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ARTICLE INFO ABSTRACT

Keywords: Obesity is a non-communicable, multifactorial disorder that has steadily emerged as one of the major global
DNA damage response health concerns. It significantly increases the risk of diabetes, cardiovascular diseases and cancer. In obesity, the
Obesity accumulation of excess fat causes increase in the circulatory levels of adipose tissue-specific hormones (adipo-
izr;;;r{me kines) and exacerbates carbohydrate-fuelled metabolic stress. These factors promote oxidative and genotoxic
Inflammation stress, resulting in chronic inflammation. Moreover, obesity-related factors contribute to increase in DNA damage

and disrupt the DNA Damage Response (DDR), thereby promoting genomic instability. Consequently, obesity
may facilitate a complex, multi-step process of cellular transformation and cancer progression. However, the
mechanisms linking obesity-associated DDR alterations to cancer progression are active areas of investigation.
Therefore, elucidating these aspects of DDR in obesity could enhance our understanding of the risk assessment
and facilitate advancement in treatment strategies for patients with cancers and obesity.

Oxidative stress

Introduction

Obesity, a metabolic disorder is global health issue, having reached
epidemic proportions worldwide. It is characterized by the excessive
accumulation of adipose tissue, which can have serious implications for
an individual's physical well-being. In obesity, excess adiposity in-
fluences oxidative stress, inflammatory status, and levels of circulatory
factors along with glucose and lipid metabolism [1,2]. These factors
have a direct impact on DNA damage response (DDR), a conventional

intricate pathway responsible for repairing DNA damage and main-
taining genomic stability under normal physiological conditions. Al-
terations in DDR due to obesity may lead to the persistence of DNA
lesions, as increased DNA damage and decreased DNA repair contribute
to the development of obesity-related diseases [3].

The conceptual evolution of DDR started in the early 1930s when
Ultraviolet Radiation (UV) and Infrared Radiation (IR) were unexpect-
edly found to cause DNA damage and mutations due to interactions with
the genetic material. During that time, it was also discovered that
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organisms possess the capability to repair induced DNA damage [4,5].
This foundational phase marked the inception of the DNA repair field.
Subsequent investigations on the stability and repair of DNA were
initiated by various groups to explore the role of repair enzymes in
bacterial and human cells. Nearly 85 years later, in 2015 Tomas Lindahl,
Paul Modrich, and Aziz Sancar were awarded the Nobel Prize for their
contribution towards mapping the repair enzymes such as glycosylase,
DNA ligase, Dam methylase, photolyase, and multi-enzyme complex-
uvrABC endonucleases [6]. Their work elucidated the underlying
mechanisms involved in DNA repair, revealing that defects in these
repair molecules can lead to DNA mutations.

DNA damage refers broadly to the addition of chemicals (such as
ethyl group, and genotoxic agents), disruption of base, or nicks and
breaks in one or both strands [7]. In contrast, DNA repair is a more
specialized process, dictated by the nature of the damage. Various repair
mechanisms have been identified, including Base Excision Repair (BER),
Nucleotide Excision Repair (NER), Mismatch Repair (MR), Homologous
Recombination (HR), and Non-Homologous End Joining (NHEJ). BER
addresses alteration in bases caused by deamination, alkylation, and
while NER corrects bulky adducts. The mismatch repair mechanism
eliminates mismatched bases and double-strand breaks are repaired by
either NHEJ or HR. However, DDR plays a crucial role in sensing DNA
damage and signalling for the recruitment of appropriate repair
machinery.

In the human body, each cell encounters thousands of DNA lesions
daily, and these are precisely corrected by an efficient DDR [8]. Thus,
DDR, a highly coordinated process, is essential for maintaining the
integrity of genetic material thereby ensuring normal cellular functions
and cell survival. The initiation of the DDR pathway begins when
frontline sensor molecules such as the Meiotic Recombination 11
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(Mrell), Rad50 and Nijmegen Breakage Syndrome 1 (Nbsl) complex
(MRN complex), Replication Protein A (RPA) as well as KU70/80-86,
detect DNA damage and subsequently transmit signals to key DDR
protein kinases. These kinases include Ataxia-Telangiectasia Mutated
(ATM), ATM- and Rad3-Related (ATR), and DNA-Dependent Protein
Kinase Complex (DNA-PKCs). Kinases phosphorylate several targets,
promoting precise DNA repair and coordinating the repair activities
with replication, transcription, and mitosis [9]. They regulate cell cycle
progression by targeting checkpoint kinases 1 and 2 (CHK1 and CHK2)
(Fig. 1). Subsequently, depending on the severity of DNA damage, cells
may undergo growth arrest or apoptosis [10].

