

OPEN ACCESS

EDITED BY

Elisabetta Camajani,
Università telematica San Raffaele, Italy

REVIEWED BY

Shirin Pourteymour,
University of Oslo, Norway

*CORRESPONDENCE

Qilan Chen
✉ cql13588750941@qq.com
Kamran Ali
✉ drkamranali1988@163.com

RECEIVED 24 August 2025

REVISED 10 October 2025

ACCEPTED 08 December 2025

PUBLISHED 05 January 2026

CITATION

Zhang S, Xu Lou I, Deshpande SV, Sun L, Hamza A, Ali K and Chen Q (2026) Unraveling the multifaceted benefits of physical exercise: a comprehensive review of body composition, metabolic regulation, and systemic health.

Front. Nutr. 12:1691690.

doi: 10.3389/fnut.2025.1691690

COPYRIGHT

© 2026 Zhang, Xu Lou, Deshpande, Sun, Hamza, Ali and Chen. This is an open-access article distributed under the terms of the [Creative Commons Attribution License \(CC BY\)](#). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Unraveling the multifaceted benefits of physical exercise: a comprehensive review of body composition, metabolic regulation, and systemic health

Shengxuan Zhang¹, Inmaculada Xu Lou¹,
Sammit Vishram Deshpande^{2,3}, Lei Sun⁴, Ali Hamza⁵,
Kamran Ali^{6*} and Qilan Chen^{1*}

¹Department of Cardiology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China, ²Deshpande Clinic, Talegaon Dabhade, Pune, Maharashtra, India, ³Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China, ⁴Department of Gastroenterology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China, ⁵Department of Zoology Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan, ⁶Department of Surgery, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China

Obesity, a significant comorbidity for various cardiovascular and respiratory diseases, demands individualized and effective management strategies. Without appropriate intervention, obesity can severely compromise an individual's health. Achieving weight management is feasible through the application of evidence-based knowledge and sustained commitment. Incorporating diverse forms of physical exercise—such as High-Intensity Interval Training (HIIT) and Moderate-Intensity Continuous Training (MICT)—in combination with tailored dietary habits can optimize outcomes for affected individuals. In fact, dietary regulation remains the cornerstone of any weight management program, especially among adolescents and adults facing modern lifestyle challenges. When paired with an exercise regimen aimed at reducing adipose tissue, this combined approach effectively facilitates weight control. Moreover, obesity is characterized by chronic low-grade systemic inflammation and is closely linked to numerous metabolic disorders, including the highly prevalent Diabetes Mellitus. This connection is largely attributable to obesity's profound impact on hormonal regulation, particularly in the development of insulin resistance. For individuals who are unable to manage their weight through conventional means, bariatric surgery may be considered in advanced cases. However, post-surgical care—comprising proper dietary management and regular physical exercise—is essential for achieving and maintaining favorable outcomes. In this literature review, recent articles from the past 5 years examining the benefits of physical exercise on obesity were analyzed. The findings reveal that different modalities of physical exercise influence weight loss, adipose tissue reduction, body composition, metabolism, physical capacity, cardiorespiratory function, insulin regulation, inflammation, psychological adaptations, hormonal balance, gut microbiota, as well as factors related to pregnancy and aging. Notably, the benefits derived from physical exercise vary according to the specific type of activity performed. Consequently, when prescribing an exercise regimen, it is crucial to align the program with the individual's specific therapeutic objectives.

KEYWORDS

bariatric surgery, diet control, lifestyle modifications, high intensity interval training, obesity

Highlights

- What is already known on this topic:** Obesity is a complex global health issue that significantly increases the risks of debilitating diseases. While exercise and nutrition modifications remain integral to mitigating negative health impacts, finding scalable personalized solutions has proved challenging.
- What this study adds:** Here we synthesize recent evidence on how targeted exercise interventions influence metabolic regulation, inflammation, and hormonal signaling, highlighting tailoring approaches to individual health profiles. From brief high-intensity sessions to moderate duration activities, specific modalities demonstrate potential when matched to circumstances.
- How this study might affect research, practice, or policy:** These findings underscore the value of personalized regimens that leverage clinical insights and individual characteristics. With care providers and policymakers better informed on evidence-based strategies, more holistic yet targeted efforts can be developed and scaled to improve outcomes in obesity prevention, management, and community wellbeing.

Introduction

Obesity remains a significant global public health concern, serving as a precursor to numerous chronic diseases (1). To address this issue, various strategies have been implemented, with physical exercise being one of the most promising (2). Despite its benefits, adherence to exercise programs is generally low, particularly among females, older individuals, and those with lower educational levels (3). Lifestyle modifications that include regular physical activity not only offer

substantial clinical benefits for metabolic syndrome but may also yield cost savings by reducing the need for medications (4). Current guidelines recommend at least 300 min of moderate-intensity activity per week for weight loss, with evidence suggesting that a combination of high-intensity aerobic and resistance training produces optimal results (5).

For this updated review, we conducted a literature search using the PubMed database. Inclusion criteria were studies published between 2019 and 2024 focusing on the effects of physical exercise on overall health and obesity, conducted in human populations, and categorized as randomized controlled trials (RCTs), systematic reviews, or meta-analyses. Figure 1 summarizes the benefits of engaging in physical exercise.

Weight loss through caloric restriction

Caloric restriction, while capable of producing initial weight loss, often results in a reduction of lean mass and strength—particularly among older adults (>65 years)—making it an insufficient stand-alone strategy (6). Multiple studies have examined the role of exercise in enhancing weight loss and preventing weight regain. For example, Berge et al. (2021) compared moderate-intensity continuous training (MICT) with a combination of MICT and high-intensity interval training (HIIT) over 24 weeks in obese women. The combined MICT/HIIT group lost an additional 3 kg compared to the MICT-only group, despite similar exercise energy expenditures (7). Similarly, circuit training effectively reduced BMI in obese individuals, although similar benefits were not observed in those with normal weight (8).

Following bariatric surgery, weight regain is a common challenge. Postoperative exercise can mitigate this by reducing fat mass, blood

RESISTANCE TRAINING		MICT	
↓weight ↓fat mass Better body composition ↑lean mass Better preserving muscle mass ↑muscle quality ↑physical performance ↓bone loss Better hormones regulation Better microbiota profile ↑cardiometabolic biomarkers	↑insulin sensitivity and homeostasis ↑glucose tolerance ↓postprandial plasma triglycerides ↑musculoskeletal fitness ↑muscle strength ↑physical function Prevention of sarcopenic obesity ↓mortality risk ↑functional capacity ↑endothelial function	↓weight ↑cardiometabolic health ↓blood pressure	
AEROBIC EXERCISE		HIIT	
↓visceral adipose tissue ↓waist circumference ↓cholesterol levels ↓LDL levels ↑insulin sensitivity ↓inflammatory markers ↓body fat Better body composition ↑FGF21	↑glycemic control ↑VO2 max ↑endothelial function Better hormones regulation ↑musculoskeletal fitness ↑cardiorespiratory fitness ↓intra-abdominal fat ↑cardiometabolic biomarkers	↓fat mass ↑cardiorespiratory fitness ↑muscle mass ↓glucose levels ↓testosterone levels (women) ↓visceral adipose tissue ↓hepatic fat ↑metabolic health Better body composition ↓BMI ↑cell mass ↑glycemic control ↓fasting insulin levels	↓heart rate ↓blood pressure Better lipid profile ↑metabolism ↑fat oxidation ↑VO2 max ↑physical function ↓inflammatory markers ↓obstructive sleep apnea ↓mortality ↓cardiovascular disease ↓arterial stiffness

FIGURE 1
Multifaceted effects of physical exercise.

glucose, and cholesterol levels (9). While early resistance training may not significantly improve long-term muscle strength, increasing moderate-intensity physical activity is essential for weight maintenance (10). A strong association exists between engaging in moderate to vigorous physical activity (at least 150 min per week) and the prevention of weight gain, though more evidence is needed to evaluate the efficacy of light-intensity activity (11). Moreover, interventions that integrate exercise with dietary changes—such as combining strength/resistance training with a personalized hypocaloric diet—have demonstrated superior effectiveness in managing obesity in adults (12).

