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ABSTRACT

Background: In 2019, Hall et al. reported a randomized clinical trial showing that an ultraprocessed diet increases energy intake by ~500 kcal/
d compared with an unprocessed diet.

Objective: This post-hoc analysis assessed whether participants selected meal components with specific nutritional characteristics and how this affected
energy intake.

Methods: Twenty weight-stable adults received an ad libitum ultraprocessed or unprocessed diet for 2 wk, followed by the alternate diet. ANOVA and ¢
tests assessed diet effects; a linear mixed model assessed predictors of meal size.

Results: With the unprocessed diet, participants selected components with a less-equal blend of energy from carbohydrate and fat [“blend index”
difference; lunch = 0.22 (95% CI: 0.19, 0.26), P< 0.0001, d = 0.76; dinner = 0.24 (95% CI: 0.19, 0.28), P< 0.0001, d = 0.71]. These components
formed meals that had a lower blend index (less balanced) than ultraprocessed meals [lunch, F(1, 19) = 18.49, P < 0.0004, partial 712 = 0.493; dinner, F
(1, 19) = 24.85, P < 0.0001, partial 112 = 0.57]. With the unprocessed diet, participants preferentially chose low-energy-dense components (<1.0 kcal/g,
mostly fruits and vegetables), creating meals lower in energy (unprocessed = 719.4 + 11.6 kcal compared with ultraprocessed = 829.5 £ 12.51 keal), [F
(1,19) = 14.9, P < 0.001, nzG = 0.0457], yet significantly larger (57%) by mass (unprocessed = 665.5 £ 10.74 g compared with ultraprocessed = 423.5
+ 8.03 g), [F(1,19) = 82.9, P < 0.001, ”2 G = 0.274]. Modeled together, low-energy-dense mass and blend index strongly predict observed energy
intakes (r = 0.78, df = 1676, P < 0.001).

Conclusions: Unprocessed meals may reduce energy intake because: /) they have a less balanced carbohydrate-fat blend; and 2) they promote a form of
nutritional intelligence whereby a compromise is struck between consuming calories and consuming micronutrients, which we refer to as “micronutrient

deleveraging.”
This trial was registered at clinicaltrials.gov as NCT03407053.
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Introduction

In 2019, Hall et al. [1] ran a 28-day metabolic ward study with 20
weight-stable adults. Participants were randomly assigned to 2 wk of
an ultraprocessed diet followed by 2 wk of an unprocessed diet, or vice
versa. Though meals were matched for calories, energy density,
macronutrients, sugar, sodium, and fiber, participants nevertheless ate
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an average of 508 kcal/d more on the ultraprocessed diet, gaining 0.9
kg, and lost 0.9 kg on the unprocessed diet. Concern about ultra-
processed foods has grown, yet little attention has been paid to an
equally relevant question: why did Hall et al.’s [1] participants
consume fewer calories with unprocessed meals?

A secondary analysis by Fazzino et al. [2] linked energy density,
protein, eating rate, and ‘“hyper-palatability” to energy intake.
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However, this type of “meal-level” analysis overlooks a key consid-
eration: participants were instructed to eat “as much or as little as
desired” and thus had the autonomy to choose amounts of individual
meal “components,” each served in a large portion (Figure 1). In this
post-hoc analysis, we therefore examine how the selection of com-
ponents influenced energy intake.

We were guided by 2 recent discoveries related to “nutritional
intelligence” [3]: the preferential selection of foods based on their
nutritional composition. The first is the discovery that foods with a
more equal blend of energy from fat and carbohydrate (e.g., crois-
sants) are more rewarding than foods with equivalent calories from
primarily fat (e.g., cheese) or carbohydrate (e.g., pretzels) [4], a
finding that has been replicated in the United States and United
Kingdom [5,6], and in nonhuman mammals [7]. The rewarding nature
of “combination foods” has been attributed to the supra-additive
combination of both fat and carbohydrate reward pathways [4,7].
Recently, Rogers et al. [6] argued that humans are adapted to select
such foods because their higher “energy-to-satiety ratio” enables
greater energy intake, and thus the selection of larger portions (kcals)
(AN. Flynn, P.J. Rogers, and J.M. Brunstrom, submitted).