The multifaceted role of DDR extends beyond its primary function of
sensing and initiating DNA repair. It provides defence against genotoxic
insults, fine-tunes protein synthesis, manages protein trafficking as well
as their secretion, and contributes to metabolic reprogramming [11].
DDR molecules exhibit a broader significance beyond DNA repair as
genetic mutations and alterations in DDR-associated genes have also
been linked to various anomalies including obesity, diabetes, cardio-
vascular diseases, and cancer development [8,12]. Recently, the role of
DDR molecules such as ATM, Sirtuins (SIRTs), Poly ADP-Ribose Poly-
merases (PARP), and P53 in cellular metabolism has been explored
highlighting a close relationship between DDR and the metabolic
pathways [12]. Among these, the role of P53 protein has been exten-
sively investigated. P53 functions as a transcription factor for genes
important in DNA repair and cell cycle regulation [13]. Clinical studies
have shown that deletion of the P53 gene impairs DNA repair in the
peripheral blood cells of patients with chronic lymphocytic leukaemia
[14].

Collectively, the findings suggest that deregulated DDR can lead to
the accumulation of DNA damage, potentially contributing to the
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transformation of normal cells into cancerous and supporting their
growth. This review primarily focuses on the implications of deregulated
DDR in obese disease conditions and its role in the transformation of
normal cell to cancerous cell.

Obesity deregulates DNA damage response

A significant proportion of adults and children worldwide are
dealing with obesity and overweightness [15]. Obesity is typically
defined by an individual’s Body Mass Index (BMI) which is calculated by
dividing a person’s weight (in kilogram) by the square of their height (in
meters). According to the World Health Organization (WHO), a BMI of
>30 is classified as obese, while a BMI of >25 is considered overweight.
Obesity, a metabolic disorder driven by adiposity is a public health
concerns which can lead to serious clinical complications causing a
substantial economic burden [16,17]. The excessive accumulation of
adipose tissue can cause chronic low-grade inflammation, increased
oxidative stress, and alterations in the serum levels of adipokines and
hormones (such as visfatin, leptin, resistin, Tumor Necrosis Factor o
(TNFa), Interleukin 1p (IL1B), Interleukin 6 (IL-6), apelin, chemerin,
omentin, vaspin, adiponectin; insulin and insulin-like growth factors)
[18-20]. Obesity also can lead to increase in serum levels of glucose,
cholesterol, and triglycerides [21]. Elevated levels of these factors can
promote DNA damage and influence the DNA repair mechanisms [3].
Subsequently unrepaired DNA damage can cause mutations, disrupt
normal cellular functions due to alterations in expression of crucial
genes [7] and contribute to the pathogenesis of various diseases (Fig. 2).

Preclinical and clinical studies suggest that obesity associated bio-
logical changes have a detrimental impact on DNA integrity. Clinical
study by Dupont et al., indicates that obesity aggravates DNA damage in
the sperm [22], potentially impairing spermatogenesis and diminishing
male reproductive capability. Notably, Sperm DNA Fragmentation
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(SDF), a test used to assess male infertility, is increased in obese in-
dividuals [23,24]. A meta-analysis study revealed that men with obesity
tend to have lower sperm count, decreased sperm concentration and
reduced semen volume, all of which contribute to infertility [25,26].
These findings underscore the association between obesity with the
impaired male reproductive function, indicating that excessive DNA
damage in the sperm may be one of the key mechanisms linking obesity
to male infertility.

A study involving hyperphagic mice (obese phenotype) reported an
increase in the level of phosphorylated H2AX (serine 139) in small
ovarian follicles and enhancement of ATM expression in small and large
ovarian follicles compared to the lean control mice. Moreover, obesity
was found to alter ATM activation and cleaved caspase 3 levels, a marker
of apoptosis, in ovarian follicles, in a stage-specific manner [27]. These
results suggest that obesity-induced alterations in DDR vary depending
on the maturation stages or ageing of the ovarian follicular cells.

A systematic analysis of 23 independent animal studies revealed that
excess body fat induces DNA damage in the brain, liver, colon and testes
[28]. Similarly, a clinical study on Italian children with a BMI of > 24 +
2.8 (indicating overweight or obesity) showed higher levels of phos-
phorylated H2AX protein and increased frequencies of micronuclei in
their Peripheral Blood Mononuclear Cells (PBMCs) compared to the
control group. These findings suggest that in individuals, obesity not
only elevates risk of DNA damage but also impairs DNA repair mecha-
nisms [29] (Fig. 2).

