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Abstract

Background: Metabolic syndrome, a clinical condition defined by central obesity, impaired
glucose regulation, elevated blood pressure, hypertriglyceridemia, and low high-density
lipoprotein cholesterol across the lifespan, is now a major public health issue typically
managed with lifestyle, behavioral, and dietary recommendations. However, “one-size-fits-
all” recommendations often yield modest, heterogeneous responses and poor long-term
adherence, creating a clinical need for more targeted and implementable preventive and
therapeutic strategies. Objective: To synthesize evidence on how the gut microbiome can
inform precision nutrition and exercise approaches for metabolic syndrome prevention
and management, and to evaluate readiness for clinical translation. Key findings: The gut
microbiome may influence cardiometabolic risk through microbe-derived metabolites and
pathways involving short-chain fatty acids, bile acid signaling, gut barrier integrity, and
low-grade systemic inflammation. Diet quality (e.g., Mediterranean-style patterns, higher
fermentable fiber, or lower ultra-processed food intake) consistently relates to more favor-
able microbial functions, and intervention studies show that high-fiber/prebiotic strategies
can improve glycemic control alongside microbiome shifts. Physical exercise can also modu-
late microbial diversity and metabolic outputs, although effects are typically subtle and may
depend on baseline adiposity and sustained adherence. Emerging “microbiome-informed”
personalization, especially algorithms predicting postprandial glycemic responses, has im-
proved short-term glycemic outcomes compared with standard advice in controlled trials.
Targeted microbiome-directed approaches (e.g., Akkermansia muciniphila-based supplemen-
tation and fecal microbiota transplantation) provide proof-of-concept signals, but durability
and scalability remain key limitations. Conclusions: Microbiome-informed personalization
is a promising next step beyond generic guidelines, with potential to improve adherence
and durable metabolic outcomes. Clinical implementation will require standardized mea-
surement, rigorous external validation on clinically meaningful endpoints, interpretable
decision support, and equity-focused evaluation across diverse populations.
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1. Introduction
Metabolic syndrome (MetS) is a clinical condition defined by the combination of central

obesity, hypertension, impaired glucose, elevated triglycerides, and low high-density
lipoprotein cholesterol [1]. MetS substantially amplifies the risk of multiple complications
for a large proportion of global morbidity, disability, and health-care costs [2–5]. Current
estimates suggest that up to one in three adults may meet criteria for MetS, underscoring
its importance as a major non-communicable disease priority [6].

Changes in diet and physical exercise remain the cornerstone of MetS prevention and
management in clinical practice and public health guidelines [7]. Diet recommendations
are focused on energy restriction, weight loss, and improvement in diet quality, with
particular attention to cardiometabolic dietary patterns, including the Mediterranean and
DASH diets [8–10]. Of note, clinical trials and cohort studies based on diet and physical
exercise have shown important benefits using a general approach [11–13]. However, “one-
size-fits-all” guidelines have frequently yielded modest and heterogeneous responses at
the individual level, and long-term adherence is often poor [11]. In routine care, this
combination of variable response and poor adherence translates into repeated cycles of
weight regain and persistent cardiometabolic risk. This highlights a practical clinical gap:
clinicians need implementable strategies to match dietary and lifestyle prescriptions to
the patients most likely to benefit and adhere to them [14]. Recent studies have shown
inter-individual variability in postprandial glycemic and lipemic responses to standardized
meals, even among individuals with similar clinical characteristics, highlighting substantial
biological heterogeneity and suggesting that generalized dietary prescriptions may be
suboptimal for many patients with or at risk of MetS [15–17]. Therefore, personalization
is clinically relevant not only as a mechanistic refinement, but also to improve the “fit” of
recommendations to patient biology and preferences, potentially strengthening adherence
and yielding more durable improvements in glycemic control, lipemia, and other MetS
components [18].

The gut microbiome has emerged as a key biological candidate to explain some of this
variability and to refine weight-loss lifestyle interventions for cardiometabolic health [19].
The intestinal tract harbors a complex, dynamic community of bacteria, Archaea, viruses,
and fungi whose collective genomes and metabolic activities profoundly influence host
physiology [20,21]. Beyond their classical roles in nutrient metabolism and energy harvest,
gut microbes contribute to the biotransformation of dietary components, short-chain fatty
acids (SCFAs), and other relevant bioactive metabolites production [22]. In addition, they
influence the regulation of bile acid (BA) pools and signaling, modulation of intestinal bar-
rier integrity and immune tone, and crosstalk with endocrine and neural pathways [23,24].
Perturbations in microbiome diversity and structure (“dysbiosis”)—often characterized by
reduced diversity and depletion of SCFA-producing taxa—have been repeatedly associ-
ated with obesity and MetS-related phenotypes. Although causal relationships and the
directionality of these associations remain areas of active investigation to date [25].

Personalized nutrition broadly refers to the tailoring of dietary recommendations to
individual characteristics, including clinical and metabolic profiles, genetic background,
microbiome features, and behavioral patterns and preferences, with the goal of optimiz-
ing human health outcomes [26]. Advances in high-throughput “omics” technologies,
including host genomics, metabolomics, and microbiome-focused metagenomics and
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metatranscriptomics, along with deep metabolic phenotyping (e.g., continuous glucose
monitoring, postprandial testing) and digital health tools (wearables, mobile applications,
machine-learning algorithms), now enable the collection and integration of large-scale,
person-specific data streams [27].

Recent studies have shown that models incorporating data from gut microbiome,
together with clinical, lifestyle, and dietary approaches, can improve the prediction of indi-
vidual postprandial glycemic responses to meals [28,29]. In some cases, these models have
been used to guide personalized dietary interventions that improve short-term glycemic
control compared with standard approaches [30]. In parallel, more recent trials have ex-
tended these approaches to broader cardiometabolic endpoints, using multi-omics and
digital phenotyping to design app-based personalized dietary programs for individuals
at increased metabolic risk [31,32]. Nevertheless, most available studies were short term,
involved relatively small and selected cohorts, and their generalizability and long-term
clinical impact remain uncertain.

This review aims to inform the development of precision strategies for the prevention
and management of MetS. Alongside diet and physical activity, modulation of the gut
microbiome is increasingly recognized as a central component of MetS care, with beneficial
effects on insulin sensitivity and chronic low-grade systemic inflammation. Here, we
describe the diet–gut microbiome–host axis in MetS and the key mechanistic pathways
through which microbial activity influences host metabolism. We discuss personalized
nutrition and exercise as foundational elements of lifestyle management and summarize
intervention studies. Finally, we evaluate the potential and the current limitations of
integrating microbiome profiles with clinical, metabolic, and fitness measures to support
individualized lifestyle recommendations.

