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Abstract

Prenatal environmental exposure is a significant factor in childhood obesity, and the
underlying mechanisms of its multidimensional environmental factors are receiving
increasing attention. While existing research has primarily focused on the
obesity-promoting effects of individual environmental factors, comprehensive evidence on
the combined impact of complex exposure systems, including endocrine-disrupting
chemicals (EDCs), air pollutants, maternal metabolic abnormalities, and adverse lifestyle
choices, remains to be consolidated. This review systematically examines the combined
effects of intrauterine EDCs, air pollutants, maternal metabolic abnormalities, and adverse
lifestyle factors on the risk of childhood obesity. It summarizes the mechanisms through
which these factors interfere with fetal energy balance programming via shared pathways,
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including epigenetic alterations, placental dysfunction, and metabolic inflammation. The aim is to construct a
multidimensional spectrum of environmental exposures during early life, providing a theoretical basis for the early
stratification of risk and the precise prevention and control of childhood obesity.

INTRODUCTION

Childhood obesity has become a serious public health challenge in both developed and developing countries,
with its prevalence continuing to rise. Projections indicate that by 2035, the global obesity rate among
individuals aged 5 to 19 is expected to reach 18% to 20%?, highlighting the urgency of addressing this issue.
Importantly, childhood obesity has been demonstrated to be associated with a number of adverse outcomes
in adulthood, including hypertension, non-alcoholic fatty liver disease, insulin resistance, and psychosocial
issuest®. Moreover, this condition has been shown to significantly increase the risk of cardiovascular and
metabolic diseases, as well as premature mortality”®'*. Conventional research has chiefly concentrated on the
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impact of individual behavioral factors, such as diet and exercise, on obesity'>"*. However, the development
of obesity is fundamentally the result of multifactorial, multi-pathway interactions, and a singular perspective
struggles to fully elucidate its causal network""**?.. The theoretical framework of Developmental Origins of
Health and Disease (DOHaD) has undergone significant elaboration, with a growing emphasis on the pivotal
role of early-life environmental exposures in metabolic programming"”.. It is evident that a multitude of
intrauterine environmental factors, including endocrine-disrupting chemicals (EDCs), air pollutants,
maternal metabolic abnormalities, and adverse lifestyle choices, have the capacity to exert a persistent
influence on offspring energy homeostasis and to contribute to the shaping of long-term obesity
susceptibility. This phenomenon occurs through mechanisms such as epigenetic regulation"®, placental
function disruption, and metabolic inflammation activation">*. In recent years, there has been a gradual
shift in research paradigms from single-exposure assessments to integrated exposure systems”". The aim of
this shift has been to elucidate how multidimensional environmental factors contribute to childhood obesity
through metabolic reprogramming pathways. In light of the aforementioned evidence, this review
systematically integrates the latest findings on multidimensional intrauterine environmental exposures -
including EDCs, air pollutants, maternal metabolic abnormalities, and adverse lifestyle choices - to elucidate
their combined effects and common mechanisms in offspring obesity development. This provides a
theoretical foundation for the establishment of early risk stratification systems and the development of
precision prevention strategies.

PRENATAL EDCs EXPOSURE

The critical developmental period of the fetus has been demonstrated to exhibit heightened sensitivity to
EDCs. According to the DOHaD theory!"”, prenatal exposure to EDCs has the capacity to permanently alter
the developmental trajectory of offspring’s energy homeostasis through epigenetic reprogramming and
disruption of hormonal signalling”. This, in turn, has the potential to increase the risk of obesity in later
life"). Tt has been established that a number of EDCs [e.g., bisphenol A (BPA), phthalates (PAEs), per- and
polyfluoroalkyl substances (PFAS)] are frequently detected in pregnant women'* and have the capacity to
directly affect the fetus via the placenta™!. Current research is shifting from single-substance risk assessment
to evaluating the effects of mixed exposure®’, while mechanistic studies are expanding beyond organ toxicity
to new dimensions such as disruption of the gut microbiota-metabolism axis and transgenerational
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inheritance!"**. Table 1 summarizes key findings on prenatal EDC exposure and childhood obesity risk.

Prenatal exposure to PAEs and childhood obesity
The extant epidemiological evidence provides support for the hypothesis of an association between exposure
to PAEs during the prenatal period and an increased risk of obesity in offspring. A substantial body of
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Table 1. Summary of key epidemiological studies on prenatal exposure to endocrine-disrupting chemicals and childhood obesity risk

Author Cohort/Study

(year) design Exposure type Sample size Main findings Conclusion

Prenatal BPA exposure may

INMA-sabadell birth - Prenatal BPA exposure associated contribute to increased

Valvi cohort, Spain BPA in maternal 402 with increased waist circumference (B adinosity in early childhood
et al.133 urine (Ist and mother-child =0.28 per log10 unit) and BMI (§ = posity rly chiid !
. . ) though not evident in infancy.
(2013) 3rd trimester) pairs 0.28) at age 4 years, but not with Uri BPA variabilit
Prospective cohort rapid growth in infancy rinary variability

warrants caution

- Children in top two PFOA terciles had Prenatal PFOA exposure is

HQME stgdy, SEOA PFOS h_igher adiposit.y at age 8 (e.g_., waist associated with increased
Braun Cincinnati, USA PFNA, PFHxé 204 children urcumfferenc_e. 2nd tercile f = 4.3 cm, adiposity and accelerated
et al.s" mater'nal cerum 3rd tercile p = 2.2 cm) BMI gain in childhood,
(2016) Prospective cohort - Faster BMI gain from 2-8 years in particularly at higher
P higher PFOA exposure groups exposure levels
. Erenatal DDT/DDE associatec! with . Prenatal DDT/DDE exposure
Warner CHAAI\/\ACOS cohort, - hl%her BMI zl-score.mf)oys (.o,p -DDT: may increase obesity risk in
et gl.l47) Salinas, USA maternal serum 240 children p _,0'37' Ip,p_—DDT. p=026 boys, supporting sex-specific
(2017) p.p-DDE: B = 0.31) effects of organochlorine
Prospective cohort - No associations in girls pesticides
- MEP, MCNP, propylparaben
CHAMACOS cohort, consistently associated with higher Prenatal exposure to
Berger Salinas, USA Phthalates, BMI z-score and overweight/obesity ~ Phthalates and parabens may
¢ gl o5 parabens, 309 children risk increase early childhood
etal. phenols in ) ) obesity risk, highlighting the
(2021 maternal urine - Mixture analysis (BHM, BKMR) importance of assessing
Prospective cohort supported cumulative effect of chemical mixtures
multiple chemicals
TIDES cohort, USA . Inyerse associations with birth' ‘ Prenata! phthalf‘ate exposure
erguson alate weight-for-length z-scores; positive is associated with a pattern o
F Phthalat 780 ht-for-length t ted with tt f
et gl.[26] . metabolites in mother-child  associations with BMI z-scores at 3-4  low adiposity at birth and
(2022) MUHI-CEI:ltEI’ h maternal urine pairs years (e.g., MEP: B = -0.17 at birth, higher adiposity in early
prospective cohort +0.18 at 4 years) childhood

BPA: Bisphenol A; BMI: body mass index; BHM: Bayesian hierarchical model; BKMR: Bayesian kernel machine regression; MEP: monoethyl
phthalate; MCNP: monocarboxyisononyl phthalate; PFOA: perfluorooctanoic acid; PFOS: perfluorooctane sulfonic acid; PFNA: perfluorononanoic
acid; PFHxS: perfluorohexane sulfonic acid; DDT: dichlorodiphenyltrichloroethane; DDE: dichlorodiphenyldichloroethylene.

research, including numerous large birth cohort studies”*”, has demonstrated a robust correlation between
prenatal exposure to various PAE metabolites [e.g., monoethyl phthalate (MEP), monocarboxyisononyl
phthalate (MCNP)] and elevated childhood body mass index (BMI) z-scores, along with an augmented risk
of developing overweight or obesity. This correlation manifests in a dose-response relationship, suggesting
that increased exposure levels are associated with greater adverse outcomes. It is noteworthy that this
association demonstrates dynamic changes, with certain PAE metabolites correlating with lower birth weight
but shifting to higher BMI during childhood®. This suggests the potential disruption of normal growth
trajectories. However, inconsistencies have been observed across studies, potentially attributable to
differences in the study populations, the methods of exposure assessment, and the control of confounding
factors.,

The mechanism of action of this substance primarily involves metabolic reprogramming disruption and
energy balance disorder. As demonstrated in the relevant animal studies””, low-dose di-n-butyl phthalate
(DBP) exposure during pregnancy has been shown to induce endoplasmic reticulum stress. This, in turn, has
been found to suppress the expression of Uncoupling Protein 1 (UCP1), a key thermogenic protein in brown
adipose tissue, and to reduce the basal metabolic rate. This results in obesity phenotypes in offspring,
characterized by fat accumulation and abnormal glucose and lipid metabolism. However, this effect can be
reversed by endoplasmic reticulum stress inhibitors. Conversely, certain polycyclic aromatic hydrocarbons
(PAHs) [e.g., dibenzo[a,h]pyrene (DiBP)] act as agonists of the peroxisome proliferator-activated receptor
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gamma (PPARy), activating adipogenesis-related pathways to promote adipocyte differentiation and lipid
storage”'. These findings reveal, from an epidemiological to a mechanistic level, the potential role of PAEs as
significant environmental obesogens that program offspring obesity susceptibility through multiple
biological pathways.

