5 ]

. MASLD carries an increased risk of

hepatocellular carcinoma, even before the development of overt cirrhosis. In addition, it has been identified

as an independent risk factor for cardiovascular morbidity and mortality, with cardiovascular complications

being the leading cause of death among affected patients
[76]

. Early-stage MASLD is associated with

manifestations of sub-clinical atherosclerosis, such as impaired flow-mediated dilation and increased carotid

intima-media thickness
[77,78]

, with liver disease acting both as a driver of inflammatory cascade amplification

and as a consequence of metabolic derangement. These epidemiological data underscore the importance of

MASLD screening in all at-risk subjects, as the treatment of MASLD may significantly impact clinical

outcomes.

The primary treatment for MASLD remains weight-loss interventions, which have demonstrated

progressively greater histological improvement with increasing weight reduction
[79]

. Data from phase III

clinical trials also indicate significant benefits from incretin-based therapies, particularly in the early stages of

the disease
[ 8 0 ]

, although the histological improvements achieved with bariatric surgery are more

pronounced
[81]

. Currently, fibrosis regression remains an unmet goal, with the exception of the recently Food

and Drug Administration (FDA)-approved drug Resmetirom, which may represent a breakthrough for the

treatment of liver cirrhosis
[82]

. Therefore, early and effective treatment strategies remain essential.

The triggers driving the progression from simple steatosis to MASH and fibrosis are not yet fully understood.

Lipotoxicity plays a central role, as lipid-derived products induce hepatocyte damage and initiate local

inflammatory responses
[83]

. Following hepatocellular injury, increased extracellular ATP promotes

pathological responses that sustain cell death and fibrogenesis through the purinergic pathway
[84,85]

.

Moreover, P2X7R contributes to acute liver injury, including drug-induced hepatotoxicity
[86]

 and

sepsis-related liver damage
[87]

. P2X7R also plays a key role in MASH development by activating IL-1β, which

stimulates hepatic Kupffer cells and stellate cells, leading to inflammation and ECM deposition,

respectively
[88,89]

. IL-1β antagonism has shown protective effects in alcohol-related steatohepatitis
[90]

. Human

liver samples indicate higher inflammasome activity in steatoinflammatory conditions compared to simple

fatty liver
[91,92]

. P2X7R-mediated inflammasome activation is required for abnormal ECM synthesis by stellate

cells, and P2X7R antagonists inhibit liver fibrosis, as demonstrated in carbon tetrachloride-induced models,

where they reduced the expression of α-smooth muscle actin, TGF-β, and other ECM components
[93]

. The

inflammasome is integral to liver damage mechanisms
[94,95]

, with studies in NLRP3, caspase-1, or IL-1β KO

mice showing less susceptibility to high-fat diet-induced hepatitis and fibrosis
[96,97]

. Nutritional stress triggers

fatty liver infiltration and inflammation via inflammasome activation in mice, with P2X7R deletion blunting

this inflammatory response
[98]

. Interestingly, some reports suggest that P2X7R activation might support

autophagy and lipid droplet degradation
[99]

. A recent hypothesis proposes that loss of P2X7R function in the

intestinal mucosa, more than its overexpression, contributes to hepatic steatosis through increased glucose

transport across the gut barrier
[100]

. Furthermore, leptin levels seem to influence the effect of P2X7R on the

liver
[101]

.

Therefore, targeting the inflammasome may be a promising therapeutic approach for MASLD and MASH.

Animal studies using antagonists have yielded promising results
[102]

. As treatment strategies are shifting from

single drugs to combination therapies
[103]

, reflecting the complex MASLD pathogenesis
[104]

, future

translational studies should adopt a multi-targeted approach, including the P2X7R antagonism.
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P2X7R-ADIPOSE TISSUE INTERACTION IN CANCER
As epidemiological data certified the influence of metabolic abnormalities and obesity on the risk of certain

types of cancer
[105]

, pathophysiological hypotheses for this relationship are accumulating, mainly focusing on

the role of meta-inflammation.