2. Concept and Tools of Personalized Nutrition
2.1. Definitions and Frameworks

Population-based dietary guidelines are designed to improve human health at scale
by targeting the “average” person within broad life-stage or sex categories [33]. This
public-health logic is fundamentally different from personalized approaches, which start
from the premise that interindividual variability in physiology, behaviors, and contexts,
meaningfully shapes dietary response [34]. In this space, a widely used definition frames
personalized nutrition “as the use of information on individual characteristics to deliver
targeted advice, products, or services that facilitate sustained, health-relevant dietary
change” [35].

Between generic guidelines and fully individualized prescriptions lies stratified nutri-
tion, which tailors recommendations to subgroups (e.g., defined by phenotype, baseline
risk, or other measurable characteristics) rather than “n = 1” designs, an increasingly rele-
vant concept as dietary guidance evolves toward identifying population segments with
distinct needs and response profiles. In parallel, precision nutrition is commonly used
to emphasize the integration of multi-layer biological and behavioral data (multi-omics,
clinical phenotypes, microbiome features, and digital measures) with analytic methods to
generate recommendations that are more granular, dynamic, and potentially adaptative
over time [35,36].

Operationally, “levels of personalization” can be organized as phenotype-based (clini-
cal and biochemical traits), genotype-based (nutrigenetic/nutrigenomic information where
evidence supports differential response), microbiome-based (composition and functional
capacity), and digital/behavioral tailoring (preferences, barriers, context, and real-time
behavioral/physiological signals) [37,38]. Importantly, the field’s credibility depends on
demonstrating that these added layers improve prediction and, crucially, translate into
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durable behavior change and better outcomes; large pragmatic trials such as Food4Me [39]
provide evidence that personalized advice can improve dietary behaviors compared with
conventional guidance, while also underscoring the need for rigorous evaluation across
populations and endpoints [39].

2.2. Data Layers in Precision Nutrition

A precision nutrition architecture typically begins with host factors, spanning genet-
ics/epigenetics and other omics, alongside clinical phenotypes that anchor recommenda-
tions in cardiometabolic risk, adiposity, and related traits [40]. Contemporary frameworks
emphasize that these biomedical layers should not be treated in isolation [18]. They are
most informative when combined with behavioral signatures and contextual determinants
that influence both exposure (diet) and response (adherence and physiology) [18].

Microbiome adds an additional set of data layers that move from “who is there” to
“what they can do” and “what they are doing.” In practice, 16S rRNA profiling provides tax-
onomic structure but limited functional resolution [41]. However, shotgun metagenomics
improves taxonomic breadth and enables pathway-level functional inference; comparative
work shows that 16S rRNA [42]. Metatranscriptomics extends this further by quantifying
microbial gene expression (activity), and metabolomics captures downstream host-microbe
co-metabolites that are often closest to mechanism and phenotype [43].

Finally, digital tools and artificial intelligence (AI) enable high-frequency, real-world
measurement and iterative feedback [44]. They provide the substrate for machine-learning
models that predict postprandial responses [45]. Evidence demonstrated that integrating
clinical features, lifestyle data, and microbiome information can improve prediction of indi-
vidualized glycemic (and broader metabolic) responses [45]. At the same time, systematic
reviews highlight that model performance, generalizability, and clinical utility depend on
transparent validation and careful feature selection, particularly when translating from
controlled cohorts to diverse populations and settings.

3. Diet–Gut Microbiome–Host Axis in Metabolic Syndrome
3.1. Core Microbiome Alterations in Metabolic Syndrome and Obesity

Several observational and metagenomic studies indicates that obesity and MetS are
accompanied by characteristic, albeit heterogeneous, alterations in gut microbiome com-
position [46–48]. A frequently reported feature is reduced microbial α-diversity, often
interpreted as a loss of ecological resilience and functional redundancy, depending of the
α-diversity metrics used [49].

With the intention to create a unique variable for disease, including obesity, the
early work proposed an increased Bacillota/Bacteroidota ratio as a hallmark of obe-
sity [50]. However, subsequent studies across different populations and sequencing
platforms have yielded inconsistent results, with some reporting no differences or even
opposite trends [50,51]. These discrepancies underscore that simple phylum-level metrics
are unlikely to capture the complexity of obesity- and MetS-associated dysbiosis and that
taxonomic shifts are context-dependent, influenced by diet, medication use, geography,
and host genetics [52].

Regarding to species taxa, several recurrent patterns have been described [53–56],
although not universally replicated. Results from several cohorts have shown that in-
dividuals living with obesity or MetS often show depletion of SCFA-producing species,
such as Faecalibacterium prausnitzii [57] and certain Roseburia and Eubacterium species. In
contrast, they also shown enrichment of genera like Collinsella, Blautia, or Prevotella [53–56].
These gut microbiome compositional shifts are related to adverse metabolic traits, includ-
ing key components of MetS [58,59]. For example, microbiome profiles are enriched in
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lipopolysaccharide (LPS) biosynthesis pathways or branched-chain amino acid (BCAA)
production. BA-modifying enzymes have also been associated with higher HOMA-IR,
increased triglycerides, hepatic steatosis, and markers of vascular risk [58,59].

However, it is increasingly recognized that there is no single “obese” or “MetS” mi-
crobiome [60]. MetS microbial signature appears to be characterized by functionally con-
vergent but taxonomically heterogeneous communities. Distinct microbial configurations
may give rise to similar metabolic outputs (e.g., reduced butyrate production, increased
endotoxin load or altered BA pools) [60,61]. Microbiome-based stratification may need
to focus more on metabolic pathways and community functions than on the presence or
absence of specific taxa.