Prenatal exposure to bisphenol and childhood obesity

Prenatal exposure to BPA and its substitutes [e.g., bisphenol F (BPF)] has been demonstrated to manifest
complex dose-response and sex-specific patterns in relation to the risk of childhood obesity. The extant
epidemiological evidence indicates that early-life exposure to BPA may result in the disruption of endocrine
homeostasis and fat metabolism programming, consequently augmenting the risk of obesity in offspring. A
2024 systematic review!”” noted that, among 13 cohort studies, eight found elevated prenatal urinary BPA
levels to be positively correlated with childhood obesity indicators, such as BMI z-score, waist circumference,
and skinfold thickness. The strongest associations were observed in girls****. The Wuhan Birth Cohort Study
in China also found that exposure to BPA and BPF during the mid- and late-pregnancy periods was
significantly associated with a “low-start-rapid-growth” BMI trajectory in offspring under two years of age,
suggesting their impact on early weight gain patterns®. However, a number of studies'””**" have failed to
identify significant positive associations, and indeed, some have even reported negative correlations, thus
highlighting significant inconsistencies in the current evidence. These discrepancies may be attributable to
factors such as study design, exposure windows, and population heterogeneity.

At the mechanistic level, prenatal bisphenol exposure has the capacity to influence offspring obesity risk
through multiple pathways, including, but not limited to, epigenetic regulation, placental metabolic
programming, and nuclear receptor disruption. The results of animal studies suggest that exposure to
low-dose BPA during pregnancy can be transmitted via fat-derived extracellular microRNAs (miRNAs) such
as miR-124-3p. This exposure has been shown to suppress the expression of the nuclear receptor PPARy and
to reduce the activity of the fibroblast growth factor 21 (FGF21) and the phosphoinositide-dependent protein
kinase B (p-AKT). This results in hepatic insulin resistance and lipid accumulation, with the mechanism
being particularly pronounced in male offspring!*’. BPA has been demonstrated to disrupt placental energy
metabolism by upregulating the expression of glucose transporter 1 (Glut1). This, in turn, has been shown to
cause placental glucose and glycerophospholipid metabolism disorders, ultimately resulting in impaired
glucose tolerance in female offspring"*". It is important to note that the effects of bisphenol compounds vary
depending on the specific compound in question. For instance, exposure to Bisphenol AF (BPAF) has been
shown to enhance insulin sensitivity in male offspring!*?, indicating that the specific compound, sex, and
epigenetic modification status collectively determine the final metabolic phenotype.

Prenatal exposure to pesticides, herbicides and insecticides and childhood obesity

Prenatal exposure to organochlorine pesticides, particularly dichlorodiphenyltrichloroethane (DDT) and its
primary metabolite dichlorodiphenyldichloroethylene (DDE), has been demonstrated to be associated with
the development of obesity in offspring, although the observed effects exhibit both compound specificity and
gender differences. A substantial number of prospective studies'* have identified prenatal p,p’-DDE
(1,1-dichloro-2,2-bis(p-chlorophenyl)-ethylene) exposure as a risk factor for childhood overweight, obesity,
and diabetes development. For instance, a Spanish birth cohort study of 1,361 newborns"** found that
prenatal exposure to DDE and hexachlorobenzene (HCB) was positively associated with accelerated growth
during the first six months postnatal and increased risk of overweight at 14 months, with DDE’s effect on
accelerated growth being more pronounced in males. Converging conclusions were ascertained from studies
conducted in the Faroe Islands™*" and Belgium"*. However, the U.S. Center for the Health Assessment of
Mothers and Children of Salinas (CHAMACOS) study"” demonstrated that DDT/DDE exposure exhibited
an association solely with BMI in male subjects. Conversely, a Chinese longitudinal study encompassing 98
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mother-infant pairs* identified elevated p,p’-DDE concentrations as being associated with diminished BMI
Z-scores, thereby signifying discrepancies in the findings of research studies.

The mechanism of action of this substance primarily involves the disruption of energy metabolism and
epigenetic programming. As demonstrated in the relevant animal studies*”, prenatal DDT exposure has been
shown to have a significant impact on energy expenditure and thermoregulatory capacity in offspring,
particularly in female subjects. The research indicates that this exposure reduces thermogenesis and
predisposes individuals to greater fat accumulation later in life, thereby increasing the risk of obesity and
associated metabolic syndromes. Recent research has also revealed novel mechanisms by which pesticides
may influence offspring through epigenetic modifications"™. For instance, prenatal exposure to the fungicide
imazalil during pregnancy induced disorders in hepatic glucose and lipid metabolism in both maternal mice
and their offspring, showing a strong correlation with abnormal N°-methyladenosine (m6A) RNA
methylation. This provides new evidence that environmental pollutants may affect metabolic health through
transgenerational epigenetic programming®”. These findings suggest that prenatal exposure to pesticides
may program offspring obesity risk through multiple mechanisms, including the disruption of key metabolic
pathways and the induction of epigenetic alterations.

Prenatal exposure to PFAS and childhood obesity

The correlation between prenatal exposure to PFAS during pregnancy and the subsequent risk of obesity in
offspring has been substantiated by numerous prospective studies. The 2016 U.S. HOME cohort study'®"!
demonstrated a significant positive correlation between maternal serum perfluorooctanoic acid (PFOA)
concentrations during pregnancy and children’s obesity levels at age 8. Another study"®” found that higher
maternal serum perfluoroundecanoic acid (PFUnDA) concentrations in non-obese women were associated
with increased waist circumference, fat mass, and body fat percentage in offspring. A 2018 Norwegian and
Swedish cohort study'** followed 412 mother-infant pairs over a period of five years and similarly
demonstrated a positive correlation between maternal serum PFAS concentrations and offspring
overweight/obesity risk. It is important to note that PFAS can cross the placenta and enter breast milk,
exerting persistent effects on developing fetuses and infants, thereby increasing potential health risks from
early-life exposure!™..

With regard to the mechanism of action, PFAS have been shown to program offspring obesity risk by
interfering with placental function, affecting adipocyte differentiation, and disrupting metabolic homeostasis.
A plethora of studies'*** have indicated that exposure to perfluorooctane sulfonic acid (PFOS) has the
capacity to significantly disrupt the process of placental nutrient transport, induce fetal growth restriction,
and lead to long-term alterations in offspring liver lipid metabolism gene expression profiles and gut
microbiota. PFOS has been demonstrated to disrupt adipocyte differentiation by inhibiting pivotal metabolic
enzyme activity, thus facilitating adipose tissue accumulation”’. These findings suggest that prenatal
exposure to PFAS may increase the susceptibility of offspring to metabolic disorders through multiple
synergistic biological pathways, thereby laying the groundwork for future obesity development.

Prenatal exposure to pharmaceuticals and personal care products and childhood obesity

The association between prenatal exposure to pharmaceuticals and personal care products (PPCPs) and
offspring obesity risk exhibits compound specificity and complex effects. Prenatal exposure to parabens has
been demonstrated to be a significant contributing factor to the increased risk of early childhood obesity, as
indicated by epidemiological studies. The CHAMACOS cohort study'*” established that prenatal phthalate
exposure was associated with increased obesity risk in 5-year-old children. The German LINA (Lifestyle and
environmental factors and their Influence on Newborns Allergy risk) cohort study”™ further confirmed that
maternal exposure to butyl phthalate during pregnancy was significantly associated with offspring
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overweight risk during the first eight years of life, with a stronger effect observed in female offspring.
However, it should be noted that not all PPCPs have been observed to induce pro-obesity effects. A large
retrospective study”” involving over 53,000 mother-infant pairs demonstrated no significant association
between outpatient antibiotic use during pregnancy and offspring BMI z-scores at age 5, suggesting that
different categories of PPCPs may have varying impacts on offspring obesity risk.