Adipose dysfunction and chronic inflammation are related to the development of some gastrointestinal tract

and reproductive organ cancers
[106]

. Obesity disrupts adipokines profile and insulin signaling, which in turn

may foster cancer development
[107]

. The interactions between adipose tissue and cancer lie in both direct

contact-dependent signaling and the paracrine communication between adipocytes and the stromal-vascular

fraction
[108]

. Inadequate oxygenation and hypoxia result in a vicious cycle of cell death and further

recruitment of immune cells and release of cytokines, chemokines, growth factors, and matrix-degrading

enzymes such as matrix metalloproteases (MMPs)
[109]

. As a consequence of this tissue debridement,

extracellular purine concentrations increase, supporting a role for P2X7R in cancer development.

P2X7R splice variants with gain-of-function contribute to tumor microenvironment (TME) characteristics,

enhancing cell proliferation, angiogenesis, ECM degradation, and metastatic spreading
[110]

. In addition, ATP

is actively accumulated near TME, with a chronic stimulation of the purinergic-mediated inflammation
[111]

.

Animal models have evaluated the potential role of P2X7R antagonism, reporting promising results in

pancreatic and mammary cancers
[112,113]

. Thus, it is plausible that P2X7R contributes to the adipose

tissue-cancer crosstalk, suggesting a new area for pathophysiological and pharmacological research.

PAST ATTEMPTS AND FUTURE DIRECTIONS FOR P2X7R AS PHARMACOLOGICAL TARGET
Accumulating evidence is demonstrating the potential of immune-modulating therapy in improving clinical

outcomes in cardiometabolic and atherosclerotic diseases. However, to date, their application remains

limited due to the potential harmful side effects.

Due to its broad spectrum of biological involvement, the P2X7R has been considered in a different

continuum of pathological conditions ranging from chronic pain to depression and bipolar disorder, but

often with unsatisfactory results
[114]

. Although animal models targeting P2X7 in CVD have shown some

benefits, to date, there have been no clinical trials investigating P2X7 antagonism in human CVD.

We have paid particular attention to the development of molecules such as SGM-1019, an oral P2X7R

inhibitor. In healthy volunteers, administration of SGM-1019 up to twice daily for two weeks was shown to

be safe and fully inhibited P2X7R in whole blood; however, in MASH patients, an unfavorable risk-benefit

profile led to study discontinuation
[115]

. In this context, we offer several suggestions for future study design.

There remains considerable debate regarding the endpoints used in clinical trials for MASH/fibrosis

treatment, as several promising drugs have subsequently proven ineffective. We also highlight the need to

shif t  from  the  c lass ical  s ingle-molecule  approach  toward  combination  therapy

(multi-agonism/antagonism)
[116]

. It would be reasonable to test P2X7R antagonism in combination with

other molecules of proven efficacy, such as Semaglutide, to enhance protective effects and potentially allow

dose reduction, thereby attenuating side effects; ongoing phase II studies on inflammasome inhibitors are

now being conducted from this perspective
[117]

. Additionally, a recent study revealed structural differences

between rodents and humans that may account for inconsistencies in translational outcomes [118]. All these

considerations should be taken into account in the design of future studies, offering a promising avenue for

P2X7R antagonism.
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CONCLUSIONS
The cardiovascular-kidney-metabolic syndrome encompasses the full spectrum of clinical complications that

can arise during the course of obesity and metabolic syndrome. In the context of the global obesity epidemic,

this syndrome presents a major challenge to health systems worldwide, underscoring the importance of both

clinical and translational research. Recent clinical trials with incretin-based therapies offer new hope;

however, effective management of the syndrome requires a multi-level approach. Evidence from the

scientific literature highlights the central role of the P2X7 receptor in mediating cell damage and

inflammation that drive cardiometabolic complications, suggesting that receptor inhibition - at least as an

add-on therapy - merits further investigation. As our understanding of the pathophysiology advances,

integrating these insights into a comprehensive evaluation and treatment strategy will be critical.
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