3.2. Mechanistic Pathways
3.2.1. Short-Chain Fatty Acids and Other Metabolites

SCFAs, primarily acetate, propionate, and butyrate, are the main end-products of
bacterial fermentation of dietary fibers and resistant starches. They act as key mediators of
diet–microbiome–host interactions [62,63]. Their biological relevance in MetS extends be-
yond being “beneficial metabolites,” because SCFAs operate at the interface of (i) epithelial
energy metabolism and barrier function, (ii) endocrine signaling, and (iii) immunometabolic
regulation [62,63]. Butyrate is the preferred oxidative fuel for colonocytes and supports
epithelial respiration, which helps maintain a low-oxygen luminal environment that favors
obligate anaerobes and limits expansion of facultative taxa [64]. Thus, SCFAs can contribute
to ecosystem stability while simultaneously supporting host mucosal homeostasis [65]. At
the barrier level, SCFAs have been shown to enhance epithelial integrity through increased
expression and/or assembly of tight junction components (e.g., occludin/claudins/ZO pro-
teins) [66]. In addition, the activation of mucus-associated pathways and the enhancement
of antimicrobial defenses and epithelial repair responses act together to reduce intestinal
permeability and limit the translocation of pro-inflammatory microbial products [67]. In par-
allel, SCFAs exert immunomodulatory effects via both receptor-dependent and epigenetic
routes, including inhibition of histone deacetylases and signaling through SCFA-sensing
receptors expressed on epithelial and immune cells [68], thereby shaping cytokine profiles
and supporting regulatory immune phenotypes relevant to the low-grade inflammation
characteristic of MetS [69].

Endocrine and metabolic effects are mediated in part by activation of G protein-
coupled receptors—notably FFAR2/GPR43 and FFAR3/GPR41—which are expressed on
enteroendocrine L cells and other cell types [70–73]. SCFA signaling in L cells promotes
secretion of incretins and satiety hormones, particularly GLP-1 and PYY, linking microbial
fermentation to improved postprandial glycemic control, appetite regulation, and gastric
emptying dynamics [70–73]. Beyond gut hormone release, SCFAs can influence systemic
metabolism through effects on hepatic lipid handling (including lipogenesis and substrate
partitioning), adipose tissue biology, and vascular tone, providing plausible pathways for
observed associations with triglycerides, insulin sensitivity, and blood pressure [74]. Mech-
anistically, these effects are best interpreted as networked outputs of SCFA signaling across
tissues (gut–liver–adipose–vasculature), rather than as a single linear pathway [70–74].

In MetS and related phenotypes, multiple cohorts report depletion of SCFA-producing
taxa and altered fecal and/or circulating SCFA patterns, although the direction and magni-
tude of associations are not uniform [75,76]. Importantly, fecal SCFA concentrations reflect
the net balance of production, microbial cross-feeding, host absorption, and colonic transit.
Therefore, do not always track “SCFA benefit” monotonically across populations; habitual
diet composition, sampling matrix (fecal vs. plasma), and analytical methods further
contribute to this heterogeneity [75,76]. Despite these measurement caveats, the convergent
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interpretation across the human and mechanistic literature supports a model in which fiber-
poor diets and reduced community capacity for fermentation-related functions are linked
to impaired incretin signaling, weakened barrier integrity, and a more pro-inflammatory
metabolic milieu, features that align with core pathophysiology of MetS [77].

Trimethylamine N-oxide (TMAO), produced from dietary choline, was related to
atherosclerosis, CVD events, and mortality [78–80]. Moreover, bacteria-driven alterations
in branched-chain amino acid metabolism have been linked to insulin resistance, impaired
glucose tolerance and type 2 diabetes (T2D) risk [81–83]. This association was possibly
through effects on mTOR signaling and ectopic lipid accumulation [81–83]. Aromatic amino
acid-derived indoles and phenolic compounds can influence intestinal barrier integrity,
aryl hydrocarbon receptor signaling, incretin secretion, and hepatic inflammation, thereby
connecting dietary patterns, microbial metabolism, and NAFLD/MASLD progression [84].
Taken together, these findings support a model in which the gut microbiome functions
as a metabolic endocrine organ, producing a complex mixture of small molecules that
collectively modulate host metabolic pathways central to MetS.

3.2.2. Bile Acids and FXR/TGR5 Signaling

BAs are not only detergents that facilitate lipid absorption but also endocrine-like sig-
naling molecules that regulate glucose, lipid, and energy homeostasis through nuclear and
membrane receptors, particularly the farnesoid X receptor (FXR) and the G protein-coupled
receptor TGR5 [85]. BA signaling is inherently microbiome-sensitive because intestinal
microbes shape both the composition and signaling potency of the BA pool [86]. Primary
BAs synthesized from cholesterol in the liver are conjugated (glycine/taurine) and secreted
into the intestine [87], where bacterial bile salt hydrolases (BSH) deconjugate them and en-
able downstream transformations (e.g., 7α-dehydroxylation, oxidation/epimerization) that
generate a diverse set of secondary BAs with distinct receptor affinities [87]. Consequently,
changes in microbiome structure and functional capacity translate into shifts in BA diversity,
hydrophobicity, and the relative abundance of BA species that act as agonists/antagonists
or partial agonists of FXR- and TGR5-driven pathways [88].

Mechanistically, BA–FXR signaling contributes to metabolic regulation through co-
ordinated control of BA synthesis and transport (e.g., feedback inhibition of hepatic BA
synthesis), as well as broader effects on hepatic glucose and lipid metabolism [89]. FXR
activation influences pathways relevant to MetS, including regulation of gluconeogene-
sis, lipogenesis, and very-low-density lipoprotein secretion, and it also intersects with
enterohepatic signaling through endocrine mediators such as fibroblast growth factor
signaling from the gut to the liver (often discussed as a key FXR-linked gut–liver axis
mechanism) [90,91]. In parallel, TGR5 activation in metabolically relevant tissues has been
linked to energy expenditure and glucose control, in part via effects on thermogenic pro-
grams and incretin physiology, providing a plausible route by which BA composition can
influence postprandial metabolism and insulin sensitivity [92]. Importantly, BA signaling
also integrates with gut barrier and inflammatory biology, because BA species differ in
their antimicrobial activity and their capacity to shape microbial niches, while BA receptor
signaling can modulate inflammatory tone, features that are highly relevant to chronic
low-grade inflammation in MetS [93].

In obesity and MetS, accumulating human and experimental evidence supports a
model of dysregulated BA–microbiome crosstalk, characterized by altered BA composition,
impaired receptor-mediated signaling, and associations between specific BA signatures,
microbial features, and metabolic outcomes such as insulin resistance, dyslipidemia, and
hepatic steatosis within the NAFLD/MASLD spectrum [94]. Several studies report that
altered BA pools track with hepatic fat content and other cardiometabolic traits, consistent
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with the concept that BA profiles can serve as both functional readouts of microbiome
activity and candidate mediators linking diet to metabolic phenotypes [85]. However,
inter-individual variation in diet, medication exposure, and host factors (e.g., liver function,
intestinal transit, and enterohepatic circulation dynamics) can influence BA measurements
and partially explain heterogeneity across cohorts.