Recently, Bhardwaj et al., highlighted the consequences of accumu-
lation of DNA damage under obese conditions and its implications in
patients with breast cancer carrying BRCA1 gene mutations. BRCA1 is a
critical member of homologous recombination repair mechanism
involved in repairing double-stranded breaks in the DNA. The findings
revealed a positive correlation between BMI and the accumulation of
double-stranded DNA damage in normal breast epithelial cells of
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patients with a mutation in BRCA1/BRCA2 genes. Furthermore, in-
vestigations involving MCF-10A cells with heterozygous mutations in
BRCA1 or BRCA2 genes cultured in conditioned media derived from the
adipose tissue of obese women, compared to those cultured in condi-
tioned media from women of normal weight were undertaken. Inter-
estingly, RNA sequence analysis indicated activation of pathways
involved in DNA damage and down-regulation of pathways involved in
DNA repair, which suggests that obesity negatively impacts the efficacy
of DNA repair pathways, in cells with defective DNA repair machinery.
Notably, no significant differences in DNA damage were observed be-
tween MCF-10A BCRAI'/* cells (wild-type) and MCF-10A BCRA1 "
(heterozygous) cells. Additionally, an in vivo experiment was performed
on mice fed a high-fat Diet (HFD) and exposed to the carcinogen 7,12-
Dimethylbenz[a]anthracene (DMBA). An increase in DNA damage was
observed in the mammary glands of these mice, which was associated
with a higher incidence of breast cancer in BRCAI™~ HFD mice
compared to those in the control group. These findings support the hy-
pothesis that obesity influences DNA damage response mechanisms,
thereby increasing the risk of cancer. It is important to note that the
significance of these risk factors may depend on the status of BRCA1/2
genes (wild type) in the context of breast cancer without BRCA1/2 mu-
tation [30].

Obesity promotes accumulation of DNA damage and impairs DNA-
repair capacity, thereby increasing genomic instability in affected tis-
sues [31] .

However, in non-obese contexts, excessive unrepaired DNA damage
typically triggers a robust DNA-damage response (DDR) that results in
cell-cycle arrest and apoptotic elimination of severely damaged cells;
whereas, in obesity, pro-survival signalling can weaken this protective
mechanism [32].

It has been reported that adipokines and circulating obesity-
associated serum factors (for example, leptin, inflammatory cytokines,
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and lipid-derived mediators) activate canonical pro-survival pathways
such as JAK/STAT3, PI3K/AKT/mTOR and Nuclear Factor Kappa B
(NFkB), These pathways promote cell growth and survival while
reducing apoptosis. The obesity-associated factors also influence DNA
repair mechanisms [33].

We therefore hypothesize that in obesity, a combination of (i)
increased DNA damage and impaired repair, (ii) chronic pro-survival
together with adipokine signalling and (iii) systemic metabolic as well
as inflammatory alterations can act together to promote cancer devel-
opment. Increased DNA damage, deregulated DDR and reduced repair
lead to the accumulation and persistence of harmful mutations. More-
over, chronic pro-survival signalling and continuous metabolic or in-
flammatory support facilitate the survival and growth of damaged cells.
Over time, these surviving cells can accumulate additional genetic or
epigenetic changes and eventually become tumorigenic.

Altered DNA damage response in cancer

DNA damage and repair mechanisms are diverse and have an
important role in the initiation and progression of cancer. Events such as
acute changes in cell cycle checkpoints, genetic instability, oxidative
stress, chromatin remodelling, by-products of normal cellular meta-
bolism and external factors including ultraviolet, ionizing radiation, and
genotoxic agents contribute to mutations and cellular transformation.
Moreover, the chemicals that cause cancers in human also promote the
development of local and metastatic tumors in experimental animals
[34].

Although, the full spectrum of DDR defects is not yet clearly un-
derstood, many studies have established a link between DDR dysfunc-
tion and development of neoplastic phenotype. For instance,
approximately 15% of sporadic colorectal tumors exhibit abnormalities
in dinucleotide repeat sequences [35]. Also, 37-55% of patients with
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high-grade serous ovarian carcinoma carry germline or somatic muta-
tions, predominantly in BRCA1 or BRCA2 genes [36] (Fig. 3).

Studies indicated that excessive oxidative stress generated by
cellular metabolism is associated with DNA adduct formation. Oxidative
stress is an imbalance between the production of Reactive Oxygen
Species (ROS) and the activity of detoxifying enzymes. Additionally,
oxidative stress-induced inflammatory responses support cancer cell
proliferation, promote angiogenesis, and cause chemo-resistance [37].