Among pregnant women with obesity, physical activity has been shown to limit excessive gestational weight gain (13). Factors such as being male, older in age, cardiometabolic comorbidities, and dietary fat intake also influence weight loss success (14). Short-term programs that combine exercise with nutritional interventions have proven effective for obese adults, and post-weight loss strategies emphasizing physical training with adequate protein, calcium, and vitamin D intake help prevent weight regain (15, 16).

Although exercise interventions favorably impact weight, BMI, and visceral adipose tissue (VAT), exercise alone often produces less weight loss than anticipated—possibly due to compensatory increases in energy intake (17, 18). In some cases, incorporating severe energy restriction into dietary interventions enhances the effectiveness of exercise in reducing body weight (19). Combined interventions (diet plus physical activity) have shown similar weight loss outcomes with reduced weight regain compared to traditional aerobic exercise alone (20). Additionally, while both morning and evening exercise sessions can promote weight loss, improvements in VO_2 peak are achieved regardless of exercise timing, with no clear optimal time identified (21).

Effects on adipose tissue

HIIT has consistently been shown to induce fat loss and improve cardiorespiratory fitness in obese women. For instance, HIIT combined with caffeine supplementation reduced body fat percentage and improved metabolic parameters in women with over 40% body fat (22). Similar benefits were observed in older obese individuals, with progressive HIIT reducing both fat mass and VAT while increasing lean mass (23). Likewise, resistance training paired with a hypocaloric diet effectively reduced overall body weight and fat mass (24). Combining moderate-intensity aerobic exercise with resistance training and HIIT appears to be more effective in reducing VAT than any single modality (25), and regular aerobic exercise alone has been associated with significant reductions in waist circumference (26).

Interventions that merge exercise with dietary modifications generally yield greater improvements in lipid profiles and VAT reduction than either approach alone (27). Although time-restricted eating reduces body weight, it may adversely affect blood lipid levels and lean tissue mass (28). Other strategies, such as combining taurine supplementation with exercise has been shown to boost lipid oxidation and mitochondrial function, potentially inducing ‘browning’ of subcutaneous adipose tissue in obese women (29). In addition, employing blood flow restriction (BFR) during HIIT sessions can further enhance VAT reduction and improve glucose metabolism, likely due to elevated lipolytic hormone levels (30).

Physical exercise and low-calorie diets create an energy deficit that influences both visceral and subcutaneous fat. For every 1 kg of total fat lost, there is an approximate reduction of 10 cm² in abdominal subcutaneous fat (31). Even walking, independent of other interventions, has been shown to improve lipid profiles by reducing total cholesterol, LDL, and triglycerides, while increasing HDL (32). Furthermore, HIIT has proven effective in reducing hepatic fat and enhancing metabolic health in obese adults, even without significant weight loss (33), although VAT reduction via HIIT at 90% VO_2 peak may be insensitive to changes in training intensity (34). Vigorous physical activity uniquely reduces cardiac adipose tissue volume (35), and when combined with caloric restriction, exercise exhibits a dose-response effect on VAT reduction—unlike caloric restriction alone (36). Moderate-intensity aerobic exercise has been shown to effectively reduce total cholesterol and LDL, whereas high-intensity exercise may significantly lower adiponectin levels in middle-aged women with obesity (37).

Modifications in body composition

Recent studies indicate that resistance and strength training have positive effects on body composition, with combined exercise strategies outperforming isolated interventions (38). For example, Chiang et al. (2019) compared a 12,000-steps-per-day regimen with a combination of walking and moderate-intensity training over 8 weeks in college students with obesity; the combined approach was more effective in improving body composition and metabolic syndrome parameters (39). Stair climbing exercises, performed three times weekly over 12 weeks, have similarly improved insulin sensitivity and reduced inflammatory markers in obese women (40). Additionally, combining physical exercise with intermittent fasting has shown enhanced benefits on body composition and cardiometabolic health, although the effects on cardiometabolic markers may not differ significantly from exercise alone (41).

HIIT has also been highlighted for its significant impact on body composition. A 4-week HIIT program among obese university students resulted in notable improvements, including reduced BMI, decreased body fat percentage, and increased lean and skeletal muscle mass (42). High-intensity physical activity is generally more effective than moderate-intensity exercise in reducing body fat and increasing muscle mass, particularly when combined with a hypocaloric diet (43, 44). Studies suggest that both low- and high-intensity aerobic and anaerobic training reduce body fat while increasing lean body mass and $VO_{2\max}$ (45). Resistance training, especially when combined with caloric restriction, is particularly effective in reducing fat mass and preserving muscle mass—benefits that are more pronounced in younger adults (46–48). In a study conducted in men, combined strength and resistance training was shown to confer long-term benefits in maintaining lower body fat levels (49).

For individuals undergoing bariatric surgery, combining diet with resistance training can help preserve muscle mass and improve muscle quality (50). In sarcopenic obesity, resistance training is crucial for enhancing physical performance (51). When paired with time-restricted eating or supplementation (e.g., astaxanthin), physical training can further reduce fat mass and improve metabolic profiles (52, 53). Additionally, integrating HIIT with intermittent fasting may lead to superior reductions in body mass compared to HIIT alone

(54). Post-bariatric surgery, physical training can restore muscle strength and improve muscle structure and function, closely approximating the condition of lean, healthy individuals (55). In a study conducted in women, exercise was also shown to play a key role in mitigating bone loss after bariatric surgery by suppressing bone turnover and reducing sclerostin levels, which is critical for preserving bone mineral density (56). Furthermore, resistance training combined with omega-3 polyunsaturated fatty acid supplementation has shown benefits on muscle function, body composition, and cardiometabolic profiles, particularly in postmenopausal women (57).

Modifications in metabolic regulation

Obesity is closely linked with metabolic disorders such as type 2 diabetes and cardiovascular diseases. Elevated chemerin levels, which contribute to these disorders, are significantly reduced following physical training—a change that correlates with decreases in body fat percentage (58). Exercise also influences Fibroblast Growth Factor 21 (FGF21), with acute bouts increasing circulating levels and chronic programs enhancing FGF receptor expression in key tissues (59). In obese adolescents, a 6-month supervised exercise program has been shown to reduce low-grade systemic inflammation, which may help prevent metabolic diseases (60). Moreover, physical training reduces postprandial glucose and insulinemia in adults with obesity, irrespective of age or baseline glucose levels (61). HIIT and resistance exercises have similarly demonstrated improvements in postprandial lipid oxidation, glucose metabolism, and insulin sensitivity (62–64). Interval training, in particular, appears to produce superior improvements in peak VO_2 and fat oxidation compared to continuous exercise (65, 66). In postmenopausal women and older obese adults, regular physical activity significantly improves multiple risk factors for metabolic syndrome and reduces overall cardiometabolic risk (67, 68). Even short bouts of walking before peak postprandial glucose levels can lower glucose, insulin, and C-peptide concentrations (69).