Intervention evidence further supports the therapeutic relevance of this axis. Dietary
patterns that restructure the microbiome can shift BA pools, and pharmacologic strategies
such as BA sequestrants and receptor-targeting agents (FXR/TGR5 agonists) provide proof-
of-concept that modifying BA signaling can influence cardiometabolic risk factors [95,96].
Nevertheless, despite strong biological plausibility, direct causal pathways in humans
remain incompletely resolved, and translation to clinical personalization will require studies
that link intervention-induced BA changes to downstream receptor signaling, metabolomic
outputs, and durable clinical endpoints (e.g., insulin sensitivity, hepatic fat, triglycerides)
in well-characterized populations [95,96].

3.2.3. Metabolic Endotoxemia and Low-Grade Inflammation

Metabolic endotoxemia defined as a low-grade elevation of circulating LPS could
acts as a trigger for obesity-related insulin resistance and systemic inflammation [97,98].
In rodent models, feeding with a high-fat or Western-type diet increases intestinal per-
meability and plasma LPS concentrations, and activates TLR4-dependent inflammatory
pathways [99–101]. In addition, induces weight gain, insulin resistance, and hepatic steato-
sis; in this regard, antibiotic treatment or genetic disruption of TLR4 signaling attenuates
these effects [99–101].

In humans, higher LPS or LPS-binding protein levels are related to abdominal
obesity, MetS, and CVD [18,102,103]. Nonetheless, this pathway provides a plausi-
ble mechanistic link between Western diets, dysbiosis, increased gut permeability, and
systemic inflammatory tone. Figure 1 shows the key mechanistic pathways in gut
microbiome–host interactions.

Figure 1. Key mechanistic pathways in gut microbiome–host interactions.

3.3. Diet as a Primary Modulator of the Microbiome in Metabolic Syndrome

Among the many determinants of gut microbiome structure, diet is arguably the most
powerful and modifiable [104]. Long-term dietary patterns shape the overall community
ecology. Moreover, short-term changes in energy intake or macronutrient distribution can
induce rapid shifts in microbial composition and function [105]. Diets rich in plant-based
foods and fermentable fibers generally increase microbial diversity and the abundance of
SCFA-producing species. In contrast, diets high in saturated fat, refined carbohydrates, and
low in fiber tend to relate to dysbiosis and pro-inflammatory profiles [106].
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The Mediterranean diet has consistently been associated with increased microbial
diversity, enrichment of butyrate-producing bacteria, reduced markers of gut inflammation
and more favorable metabolic profiles in observational and interventional studies [107–109].
Conversely, Western-style dietary patterns have been linked to reduced SCFA production,
increased LPS-producing bacteria, and BA profiles related to metabolic dysfunction [110].

Plant-based dietary patterns often promote species that participate in complex car-
bohydrate fermentation (e.g., Prevotella spp.), increase levels of SCFAs, and improve car-
diometabolic markers [111]. Beyond macronutrient composition, fiber type and polyphenol
content are important modulators of the microbiome. Different fibers (e.g., inulin-type
fructans, resistant starch, β-glucans) select for distinct bacterial guilds with varying capaci-
ties to produce SCFAs and other metabolites. Polyphenol-rich foods (berries, cocoa, tea,
coffee, extra-virgin olive oil) can exert prebiotic-like effects. Increasing these beneficial taxa
and SCFA production while their microbial catabolites influence vascular and metabolic
pathways [108,109,111].

More recently, attention has turned to ultra-processed foods (UPFs) as a potential
disruptor of the diet–microbiome–metabolic axis. UPFs, typically energy-dense, fiber-poor,
and rich in additives, are now major contributors to total energy intake in many countries
and have been consistently associated with higher risks of obesity, T2D, and CVD [112,113].
Emerging evidence suggests that habitual UPF consumption is linked to reduced mi-
crobial diversity, depletion of beneficial commensals, increased gut permeability, and
pro-inflammatory microbiota profiles. Providing a plausible mechanistic bridge between
UPFs and cardiometabolic risk [113,114]. These effects may be mediated not only by nutri-
ent composition but also by disruption of the food matrix and direct actions of additives
on microbial communities and the intestinal barrier [113]. The main modulator effects of
dietary patters on the microbiome are represented in Figure 2.

Figure 2. Dietary patterns as modulators of the microbiome.

In the context of MetS, these data collectively support the view that diet is both a driver
of dysbiosis and a primary lever for microbiome-targeted interventions. Understanding
how specific dietary components and patterns reshape microbiome structure and function.
Moreover, how these changes translate into metabolic outcomes, provides the foundation
for developing microbiome-informed, personalized nutritional strategies in individuals
with or at risk of MetS.

4. Physical Exercise, Gut Microbiome, and Metabolic Syndrome
4.1. Exercise as a Core Component of Lifestyle Management in Metabolic Syndrome

MetS management usually is based on lifestyle changes. Structured physical activity
or physical exercise repeatedly showing clinically meaningful benefits across the main MetS
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domains [115–117]. Contemporary syntheses and clinical reviews consistently highlight
improvements in insulin sensitivity and glycemic control, blood pressure, atherogenic
dyslipidemia, and central and visceral adiposity [115–117]. Importantly, these improve-
ments are observed across multiple exercise modalities (aerobic, resistance, and combined
training), although the magnitude of benefit typically depends on baseline cardiometabolic
risk, adherence, training volume, and whether concomitant dietary energy restriction is
present [118]. Importantly, implementation in practice and even in many guideline-adjacent
documents still tends to treat them as parallel “pillars” rather than as a single adaptive
intervention [115–117]. From a mechanistic perspective, this separation is artificial: exer-
cise modifies substrate flux, inflammation, gut motility, bile acid dynamics, and intestinal
barrier physiology [115–117]. Each of which can plausibly influence microbial ecology and
microbial metabolite production, creating a biologically coherent route linking physical
activity to gut microbiome-mediated metabolic effects [119].