During DNA replication in normal cells, the cleavage of residual
Single-Stranded DNA (ssDNA) is protected by recruitment of ATR by
ATR-Interacting Protein (ATRIP) and Switch/Sucrose Non-Fermentable
(SWI/SNF) -Related Matrix-Associated Actin-Dependent Regulator of
Chromatin Subfamily A-Like Protein 1 (SMARCAL1) [38]. These events
prevent the accumulation of ssDNA and collapsing of replication fork.
Moreover, the ATR-CHK1 pathway stabilizes, and repairs damage
induced by replicative stress. The oxidative stress-induced ATR/CHK1
axis has been linked to the development of cisplatin resistance in bladder
cancer cells and poorer outcomes in breast cancer patients [39,40].
Therefore, inherent or induced down-regulation and overexpression of
DDR-related genes may contribute to an increased occurrence of certain
cancers and desensitization of cancer cells to chemotherapy. This is
likely dependent on the type of cells and stimuli.

Implications of DDR modulated by obesity-associated factors in
cancer

In previous sections, the DDR has been discussed in the context of
obesity as well as cancer. This section highlights the significance of
obesity-associated alterations that may disrupt the DDR in cancer cells
under co-morbid conditions.

Translational Oncology 65 (2026) 102657

Metabolism influences DDR by regulating the nucleotide pool,
oxidative stress, and methyl-acetyl donors through various pathways.
Conversely, DDR also has impact on metabolic pathways thereby,
creating a bidirectional and tightly interconnected relationship [11].
This interplay becomes particularly significant in the context of obesity,
where in disrupted metabolic state and associated factors may
contribute to alteration in DDR.

Obesity, associated with change in adipokine levels and serum fac-
tors create a state of chronic inflammation together with increase in
oxidative stress. These conditions cause imbalance in DDR, [3,27],
deregulate the cell cycle [41], and are associated with the development
of cancer [18]. The intricate connection between obesity and cancer is
reinforced in a comprehensive study by Kompella et al., [42] in which it
has been reported that genetic instability linked to cancer progression is
exacerbated by DNA lesions due to oxidative stress in obesity. This
phenomenon is further aggravated by lipid by-products such as malon-
dialdehyde, 4-hydroxynonenal, and acrolein. Additionally, secondary
bile acids metabolites such as deoxycholic acid (DCA) and lithocholic
acid, produced by the gut microbiota in the obese state, act as agents
that inflict DNA damage, thereby fuelling the growth of tumor.

The inverse impact of obesity on the efficiency of DNA repair
mechanisms contributes to the initiation and progression of cancer [42].
Also, the increased level of DNA damage in obesity-influenced diseases
highlights the role of obesity-associated factors in triggering alterations
at the DNA or gene level [3]. Therefore, an in-depth study of DDR al-
terations in the context of obesity and cancer would be valuable for
unravelling the role of obesity-associated factors in co-morbid
conditions.

Factors such as adipokines, altered gut microbiota, deregulated DDR,
and high levels of nutritional factors contribute to DNA damage, which
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influences cell survival, proliferation, apoptosis, and also the response of
cells to chemotherapeutic drugs (Fig. 4).

Adipokines

Adipokines, secreted by adipose tissue, play a crucial role in regu-
lating fat metabolism, energy homeostasis, immune response and
reproduction. As signalling molecules, adipokines exert their effect on
the cells expressing specific receptors in the liver, hypothalamus, heart,
muscle, and other organs including immune cells. An increase in the
concentration of circulatory adipokines influences intracellular and
extracellular signalling in cells expressing cognate receptors. In cancer
cells, the expression of receptors for an adipokines are modulated by the
cellular microenvironment and signalling cascades which influences
autocrine signalling as well as the interactions between immune cells
and cancer cells.

In obesity, altered adipokine levels may promote the proliferation of
transformed or normal cells in a cell type-specific manner. For example,
differential levels of leptin and adiponectin have been linked to the
occurrence and growth of polyps and tumors in carcinogen-induced
mouse models of the cancer [43,44]. These studies pinpoint the rele-
vance of adipokines in the cellular transformation and cancer develop-
ment under obese conditions.