Extended exercise programs (≥ 12 weeks) may slightly increase fasting hunger, a factor that should be considered when designing interventions to prevent compensatory energy intake (70). Liver-expressed antimicrobial peptide-2 (LEAP-2) has emerged as a key regulator of energy balance and glucose metabolism. Initially identified in 2003 as an endogenous antagonist of the acylated ghrelin receptor, LEAP-2 inhibits ghrelin binding to its growth hormone secretagogue receptor (GHSR). Subsequent studies have demonstrated that exogenous LEAP-2 infusion acts as a satiety signal, reducing food intake and lowering plasma glucose levels in humans (71). Collectively, these findings suggest that LEAP-2 plays a pivotal role in appetite regulation and may represent a potential therapeutic target for obesity. Furthermore, alterations in LEAP-2 levels following interventions combining caloric restriction and intermittent exercise have been associated with decreased food cravings and improved aerobic capacity in women with obesity (72).

Improvements in physical functionality

Hybrid and multicomponent interval training programs have been shown to improve musculoskeletal fitness in overweight adults

in a dose-dependent manner (73). Resistance training significantly enhances muscle strength and, to a moderate degree, overall physical function, although concurrent caloric restriction might blunt some functional adaptations (74). Obesity adversely affects gait parameters—increasing the risk of falls—while combining exercise with caloric restriction yields improvements in walking speed, particularly in older adults (75, 76). Exercise interventions effectively reduce pain and improve physical function in individuals with obesity-related knee osteoarthritis, thereby enhancing overall quality of life (77). These benefits occur through multiple mechanisms, including weight reduction, increased muscle strength and joint stability, decreased systemic and local inflammation, and improved mobility. Furthermore, regular physical activity promotes gains in lean muscle mass, muscle power, physical function, and balance. Weight loss achieved through exercise also contributes to a sustained reduction in joint pain (77, 78).

Effects on the cardiovascular and respiratory systems

Low-volume HIIT has demonstrated significant improvements in cardiorespiratory capacity, even though changes in total body fat or lean mass may not differ significantly from those observed in non-exercising or MICT groups (79). HIIT typically produces moderate reductions in both central and peripheral blood pressure, whereas MICT tends to improve only peripheral measures (80). Short intervals (e.g., 30-s HIIT bouts) have been shown to improve systolic blood pressure, maximal heart rate, and inflammatory markers such as CRP in obese youth (81). Low-volume HIIT protocols can also induce significant improvements in $\text{VO}_{2\text{max}}$ and overall well-being over a 12-week period (82).

In adults, aerobic exercise appears to be more effective at enhancing cardiorespiratory fitness and body weight regulation, while low-load resistance training more effectively reduces body adiposity (83). Combining exercise with a low-carbohydrate diet improves cardiometabolic profiles, although it may result in greater muscle mass loss (84). Conversely, a calorie-restricted diet combined with interval training has been associated with improvements in arterial stiffness, peak VO_2 , and HDL levels (85). Regular physical activity also prevents gestational hypertension and supports cardiovascular health in overweight pregnant women (86). Improvements in endothelial function and flow-mediated dilation following aerobic exercise further contribute to reducing coronary artery disease risk in obese individuals (87). For postmenopausal women, moderate walking programs have been shown to reduce inflammatory markers and adiposity, thereby contributing to cardiovascular disease prevention (88). Additionally, patients with severe obesity exhibit notable improvements in cardiorespiratory fitness following exercise interventions post-bariatric surgery (89). Genetic factors, such as variants of the $\beta 2$ -adrenergic receptor (ADRB2), may interact with aerobic training to enhance cardiac autonomic function and other health outcomes in obesity (90). Finally, HIIT has been shown to reduce cardiovascular risk factors—such as blood pressure, arterial stiffness, and lipid abnormalities—in hypertensive obese women. Moreover, performing HIIT in hypoxic environments (e.g., simulated altitude) may offer additional improvements, potentially by enhancing vascular adaptation, endothelial function, and oxygen utilization efficiency (91, 92).

Regulation of insulin levels

Obesity is strongly associated with insulin resistance and the development of type 2 diabetes. Studies consistently demonstrate that combined physical exercise and dietary interventions are more effective at improving insulin resistance and fasting glucose levels than either strategy alone (93). Regular, rather than sporadic, exercise improves insulin sensitivity (94). In obese men with prediabetes, aerobic training before a mixed meal test has been shown to reduce postprandial glucose appearance and plasma insulin levels (95). Similarly, concurrent resistance and aerobic training, particularly when combined with caloric restriction, significantly enhances insulin sensitivity in premenopausal obese women (96). HIIT has also been identified as an effective strategy for reducing fasting insulin levels and HOMA-IR in obese men following a 12-week program (97).

Effect on obesity-associated inflammation

Obesity is characterized by chronic low-grade systemic inflammation. Various exercise modalities—including HIIT, aerobic, and combined regimens—have been shown to reduce inflammatory biomarkers such as TLR-4, IL-1 β , IL-18, CRP, IL-6, leptin, and TNF- α . These anti-inflammatory effects are often correlated with improvements in aerobic capacity and are particularly pronounced in populations with elevated BMI (98–100).

Effect on hormone regulation

Physical exercise modulates key hormones involved in hunger and energy homeostasis. Different exercise modalities affect ghrelin levels in distinct ways; for example, circuit and interval resistance training appear to better regulate ghrelin and other obesity-related hormones compared to traditional resistance training (101). Combining a hypocaloric diet with interval exercise has been shown to suppress acyl ghrelin and reduce hunger perceptions in obese women (102). In addition, continuous exercise may enhance postprandial responses of hormones such as GLP-1 and PYY, while dietary interventions more effectively modulate leptin and adiponectin levels compared to exercise alone (103). Exercise also influences sex hormone levels; in adolescents, regular exercise has been associated with increased adiponectin, decreased resistin, and a reduced rate of pubertal progression—effects that are reversed upon detraining (104).

Effects on the microbiota

Emerging evidence suggests that physical exercise positively modulates gut microbiota diversity, an important factor in metabolic health. Exercise increases the abundance of beneficial bacteria such as *Bifidobacteriaceae*, *Bacteroides*, and *Akkermansia*, while reducing *Proteobacteria*—organisms linked to obesity and type 2 diabetes (105). Resistance training, for example, has been associated with an increased abundance of *Roseburia*, a key producer of short-chain fatty acids, which are critical for gut health (106).

Conclusion

Collectively, recent research underscores that physical exercise—whether as a stand-alone intervention or in combination with dietary modifications—produces robust benefits for weight management, body composition, metabolic regulation, cardiovascular health, and inflammation in obese individuals. Future studies should continue to refine exercise prescriptions tailored to different populations and examine the long-term sustainability of these interventions.