As indicated by research on the mechanism of action!*”, the presence of PPCPs can program offspring
obesity risk through multiple pathways, including the disruption of endocrine homeostasis, the effect on fat
programming, and the influence on the development of metabolic organs. However, it should be noted that
these effects are highly dependent on the type of compound, the exposure window, and the dose. It is well
established that common medications such as acetaminophen have the potential to disrupt metabolic
programming by interfering with the fetal endocrine system. Conversely, recent studies have identified the
potential of newer-generation hypoglycemic and weight-loss drugs, such as glucagon-like peptide-1 (GLP-1)
receptor agonists (e.g., semaglutide), to improve the maternal metabolic environment and potentially reduce
the risk of offspring obesity when used in preconception interventions'*’. A recent animal study'*” confirmed
that the preconception use of semaglutide improves high-fat diet-induced metabolic abnormalities in a
sex-specific manner. This phenomenon is mediated through the regulation of placental function, as
evidenced by enhanced expression of the amino acid transporters solute carrier family 38 member 1
(Slc3sal) and member 2 (Slc3saz). Additionally, fetal hypothalamic appetite control centers are restored, as
demonstrated by the normalization of leptin signaling and the rebalancing of Pro-opiomelanocortin
(POMC)/Agouti-related peptide (AGRP) neuropeptide expression. These findings underscore the
complexity and bidirectional nature of PPCP interference with offspring energy metabolism, with net effects
contingent on specific pharmacological properties, target interactions, and developmental timing.

PRENATAL EXPOSURE TO AIR POLLUTANTS

As global air pollution continues to worsen, recent studies have found that exposure of the mother to
pollutants such as particulate matter (PM), nitrogen oxides (NO,), carbon oxides (CO,), sulfur oxides (SO,),
and ozone (O,) during pregnancy may significantly increase the risk of obesity in offspring!®>**. However,

atmospheric pollutants are characterized by a high degree of complexity. For instance, PM exhibits
PM,,). Furthermore, the

critical exposure windows for different pollutants exhibit heterogeneity, and synergistic or antagonistic

significant variation in its biological effects, depending on its size (e.g., PM,, PM, .,
interactions may occur among multiple pollutants. These factors have resulted in the identification of
inconsistent conclusions regarding exposure-outcome associations in extant studies, thus rendering
pollutant-specific health impact mechanisms a focal point of environmental health research recently. Major
studies on prenatal air pollutant exposure and offspring obesity are consolidated in Table 2.

Prenatal exposure to PM and childhood obesity

Prenatal exposure to atmospheric PM has been demonstrated to be significantly associated with an increased
risk of childhood obesity, exhibiting distinct sex-specific sensitive windows and particle size effects. The
Asthma Coalition on Community, Environment and Social Stress (ACCESS) cohort study, conducted in the

65]

city of Boston in the United States of America!®, utilized a high spatiotemporal resolution PM, , model and a
Bayesian Distributed Lag Interaction Model (BDLIM) to ascertain that, for male subjects, a 1 pg/m’ increase
in PM, .. Exposure during weeks 8-17 of gestation was associated with a cumulative increase in BMI z-score
of 0.21. In contrast, exposure during weeks 10-29 was associated with a 0.02 increase in waist-to-hip ratio in
girls. This finding suggests a heightened risk of systemic obesity in boys, in contrast to the predominance of
central obesity in girls. Further studies have indicated a correlation between PM, and PM, ., with augmented
umbilical circumference and subcutaneous fat thickness, respectively®, with early-life exposure being
associated with minor BMI increases, particularly during the initial two postnatal months!*”. It is noteworthy
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Table 2. Summary of key epidemiological studies on prenatal exposure to air pollution and childhood obesity risk

t\;t:rt;r ﬁ::i;:/ Study Exposure type Samplesize  Main findings Conclusion
- Highest quartile of traffic density
associated with:
- Reduced fetal growth (f =-0.13
z-score)
- More rapid 0-6 months Infants exposed to higher
Black Carbon, 2115 weight-for-length gain (p = 0.25 traffic-related pollution in
Fleisch Project Viva, Boston,  PM,;, Traffic n”ynother-child z-score) early life may exhibit more
et al.* USA density, Roadway - Higher odds of high adiposity at 6 rapid postnatal weight gain
(2015) proximity parrs months (OR = 1.84) in addition to reduced fetal
growth
- The combination of low fetal growth
+ rapid infant gain was 3 times more
likely (OR =3.01) in high traffic
exposure group
- Sex-specific associations were found:  Prenatal PM,; exposure
- Boys: Increased PM, . exposure at was associated with
8-17 weeks gestation was associated  increased whole-body size
Chiu et al.'®>  ACCESS cohort, PM 239 children with higher BMI-z; at 15-22 weeks in boys and a central
(2017) Boston, USA 2 with higher fat mass (kg) adiposity pattern in girls,
- Girls: Increased PM, ; exposure at indicating sex-specific
10-29 weeks gestation was associated  critical windows of
with higher waist-to-hip ratio susceptibility
Traffic-related air 5 -1-SD 1 in non-freeway NO, (2 ppb):
pollution (TRAP): mother-infant associated with 33% higher leptin (P = prenatal TRAP exposure is
- Non-freeway pairs 0.01) and 9% higher HMW associated with altered cord
Pediatric obesity NO, adiponectin (P = 0.07) blood adipokine levels
maternal and child - Distance to o . (leptin and HMW
Alderete health study major roadways - Living <75 T v >300 m from major adiponectin), which may
et al.’? (MACHS), Los - CALINE4 model 26 with roadways: 71% higher leptin (P = contribute to sex-specific
(2018) Angeles, USA for NO, 6—va>lnth 0.03) infant weight gain and
) follow-up -1-SD 1 in leptin (10 ng/mL): future‘obe‘sny risk,
Ambient: NO,, associated with 0.62 kg weight gain in especially in females
0O, PM,5, PMyq female infants (P = 0.02), not males
- PM,,, CO 1: associated with higher
risk of slow growth trajectory
-NO, 1: associated with higher risk of
both slow and rapid growth Prenatal exposure to high
Population-based ) . . . levels of air pollutants is
Tanetal®  prospective birth PM,,, SO, NO,, 62't5h40- hild ' SQZ 1: associated with rapid growth associated with deviations
(2021) cohort, Wuhan, o, 0, mother-chi trajectory in childhood BMI growth
China pairs -0, 1: associated with lower risk of trajectories from birth to 6
rapid growth years
- Stronger associations were observed
in girls, rural children, and those with
normal-weight mothers
- 2nd trimester PM, ¢ 1: associated with
higher % fat mass and FMI
) ) ) Limited evidence for
- 3rd trlmfester PMzsg: associated with ;o ciations with PM, . and
lower % fat mass and FMI ; : ;
Bloemsma Healthy start study PM,s, O, Traffic P— - ’ Sg;c\g:ltcr}:rr\:\/ez(esrt(eelzconSIStent
et gl.1801 Colorado. USA ' proximity and 738 children . Res@enhal ;')ro><|.m|ty to a highway: < ' " : N
(2022) ' density associated with higher odds of uggestive evidence that

overweight (OR = 2.26 for closest vs.
farthest)

- No consistent associations with O or
traffic density

living near a highway during
pregnancy may increase
childhood obesity risk

FMI: Fat mass index; PM: particulate matter; PM,: fine particulate matter; PM,o: coarse particulate matter; NO,: nitrogen dioxide; CO: carbon
monoxide; SO,: sulfur dioxide; O5: ozone; BMI: body mass index; OR: odds ratio.

that PM exposure exerts a differential influence on childhood weight trajectories by sex. Specifically, female

children who are exposed to elevated levels of PM, , (greater than 9.5 pg/m*®) demonstrate a tendency towards
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higher body weights, while male children exhibit a significantly lower body weight tendency. Furthermore,
female children with low birth weight demonstrate heightened sensitivity to PM, . effects'*.

The mechanisms by which PM exposure contributes to offspring obesity primarily relate to its physical
properties and the series of physiological and pathological responses it triggers. As a suspension of solid and
liquid matter, PM toxicity is inversely correlated with particle size; smaller particles (e.g., PM,, PM, ) possess
a significantly larger surface area per unit volume, enabling more efficient adsorption of toxic compounds.
These particles have the potential to breach the blood-gas barrier, thereby gaining entry into the circulatory
system and inducing multi-organ toxicity®”. Prenatal exposure to PM has been demonstrated to heighten the
risk of obesity in offspring through three principal mechanisms: (i) elevation of umbilical cord adiponectin
levels!”; (ii) disruption of mitochondrial energy metabolism and lipid homeostasis in white adipose
tissue”"7?); and (iii) activation of chronic inflammatory responses and nuclear factor erythroid 2-related
factor 2 (Nrf2)-mediated dysregulation of lipogenic enzymes!”". These pathways collectively lead to the
epigenetic reprogramming of fetal metabolic development. Evidence!”>”* indicates that prenatal PM2.5
exposure specifically increases DNA methylation of the leptin gene promoter in adipocytes of male offspring,
thereby suppressing leptin secretion, disrupting energy balance regulation, and ultimately leading to
increased food intake and heightened susceptibility to obesity. In contrast, in female offspring, the same
exposure appears to preferentially alter the hepatic lipid metabolism program, manifesting as abnormal
increases in hepatic lipid accumulation and downregulation of genes involved in fatty acid metabolism (e.g.,
liver fatty acid-binding protein 1), presenting a distinct metabolic disturbance phenotype. These sex-specific
epigenetic reprogramming events may originate from divergent placental responses to oxidative stress,
inflammatory status, and adaptive epigenetic regulation following exposure, thereby establishing different
gendered patterns of susceptibility to obesity in later life.