Leptin: Leptin has an important role in regulating energy homeo-
stasis and body weight. Leptin receptors are expressed in the hypo-
thalamus, coronary arteries, and testis. Leptin receptor expression has
also been detected in various cancer cells and tumor tissues, including
breast cancer (HTB-26 and ZR75-1 cells), liver, and ovarian cancer [45,
46]. Leptin exerts a cell type-dependent influence on the DNA damage
and repair events. Also, impaired leptin signalling has been implicated
in age-associated excessive DNA damage and premature mortality in
ob/ob (leptin knockout) and db/db (leptin receptor knockout) mice
[47]. Additionally, leptin interferes with histone-to-protamine transi-
tion, and increases sperm DNA susceptibility to free radical attacks [48].
In rats leptin treatment is known to aggravate sperm DNA fragmentation
[49]. Whereas, in human leukemic cells, leptin reduces DNA damage,
enhances DNA repair efficiency, and diminishes the cytotoxic effect of
cisplatin, suggesting its role in the chemotherapeutic response [50]. At
the DDR level, leptin signalling has been associated with negative
regulation of P53 in non-small cell lung carcinoma tissues and endoge-
nous leptin expression has been also shown to promote the proliferation
of lung adenocarcinoma cells [51].

The effects of leptin on DNA integrity are not only dependent on the
type of cell, but also on the presence of its receptors, the metabolic state
of the cells, as well as any concurrent chemotherapeutic treatment. In
germ cells (especially in spermatogenesis), leptin not only increases
oxidative stress (via ROS) but also disrupts chromatin remodelling, for
example by impairing the histone-to-protamine transition [52,53].
Moreover differences in redox balance and NAD* levels between cell
types may also determine whether leptin causes damage or promotes
survival. In leukemic and other hematologic malignancy cells, leptin has
been reported to activate JAK2/STAT3 and PI3K/AKT signalling, which
are linked to cell survival and anti-apoptotic functions [54]. Overall,
beyond its role in energy regulation, leptin can influences DNA damage
and repair in a cell and context-dependent manner.

Adiponectin: This adipokine plays a crucial role in regulating lipid
as well as glucose metabolism and insulin sensitivity. Adiponectin re-
ceptors are present in the liver, skeletal muscle, breast epithelial cells.
Their expression has also been detected in various breast cancer cells
(MCF7, T47D, MDA-MB-231, MDA-MB-361, and SKBR-3). In cancer
cells, adiponectin, primarily through the activation of AMP-activated
protein kinase (AMPK) causes growth arrest (GO/G1 cell cycle arrest.
This process involves the tumor suppressor protein P53 and the pro-
apoptotic protein B-Cell Lymphoma-2 (Bcl-2)-Associated X Protein
(Bax). Additionally, adiponectin also modulates the immune response
by inhibiting the NFxB through increase in the expression of IL-6, IL-10,
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TNFa, and IFNy cytokines in monocyte-derived cells. Importantly,
among its various functions, adiponectin also exhibits growth suppres-
sor activity [55].

Adiponectin levels are significantly downregulated in obesity. The
reduction compromises its functionality as a cell growth suppressor,
thereby creating a favourable environment for the proliferation of
transformed cells.

Resistin: Resistin functions as a pro-inflammatory cytokine and
regulates glucose and lipid metabolism. Its receptors are present in the
monocytes and adipose tissue. Interestingly, expression of one of the
receptors for resistin, Adenylyl Cyclase-Associated Protein 1 (CAP1), is
detected in patient-derived breast cancer cells [56]. In the context of
DDR regulation, overexpression of resistin in mouse cardiomyocytes has
been linked to down-regulation of DDR due to reduction in the expres-
sion of growth arrest and DNA-Damage-Inducible Protein (GADD45a)
[57]. Furthermore, treatment of porcine ovarian cells with resistin has
been shown to inhibit DNA fragmentation and caspase activity thereby
reducing apoptosis [58]. In vascular smooth muscle cells, resistin de-
creases the expression of P53, P21, and P27 [59].

Resistin promotes adhesion properties in HCT-116 (P53 /") and SW-
48 (P53"/") cancer cells by activating the NFkB pathway, independent
of P53 [60]. Notably, serum resistin levels are elevated in
obesity-influenced cancers, such as breast and colon cancers. However,
resistin levels are also higher in lung and renal cancers, regardless of
obesity. Resistin is associated with tumor progression, promotion of
angiogenesis, and increase in metastasis in various cancer models [61].
Collectively, resistin in a cell type-dependent manner induces growth
arrest or promotes proliferation.

Tumor Necrosis Factor Alpha (TNFa): TNFa is synthesized by
monocytes, macrophages, and adipocytes. It has a crucial role in regu-
lating cellular processes such as embryonic development, immune
functions, necrosis, and apoptosis. The receptor for TNFa, Tumor Ne-
crosis Factor Receptor 1 —(TNFR1) is ubiquitously expressed across
almost all cell types. TNFa promotes survival and proliferation or in-
duces apoptosis in a cell type-dependent manner. For instance, in human
prostate carcinoma cells, TNFa induced apoptosis is dependent on P53
activation [62]. Also, TNFu treatment has been shown to increase nu-
clear and mitochondrial DNA damage in normal and cancer cells
[63-65]. Interestingly, in UV-irradiated keratinocytes, TNFa treatment
reduces DNA repair capacity [66]. These findings highlight a significant
link between TNFo and DNA damage, which may influence DNA repair
and subsequent cellular responses.