Author contributions

SZ: Data curation, Resources, Writing – original draft, Conceptualization. IXL: Writing – original draft, Investigation, Data curation, Formal analysis, Methodology, Conceptualization, Visualization. SVD: Data curation, Project administration, Writing – review & editing. LS: Resources, Investigation, Writing – review & editing, Conceptualization. AH: Writing – review & editing, Conceptualization, Validation. KA: Supervision, Writing – review & editing, Visualization. QC: Project administration, Writing – original draft, Visualization, Supervision, Validation, Resources, Conceptualization.

Funding

The author(s) declared that financial support was not received for this work and/or its publication.

Conflict of interest

The author(s) declared that this work was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declared that Generative AI was not used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- Yuan, L, Ni, J, Lu, W, Yan, Q, Wan, X, and Li, Z. Association between domain-specific sedentary behaviour and endometrial cancer: a systematic review and meta-analysis. *BMJ Open*. (2023) 13:e069042. doi: 10.1136/bmjjopen-2022-069042
- Isenmann, E, Dissemont, J, and Geisler, S. The effects of a macronutrient-based diet and time-restricted feeding (16:8) on body composition in physically active individuals-a 14-week randomised controlled trial. *Nutrients*. (2021) 13:3122. doi: 10.3390/nu13093122
- Garcia-Hermoso, A, López-Gil, JF, Ramírez-Vélez, R, Alonso-Martínez, AM, Izquierdo, M, and Ezzatvar, Y. Adherence to aerobic and muscle-strengthening activities guidelines: a systematic review and meta-analysis of 3.3 million participants across 32 countries. *Br J Sports Med*. (2023) 57:225–9. doi: 10.1136/bjsports-2022-106189
- Morales-Palomo, F, Moreno-Cabañas, A, Alvarez-Jimenez, L, Ortega, JF, and Mora-Rodríguez, R. Effect of yearly exercise on medication expense and benefit-cost ratio in individuals with metabolic syndrome: a randomized clinical trial. *Med Sci Sports Exerc*. (2023) 55:158–66. doi: 10.1249/MSS.00000000000003053
- O'Donoghue, G, Blake, C, Cunningham, C, Lennon, O, and Perrotta, C. What exercise prescription is optimal to improve body composition and cardiorespiratory fitness in adults living with obesity? A network meta-analysis. *Obes Rev*. (2021) 22:e13137. doi: 10.1111/obr.13137
- Brennan, AM, Standley, RA, Anthony, SJ, Grench, KE, Helbling, NL, DeLany, JP, et al. Weight loss and exercise differentially affect insulin sensitivity, body composition, cardiorespiratory fitness, and muscle strength in older adults with obesity: a randomized controlled trial. *J Gerontol A Biol Sci Med Sci*. (2022) 77:1088–97. doi: 10.1093/gerona/glab240
- Berge, J, Hjelmesaeth, J, Hertel, JK, Gjeverstad, E, Småstuen, MC, Johnson, LK, et al. Effect of aerobic exercise intensity on energy expenditure and weight loss in severe obesity-a randomized controlled trial. *Obesity*. (2021) 29:359–69. doi: 10.1002/oby.23078
- Seo, YG, Noh, HM, and Kim, SY. Weight loss effects of circuit training interventions: a systematic review and meta-analysis. *Obes Rev*. (2019) 20:1642–50. doi: 10.1111/obr.12911
- Marc-Hernández, A, Ruiz-Tovar, J, Aracil, A, Guillén, S, and Moya-Ramón, M. Effects of a high-intensity exercise program on weight regain and cardio-metabolic profile after 3 years of bariatric surgery: a randomized trial. *Sci Rep*. (2020) 10:3123. doi: 10.1038/s41598-020-60044-z
- Bellchica, A, Ciangura, C, Roda, C, Torcivia, A, Aron-Wisnewsky, J, and Poitou, C. Effect of exercise training after bariatric surgery: a 5-year follow-up study of a randomized controlled trial. *PLoS One*. (2022) 17:e0271561. doi: 10.1371/journal.pone.0271561
- Jakicic, JM, Powell, KE, Campbell, WW, Dipietro, L, Pate, RR, and Pescatello, LS. Physical activity and the prevention of weight gain in adults: a systematic review. *Med Sci Sports Exerc*. (2019) 51:1262–9. doi: 10.1249/MSS.0000000000001938
- Olateju, IV, Opaleye-Enakhimion, T, Udeogu, JE, Asuquo, J, Olaleye, KT, and Osa, E. A systematic review on the effectiveness of diet and exercise in the management of obesity. *Diabetes Metabolic Syndrome*. (2023) 17:102759. doi: 10.1016/j.dsx.2023.102759
- Downs, DS, Savage, JS, Rivera, DE, Pauley, AM, Leonard, KS, and Hohman, EE. Adaptive, behavioral intervention impact on weight gain, physical activity, energy intake, and motivational determinants: results of a feasibility trial in pregnant women with overweight/obesity. *J Behav Med*. (2021) 44:605–21. doi: 10.1007/s10865-021-00227-9
- Chopra, S, Malhotra, A, Ranjan, P, Vikram, NK, Sarkar, S, Siddhu, A, et al. Predictors of successful weight loss outcomes amongst individuals with obesity undergoing lifestyle interventions: a systematic review. *Obes Rev*. (2021) 22:e13148. doi: 10.1111/obr.13148
- Rotunda, W, Rains, C, Jacobs, SR, Ng, V, Lee, R, and Rutledge, S. Weight loss in short-term interventions for physical activity and nutrition among adults with overweight or obesity: a systematic review and Meta-analysis. *Prev Chronic Dis*. (2024) 21:E21. doi: 10.5888/pcd21.230347
- Roth, A, Sattelmayer, M, Schorderet, C, Gafner, S, and Aller, L. Effects of exercise training and dietary supplement on fat free mass and bone mass density during weight loss - a systematic review and meta-analysis. *F1000Res*. (2022) 11:8. doi: 10.12688/f1000research.755393
- Lee, HS, and Lee, J. Effects of exercise interventions on weight, body mass index, lean body mass and accumulated visceral fat in overweight and obese individuals: a systematic review and Meta-analysis of randomized controlled trials. *Int J Environ Res Public Health*. (2021) 18:2635. doi: 10.3390/ijerph18052635