Prenatal exposure to NO, and childhood obesity

Prenatal exposure to NO_, particularly NO, from traffic-related air pollution, has been demonstrated to be
associated with an increased risk of obesity in offspring. The potential mediation of this effect by influencing
adipokine levels and inducing metabolic disorders is a hypothesis that merits further investigation. A study
by Alderete et al. demonstrated that prenatal NO_ exposure was significantly associated with elevated levels
of leptin and high-molecular-weight adiponectin in umbilical cord blood". Specifically, an increase of one
standard deviation (SD) in NO, was found to be associated with a 33% increase in cord blood leptin levels
and a 9% increase in high-molecular-weight adiponectin. It is noteworthy that this association manifested sex
differences, with elevated leptin levels exhibiting a significant correlation with weight gain within the first six
months postnatal in female infants, while no such association was observed in male infants”*.. Another
large-scale study”® based on cohort data from over 474,000 Israeli infants found that a 7.3 ppb increase in
prenatal NO, exposure was associated with a cumulative risk ratio of 1.02 for childhood obesity. Moreover,
research indicates that exposure to NO, in the early stages of life is associated with a slight increase in BMI
before the age of five, with the strongest association occurring within the first two months after birth. This
suggests that NO, may influence early-life BMI growth through interactions with other urban environmental

exposures'*’.

The potential mechanisms by which NO_ increases the risk of childhood obesity involve multiple
pathways””. As demonstrated in the research conducted by Nadif et al., exposure of the mother to NO,
during pregnancy has been shown to increase the risk of excessive weight gain in the mother, as well as to
elevate the levels of biomarkers such as leptin and insulin in the umbilical cord blood of the fetus”. Such
hormonal alterations have been demonstrated to promote fetal overgrowth and the occurrence of
macrosomia. At the molecular level, NO_, when present as part of air pollutant mixtures, has been observed

to exacerbate metabolic disorders by promoting systemic inflammation and oxidative stress”.. In particular,
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exposure to NO, has been demonstrated to elevate inflammatory markers [e.g., monocyte chemoattractant
protein-1 (MCP-1), serum amyloid A (SAA)] with the resultant activation of immune responses, whilst
simultaneously disrupting lipid metabolism. This phenomenon is primarily characterized by the
enhancement of endogenous lipogenesis pathways, leading to an increase in triglycerides (TGs) and a
decrease in high-density lipoprotein cholesterol (HDL-C). Consequently, this contributes to the exacerbation
of obesity-related lipid metabolism abnormalities””. Collectively, these mechanisms enhance the propensity
of offspring to develop obesity in later life through alterations in fetal metabolic programming and the
establishment of energy balance.

Prenatal exposure to O, and childhood obesity

The association between prenatal exposure to O, during pregnancy and the subsequent risk of obesity in
offspring exhibits complex time-specificity and heterogeneity in its effect, with the impact being highly
dependent on the specific gestational stage during which exposure occurs. The extant research suggests that
exposure to O, during the first and last trimesters of pregnancy may engender divergent effects on childhood
obesity indicators. Bloemsma et al. discovered that exposure to O, during the early stages of pregnancy was
associated with a reduced body fat percentage in children aged between 4 and 6 years"®. Conversely,
exposure during the latter stages of pregnancy was linked to an increased body fat percentage. These findings
suggest the presence of critical exposure windows during which the effects may be particularly significant.
Furthermore, Sun et al. conducted a large-scale nationwide study that revealed significant associations
between prenatal O, exposure and fetal growth restriction®"’. Each 10 ppb increase in O, exposure during
weeks 13-25 of gestation was associated with an average reduction of 7.6 grams in full-term birth weight and
a 3% increased risk of full-term infants with a small-for-gestational-age (SGA). It is noteworthy that these
associations were more pronounced among non-Hispanic Black individuals and mothers who were either
unmarried or had attained a lower level of education. The findings suggest that O, may trigger a “thrifty
phenotype” adaptation by inhibiting fetal growth, leading to postnatal catch-up growth and increased
long-term obesity risk.

The mechanisms underpinning this phenomenon have been linked to O,-induced oxidative stress, metabolic
reprogramming alterations, and epigenetic modifications. The results of animal studies indicate that
exposure to O, during the early stages of pregnancy has a significant impact on energy metabolism in mice.
Specifically, the exposure enhances the dependence of mice on branched-chain amino acid energy
production, induces elevated corticosterone levels, and strengthens the reliance of offspring on fatty acid
energy. These effects ultimately contribute to the development of obesity in the offspring®?. In contrast,
exposure to O, during the late stages of pregnancy exerts its effects through epigenetic mechanisms. It has
been demonstrated that maternal exposure during this period can lead to alterations in the methylation levels
of several genes, including histone deacetylase 4 (HDAC4), prolactin-releasing hormone receptor (PRLHR),
tenascin XB (TNXB), and positive regulatory domain-containing 16 (PRDM16). This conclusion is
supported by evidence from studies of umbilical cord blood™. These alterations have been shown to trigger
inflammatory responses and metabolic dysregulation. Collectively, these findings suggest that O, may
suppress fetal growth by inducing oxidative stress and placental dysfunction. In addition, it may influence
long-term obesity risk in offspring by programmatically altering energy metabolism pathways and
inflammatory states. However, the current evidence linking O, exposure to childhood obesity remains

limited in scope, necessitating further research to validate its sensitive windows and underlying mechanisms.

Prenatal exposure to CO, and childhood obesity
Prenatal exposure to CO,, primarily from traffic-related pollutants, has been demonstrated to be strongly

associated with fetal growth restriction and an increased risk of obesity later in life. Fleisch et al. found that
prenatal exposure to traffic pollutants - such as black carbon and PM, . - was significantly associated with
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fetal growth restriction and accelerated weight gain in infancy™*. This was manifested as faster
weight-for-length z-score growth from 0 to 6 months of age and an 84% increased risk of being in the > 95th
percentile for weight-for-length at 6 months. The present study hypothesizes that prenatal exposure to air
pollutants may induce a “thrifty phenotype” in fetuses, characterized by fetal growth restriction followed by
catch-up growth in infancy. This is postulated to occur through the mechanisms of oxidative stress and
inflammation, which have been demonstrated to increase the risk of future cardiovascular and metabolic
diseases'®!. Guo et al. further confirmed that exposure to environmental CO during pregnancy is
significantly associated with fetal growth restriction®. Each increase in the interquartile range (IQR) of CO
concentration has been shown to correlate with reduced birth weight, with more pronounced effects
observed during the periods of mid-to-late pregnancy. This suggests the potential for CO exposure to disrupt
the oxygen supply to the fetus through placental toxicity.

Its mechanisms involve multiple pathways. Studies indicate that CO_ crosses the placental barrier from
maternal to fetal circulation®, elevating umbilical cord blood levels of leptin and adiponectin and altering
metabolic programming during fetal development"™**”**. Specifically, CO binds to hemoglobin to form
carboxyhemoglobin, reducing oxygen transport capacity and triggering fetal hypoxia stress'®’. Concurrently,
CO, exposure induces oxidative stress and inflammatory responses, disrupting placental nutrient transport
and altering fetal energy metabolism programming®’. These combined alterations result in intrauterine
growth restriction and postnatal metabolic adaptations, programming offspring susceptibility to obesity and
laying the foundation for infantile and childhood obesity.

Prenatal exposure to SO, and childhood obesity

Prenatal exposure to SOy (primarily SO,) has been demonstrated to be significantly associated with an
increased risk of childhood obesity in offspring. For instance, Tan et al. conducted a large-scale birth cohort
study and found that prenatal exposure to higher concentrations of SO, during pregnancy was significantly
associated with childhood obesity risk [odds ratio (OR) = 1.070, 95% confidence interval (CI): 1.044-1.096]"".
Subgroup analyses by gender and region revealed that this association was more pronounced among boys
and rural children. This study suggests that SO, may increase the risk of childhood obesity by disrupting
normal fetal metabolic development, highlighting the potential long-term growth impacts of prenatal SO,

pollution on offspring®.