Visfatin: Adipokine visfatin is a cytokine with enzyme-like activities.
It promotes glucose utilization and inflammatory responses by binding
to insulin receptors at a site distinct from the insulin binding site.
Elevated level of visfatin has been detected in breast and colon cancer
patients [67,68]. The overall impact of visfatin on genomic stability
appears to depend on cell type, duration of exposure, and the nature of
DNA damage. Exposure of cells to visfatin for a short duration can lead
to enhancement in NAD* biosynthesis, thereby supporting PARP1- and
SIRT1-mediated DNA repair and promoting cell survival, under geno-
toxic stress. However, prolonged or high-level visfatin stimulation has
been reported to induce persistent DNA damage and cellular senescence.
Specifically, visfatin treatment has been shown to increase pH2AX
expression and senescence-associated p-galactosidase activity in human
dental pulp cells, indicative of DNA damage response (DDR) activation
and growth arrest [69,70]. Moreover, under conditions of ionizing ra-
diation, AMPK-dependent phosphorylation of NAMPT modulates NAD*
homeostasis, balancing energy metabolism and DNA repair processes
thereby facilitating cell survival [71]. Collectively, these findings sug-
gest that the net effect of visfatin reflects a delicate balance between its
pro-survival NAD*-generating activity and its pro-damage oxidative
signalling. This balance is influenced by the cell’s metabolic state,
duration of exposure, and DNA repair capacity of the specific cell type.

In summary, adipokines like TNFa and visfatin can alter DDR,
leading to either increase in proliferation or induction of apoptosis in
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cancer cells. These outcomes are influenced by the genetic status and
cancer cell type, variation in the expression of the receptors as well as by
extracellular environment together with the role of other adipokines and
secretory factors.

Oxidative stress and inflammation

Oxidative stress and inflammation are central to the development of
various diseases, including cancer. A study involving 83 obese in-
dividuals, 21 overweight, and 21 normal weight individuals reported a
positive correlation between oxidative stress-induced DNA damage and
BMI [72]. An article by Kompella et al., highlighted the changes such as
lipid toxicity, hypertrophy, and inflammation etc., associated with dis-
ruptions in the regulation of adipose tissue, which can trigger a cascade
of molecular events. These alterations increase oxidative stress, promote
DNA damage and genetic instability, thereby potentially contributing to
cancer initiation and progression [42].

Additionally it has been shown that elevated levels of insulin,
glucose, fatty acids, and inflammation in obesity contribute to the
generation of ROS and lipid peroxidation products [28]. Also, hyper-
cholesterolemia, for instance, has been linked to increase in ROS levels
and pH2AX protein expression [73]. In Zucker rats (obese phenotype),
oxidative stress-induced DNA damage in the liver has been correlated
with higher steatosis scores compared to lean controls [74]. Moreover, a
specific region on chromosome 15, known as a hotspot for oxidative
stress-induced DNA damage, has been implicated in cancer etiology
[75]. Interestingly, in prostate cancer cells cultured in serum from
diet-induced obese mice, increase in, ROS production, double-stranded
DNA breaks, and a shift towards aerobic glycolysis have been reported
[76].

Obesity-induced inflammation contributes to tumor initiation and
progression by enhancing DNA damage, leading to mutations in the P53
gene and dysregulation of NF«B signalling [77]. Moreover, the normal
functionality of immune cells particularly, the macrophages, is affected
by inflammation and oxidative stress under obese conditions. Also,
obesity-influenced macrophages can promote tumor progression and
metastasis, derail the immune system, and reduce the effectiveness of
cancer therapy [2]. These studies collectively underscore the signifi-
cance of a relationship between obesity-influenced oxidative stress and
inflammation with cancer.

Gut microbiota

The human gut harbours trillions of microbes and their composition
is influenced by the host’s niche, genetics, and diet [78]. Diet-induced
and genetic obesity are reported to alter gut microbiota, leading to the
accumulation of active bacterial metabolite DCA, a known
DNA-damaging agent [79]. Elevated levels of DCA promote genotoxicity
by increasing ROS production [80]. In hepatic stellate cells, DCA causes
DNA damage and cellular senescence, resulting in the production of
inflammatory cytokines creating a carcinogenic environment in the liver
[79].