4.2. Effects of Exercise on the Gut Microbiome
4.2.1. Microbiome Composition and Diversity

Physical exercise is frequently associated with higher microbial diversity and de-
tectable changes in community microbial structure. Randomized clinical trials (RCTs)
and controlled interventions provide particularly valuable evidence [120]. In adults with
overweight/obesity, a 6-month RCT reported a small but significant increase in Shannon
diversity in the vigorous-intensity arm and measurable beta-diversity shifts across exer-
cise groups versus control [121]. Notably, the “signal” in such trials is often stronger for
community-level structure (beta-diversity) than for single taxa, suggesting that physical
exercise may act as a broad ecological perturbation rather than a selective “one-bacterium”
intervention [120,121]. Controlled training studies also indicate that exercise can alter
the microbiome in ways that depend on baseline adiposity. In one study, compositional
and functional changes differed by obesity status and were largely reversible after stop-
ping exercise [122]. This reversibility is an important translational constraint: it implies
that microbiome changes may require sustained training to persist, and that studies with
short-term interventions or poor adherence are likely to underestimate true effects. At the
taxonomic level, many studies and reviews describe enrichment of taxa often linked to
SCFA production, including butyrate-associated genera (e.g., Faecalibacterium and Roseburia
in some cohorts). However, results are heterogeneous and not uniformly replicated, likely
reflecting differences in participant characteristics, exercise prescription (aerobic vs. resis-
tance vs. type), study duration, diet control, and sequencing/analytic pipelines [123–126].
For example, some interventions report increases in taxa typically considered “benefi-
cial” in metabolic health (often within butyrate-producing guilds), whereas other studies
show minimal genus-level changes despite clear physiological improvements, implying
that the functional output of the microbiome may shift even when taxonomy appears
stable [123–126]. A critical interpretation is that physical exercise effects on taxonomy may
be contingent on the dietary substrate environment, as without adequate fermentable fiber
intake, expansion of saccharolytic/butyrate-producing communities may be constrained,
which could partially explain inconsistent taxonomic findings across cohorts with different
habitual diets [121–124].

4.2.2. Microbial Metabolites and Host Physiology

Mechanistically, exercise–microbiome links are increasingly interpreted through the
lens of microbial metabolites [127]. SCFAs are a leading candidate pathway because they
connect microbial fermentation to gut barrier integrity, inflammatory tone, and metabolic
regulation [127]. In controlled human training, exercise increased fecal SCFAs in lean
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participants and exercise-related changes in microbial functional potential aligned with
shifts in SCFA-producing capacity [122]. This is consistent with a model in which physical
exercise increases intestinal transit dynamics and substrate availability to distal colonic
fermenters, while also lowering systemic inflammation, conditions that may favor SCFA-
producing consortia and/or their metabolic activity [122]. Broader reviews converge on
the idea that exercise can support SCFA-related functionality and improve gut barrier and
systemic metabolic signaling [124,128,129], although the magnitude and durability of these
effects likely depend on baseline metabolic health and the sustainability of the activity
pattern [124,128,129].

However, an important nuance is that higher fecal SCFAs do not necessarily imply
higher host absorption or beneficial signaling, because fecal concentrations reflect the
balance between production, host uptake, and transit time [130,131]. Therefore, future
studies should triangulate fecal SCFAs with circulating SCFAs, targeted metabolomics, and
host signaling readouts (e.g., GLP-1/PYY, inflammatory markers) to strengthen mechanistic
inference [132,133]. Beyond SCFAs, exercise may influence microbial pathways linked to
branched-chain amino acid metabolism, lactate cross-feeding, and aromatic amino acid
derivatives, which are increasingly implicated in insulin sensitivity and inflammatory
tone [134]. However, evidence remains less consistent than for SCFA-related functions and
requires more standardized functional profiling [135].

Exercise may also influence BA profiles indirectly through changes in the gut micro-
biome and host metabolism [136,137]. This could be carried out by FXR/TGR5-mediated
signaling pathways implicated in lipid and glucose homeostasis. The biological plausi-
bility of microbiome-driven BA modulation as a metabolic lever is well supported by
authoritative reviews of BA–microbiome–receptor biology [136,137]. From a physiolog-
ical standpoint, exercise can alter BA circulation through effects on hepatic metabolism,
intestinal motility, and enterohepatic cycling. These host-driven changes can then feed
back to the microbiome because of BA composition and concentration shape microbial
selection pressures and antimicrobial constraints [138]. Nevertheless, BA outcomes are
particularly sensitive to sampling context (fasting vs. postprandial), diet composition, and
analytical platform [139]. Thus, discrepancies across studies may reflect methodological
rather than biological differences, emphasizing the need for harmonized BA profiling in
exercise–microbiome research [119,127].

Collectively, these observations support a synergy model. Diet provides the substrate
environment for microbial metabolism, while exercise can reshape intestinal physiology and
microbial ecology, together amplifying metabolic benefits [124,140,141]. This synergy frame-
work predicts that the largest microbiome-mediated benefits occur when physical exercise
is paired with dietary patterns that provide fermentable substrates (e.g., Mediterranean-
style, fiber-rich diets), whereas exercise in a low-fiber dietary context may yield smaller or
more variable microbiome shifts [142].

4.3. Exercise–Microbiome Interventions in Metabolic Syndrome and Obesity

Intervention evidence in obesity/MetS-adjacent populations increasingly supports
the idea that exercise, alone or combined with diet, can remodel gut ecology [143]. How-
ever, also makes clear that effects are often subtle, context-dependent, and require careful
interpretation [143]. RCTs in adults with overweight/obesity demonstrate that struc-
tured exercise can shift beta-diversity and inferred functional potential, even when genus-
level changes are limited [121,143,144]. This pattern suggests that exercise may primarily
affect microbial “activity states” (functional capacity/expression) rather than produc-
ing large, consistent taxonomic turnover—an interpretation aligned with the observa-
tion that physiological improvements can occur in parallel with modest compositional
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changes [121,143,144]. Complementary controlled trials show that exercise-induced micro-
bial changes can differ by obesity status and may revert when training stops. Moreover,
they highlight the importance of adherence and long-term maintenance for durable micro-
biome modulation [122,144]. From a clinical perspective, this indicates that microbiome
modulation should not be framed as an automatic consequence of prescribing exercise; it
depends on sustained behavior change and may require complementary dietary design to
support ecological stability [122,144].

Beyond exercise-only designs, combined lifestyle interventions provide a pragmatic
template closer to real clinical care. In PREDIMED-Plus, a 1-year lifestyle intervention
incorporating an energy-restricted Mediterranean diet and physical activity was associated
with gut microbiota changes linked to SCFA-producing bacteria [140]. This is particu-
larly relevant because it reflects a real-world intervention package where diet provides
fermentable substrate and exercise may reinforce barrier and metabolic improvements,
which are conditions expected to favor SCFA-related ecology [140]. A more recent RCT
in the same framework has extended these observations to the gut metabolome and mi-
crobiota in relation to cardiometabolic risk factors [145]. The addition of metabolomic
readouts is important because it enables testing whether microbiome changes translate into
functional chemical outputs that plausibly mediate cardiometabolic improvements, rather
than relying on taxonomy alone [145]. In metabolically compromised patients (NAFLD
with prediabetes), a four-arm randomized controlled trial showed that the combined aer-
obic exercise + diet intervention was associated with diversified and stabilized keystone
taxa and that baseline microbial network properties could help predict individual liver-fat
response [141]. This is an important proof-of-concept for microbiome-informed stratifica-
tion [141]. Critically, such results suggest that microbial network features (i.e., community
connectivity/keystones) may provide more clinically useful “response biomarkers” than
single taxa, because they capture ecological stability and resilience—properties likely rele-
vant to long-term metabolic maintenance [141]. At the same time, network metrics can be
sensitive to sequencing depth, compositionality, and analytic choices. Therefore, replication
across cohorts and standardized network pipelines are essential before these approaches
can be translated into clinical tools [141].