The mechanism of action of this substance primarily involves synergistic effects with other air pollutants
(e.g., NO,, PM, .), which serve to indirectly promote metabolic abnormalities by inducing chronic
inflammation and vascular dysfunction”". Zhang et al. demonstrated that co-exposure to SO,, NO,, and
PM, . induces chronic low-grade inflammation by upregulating pro-inflammatory factors'. Specifically,
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNF-a),
and interleukin (IL)-6 act synergistically to increase endothelin-1 (ET-1) expression and suppress endothelial
nitric oxide synthase (eNOS), leading to vascular endothelial dysfunction and myocardial mitochondrial
structural damage and oxidative stress”’. Collectively, these pathological alterations disrupt metabolic
homeostasis and cardiovascular function, potentially indirectly promoting obesity-related metabolic
abnormalities and subsequent disease progression. However, the prevailing focus of contemporary research
is predominantly on SO,, with a paucity of research addressing the association between other SO,
compounds (e.g., SO,) and offspring obesity. Further studies are required to explore their health effects and

underlying mechanisms.

PRENATAL ENDOCRINE AND METABOLIC ABNORMALITIES

Maternal endocrine and metabolic abnormalities during pregnancy - including excessive gestational weight
gain (GWQ), hyperglycemia, and dyslipidemia - have been demonstrated to exert a significant influence on
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Table 3. Summary of key epidemiological studies on prenatal endocrine and metabolic abnormalities and childhood obesity risk

Author Cohort/Stud . P .
. / v Exposure type Sample size Main findings Conclusion
(year) design
- First Visit FPG and
m|d-pregnancy_tf'gwce”de Fasting blood glucose levels at
Early pregnancy Ievels‘vvterde p2;|t|vely il birth the first prenatal visit are
) ) fasting plasma . associated with neonatal bir unrelated to mid-pregnancy
Liu et al.fm Retrospective 1,546 mother-child weight, head circumference. - )
. lucose (FPG) . ght, ' lipid concentrations, but ma
(2016) cohort study, China & pairs and shoulder circumference P Y

Christensen

Prospective cohort

and triglyceride
levels

Maternal LDL

61 mother-child pairs

- No association between First
Visit FPG and mid-pregnancy
lipid profiles

- Offspring of mothers with high
LDL-C (2 90th percentile) had
0.4 mmol/L higher LDL-C at
age 6-13 years

jointly influence fetal growth
and development alongside
triglyceride levels

Maternal
hypercholesterolemia in early
pregnancy is associated with

et al." (Stork Study), cholesterol in (27 high LDL, 34 low higher offspring LDL-C in
(2016) Norway early pregnancy  LDL) -No differences in birth weight,  childhood, suggesting a
BMI, blood pressure, or other potential early-life determinant
CVD risk factors between of cardiovascular risk
groups
Higher maternal BMI and
Individual gestational weight gain were
participant data Maternal associatgd with increased rislf Matgrnal pre-pregnancy BMl is
Voerman meta-analysis of pre-pregnancy 162129 mother-child of}offsprmg overwe|ght/obe5|ty, a major mod|f|ab|e‘r|sk factor
¢ gl 37 cohorts from BMI ar}d pairs WIFh stronger effecf[s in late for ch|!dhood o-beS|ty,‘W|th ‘
etal £ North gestational childhood. Population gestational weight gain having
(2019) Aurope, Zr trali weight gain attributable risk for maternal a smaller additional effect
merica, Austratia overweight/obesity was
10%-22%
Maternal total cholesterol was
positively associated with Maternal prenatal cholesterol
. offspring weight gain up to age  levels may directly influence
Dyri et al.0% Es;i?ctfls:uef;tlve g/rlzr:trjl Zr]gther—father—child 8. Maternal HDL-C and apoA1l offspring weight trajectory via
(2023) (MoBa, Norway) cholesterol levels  trios were negatively associated. intrauterine mechanisms,
! Paternal cholesterol showed independent of shared
weaker or inconsistent genetics or environment
associations
Combined maternal overweight Maternal oyerwe|ght and
and GDM was associated with a GDM have independent and
Deng Prospective cohort  Maternal 564 mother-child 6.90-fold increased risk of joint effects on offspring
(HAPO Hong overweight and T . R adiposity trajectories,
et al.ro? Kong) GDM dyads rapidly increasing adiposity highlighting the need for
(2025) trajectory from birth to early

adolescence (age 9-14)

combined metabolic risk
assessment

BMI: Body mass index; CVD: cardiovascular disease; FPG: fasting plasma glucose; GDM: gestational diabetes mellitus; LDL-C: low-density
lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol.

offspring adipose tissue development and future obesity risk through multiple mechanisms®?. A mounting
body of fundamental and clinical research suggests that maternal obesity and associated metabolic disorders
enhance fetal nutrient uptake via placental transport, thereby inducing excessive differentiation of fetal
preadipocytes and developmental reprogramming of the trophoblast®”. Moreover, it has been demonstrated
that maternal metabolic dysregulation can trigger low-grade intrauterine inflammation, oxidative stress
responses, and epigenetic regulatory alterations. Collectively, these factors contribute to structural
remodeling of adipose tissue and adaptive changes in energy metabolism within the offspring phenotype!**..
It is well established that these biological processes frequently manifest during the neonatal period as
excessive fat accumulation, abnormal adipocyte numbers, or phenotypic reconfiguration. This provides a
foundation for the subsequent development of obesity. Table 3 provides a summary of maternal metabolic

abnormalities associated with increased childhood obesity risk.
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Prenatal overweight/obesity and childhood obesity

Substantial epidemiological evidence indicates that maternal pre-pregnancy overweight/obesity and excessive
weight gain during pregnancy significantly increase the risk of childhood and adolescent obesity in offspring.
A meta-analysis encompassing over 160,000 mother-child pairs demonstrated that maternal pre-pregnancy
overweight or obesity is associated with a markedly elevated risk of offspring developing overweight/obesity
across various growth stages, exhibiting a consistent positive correlation®. A further systematic review'”,
incorporating 11 cohort studies (involving 27,505 mother-child pairs), has corroborated the hypothesis that
there is a consistent positive correlation between pre-pregnancy overweight/obesity and childhood obesity. It
is noteworthy that in the United States, a high proportion of low-income minority populations exhibit a
significantly elevated risk of their offspring becoming obese or overweight before adolescence, a
phenomenon that has been attributed in part to the influence of maternal pre-pregnancy
overweight/obesity"*". This observation lends support to the hypothesis that socioeconomic factors may play
a pivotal role in amplifying the impact of environmental influences on the development of obesity in
offspring®.

Its mechanism of action involves alterations to metabolic reprogramming at multiple levels””. The results of
studies using animal models"®” indicate that maternal obesity can lead to the premature initiation of fetal
adipogenesis. This, in turn, can result in the abnormal expansion of the fetal fat progenitor cell pool and the
hypertrophy of fat cells in late gestation. Consequently, this can accelerate postnatal fat accumulation.
Concurrently, maternal obesity has been demonstrated to alter the development of the hypothalamic appetite
control center in offspring, manifesting as enhanced pro-appetite signaling and impaired anorexigenic neural
pathways, resulting in postnatal hyperphagia and weight gain""*!. Recent studies"*"’ have revealed that
maternal obesity can induce epigenetic alterations in fetal DNA methylation and histone modifications.
These modifications persist into adulthood, affecting the expression of energy metabolism-related genes and
thereby increasing offspring susceptibility to obesity. Collectively, these mechanisms elucidate how maternal
overweight/obesity during pregnancy significantly increases offspring obesity risk by promoting fetal fat
development, reprogramming the hypothalamic appetite center, and inducing persistent epigenetic
alterations.

Prenatal hyperglycemia and childhood obesity

A hyperglycemic environment during pregnancy, encompassing both gestational diabetes mellitus (GDM)
and subclinical glucose abnormalities below diagnostic thresholds, has been demonstrated to be a significant
determinant of offspring obesity risk in the long term. The hypothesis is further substantiated by the findings
of large-scale prospective cohort studies. For instance, data from the Hong Kong Hyperglycemia and
Adverse Pregnancy Outcomes (HAPO) study'*” revealed that combined maternal overweight and GDM
exposure significantly increased offspring risk of rapid obesity trajectory from birth to early adolescence
(9-14 years) (OR = 6.90). Isolated GDM exposure was also found to elevate risk by 2.95-fold, with the
combined exposure group exhibiting the fastest annual subcutaneous fat accumulation rate. Long-term
follow-up data (18 years) further confirmed that for every 1.58 mmol/L (1 SD) increase in maternal 1 h
glucose during pregnancy, the offspring’s risk of overweight/obesity at age 18 increased by 50%, exhibiting a
continuous dose-response relationship"®. This finding indicates that even in cases where glucose levels are
below the threshold for a diagnosis of GDM, there remains a risk to the patient. It is important to note that
medical interventions may offer a partial mitigation of adverse effects. A cohort study"* following China’s
two-child policy found that standardized prenatal care and lifestyle interventions weakened the association
between GDM and offspring long-term obesity.