Dietary factors and nutrition

Macronutrients are essential for various aspects of genome mainte-
nance, including nucleotide synthesis and replication (magnesium, zinc,
iron, folate, and vitamin B12), DNA damage and repair (zinc, magne-
sium, iron, and niacin), methylation, chromosome stability (Vitamin
B12 and folate), and prevention of oxidation of DNA (vitamin A, C, E). A
comprehensive review of eight interventional studies in humans
emphasized that food composition significantly influences DNA repair
processes [81]. It is reported that a high-calorie or high-fat diet pro-
motes DNA damage, while adequate intake of vitamins A, E, and C re-
duces it [82].

Vitamin E is known for its antioxidant properties and is linked with
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the expression of DNA repair genes. It prevents oxidative stress caused
by hydrogen peroxide (H2O2) and increases the expression of DNA
Methyltransferase 1 (DNMT1) and Mutator L Homolog 1 (MLH1), which
are involved in epigenetic regulation and DNA repair [83]. Furthermore,
it has been suggested that a diet deficient in protein but rich in calories
can cause obesity and promote DNA damage, underscoring the impor-
tance of proper macronutrient intake in maintaining genome integrity
[84]. With lifestyle changes, and imbalanced eating habits, studies on
dietary factors that alter DDR are crucial, as they are likely to have an
impact on the fate of cells.

Relevance of caloric restriction, anti-obesity drugs and intermittent fasting
in DDR

Numerous studies suggest that interventions such as Caloric Re-
striction (CR), anti-obesity drugs, and Intermittent Fasting (IF) which
offer benefits to individuals with obesity, also have implications in
cancer therapy. For example, a study involving PBMCs from 82 cryo-
preserved samples of 41 patients before and after bariatric surgery
indicated a reduction in DNA damage post-surgery [85]. In another
related study weight loss following bariatric surgery in morbidity obese
patients causes a reduction in DNA damage and normalization in the
levels of oxidized glutathione as well as lipid peroxidation products
[86].

In obesity, CR causes reduction in body weight and modulates
expression of genes involved in hepatic stress and DNA damage. CR also
diminishes mammary tumor growth in mice [87]. Additionally, a study
on Zucker rats subjected to Roux-en-Y Gastric Bypass Surgery (RYGB)
indicated a decrease in the levels of oxidative and nitrative stress
markers in urine samples compared to sham operated rats. Interestingly,
in sham-operated rats increase in DNA double-strand breaks in colon
and kidney tissues were detected compared to those subjected to RYGB
[88]. These studies indicate that reducing obesity can lower DNA
damage, potentially restricting the transformation of normal cells into
cancerous ones.

Among anti-obesity drugs, orlistat, a fatty acid synthase inhibitor, is
reported to down-regulate the expression of a DNA repair enzyme, O6-
Methylguanine-DNA Methyltransferase (MGMT) [89]. Also, in obese
mice isografted with melanoma tumor, orlistat treatment combined with
CR potentiates the efficacy of chemotherapy[90]. Another key target in
obesity is the Glucagon-Like Peptide-1 Receptor (GLP-1R). Ligand for
this receptor, GLP1 potentiates secretion of insulin, delays gastric
emptying and promotes satiety [91]. GLP-1R is present in various
organs/tissues like the nerves, islets, heart, lungs, and skin. A class of
drugs termed GLP-1R agonists target hormone (Glucagon-Like
Peptide-1) action [92]. GLP-1R agonists, such as liraglutide and the
next-generation drug semaglutide, are FDA-approved and prescribed for
weight management [92,93]. Semaglutide has enhanced efficacy and
pharmacokinetic properties, therefore is effective at lower dosage
[93-95]. In a study led by Lindsey Wang et al., involving 1.6 million
patients with Type 2 diabetes, semaglutide was found to significantly
reduce the risk of obesity-related cancers. This study compared the
outcomes among groups of patients treated with GLP-1R agonists, in-
sulin, or metformin. The results indicated that in comparison to group of
patients on insulin, notably GLP-1R agonists administered group of pa-
tients had lower risk of developing ten types of obesity-related cancers,
including gallbladder cancer, meningioma, pancreatic cancer, hepato-
cellular carcinoma, ovarian cancer, and colorectal cancer [96].