Taken together, these trials suggest three clinically relevant messages: (i) exercise
can influence the gut microbiome in humans, (ii) the most translational signals may lie
in functional/metabolite readouts and network properties rather than single taxa, and
(iii) heterogeneity of response is not noise to be averaged away but a feature that precision
lifestyle strategies should aim to explain and harness [122,140,141,145].

5. Microbiome-Informed Personalized Nutrition in Metabolic Syndrome
5.1. Evidence from Observational Studies

A consistent body of observational evidence indicates that dietary patterns linked to
lower MetS risk [146]. In a large prospective analysis, Mediterranean-style diet adherence re-
lated to cardiometabolic outcomes varied according to baseline microbial composition [147].
This implying that a “one-size-fits-all” dietary recommendation may yield heterogeneous
benefit partly due to differences in microbial functional potential (e.g., carbohydrate utiliza-
tion, BA transformations, and other microbially mediated metabolic routes) [147].

5.2. Intervention Studies Targeting the Microbiome in Metabolic Syndrome

Whole-diet interventions. Controlled dietary interventions provide stronger evidence
that shifting dietary pattern can induce coordinated changes in gut microbiome structure
and metabolic readouts relevant to MetS [148]. For example, switching to a Mediterranean
diet has been shown to lower plasma cholesterol and reshape both the gut microbiome
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and metabolome [149]. Moreover, the diet-induced metabolic changes co-varied with spe-
cific microbial taxa and microbial metabolic outputs (including BA-related features) [149].
More “enhanced” Mediterranean variants (e.g., Green-MED) have further supported that
microbiome features may partially mediate improvements in cardiometabolic risk markers.
This reinforce the need to move from descriptive microbiome changes to mechanistically
anchored mediators [150].

Specific components/supplements. A major strategy has been to increase fermentable
substrates (prebiotics) and target SCFA production capacity. High-fiber dietary interven-
tions can selectively promote SCFA-producing organisms and improve glycemic control in
humans [151,152]. Resistant starch has also emerged as a promising substrate. In an 8-week
supplementation trial in individuals with excess body weight reported improvements in
insulin resistance alongside microbiome shifts, with Bifidobacterium adolescentis highlighted
as a candidate taxon linked to benefit [153]. In a proof-of-concept randomized trial, pasteur-
ized Akkermansia muciniphila supplementation in overweight/obese insulin-resistant adults
was safe and showed directionally favorable metabolic signals versus placebo, bringing
the field closer to organism-level, mechanism-driven interventions [154]. Evidence for
conventional probiotics/synbiotics in MetS remains mixed but suggests modest improve-
ments in selected cardiometabolic traits in meta-analytic summaries, tempered by strain
specificity, short follow-up, and variability in endpoints and co-interventions [155,156].
Polyphenols, omega-3, and multi-component formulations are also being explored for
microbiome modulation with cardiometabolic relevance. However, attribution to a single
component is often limited by combined interventions and heterogeneous microbiome
methods [157–159].

Advanced microbiome-based therapies. Fecal microbiota transplantation provides an
informative “causal probe” in MetS. In a seminal randomized study, lean-donor intestinal
microbiota infusion increased insulin sensitivity at 6 weeks in male recipients with MetS,
with corresponding changes in microbial composition [160]. Subsequent work underscored
the transient nature of benefit and the importance of baseline recipient microbiome configu-
ration in predicting response, emphasizing that “donor–recipient matching” and ecological
engraftment constraints are central barriers to reliable translation [161]. Newer trials test-
ing adjunct strategies (e.g., fiber to support engraftment) reflect a pragmatic evolution
toward combined, ecology-supportive protocols, but durability and scalability remain
unresolved [162]. Table 1 summarizes the main effects of interventional studies regarding
microbiome, exercise, and diet in patients with MetS.

5.3. Trials Explicitly Using Microbiome in Personalized Nutrition Algorithms

The most mature “microbiome-informed personalization” paradigm has been the
prediction of postprandial responses using integrated clinical, dietary, and microbiome
features [28]. A landmark study demonstrated that machine-learning models incorporating
microbiome data can predict individualized postprandial glycemic responses, and that
algorithm-guided dietary advice can improve glycemic control compared with standard-
ized guidance in controlled settings [163,164].

More recently, intervention studies have started to test “microbiome-aware” or multi-
kingdom microbiome personalization approaches in dysglycemia/prediabetes—an ad-
jacent phenotype tightly linked to MetS trajectories. For instance, microbiome features
(gut and/or oral) have been integrated into dietary intervention frameworks, highlighting
both predictive potential and the practical need for interpretable, clinic-friendly decision
rules [165–167]. Overall, these trials position the microbiome not merely as a correlational
marker but as a measurable layer that can (i) stratify responders, (ii) guide selection among
dietary options (e.g., fiber types), and (iii) provide intermediate endpoints for monitoring
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adherence and biological effect—yet external validation across populations, labs, and diet
cultures remains a key translational requirement.

Table 1. Effect of intervention studies in the context of MetS.

Physical Exercise

Structured exercise interventions Changes in beta-diversity and
functional potential

Combined with energy-restricted
Mediterranean diet Increased of SCFA-producing bacteria

Aerobic exercise and diet intervention Diversified and stabilized keystone taxa in
patients with NAFLD and prediabetes

Dietary interventions

Whole-diet interventions Changes in gut microbiome structure and
metabolic readouts

Specific components or supplements

High-fiber dietary/prebiotics Increase in SCFA-producing organisms and
improvement of glycemic control

Resistant starch Reduction in insulin resistance alongside
microbiome shifts (Bifidobacterium adolescentis)

Akkermansia muciniphila Favorable metabolic signals

Fecal microbiota transplantation Changes in microbial composition and
increased insulin sensitivity

Abbreviations. NAFLD, non-alcoholic fatty liver disease; SCFAs, short-chain fatty acids.