- Broskey, NT, Martin, CK, Burton, JH, Church, TS, Ravussin, E, and Redman, LM. Effect of aerobic exercise-induced weight loss on the components of daily energy expenditure. *Med Sci Sports Exerc*. (2021) 53:2164–72. doi: 10.1249/MSS.0000000000002689
- Jin, X, Gibson, AA, Salis, Z, Seimon, RV, Harper, C, and Markovic, TP. Effect of severe compared with moderate energy restriction on physical activity among postmenopausal female adults with obesity: a prespecified secondary analysis of the type of energy manipulation for promoting optimum metabolic health and body composition in obesity (TEMPO) diet randomized controlled trial. *Am J Clin Nutr*. (2022) 115:1393–403. doi: 10.1093/ajcn/nqac024
- Fanning, J, Rejeski, WJ, Leng, I, Barnett, C, Lovato, JF, and Lyles, MF. Intervening on exercise and daylong movement for weight loss maintenance in older adults: a randomized, clinical trial. *Obesity (Silver Spring, Md)*. (2022) 30:85–95. doi: 10.1002/oby.23318
- Brooker, PG, Gomersall, SR, King, NA, and Leveritt, MD. The efficacy of morning versus evening exercise for weight loss: a randomized controlled trial. *Obesity (Silver Spring, Md)*. (2023) 31:83–95. doi: 10.1002/oby.23605
- Alkhatib, A, Hsieh, MJ, Kuo, CH, and Hou, CW. Caffeine optimizes HIIT benefits on obesity-associated metabolic adversity in women. *Med Sci Sports Exerc*. (2020) 52:1793–800. doi: 10.1249/MSS.0000000000002311
- Ballin, M, Lundberg, E, Sörlén, N, Nordström, P, Hult, A, and Nordström, A. Effects of interval training on visceral adipose tissue in centrally obese 70-year-old individuals: a randomized controlled trial. *J Am Geriatr Soc*. (2019) 67:1625–31. doi: 10.1111/jgs.15919
- Benito, PJ, López-Plaza, B, Bermejo, LM, Peinado, AB, Cupeiro, R, and Butragueño, J. Strength plus endurance training and individualized diet reduce fat mass in overweight subjects: a randomized clinical trial. *Int J Environ Res Public Health*. (2020) 17:2596. doi: 10.3390/ijerph17072596
- Chen, X, He, H, Xie, K, Zhang, L, and Cao, C. Effects of various exercise types on visceral adipose tissue in individuals with overweight and obesity: a systematic review and network meta-analysis of 84 randomized controlled trials. *Obes Rev*. (2024) 25:e13666. doi: 10.1111/obr.13666
- Armstrong, A, Jungbluth Rodriguez, K, Sabag, A, Mavros, Y, Parker, HM, and Keating, SE. Effect of aerobic exercise on waist circumference in adults with overweight or obesity: a systematic review and meta-analysis. *Obes Rev*. (2022) 23:e13446. doi: 10.1111/obr.13446
- Khalafi, M, Sakhaei, MH, Kazeminasab, F, Rosenkranz, SK, and Symonds, ME. Exercise training, dietary intervention, or combined interventions and their effects on lipid profiles in adults with overweight and obesity: a systematic review and meta-analysis of randomized clinical trials. *Nutr Metab Cardiovasc Dis*. (2023) 33:1662–83. doi: 10.1016/j.numecd.2023.05.024
- Liu, H, Chen, S, Ji, H, and Dai, Z. Effects of time-restricted feeding and walking exercise on the physical health of female college students with hidden obesity: a randomized trial. *Front Public Health*. (2023) 11:1020887. doi: 10.3389/fpubh.2023.1020887
- De Carvalho, FG, Brando, CFC, Batitucci, G, Souza, AO, Ferrari, GD, Alberici, LC, et al. Taurine supplementation associated with exercise increases mitochondrial activity and fatty acid oxidation gene expression in the subcutaneous white adipose tissue of obese women. *Clin Nutrition (Edinburgh, Scotland)*. (2021) 40:2180–7. doi: 10.1016/j.clnu.2020.09.044
- Li, S, Guo, R, Yu, T, Li, S, Han, T, and Yu, W. Effect of high-intensity interval training combined with blood flow restriction at different phases on abdominal visceral fat among obese adults: a randomized controlled trial. *Int J Environ Res Public Health*. (2022) 19:11936. doi: 10.3390/ijerph19111936
- Abe, T, Song, JS, Bell, ZW, Wong, V, Spitz, RW, and Yamada, Y. Comparisons of caloric restriction and structured exercise on reductions in visceral and abdominal subcutaneous adipose tissue: a systematic review. *Eur J Clin Nutr*. (2022) 76:184–95. doi: 10.1038/s41430-021-00942-1
- Ballard, AM, Davis, A, Wong, B, Lyn, R, and Thompson, WR. The effects of exclusive walking on lipids and lipoproteins in women with overweight and obesity: a systematic review and Meta-analysis. *American J Health Promotion: AJHP*. (2022) 36:328–39. doi: 10.1177/08901171211048135
- Khalafi, M, and Symonds, ME. The impact of high intensity interval training on liver fat content in overweight or obese adults: a meta-analysis. *Physiol Behav*. (2021) 236:113416. doi: 10.1016/j.physbeh.2021.113416
- Zhang, H, Tong, TK, Kong, Z, Shi, Q, Liu, Y, and Nie, J. Exercise training-induced visceral fat loss in obese women: the role of training intensity and modality. *Scand J Med Sci Sports*. (2021) 31:30–43. doi: 10.1111/sms.13803
- Thapa, S, Selvaraj, BS, Davis, PN, Smith, B, Givan, AH, and Perez-Rivera, JA. Vigorous-intensity exercise as a modulator of cardiac adipose tissue in women with obesity: a cross-sectional and randomized pilot study. *Front Endocrinol*. (2023) 14:1104441. doi: 10.3389/fendo.2023.1104441
- Recchia, F, Leung, CK, Yu, AP, Leung, W, Yu, DJ, and Fong, DY. Dose-response effects of exercise and caloric restriction on visceral adiposity in overweight and obese adults: a systematic review and meta-analysis of randomised controlled trials. *Br J Sports Med*. (2023) 57:1035–41. doi: 10.1136/bjsports-2022-106304
- Oh, DH, and Lee, JK. Effect of different intensities of aerobic exercise combined with resistance exercise on body fat, lipid profiles, and Adipokines in middle-aged women with obesity. *Int J Environ Res Public Health*. (2023) 20:3991. doi: 10.3390/ijerph20053991
- Jamka, M, Mądry, E, Krzyżanowska-Jankowska, P, Skrypnik, D, Szulińska, M, and Mądry, R. The effect of endurance and endurance-strength training on body composition