The core mechanism underpinning this phenomenon involves maternal hyperglycemia-induced placental
dysfunction and fetal metabolic adaptation"!. Maternal hyperglycemia has been demonstrated to result in
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elevated glucose transport across the placenta, thereby inducing fetal hyperinsulinemia*”. The placental
structure of GDM mothers undergoes significant alterations, including thickening of the syncytiotrophoblast
basement membrane, villous edema, and cellular hyperplasia. Collectively, these changes have been shown to
impair nutrient and oxygen exchange efficiency, thereby exacerbating fetal metabolic stress'**. Furthermore,
the hyperglycemic environment has been demonstrated to elevate placental oxidative stress levels. Increased
reactive oxygen species (ROS) have been shown to induce mitochondrial dysfunction and lipid peroxidation,
which in turn trigger the release of inflammatory mediators such as TNF-a and IL-6""*". Recent research!"”
further reveals that progesterone regulates maternal insulin sensitivity via the membrane progesterone
receptor ¢ (mPRe) in white adipose tissue, ensuring efficient glucose transport to the fetus. This pathway is of
critical importance in the context of nutrient allocation. Importantly, GDM pregnancies encompass a
spectrum of fetal growth outcomes, including both macrosomia and, in cases of concomitant placental
insufficiency, SGA infants"*. This latter scenario engages the “Thrifty Phenotype” hypothesis, wherein the
fetus adapts to a limited nutrient supply by programming a metabolism optimized for energy conservation
and storage!"””). A subsequent mismatch with a nutritionally abundant postnatal environment then
predisposes the SGA offspring to central adiposity and metabolic disease"”. Collectively, GDM co-programs
offspring obesity susceptibility through the interplay of nutrient oversupply, oxidative stress, inflammatory
responses, and hormonal signaling pathways.

Prenatal dyslipidemia and childhood obesity

The association between elevated maternal lipid levels during pregnancy and offspring obesity risk has
emerged as a research focus in recent years. However, the strength and consistency of the evidence remains
weaker in comparison to that relating to hyperglycemia. A multitude of cohort studies"* have indicated that
particular forms of maternal dyslipidemia may exert influence on fetal development through a variety of
mechanisms, thereby programming long-term obesity risk in offspring. A large-scale study based on the
Norwegian Mother and Child Cohort"* found that elevated maternal total cholesterol (TC) levels were
positively correlated with offspring weight gain from six weeks postnatal to age eight. Another prospective
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study"'” indicated that increased maternal TGs and free fatty acid (FFA) levels during pregnancy were
associated with higher childhood liver fat content in offspring. Liu et al. also found that neonatal growth
indicators, such as birth weight, head circumference, and shoulder circumference, were independently
associated with mid-pregnancy TG concentrations'''. However, conclusions in this field are not entirely
consistent; for example, Christensen et al. did not observe significant differences in offspring BMI between
ages 6 and 13 associated with high maternal low-density lipoprotein cholesterol (LDL-C) during
pregnancy''?.. To summarize, the majority of studies demonstrate that maternal dyslipidemia during
pregnancy (particularly elevated TG and TC) constitutes a risk factor for childhood obesity. However,
further validation is required to ascertain the causal relationship and specific mechanisms through

large-scale prospective studies.

Its mechanism of action primarily revolves around the placenta’s processing and transport of lipids. The
process of hydrolysis of maternal TGs into FFAs is mediated by lipoprotein lipase (LPL). These FFAs enter
the placenta via either fatty acid transporters or the fatty acid translocator (CD36)""*'**, Insulin activates
insulin receptors on the maternal side of syncytiotrophoblast cells, inducing the re-esterification of FFAs into
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TGs for storage via the protein kinase B (AKT) signaling pathway!"'"”l. FFAs released from the hydrolysis of
these TGs can diffuse into the fetal circulation, thereby providing an energy source for the fetus. Itis a
well-documented fact that pregnant women who are overweight or obese often exhibit insulin resistance and
hyperinsulinemia. These factors can induce the placenta to store large amounts of TGs. The hydrolysis of
these TGs produces excessive FFAs that are transported to the fetus, constituting a partial mechanism by
which maternal hypertriglyceridemia increases the risk of macrosomia'*"'*. Furthermore, HDL-C has been

demonstrated to play a crucial role in cholesterol reverse transport and homeostasis. As demonstrated in the



Page 14 of 26 Zhang et al. Metab Target Organ Damage. 2026;6:3

relevant animal studies"'>"'?, maternal HDL-C appears to play a significant role in the regulation of fetal
metabolism and growth. In models of mice deficient in HDL-C, compensatory increases in placental sterol
synthesis or altered metabolism permit greater cholesterol transport to the fetus, potentially explaining the
association between low HDL-C and macrosomia.

PRENATAL UNHEALTHY LIFESTYLE

Unhealthy lifestyles during pregnancy, as significant early-life environmental exposures, disrupt metabolic
programming in offspring through multiple biological pathways, thereby increasing their long-term risk of
obesity!"'”"*). Behavioral factors such as maternal tobacco exposure, an unhealthy diet, physical inactivity,
and chronic psychological stress affect fetal development independently; however, they also frequently
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interact synergistically to influence placental function and the regulation of fetal energy balance"*". Research
indicates that these factors can alter the efficiency with which the placenta transports nutrients, induce
oxidative stress and inflammatory responses, and regulate gene expression related to adipogenesis through
epigenetic modifications. This reshapes the weight set points of offspring"?'’. Fetal sex may modulate the
metabolic effects of adverse exposures, suggesting biological heterogeneity in these mechanisms'*’\. The
following sections will examine the associations between specific lifestyle factors, such as maternal tobacco
exposure and dietary patterns during pregnancy, and offspring obesity risk, along with their potential
underlying mechanisms. Key evidence regarding prenatal unhealthy lifestyle factors and offspring obesity is

summarized in Table 4.

Prenatal tobacco exposure and childhood obesity

Prenatal exposure to tobacco, including both active and passive smoking, is a significant risk factor for
increased obesity in offspring. This effect has been supported by multiple large-scale cohort studies and
systematic reviews. A study based on the Israeli EHF (Environmental Health Fund) birth cohort"* - which
was validated through biomarkers - found that elevated urinary cotinine levels in pregnant women due to
paternal smoking were significantly associated with reduced birth weight in male offspring. A 2025
systematic review incorporating 13 studies explicitly stated that paternal smoking during pregnancy increases
the risk of offspring becoming obese"*!. For example, Koshy et al. found that children exposed to maternal
smoking during pregnancy had a significantly higher prevalence of being overweight or obese at ages 5-11
compared to unexposed children, with an adjusted OR of 1.61""**. Furthermore, children of heavy smokers
were found to be at an even greater risk. Analysis of nearly 9,500 children from the United States
Environmental influences on Child Health Outcomes (ECHO) cohort!"*”! further confirmed that prenatal
tobacco exposure significantly correlates with abnormal BMI trajectories (non-typical rapid ascending
patterns), resulting in an average BMI of 26.2 (above the 99th percentile) by age 9. Systematic reviews
indicate that maternal smoking increases the risk of offspring being overweight by 50% between the ages of 3
and 33'*°), and there is a dose-response relationship between smoking intensity and childhood obesity
risk"?”. A study of late adolescents'**! further revealed that prenatal tobacco exposure was associated with
significantly elevated levels of subcutaneous fat (26%) and visceral fat (33%). While the absolute weight gain
attributable to maternal smoking was modest, its effects were persistent in the long term. This underscores
the public health significance of prenatal tobacco exposure as a major preventable risk factor for offspring
obesity.