5.4. Effects on Related Comorbidities

Type 2 diabetes/prediabetes. Diet–microbiome interventions in dysglycemia provide some
of the strongest proof-of-concept microbial functional targeting (especially SCFA-related
ecology) [168]. However, generalization to broader MetS populations requires caution given
differences in baseline phenotype and medication exposure [151]. Personalized nutrition
algorithms leveraging the microbiome further support the feasibility of “response-guided”
dietary prescriptions for glycemic control [169].

NAFLD/MAFLD. Microbial transformations of BA and signaling through FXR/TGR5
integrate with host lipid/glucose metabolism and inflammatory tone. This offers mecha-
nistic targets for microbiome-informed dietary strategies [88,96,170]. Clinical lifestyle trials
in NAFLD have reported microbiome rearrangements alongside improvements in hepatic
steatosis-related measures, supporting the plausibility of microbiome-linked pathways in
liver outcomes, although causal mediation remains incompletely established [171,172].

Cardiovascular disease. Microbiome-mediated metabolites provide a direct bridge from
habitual diet to vascular risk biology [21]. The choline/carnitine/TMAO pathway, in partic-
ular, has been mechanistically tied to atherosclerosis-related processes and associated with
cardiometabolic outcomes in prospective settings [173]. This makes it a prime example of a
diet–microbiome–metabolite axis with potential utility for risk stratification and targeted
dietary modification [174–176].

6. Clinical Translation and Implementation Challenges
6.1. Heterogeneity of Response and Metabolic Phenotypes

MetS is not a single biological entity but a syndrome-level label that aggregates
distinct underlying pathophysiologies [177]. In practice, patients often cluster into partially
overlapping tissue-dominant metabolic phenotypes [178]. Adipose dysfunction, hepatic
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insulin resistance/steatosis, or skeletal muscle insulin resistance may predominate [179],
each with different biomarker profiles and potentially different dietary leverage points (e.g.,
macronutrient quality/quantity, energy restriction, or dietary fat composition) [180,181].
Evidence from long-term dietary interventions supports this concept: in the CORDIOPREV-
DIAB randomized trial, baseline liver vs. muscle insulin-resistance phenotypes modified
metabolic responses to different diet patterns over follow-up [182], illustrating why “one-
size-fits-all” advice can yield heterogeneous results in MetS-like populations [183].

This heterogeneity is further amplified by the gut microbiome, where inter-individual
differences in community structure and functional capacity can meaningfully shape
metabolic responses to the same foods [184]. Large, deeply phenotyped studies of
postprandial metabolism demonstrate that person-specific factors contribute to vari-
ability in glycemic and lipemic responses [17,35,184]. This reinforces the idea that
microbiome-informed stratification could help explain non-response and guide more tar-
geted dietary prescriptions.

6.2. Methodological Challenges

Microbiome findings can vary substantially with choices across the analytic chain [185],
sequencing platform and library preparation, reference databases, taxonomic/functional
profiling tools, normalization, contaminant handling, and statistical models for differential
abundance [186]. Comparative evaluations show that different differential abundance
methods and pipelines can produce meaningfully different “discoveries” on the same
underlying datasets [185,187,188]. These aspects directly impact biomarker credibility
and downstream clinical claims. To address this, the field has increasingly emphasized
standardized reporting and transparent methods [189]. The STORMS reporting guidelines
were developed specifically to improve comparability and interpretability across human
microbiome studies [189].

Many precision nutrition and microbiome intervention studies remain limited by small
sample sizes, short follow-up, inconsistent outcome definitions, and limited replication and
external validation [190]. Workshop-based and systematic syntheses highlight that robust
translation will require better-powered studies, harmonized endpoints, and prospective
validation in independent cohorts before clinical adoption can be justified [191,192].

6.3. Practical and Ethical Aspects

Multi-omics profiling and continuous digital monitoring can be costly and logistically
complex. In contrast, the clinical workforce is not uniformly trained to interpret omics-
derived outputs or machine learning (ML)-based predictions [193,194]. Some reviews on
the intersection of digital health and personalized nutrition repeatedly identify the need
for user-friendly interfaces. Here, the important variables are related to clinical decision
support, and clinician education so that precision recommendations are interpretable,
actionable, and aligned with standard care pathways [30,193,195].

Ethically, the combination of omics data and high-frequency digital phenotypes (wear-
ables and apps) raises non-trivial concerns around consent, data governance, secondary use,
and privacy [196]. Recent reviews of AI-driven precision nutrition and digital-health ecosys-
tems emphasize that privacy safeguards, transparency, and regulatory alignment must be
treated as core design requirements rather than afterthoughts [196–198]. Particularly as
commercial platforms increasingly mediate data capture and recommendation delivery.

6.4. Equity and Generalizability

Public microbiome resources and many precision nutrition datasets remain dispro-
portionately drawn from Western, high-income settings [199]. This limits the portability of
microbiome biomarkers and prediction models to populations with different ancestries,
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food environments, infectious exposures, and sociocultural contexts [200]. Quantitative
audits of public microbiome data demonstrate strong geographic skew. Recent perspectives
and large-scale efforts explicitly argue that underrepresentation constrains discovery and
risks widening health disparities [201]. The field needs study designs that deliberately
include diverse diets and contexts, invest in regional research capacity, and validate tools
across settings—so that “precision nutrition” does not become “precision for the few”.

6.5. How Clinicians Can Use Microbiome Data Today and Next Steps for Implementation

At present, clinically actionable use of microbiome science remains uneven across
indications. The strongest evidence base and clearest care pathways are concentrated
in selected gastrointestinal settings [19], particularly with recurrent Clostridioides difficile
infection, where fecal microbiota-based therapies and microbiota restoration strategies have
demonstrated clinical benefit and are increasingly reflected in clinical guidance and pivotal
trials [202–204]. In contrast, for MetS, most outputs from 16S rRNA gene sequencing
or metagenomics remain insufficiently validated for routine decision-making. This is
emphasized by recent consensus efforts urging caution when translating microbiome
test reports into clinical recommendations without rigorous validation and clear clinical
action thresholds [205]. Consequently, when microbiome testing is obtained in MetS-
like populations, results should generally be interpreted as hypothesis-generating and
contextualized alongside diet quality, medication exposures (including antibiotics and
acid-suppressing drugs), adiposity distribution, hepatic steatosis markers, and glycemic
patterns, rather than used as stand-alone determinants of dietary prescriptions [205].