and cardiometabolic markers in abdominally obese women: a randomised trial. *Sci Rep.* (2021) 11:12339. doi: 10.1038/s41598-021-90526-7

39. Chiang, TL, Chen, C, Hsu, CH, Lin, YC, and Wu, HJ. Is the goal of 12,000 steps per day sufficient for improving body composition and metabolic syndrome? The necessity of combining exercise intensity: a randomized controlled trial. *BMC Public Health.* (2019) 19:1215. doi: 10.1186/s12889-019-7554-y

40. Chow, BC, Li, S, Zhu, X, Jiao, J, Quach, B, and Baker, JS. Effects of descending or ascending stair exercise on body composition, insulin sensitivity, and inflammatory markers in young Chinese women with obesity: a randomized controlled trial. *J Sports Sci.* (2021) 39:496–502. doi: 10.1080/02640414.2020.1829362

41. Khalafi, M, Symonds, ME, Maleki, AH, Sakhaei, MH, Ehsanifar, M, and Rosenkranz, SK. Combined versus independent effects of exercise training and intermittent fasting on body composition and cardiometabolic health in adults: a systematic review and meta-analysis. *Nutr J.* (2024) 23:7. doi: 10.1186/s12937-023-00909-x

42. Hu, J, Liu, M, Yang, R, Wang, L, Liang, L, and Yang, Y. Effects of high-intensity interval training on improving arterial stiffness in Chinese female university students with normal weight obese: a pilot randomized controlled trial. *J Transl Med.* (2022) 20:60. doi: 10.1186/s12967-022-03250-9

43. Hernández-Reyes, A, Cámará-Martos, F, Molina-Luque, R, Romero-Saldaña, M, Molina-Recio, G, and Moreno-Rojas, R. Changes in body composition with a hypocaloric diet combined with sedentary, moderate and high-intense physical activity: a randomized controlled trial. *BMC Womens Health.* (2019) 19:167. doi: 10.1186/s12905-019-0864-5

44. Morze, J, Rücker, G, Danielewicz, A, Przybylowicz, K, Neuenschwander, M, Schlesinger, S, et al. Impact of different training modalities on anthropometric outcomes in patients with obesity: a systematic review and network meta-analysis. *Obes Rev.* (2021) 22:e13218. doi: 10.1111/obr.13218

45. Zouhal, H, Ben Abderrahman, A, Khodamoradi, A, Saeidi, A, Jayavel, A, Hackney, AC, et al. Effects of physical training on anthropometrics, physical and physiological capacities in individuals with obesity: a systematic review. *Obes Rev.* (2020) 21:e13039. doi: 10.1111/obr.13039

46. Lopez, P, Radaelli, R, Taaffe, DR, Galvão, DA, Newton, RU, and Nonemacher, ER. Moderators of resistance training effects in overweight and obese adults: a systematic review and meta-analysis. *Med Sci Sports Exerc.* (2022) 54:1804–16. doi: 10.1249/MSS.0000000000002984

47. Miazgowski, T, Kaczmarkiewicz, A, Miazgowski, B, and Kopeć, J. Cardiometabolic health, visceral fat and circulating irisin levels: results from a real-world weight loss study. *J Endocrinol Investig.* (2021) 44:1243–52. doi: 10.1007/s40618-020-01415-1

48. Xue, Q, Li, X, Ma, H, Tao, Z, Heianza, Y, and Rood, JC. Changes in pedometer-measured physical activity are associated with weight loss and changes in body composition and fat distribution in response to reduced-energy diet interventions: the POUNDS lost trial. *Diabetes Obes Metab.* (2022) 24:1000–9. doi: 10.1111/dom.14662

49. Rojo-Tirado, MA, Benito, PJ, Ruiz, JR, Ortega, FB, Romero-Moraleda, B, and Butragueño, J. Body composition changes after a weight loss intervention: a 3-year follow-up study. *Nutrients.* (2021) 13:164. doi: 10.3390/nu13010164

50. Greco, F, Tarsitano, MG, Cosco, LF, Quinzi, F, Folino, K, Spadafora, M, et al. The effects of online home-based Pilates combined with diet on body composition in women affected by obesity: a preliminary study. *Nutrients.* (2024) 16:902. doi: 10.3390/nu16060902

51. Ghiotto, L, Muollo, V, Tatangelo, T, Schena, F, and Rossi, AP. Exercise and physical performance in older adults with sarcopenic obesity: a systematic review. *Front Endocrinol.* (2022) 13:913953. doi: 10.3389/fendo.2022.913953

52. Kotarsky, CJ, Johnson, NR, Mahoney, SJ, Mitchell, SL, Schimek, RL, and Stastny, SN. Time-restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. *Phys Rep.* (2021) 9:e14868. doi: 10.1481/phy2.14868

53. Saeidi, A, Nouri-Habashi, A, Razi, O, Ataeinosrat, A, Rahmani, H, and Mollabashi, SS. Astaxanthin supplemented with high-intensity functional training decreases Adipokines levels and cardiovascular risk factors in men with obesity. *Nutrients.* (2023) 15:286. doi: 10.3390/nu15020286

54. Guo, Z, Cai, J, Wu, Z, and Gong, W. Effect of high-intensity interval training combined with fasting in the treatment of overweight and obese adults: a systematic review and Meta-analysis. *Int J Environ Res Public Health.* (2022) 19:4638. doi: 10.3390/ijerph19084638

55. Gil, S, Kirwan, JP, Murai, IH, Dantas, WS, Merege-Filho, CAA, and Ghosh, S. A randomized clinical trial on the effects of exercise on muscle remodelling following bariatric surgery. *J Cachexia Sarcopenia Muscle.* (2021) 12:1440–55. doi: 10.1002/jcsm.12815

56. Murai, IH, Roschel, H, Dantas, WS, Gil, S, Merege-Filho, C, and de Cleva, R. Exercise mitigates bone loss in women with severe obesity after roux-en-Y gastric bypass: a randomized controlled trial. *J Clin Endocrinol Metab.* (2019) 104:4639–50. doi: 10.1210/jc.2019-00074

57. Félix-Soriano, E, Martínez-Gayo, A, Cobo, MJ, Pérez-Chávez, A, Ibáñez-Santos, J, and Palacios Samper, N. Effects of DHA-rich n-3 fatty acid supplementation and/or resistance training on body composition and Cardiometabolic biomarkers in overweight and obese post-menopausal women. *Nutrients.* (2021) 13:2465. doi: 10.3390/nu13072465

58. Ashtary-Larky, D, Lamuchi-Deli, N, Kashkooli, S, Mombaini, D, Alipour, M, and Khodadadi, F. The effects of exercise training on serum concentrations of chemerin in individuals with overweight and obesity: a systematic review, meta-analysis, and meta-regression of 43 clinical trials. *Arch Physiol Biochem.* (2023) 129:1012–27. doi: 10.1080/13813455.2021.1892148

59. Porlitt-Rodríguez, M, Guzmán-Arriagada, V, Sandoval-Valderrama, R, Tam, CS, Pavicic, F, and Ehrenfeld, P. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. *Metab Clin Exp.* (2022) 129:155137. doi: 10.1016/j.metabol.2022.155137

60. Ramírez-Vélez, R, García-Hermoso, A, Correa-Rodríguez, M, Fernández-Irigoyen, J, Palomino-Echeverría, S, and Santamaría, E. Effects of different doses of exercise on inflammation markers among adolescents with overweight/obesity: HEPAFIT study. *J Clin Endocrinol Metab.* (2022) 107:e2619–27. doi: 10.1210/clinem/dgac021

61. Khalafi, M, Symonds, ME, Ghasemi, F, Rosenkranz, SK, Rohani, H, and Sakhaei, MH. The effects of exercise training on postprandial glycemia and insulinemia in adults with overweight or obesity and with cardiometabolic disorders: a systematic review and meta-analysis. *Diabetes Res Clin Pract.* (2023) 201:110741. doi: 10.1016/j.diabres.2023.110741

62. Carrillo-Arango, HA, Atencio-Osorio, MA, López-Álban, CA, Nava-González, EJ, Correa-Rodríguez, M, and Izquierdo, M. Metabolic responses to acute sprint interval exercise training performed after an oral 75-gram glucose load in individuals with overweight/obesity. *Phys Rep.* (2023) 11:e15555. doi: 10.1481/phy2.15555

63. Bittel, AJ, Bittel, DC, Mittendorfer, B, Patterson, BW, Okunade, AL, and Yoshino, J. A single bout of resistance exercise improves postprandial lipid metabolism in overweight/obese men with prediabetes. *Diabetologia.* (2020) 63:611–23. doi: 10.1007/s00125-019-05070-x

64. Jamka, M, Makarewicz-Bukowska, A, Bokayeva, K, Śmidowicz, A, Geltz, J, and Kokot, M. Comparison of the effect of endurance, strength and endurance-strength training on glucose and insulin homeostasis and the lipid profile of overweight and obese subjects: a systematic review and Meta-analysis. *Int J Environ Res Public Health.* (2022) 19:14928. doi: 10.3390/ijerph192214928

65. Gaitán, JM, Eichner, NZM, Gilbertson, NM, Heiston, EM, Weltman, A, and Malin, SK. Two weeks of interval training enhances fat oxidation during exercise in obese adults with prediabetes. *J Sports Sci Med.* (2019) 18:636–44.