Its mechanisms involve alterations in epigenetic programming and neuroendocrine regulation. Maternal
smoking has a substantial impact on chemokine gene expression in neonatal skin tissue, accompanied by a
decline in methylation levels at specific cytosine-phosphate-guanine (CpG) sites (e.g., chr7:150038291). This
observation suggests that tobacco exposure may enhance chemokine transcription through epigenetic
regulation"*). As a pro-adipogenic and pro-inflammatory adipokine, its abnormally elevated expression
during fetal development may promote adipocyte differentiation and lipid accumulation, thereby providing a
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Table 4. Summary of key epidemiological studies on prenatal unhealthy lifestyle and childhood obesity risk

Author Cohort/Study

(year) design Exposure type Sample size Main findings Conclusion

- Heavy maternal smoking (> 10
cig/day) associated with higher
prevalence of childhood overweight
(31.5%), obesity (15.6%), and short

Maternal smoking during

Community-based pregnancy is associated

Koshy cross-sectional Maternal smoking 3038 child . with increased risks of
et al.2 survey, Merseyside,  during pregnancy 93¢ children stature (5.5%) childhood obesity and short
2011) UK - Dose-response relationship stature in a dose-dependent
observed; both parents smoking manner
further increased risks
- Sleep disturbances associated with
higher risk of GDM (OR = 1.59), Sleep disturbances during
Sleep disturbances pre-eclampsia (OR = 2.80), pregnancy are significantly
during pregnancy 58,123,250 gestational hypertension (OR = associated with adverse
Lu et al.t3! Systematic review and  (poor sleep quality, pregnant 1.74), cesarean section (OR = 1.47), maternal and fetal
(2021) meta-analysis extreme sleep women (120 preterm birth (OR = 1.38), LGA (OR  outcomes, highlighting the
duration, insomnia,  studies) =1.40), and stillbirth (OR =1.25) need for sleep assessment
RLS, SDB, OSA) and management in
- No significant association with prenatal care
SGA or low birth weight
- Maternal tobacco use associated
with higher android/gynoid fat
ratio, fat mass index, and Associations may be
Cajachagua - Generation R Study, Maternal and triglycerides at age 10 explained by shared familial
Torres Netherlands paternal tobacco 4,792 children and lifestyle factors rather
et al.l12>) (prospective cohort)  and cannabis use - Both maternal and paternal than direct fetal
(2022) substance use showed similar programming
associations, suggesting familial
confounding
- Maternal ultra-processed food
consumption during child-rearing Maternal consumption of
period associated with 26% higher  ultra-processed foods
Maternal isk of offspri ight/obesity during child-rearing is
Wan NHSIl and GUTS I/1I,  ultra-processed 19,958 e 0 OISPring OVerWeIEN /OO csociated with increased
e USA (prospective food consumption ~ mother-child (highest vs. lowest intake group) . L
et al.”* cohort) during child-rearing  pairs b offspring obesity risk,
(2022) . - Association independent of supporting dietary
period offspring’s ultra-processed food recommendations for
intake, physical activity, and women of reproductive age
sedentary time
- High HEI (> 80) assogiated with A healthy prenatal diet per
ECHO Consortium lower odds of LGA, rapid growthat  (;5pa guidelines is
Hedderson ' Prenatal diet quality 6 and 24 months, and slow growth ;<. iated with healthier

etal.™ ILJJFSOELneuClttiI\;ZOSTEIjtY) (HEl and EDIP) 2854 dyads  at 6,12, 24 months infant growth patterns,

(2024) . EDIP associations were potentially reducing obesity
inconsistent risk

BMI: Body mass index; EDIP: empirical dietary index for hyperinsulinemia; HEI: healthy eating index; GDM: gestational diabetes mellitus; LGA: large
for gestational age; OR: odds ratio; OSA: obstructive sleep apnea; RLS: restless legs syndrome; SDB: sleep-disordered breathing; SGA: small for
gestational age; USDA: U.S. Department of Agriculture.

molecular basis for obesity in later life*”). As indicated by the findings of animal studies"**', prenatal
exposure to nicotine has been demonstrated to correlate with increased body weight, elevated blood
pressure, and impaired glucose metabolism in offspring. Furthermore, the hypothesis that altered
hypothalamic regulation of appetite and satiety constitutes an additional critical mechanism is considered.
Morphological and functional alterations in these regulatory systems have been observed in offspring
exposed to tobacco during gestation"*"'*”l. Collectively, these mechanisms illustrate how tobacco exposure
programs offspring energy metabolism regulation via epigenetic and neuroendocrine pathways, thereby
increasing long-term susceptibility to obesity.

Prenatal dietary patterns and childhood obesity
The quality of maternal nutrition during pregnancy exerts a significant influence on offspring birth weight,
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early growth patterns, and long-term obesity risk. Extensive research indicates that adhering to healthy
dietary patterns during pregnancy is associated with more favorable growth trajectories in offspring. In 2024,
Hedderson et al. found that higher maternal Healthy Eating Index (HEI-2015) scores (indicating greater
adherence to dietary guidelines) were associated with a reduced risk of offspring being large for gestational
age (LGA) and with significantly decreased rapid growth from birth to 6 months and 24 months of age"*!.
Conversely, a high maternal intake of ultra-processed foods was found to significantly increase the risk of
overweight or obesity in offspring. A cohort study of 19,958 mother-child pairs'** demonstrated that
offspring in the highest maternal ultra-processed food intake group exhibited a 26% higher risk ratio
compared to the lowest group. Furthermore, Voerman et al. found that high maternal caffeine intake during
pregnancy was associated with higher childhood BMI, total fat mass, abdominal visceral fat, and hepatic fat
content**!. The present findings suggest that maternal dietary patterns have a significant influence on the
obesity risk of offspring in later life by way of programming early growth.

Its mechanisms involve nutrition-mediated metabolic programming and transgenerational effects. As
demonstrated by Saben et al., experimental research on animals has shown that a high-fat/high-sugar diet
during pregnancy can result in mitochondrial morphological abnormalities and kinetic dysregulation [e.g.,
reduced Dynamin-related protein 1 (DRP1) phosphorylation and decreased Optic atrophy 1 (OPA1)
expression] in the skeletal muscle of F1 female offspring"*°. This has been shown to lead to impaired insulin
signaling and lipid oxidation dysfunction. It is important to note that these mitochondrial phenotypes can be
transmitted to F2 and F3 generations via oocyte mitochondria. It has been demonstrated that even when
offspring are fed a normal diet, transgenerational mitochondrial dysfunction persists. These effects are partly
mediated by epigenetic mechanisms, such as DNA hypomethylation at gene promoters, which can program
the central reward circuitry and hypothalamic appetite regulation [involving genes such as POMC,
dopamine reuptake transporter (DAT), and p-opioid receptor (MOR)], thereby influencing offspring’s
preference for palatable foods and increasing obesity susceptibility"'*'*”). This indicates that maternal
nutritional status influences long-term obesity and metabolic risks in offspring through germ cell
mitochondrial quality'**.. Another intriguing mechanism involves olfactory programming. Research has
demonstrated that exposure of the mother to particular odors during pregnancy activates olfactory sensory
neurons that express the relevant receptors in the fetus. This results in significantly enlarged olfactory bulb
neurofibrillary spheres and enhanced offspring preference for the odor experienced during pregnancy'**..
This early neuroanatomical programming may promote offspring recognition and attraction to high-energy
food odors, thereby programming their long-term feeding behavior and obesity risk.

Prenatal sleep disorders and childhood obesity

Sleep disturbances during pregnancy, including sleep disorders, snoring, and insomnia, have been
demonstrated to be significantly associated with adverse birth outcomes and long-term obesity risks in
offspring. A substantial meta-analysis"* encompassing over 58 million pregnant women has demonstrated
that maternal insomnia during pregnancy increases the risk of LGA infants. Specifically, pregnancy-related
snoring has been shown to be associated with higher risks of macrosomia and LGA in offspring, and this
association remains robust after adjusting for pre-pregnancy BMI, suggesting that sleep disturbances may
influence fetal growth independently of obesity itself"*'*). The findings regarding the association between
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sleep duration and birth weight are inconsistent. A number of studies"*’ have indicated that a sleep duration
of less than 8 h is associated with an increased risk of SGA. Conversely, other studies** have reported that a
sleep duration of 2 9 h per night during the mid-to-late stages of pregnancy is associated with higher mean

birth weight in offspring.

Its mechanisms primarily involve multiple pathways, including metabolic, neuroendocrine, and epigenetic
processes. Sleep deprivation or fragmented sleep has been demonstrated to result in maternal glucose
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metabolism abnormalities, reduced insulin sensitivity, and elevated systemic inflammation (e.g., increased
C-reactive protein, IL-6, TNF-a), thereby affecting placental function and fetal energy metabolism
programming''**). Sleep disturbances have been demonstrated to disrupt maternal
hypothalamic-pituitary-adrenal axis function, resulting in elevated cortisol levels and, consequently, indirect
interference with fetal hypothalamic appetite regulation center development. This results in an alteration of
the regulatory balance of leptin and ghrelin, which in turn programs long-term energy homeostasis in
offspring!*>'**l. Epigenetic mechanisms have also been demonstrated to play a role. The results of animal
studies suggest that exposure to fragmented sleep during pregnancy can induce methylation modifications in
genes associated with fat metabolism, including adiponectin (AdipoQ; adiponectin, C1Q and collagen
domain containing). This, in turn, has been shown to increase the susceptibility of offspring to obesity!*.
The biological basis through which maternal sleep during pregnancy influences offspring obesity is formed
by the collective influence of metabolic, neuroendocrine, and epigenetic pathways.