A feasible implementation pathway in cardiometabolic care requires moving beyond
descriptive “dysbiosis” labels toward reproducible, function-centered outputs that can be
audited clinically. First, microbiome measurement must become more reproducible through
harmonized pre-analytics, sequencing, and bioinformatic workflows, and through trans-
parent reporting standards; adoption of structured reporting frameworks such as STORMS
is a necessary foundation to improve comparability and interpretability across human stud-
ies [189]. Second, methodological choices across the analytic chain can materially change
results; comparative evaluations show that different differential-abundance methods and
pipelines can yield meaningfully different “discoveries” on identical datasets, directly
affecting biomarker credibility and downstream clinical claims [186]. Third, translation will
depend on demonstrating incremental value over standard risk stratification using clini-
cally meaningful endpoints (e.g., glycemic trajectories, blood pressure, lipids, hepatic fat,
and weight maintenance), with external validation before adoption—an approach aligned
with expert recommendations for clinical microbiome testing and interpretation [205].
Fourth, implementation should prioritize clinician-facing decision support that produces
interpretable. Moreover, guideline-compatible recommendations rather than long lists of
taxa reflect the broader consensus that clinical usefulness depends on actionable outputs
with explicit uncertainty and validated thresholds [205].

Finally, feasibility, privacy, and equity must be treated as core design requirements.
Public microbiome datasets are geographically skewed toward high-income settings, which
constrains generalizability and risks widening disparities if biomarkers and models are de-
ployed without validation in diverse ancestries, diets, and environments [201]. At the same
time, microbiome-based precision approaches increasingly intersect with sensitive omics
and digital phenotypes, raising privacy and governance challenges that require robust
safeguards, particularly when data are handled through commercial or cross-institutional
pipelines [206]. Together, these considerations reinforce that near-term progress in MetS will
be driven less by additional associative findings and more by standardized measurement,
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rigorous validation, equity-conscious cohort building, and privacy-preserving translational
infrastructure [186,189,201,205,206].

7. Future Directions
The future of precision nutrition lies in a decisive shift away from isolated, single-layer

associations toward integrated, mechanism-informed biological signatures that are repro-
ducible across cohorts and analytically robust [207]. In microbiome research, this transition
requires moving beyond descriptive profiling to the coordinated integration of complemen-
tary data layers. Shotgun metagenomics provides insight into taxonomic composition and
functional potential, but when combined with metatranscriptomics, metaproteomics, and
metabolomics to unravel microbial functions, they can be meaningfully linked to host car-
diometabolic pathways that are actionable through diet [208]. The greatest gains are likely
to come from analyses that explicitly integrate microbial and host-derived omics, such as
circulating metabolomics, to bridge microbial activity with systemic metabolic regulation.

Comprehensive reviews of multi-omic integration consistently underline this promise,
while also issuing an important caveat: integration alone is not sufficient. Without rigorous
standardization, harmonized analytical pipelines, robust quality control, and independent
validation, multi-omic model risk being complex without being reliable [209]. Establishing
shared methodological frameworks will therefore be essential if microbiome-informed
signatures are to move from exploratory research into clinically meaningful tools.

In parallel, ML and AI are rapidly becoming central to precision nutrition research.
However, the primary barrier to translation is no longer predictive performance, but
interpretability and clinical trust. Seminal studies demonstrating the prediction of in-
dividual postprandial responses illustrate the transformative potential of data-driven
models, while recent syntheses of the field reveal a fast-growing AI ecosystem accompa-
nied by persistent shortcomings, including limited generalizability across populations,
inconsistent benchmarking practices, and insufficient attention to transparency, equity,
and deployment in real-world settings [17,210]. In response, there is a clear shift to-
ward explainable approaches—such as feature attribution, constrained modeling, and
model simplification—that prioritize clinical interpretability, facilitate auditing, and sup-
port patient-centered decision-making rather than opaque “black-box” predictions [211].

Equally important is the adoption of a life-course perspective. Early life represents a
critical window of developmental plasticity for both host metabolism and the gut micro-
biome. Accumulating evidence links early microbial configurations and microbial-derived
metabolites to metabolic phenotypes later in life, suggesting that cardiometabolic risk may
be shaped long before clinical disease becomes apparent [212]. This recognition is driving a
new generation of cohort studies that begin in pregnancy or infancy, incorporate repeated
multi-omic sampling and explicitly examine pediatric cardiometabolic trajectories along-
side potential intergenerational influences, both biological and social [213]. Together, these
studies reinforce the concept that early-life exposure can durably imprint microbial and
metabolic features, strengthening the rationale for prevention-oriented precision nutrition
strategies initiated well ahead of overt disease [214,215].

Finally, truly “precise” nutrition must move beyond biology alone to incorporate
behavioral, psychological, and environmental determinants that shape both physiological
responses and long-term adherence. Sleep quality, physical activity, psychosocial stress,
and socioeconomic context all influence dietary exposures and metabolic outcomes [216].
In addition, circadian alignment and meal timing are increasingly recognized as mechanis-
tically relevant regulators of metabolism, with potential interactions across microbial and
host pathways [217]. Digital health technologies, including wearables, continuous glucose
monitoring, and high-resolution dietary assessment tools, offer practical avenues to capture
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these dynamic factors and support adaptive, context-aware interventions. At the same
time, their integration demands careful validation, governance, and ethical oversight to
ensure that increased data complexity leads to better decisions and broader benefit, rather
than confusion or widening health disparities [218].

8. Conclusions
The gut microbiome has emerged as a key biological link between diet, lifestyle, and

metabolic health in MetS, helping to explain why individuals often respond so differently
to the same dietary advice. By shaping energy harvest, glucose and lipid metabolism, BA
signaling, gut barrier integrity, and systemic inflammation—largely through the actions of
microbial metabolites—the microbiome provides a biologically plausible framework for
more personalized interventions. A growing body of evidence shows that diet and physical
activity can be used to modulate microbiome composition and function in ways that mean-
ingfully influence cardiometabolic risk, positioning microbiome-informed personalized
nutrition as a natural evolution beyond “one-size-fits-all” approaches.

At the same time, this field remains in its early stages. Much of the current evidence
comes from relatively small, short-term, and methodologically heterogeneous studies. En-
couragingly, research is now shifting toward mechanistic studies, controlled interventions,
and questions of real-world implementation. With stronger long-term evidence, greater
methodological standardization, and the development of interpretable and scalable tools,
microbiome-informed diet and exercise strategies have the potential to refine the prevention
and management of MetS and deliver more precise, durable, and equitable reductions in
cardiometabolic risk.
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