66. Vaccari, F, Passaro, A, D'Amuri, A, Sanz, JM, Di Vece, F, Capatti, E, et al. Effects of 3-month high-intensity interval training vs. moderate endurance training and 4-month follow-up on fat metabolism, cardiorespiratory function and mitochondrial respiration in obese adults. *Eur J Appl Physiol.* (2020) 120:1787–803. doi: 10.1007/s00421-020-04409-2

67. Tan, A, Thomas, RL, Campbell, MD, Prior, SL, Bracken, RM, and Churm, R. Effects of exercise training on metabolic syndrome risk factors in post-menopausal women - a systematic review and meta-analysis of randomised controlled trials. *Clin Nutrition (Edinburgh, Scotland).* (2023) 42:337–51. doi: 10.1016/j.clnu.2023.01.008

68. Bragg, AE, Crowe-White, KM, Ellis, AC, Studer, M, Phillips, F, and Samsel, S. Changes in Cardiometabolic risk among older adults with obesity: an ancillary analysis of a randomized controlled trial investigating exercise plus weight maintenance and exercise plus intentional weight loss by caloric restriction. *J Acad Nutr Diet.* (2022) 122:354–62. doi: 10.1016/j.jand.2021.07.009

69. Zhang, X, Wongpinit, W, Sun, F, Sheridan, S, Huang, WYJ, Sit, CHP, et al. Walking initiated 20 minutes before the time of individual postprandial glucose peak reduces the glucose response in young men with overweight or obesity: a randomized crossover study. *J Nutr.* (2021) 151:866–75. doi: 10.1093/jn/nxaa420

70. Beaulieu, K, Blundell, JE, van Baak, MA, Battista, F, Busetto, L, Carraça, EV, et al. Effect of exercise training interventions on energy intake and appetite control in adults with overweight or obesity: a systematic review and meta-analysis. *Obes Rev.* (2021) 22:e13251. doi: 10.1111/obr.13251

71. Lu, X, Huang, L, Huang, Z, Feng, D, Clark, RJ, and Chen, C. LEAP-2: an emerging endogenous ghrelin receptor antagonist in the pathophysiology of obesity. *Front Endocrinol.* (2021) 12:717544. doi: 10.3389/fendo.2021.717544

72. Ragland, TJ, and Malin, SK. Plasma LEAP-2 following a low-calorie diet with or without interval exercise in women with obesity. *Nutrients.* (2023) 15:655. doi: 10.3390/nu15030655

73. Batrakoulis, A, Jamurtas, AZ, Tsimeas, P, Poulios, A, Periviotis, K, and Syrou, N. Hybrid-type, multicomponent interval training upregulates musculoskeletal fitness of adults with overweight and obesity in a volume-dependent manner: a 1-year dose-response randomised controlled trial. *Eur J Sport Sci.* (2023) 23:432–43. doi: 10.1080/17461391.2021.2025434

74. Orange, ST, Madden, LA, and Vince, RV. Resistance training leads to large improvements in strength and moderate improvements in physical function in adults who are overweight or obese: a systematic review. *J Phys.* (2020) 66:214–24. doi: 10.1016/j.jphys.2020.09.009

75. Chardon, M, Barbieri, FA, Penedo, T, Santos, PCR, and Vuillerme, N. A systematic review of the influence of overweight and obesity across the lifespan on obstacle crossing during walking. *Int J Environ Res Public Health.* (2023) 20:5931. doi: 10.3390/ijerph20115931

76. Beavers, DP, Hsieh, KL, Kitzman, DW, Kritchevsky, SB, Messier, SP, and Neiburg, RH. Estimating heterogeneity of physical function treatment response to caloric restriction among older adults with obesity. *PLoS One.* (2022) 17:e0267779. doi: 10.1371/journal.pone.0267779

77. Jurado-Castro, JM, Muñoz-López, M, Ledesma, AS, and Ranchor-Sánchez, A. Effectiveness of exercise in patients with overweight or obesity suffering from knee osteoarthritis: a systematic review and meta-analysis. *Int J Environ Res Public Health*. (2022) 19:10510. doi: 10.3390/ijerph191710510

78. Lawford, BJ, Hall, M, Hinman, RS, Van der Esch, M, Harmer, AR, Spiers, L, et al. Exercise for osteoarthritis of the knee. *Cochrane Database Syst Rev*. (2024) 12:CD004376. doi: 10.1002/14651858.CD004376.pub4

79. Sultana, RN, Sabag, A, Keating, SE, and Johnson, NA. The effect of low-volume high-intensity interval training on body composition and cardiorespiratory fitness: a systematic review and Meta-analysis. *Sports Med (Auckland, NZ)*. (2019) 49:1687–721. doi: 10.1007/s40279-019-01167-w

80. Clark, T, Morey, R, Jones, MD, Marcos, L, Ristov, M, Ram, A, et al. High-intensity interval training for reducing blood pressure: a randomized trial vs. moderate-intensity continuous training in males with overweight or obesity. *Hypertens Res*. (2020) 43:396–403. doi: 10.1038/s41440-019-0392-6

81. Abassi, W, Ouerghi, N, Nikolaidis, PT, Hill, L, Racil, G, and Knechtle, B. Interval training with different intensities in overweight/obese adolescent females. *Int J Sports Med*. (2022) 43:434–43. doi: 10.1055/a-1648-4653

82. Reljic, D, Frenk, F, Herrmann, HJ, Neurath, MF, and Zopf, Y. Low-volume high-intensity interval training improves cardiometabolic health, work ability and well-being in severely obese individuals: a randomized-controlled trial sub-study. *J Transl Med*. (2020) 18:419. doi: 10.1186/s12967-020-02592-6

83. Davis, ME, Blake, C, Perrotta, C, Cunningham, C, and O'Donoghue, G. Impact of training modes on fitness and body composition in women with obesity: a systematic review and meta-analysis. *Obesity (Silver Spring, Md)*. (2022) 30:300–19. doi: 10.1002/ob3.23305

84. Perissiou, M, Borkoles, E, Kobayashi, K, and Polman, R. The effect of an 8 week prescribed exercise and low-carbohydrate diet on cardiorespiratory fitness, body composition and Cardiometabolic risk factors in obese individuals: a randomised controlled trial. *Nutrients*. (2020) 12:482. doi: 10.3390/nu12020482

85. Heiston, EM, Gilbertson, NM, Eichner, NZM, and Malin, SK. A low-calorie diet with or without exercise reduces postprandial aortic waveform in females with obesity. *Med Sci Sports Exerc*. (2021) 53:796–803. doi: 10.1249/MSS.0000000000002515