Intermittent fasting (IF) and periodic fasting have also been shown to
enhance the effectiveness of chemotherapeutic drugs in tumor-bearing
mouse models [97]. In a heterozygous P53t/ gene mouse model, IF
of one day per week prolonged survival significantly compared to an ad
libitum diet [98]. Also, recently, a study involving 14 healthy human
subjects, who intermittently fasted from dawn to sunset for >14 h, a
serum proteome analysis revealed a signature indicative of protective
signalling against cancer, metabolic disease, and neurological disorders
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[99]. At the cellular level, IF regulates cellular stress response, enhances
DNA repair, promotes mitochondrial energetics and induces autophagy
leading to functional improvements in conditions such as cardiovascular
disease, diabetes, and cancer [100]. Also, IF influences tumor progres-
sion as well as the efficacy of chemotherapeutic drugs [97].

Overall, weight loss interventions such as CR, anti-obesity medica-
tion, and IF have a positive impact on the DNA damage response,
cellular metabolism, and immune response. Further investigation on the
intricate relationship between anti-obesity interventions and DDR will
be useful in elucidating the underlying mechanisms.

Pharmacological and clinical perspective

Genomic instability and defects in DNA damage response (DDR)
including increased replication stress are critical drivers of cancer
development. Interestingly, drugs that target DNA damage response
(DDR) pathways have been shown to reduce the risk of obesity-related
cancers. Specifically, metabolic regulators like metformin and resvera-
trol can positively influence DDR function by lowering oxidative stress,
activating AMPK, and stabilizing P53, thereby contributing to the
maintenance of genome stability [101-103]. Similarly, NAD* precursors
such as nicotinamide riboside and nicotinamide mononucleotide sup-
port DNA repair through SIRT1 and PARP1, helping cells cope more
effectively during metabolic stress [104].

Clinically, PARP inhibitors (e.g., olaparib) and ATR/CHK]1 inhibitors
(e.g., ceralasertib, prexasertib) drugs, which also affect DDR, are being
evaluated in tumors characterized by metabolic dysregulation and DNA
repair defects (Olaparib in Obese BRCA-Mutant Breast Cancer,
NCT04887818; ATR Inhibitor Ceralasertib in Solid Tumors,
NCT03704467). The importance of drugs targeting DDR for cancer
therapy is being comprehensively evaluated as is indicated by ongoing
clinical trials (Details of trials are listed in supplementary information
attached). Moreover, the combination of metabolic reprogramming with
DDR inhibition can be promising approach to enhance therapeutic
response and overcome chemo-resistance in obesity models [105,106].
Collectively, these findings underscore that integrating metabolic
modulators with DDR-targeted therapies represents a clinically relevant
approach for the improving outcomes in obesity-associated
malignancies.

Conclusion and future directions

The prevalence of obesity has significantly increased all over the
world. It is a metabolic disorder which is positively correlated with
increased cancer incidences. In this review attempt has been made to
highlight, obesity-induced alterations which contribute to the derail-
ment of DNA damage response (DDR) thereby potentially affecting
carcinogenesis. Cancer is characterized by uncontrolled cell prolifera-
tion, often arising from cells which accumulate genetic alterations and a
compromised DDR response, exacerbated by metabolic adaptability.
Recent research underscores the intricate link between DDR as well as
cellular metabolism, with DDR proteins regulating crucial metabolic
pathways, such as the tricarboxylic acid cycle, glycolysis, and pentose
phosphate pathway. The deregulation of DDR may thus play a signifi-
cant role in the transitions from cellular changes to systemic effects by
influencing various signalling pathways, including metabolic ones [12].

In this comprehensive review, we have explored the contemporary
understanding of how obesity impacts DDR in cancer. Specifically,
attention has been paid to addressing the significance of obesity-
associated factors such as adipokines, oxidative stress, inflammation,
altered gut microbiota, dietary factors, and metabolic interventions to-
wards the DDR functionality which potentially affects phenotype and
fate of cells. Attempts have been made to highlight that obesity exac-
erbates genomic instability and impairs DNA repair mechanisms,
thereby promoting pro-survival signalling, facilitating precancerous
transformations, and driving the development of chemo-resistance in
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cancer cells.

At a clinical level, DDR targeting drugs are integral to cancer treat-
ment strategies (e.g. PARP inhibitors like olaparib, rucaparib, niraparib;
ATM inhibitors- AZD0156, KU-60,019, AZD1390 etc.). Given that
obesity-related factors can interfere with DDR, it may impact the effi-
cacy of these therapies, particularly in patients with co-morbid
conditions.

In conclusion, this review highlights the role of obesity-associated
factors in derailing DDR, and their influence on the development of
cancer as well as drug responses. A deeper understanding of the inter-
play between obesity-altered DDR and cancer could pave the way for
more effective and affordable therapeutic strategies.
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