Prenatal physical inactivity and childhood obesity

Lack of physical activity during pregnancy has been identified as a significant modifiable risk factor for
offspring obesity in early life. The extant research suggests that levels of physical activity in early pregnancy
may be associated with offspring birth weight. This association may be sex-specific. A study based on the
Omega pregnancy cohort"* revealed no overall significant association between leisure-time physical activity
(LTPA) of 2 150 min/week during early pregnancy and offspring birth weight. However, a stratified analysis
suggested gender differences, with a slight increase in birth weight among male offspring, while female
offspring showed a decrease!"”. Concurrently, a large cohort study"* indicated that maternal pre-pregnancy
obesity was significantly associated with increased risk of LGA offspring [relative risk (RR) = 1.40], with LGA
being a strong predictor of childhood obesity. It is noteworthy that when both parents are obese, the risk of
LGA in offspring is further increased to 1.70, suggesting a synergistic effect of parental obesity""*”.. Whilst
these associations are primarily inferred from body weight status, obesity is often closely linked to sedentary
lifestyles. Consequently, the promotion of moderate physical activity during pregnancy as a pivotal weight
management strategy may facilitate the enhancement of fetal growth patterns, thereby attenuating the
long-term risk of obesity in offspring.

Prenatal psychological pressure and childhood obesity

Prenatal psychological pressure is a significant environmental exposure factor that may be associated with an
increased risk of obesity in offspring. While direct evidence remains limited, existing research*"! suggests
that maternal psychological stress during pregnancy may disrupt the normal development of fetal energy
metabolism pathways indirectly by affecting metabolic homeostasis, inflammatory states, and hormonal
balance. Furthermore, maternal stress is often accompanied by lifestyle changes, such as unhealthy dietary
behaviors and abnormal weight gain, which may collectively increase offspring susceptibility to obesity later
in life. However, large-scale clinical studies in this field remain scarce. Future research should explore the
independent impact of maternal mental health during pregnancy on offspring weight regulation and its
public health implications.

Interactions among multidimensional prenatal environmental factors

Emerging evidence from large contemporary birth cohorts highlights significant synergistic interactions
among prenatal multidimensional exposures that substantially amplify the risk of offspring obesity. In the
Greek Rhea cohort (n = 633 mother-child pairs), prenatal PM, exposure was associated with increased
adiposity at age 6 years exclusively among children whose mothers consumed < 5 servings of fruits and

vegetables per day: per SD increase in PM, , BMI increased by 0.41 kg/m* (p-interaction = 0.037), waist

10?
circumference by 0.83 cm (p-interaction = 0.043), and fat mass by 0.5 kg (p-interaction = 0.039); no such
associations were observed in the high-intake group (2 5 servings/day), demonstrating clear effect
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modification by prenatal dietary antioxidant intake!**!. Similarly, another research!*! demonstrates that
prenatal environmental tobacco smoke (ETS) exposure is an independent risk factor for childhood obesity,
while a lack of maternal supplementation with multivitamins, folic acid, or iron during pregnancy also
independently elevates the risk. Crucially, these two adverse exposures exhibit an additive effect: children
with combined exposure to prenatal ETS and no maternal supplementation of these nutrients face the
highest risk of obesity (e.g., adjusted OR of 1.55 for ETS + no folic acid), indicating an additive interaction.
This suggests that adequate prenatal micronutrient status may partially counteract the adverse metabolic
programming effects of tobacco smoke.

Beyond the type of exposure, the strength and nature of these multidimensional interactions are further
modulated by the timing of exposure and fetal sex, adding layers of complexity. A study of urban
preschoolers'™ identified sex-specific sensitive windows for PM, , exposure. Exposure during mid-pregnancy
(e.g., 8-17 weeks) was associated with higher BMI z-scores and fat mass in boys but not girls, while exposure
during mid-to-late pregnancy (e.g., 10-29 weeks) was associated with an increased waist-to-hip ratio in girls
only. This demonstrates that the same pollutant can have divergent effects on body composition depending
on the specific gestational period of exposure and the sex of the fetus'®.

In conclusion, the risk of childhood obesity results from the complex interplay of multiple prenatal factors,
including environmental pollutants, maternal nutritional status, and the critical timing of exposure
modulated by fetal sex. Future research should employ methods capable of capturing these dynamic
interactions. Public health strategies must integrate dual pathways: reducing harmful exposures (e.g., tobacco
smoke, air pollution) and promoting optimal prenatal nutrition (e.g., supplementation of key nutrients,
adequate fruit and vegetable intake).

Translational implications and preventive strategies

Translating mechanistic insights from the DOHaD framework into clinical practice requires evidence-based
preventive strategies that exploit developmental plasticity during critical prenatal windows to interrupt the
programming of fetal obesity and subsequent childhood adiposity.

Current lifestyle adjustments proven effective in mitigating fetal obesity include integrated prenatal diet and
physical activity interventions. For instance, a systematic review and meta-analysis of 117 randomized trials
(involving 34,546 women) found that antenatal diet interventions reduced GWG by 2.63 kg (95%CI: -3.87 to
-1.40) and the risk of large-for-gestational-age neonates (OR = 0.19, 95%CI: 0.08-0.47), while combined diet
and physical activity interventions lowered GWG by 1.35 kg (95%CI: -1.95 to -0.75) and gestational diabetes
risk (OR = 0.72, 95%CI: 0.54-0.96) compared to routine care!**’. Notably, optimizing the intrauterine
environment to mitigate offspring obesity risk may include digital lifestyle interventions during pregnancy.
Such app-supported programs - which promote healthy GWG through structured self-monitoring,
personalized feedback, and goal setting - represent a promising modifiable approach. Recent evidence
syntheses indicate these interventions can effectively improve maternal weight outcomes, a key modifiable
determinant of the intrauterine metabolic milieu, thereby potentially contributing to reduced long-term
obesity risk in offspring!**''**). Beyond lifestyle modifications, psychological interventions such as
mindfulness-based approaches show promise in improving maternal mental health and moderating GWG,
which may indirectly influence offspring obesity risk, though direct evidence remains limited and further
high-quality studies are needed"**'**\. In a randomized controlled trial comparing oral metformin to insulin
for gestational diabetes management initiated after diagnosis (typically during the mid-second to third
trimester) and continued until delivery, metformin was associated with a lower incidence of neonatal
hypoglycemia (17% vs. 35%) and reduced neonatal birth weight (3,101 + 287 g vs. 3,698 + 422 g), although the
incidence of macrosomia did not differ significantly between groups (12% vs. 11%). Maternal compliance was
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significantly higher in the metformin group (84% vs. 33%)""**\. Beyond behavioral and clinical strategies,
environmental modification offers a direct intervention. A randomized trial in Mongolia'® found that using
portable high efficiency particulate air (HEPA) cleaners throughout pregnancy, starting in the first trimester
(median 11.5 weeks’ gestation) and continuing until birth, reduced the child’s BMI z-score at age two (-0.16
units) and the odds of overweight/obesity (OR = 0.59) compared to controls. This aligns with biological
pathways where lowering prenatal PM2.5 exposure during this critical developmental window may alleviate
fetal oxidative stress and inflammatory dysregulation, thereby modulating metabolic programming.

Multidisciplinary and personalized protocols show promise in modifying obesogenic trajectories by
leveraging developmental plasticity, especially when started before or early in pregnancy. However, current
evidence remains preliminary. Future research should prioritize rigorous trials to confirm their long-term
benefits and safety, which is essential for their future inclusion in preventive guidelines.

CONCLUSION

This review systematically examines how multidimensional environmental exposures during intrauterine
development impact the risk of childhood obesity, considering factors such as EDCs, air pollutants, maternal
metabolic abnormalities, and adverse lifestyle choices. It explores the mechanisms through which these
exposures disrupt fetal energy metabolism programming via shared pathways such as epigenetic regulation,
placental dysfunction, and metabolic inflammation. Existing evidence suggests that intrauterine
environmental exposures act synergistically to influence offspring obesity susceptibility, highlighting the
critical importance of early-life environmental exposure in shaping developmental trajectories. However,
current research has several limitations. Most evidence stems from studies examining single exposures or
mechanisms, with insufficient analysis of multi-exposure interactions and identification of sensitive windows
and the mechanisms underlying sex differences. Furthermore, exposure assessment methods require
standardization, particularly with regard to dose-response relationships in real-world mixed exposure
scenarios. Future research should integrate exposomics, epigenomics, and multi-omics technologies to
construct dynamic, spatiotemporal models of early-life environmental exposures, shifting the paradigm from
“single-factor” to “multi-dimensional interaction” studies. At the same time, long-term follow-up and
intervention studies in population cohorts must be strengthened in order to elucidate the mechanisms of
plasticity during critical periods. This will lay the groundwork for the development of targeted, early risk
stratification and precision prevention strategies, with the ultimate goal of achieving source-level prevention
and control of childhood obesity.
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