86. Xie, E, Tao, H, Liu, M, Li, C, and Zhao, Q. The effect of exercise on the prevention of gestational hypertension in obese and overweight pregnant women: an updated meta-analysis. *Front Public Health*. (2022) 10:923161. doi: 10.3389/fpubh.2022.923161

87. Höchsmann, C, Dorling, JL, Apolzan, JW, Johannsen, NM, Hsia, DS, and Church, TS. Effect of different doses of supervised aerobic exercise on heart rate recovery in inactive adults who are overweight or obese: results from E-MECHANIC. *Eur J Appl Physiol*. (2019) 119:2095–103. doi: 10.1007/s00421-019-04198-3

88. Son, WH, Park, HT, Jeon, BH, and Ha, MS. Moderate intensity walking exercises reduce the body mass index and vascular inflammatory factors in postmenopausal women with obesity: a randomized controlled trial. *Sci Rep*. (2023) 13:20172. doi: 10.1038/s41598-023-47403-2

89. Auclair, A, Harvey, J, Leclerc, J, Piché, ME, O'Connor, K, and Nadreau, É. Determinants of cardiorespiratory fitness after bariatric surgery: insights from a randomised controlled trial of a supervised training program. *Can J Cardiol*. (2021) 37:251–9. doi: 10.1016/j.cjca.2020.03.032

90. Rodrigues, JAL, Ferrari, GD, Trapé, ÁA, de Moraes, VN, Gonçalves, TCP, and Tavares, SS. β (2) adrenergic interaction and cardiac autonomic function: effects of aerobic training in overweight/obese individuals. *Eur J Appl Physiol*. (2020) 120:613–24. doi: 10.1007/s00421-020-04301-z

91. Taha, MM, Aneis, YM, Hasarin, ME, Felya, EE, Aldhahi, MI, and Abdeen, HAA. Effect of high intensity interval training on arterial stiffness in obese hypertensive women: a randomized controlled trial. *Eur Rev Med Pharmacol Sci*. (2023) 27:4069–79. doi: 10.26355/eurrev_202305_32314

92. Ghaith, A, Chacaroun, S, Borowik, A, Chatel, L, Doutreleau, S, and Wuyam, B. Hypoxic high-intensity interval training in individuals with overweight and obesity. *Am J Phys Regul Integr Comp Phys*. (2022) 323:R700–9. doi: 10.1152/ajpregu.00049.2022

93. Khalafi, M, Azali Alamdar, K, Symonds, ME, Rohani, H, and Sakhaei, MH. A comparison of the impact of exercise training with dietary intervention versus dietary intervention alone on insulin resistance and glucose regulation in individual with overweight or obesity: a systematic review and meta-analysis. *Crit Rev Food Sci Nutr*. (2023) 63:9349–63. doi: 10.1080/10408398.2022.2064424

94. Ballard, KD, Berry, CW, Varty, CJ, Arslain, KB, and Timmerman, KL. Aerobic or resistance exercise performed the previous day does not attenuate postprandial hyperglycemia-induced endothelial dysfunction in overweight/obese adults. *Eur J Appl Physiol*. (2019) 119:1855–63. doi: 10.1007/s00421-019-04174-x

95. Bittel, AJ, Bittel, DC, Mittendorfer, B, Patterson, BW, Okunade, AL, and Abumrad, NA. A single bout of premeal resistance exercise improves postprandial glucose metabolism in obese men with prediabetes. *Med Sci Sports Exerc*. (2021) 53:694–703. doi: 10.1249/MSS.00000000000002538

96. Aneis, YM, El Refay, GE, Taha, MM, Aldhahi, MI, and Elsisi, HF. Concurrent aerobic and strength training with caloric restriction reduces insulin resistance in obese premenopausal women: a randomized controlled trial. *Medicina (Kaunas)*. (2023) 59:1193. doi: 10.3390/medicina59071193

97. Atashak, S, Stannard, SR, Daraei, A, Soltani, M, Saeidi, A, and Moradi, F. High-intensity interval training improves Lipocalin-2 and Omentin-1 levels in men with obesity. *Int J Sports Med*. (2022) 43:328–35. doi: 10.1055/a-1560-5401

98. Soltani, N, Marandi, SM, Hovsepian, V, Kazemi, M, and Esmaeil, N. Resistance exercise training augments the immunomodulatory adaptations to aerobic high-intensity interval training. *Eur J Sport Sci*. (2023) 23:2264–73. doi: 10.1080/17461391.2023.2222703

99. Ding, Y, and Xu, X. Anti-inflammatory effect of exercise training through reducing inflammasome activation-related inflammatory cytokine levels in overweight/obese populations: a systematic review and meta-analysis. *Complement Ther Clin Pract*. (2022) 49:101656. doi: 10.1016/j.ctcp.2022.101656

100. Del Rosso, S, Baraquet, ML, Barale, A, Defagó, MD, Tortosa, F, Perovic, NR, et al. Long-term effects of different exercise training modes on cytokines and adipokines in individuals with overweight/obesity and cardiometabolic diseases: a systematic review, meta-analysis, and meta-regression of randomized controlled trials. *Obes Rev*. (2023) 24:e13564. doi: 10.1111/obr.13564

101. Saeidi, A, Seifi-Ski-Shahr, F, Soltani, M, Daraei, A, Shirvani, H, and Laher, I. Resistance training, gremlin 1 and macrophage migration inhibitory factor in obese men: a randomised trial. *Arch Physiol Biochem*. (2023) 129:640–8. doi: 10.1080/13813455.2020.1856142

102. Malin, SK, Heiston, EM, Gilbertson, NM, and Eichner, NZM. Short-term interval exercise suppresses acylated ghrelin and hunger during caloric restriction in women with obesity. *Physiol Behav*. (2020) 223:112978. doi: 10.1016/j.physbeh.2020.112978

103. Khalafi, M, Hosseini Sakhaei, M, Kheradmand, S, Symonds, ME, and Rosenkranz, SK. The impact of exercise and dietary interventions on circulating leptin and adiponectin in individuals who are overweight and those with obesity: a systematic review and meta-analysis. *Advan Nutrition (Bethesda, Md)*. (2023) 14:128–46. doi: 10.1016/j.adnutt.2022.10.001

104. Shokri, E, Heidarijanpour, A, and Razavi, Z. Positive effect of combined exercise on adipokines levels and pubertal signs in overweight and obese girls with central precocious puberty. *Lipids Health Dis*. (2021) 20:152. doi: 10.1186/s12944-021-01588-5

105. Silva, JSC, Seguro, CS, and Naves, MMV. Gut microbiota and physical exercise in obesity and diabetes - a systematic review. *Nutr Metab Cardiovasc Dis*. (2022) 32:863–77. doi: 10.1016/j.numecd.2022.01.023

106. Cullen, JMA, Shahzad, S, Kanaley, JA, Ericsson, AC, and Dhillon, J. The effects of 6 wk of resistance training on the gut microbiome and cardiometabolic health in young adults with overweight and obesity. *J Applied Physiol (Bethesda, Md: 1985)*. (2024) 136:349–61. doi: 10.1152/japplphysiol.00350.2023