Here, we sought to extend this to consider multicomponent meals.
Specifically, we predicted that Hall et al.’s [1] participants selected
meal components that produced a more balanced combined (meal--
level) blend of carbohydrate and fat than the blend found in the in-
dividual components from which the meals were derived.
Additionally, we explored 2 related questions: /) If participants
combined sources of carbohydrate and fat to form their eaten meals,
were meals with a more equal blend also higher in energy? and 2) Did
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unprocessed meals have a less balanced blend of energy from carbo-
hydrate and fat, potentially explaining why, when participants
consumed them, they were lower in energy?

A second reason why an unprocessed diet might promote lower
energy intake is that meal components may be selected for nutritional
qualities other than calories. Early studies in chickens [8], pigs [9],
and rats [10] showed that animals grow as well or better when pro-
vided free access to a cafeteria diet compared with formula feed.
Building on this, Rozin [11] and Provenza [12,13] showed how
species adjust their dietary choices to alleviate specific micronutrient
deficiencies. Recently, we reported that humans might show a similar
tendency, preferring specific pairs of fruit and vegetables that deliver
a broad range of micronutrients [14]. Because fruits and vegetables
are rich in micronutrients, yet low in energy density, we reasoned that
consuming these components might lead to less calorific meals [15,
16]. Thus, “micronutrient seeking” might be an additional factor
contributing to lower energy intake from unprocessed meals in Hall
et al.’s [1] study.

Methods

As described above, the present paper reports further analyses of
data collected in a previously published article by Hall et al. [1]. Full
details of the methods are available in that article, including participant
eligibility criteria and sample size calculations. A summary of those
methods, together with the details of the present (new) data analysis, is
presented below.

FIGURE 1. Examples of meals served to participants in a study reported by Hall et al. [1] (2019). Top row: unprocessed lunch (left) and dinner (right).
Bottom row: ultraprocessed lunch (left) and dinner (right). These images were published in Cell Metabolism, 30(1), Hall et al. [1], Supplemental Material:
Ultraprocessed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake, 67-77, Copyright Elsevier

(2019). Reproduced from reference [1] with permission.
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Summary of Hall et al. 2019 [1]

Twenty (10 male and 10 female) weight-stable adults aged (mean
+ SE) 31.2£1.6 y and BMI of 27 + 1.5 kg/m2 were admitted as in-
patients to the Metabolic Clinical Research Unit at the NIH Clinical
Center, Bethesda, MD. Weekly menus were repeated twice, and so
every participant received either an ultraprocessed or an unprocessed
diet for 2 wk, followed by the alternate diet for 2 wk. Breakfast, lunch,
dinner, and snacks were served daily, and foods and beverages were
categorized according to the NOVA system [17]. Across the 2 wk, the
unprocessed and ultraprocessed diets were matched for calories, sugar,
fat, sodium, fiber, and macronutrients.

Participants ate alone and received portions equivalent to twice their
estimated energy requirements. All foods were weighed to the nearest
0.1 g before and after consumption, and energy intake was calculated
using ProNutra software (Viocare, Inc.). Details of participant char-
acteristics, recruitment, exclusions, and adverse events can be found at
https://clinicaltrials.gov/study/NCT03407053 ?tab=results. The Insti-
tutional Review Board of the National Institute of Diabetes & Digestive
& Kidney Diseases approved the protocol. Data were collected between
April 2018 and November 2018.

Data analysis

Previously, Hall et al. [1] estimated the combined impact of food
and beverages on absolute energy intake. Here, our primary concern
was understanding how separate meal components (solid foods)
combine to impact choice and energy intake. Thus, following Fazzino
et al. [2], we looked at the 3 daily meals and excluded snacks and
beverages from our analysis. In total, 1680 meals (20 participants x 14
d x 2 diets) were analyzed (Supplemental Figure 1).

Using additional data provided by Hall et al. [1], we grouped
ingredient-level data into meal “components.” Here, we define a
component as a food item that cannot be easily broken down into
subcomponents when consumed. For instance, muesli and lasagna are
formed from separate identifiable ingredients, but they would each be
coded as a single meal component because their ingredients are pre-
mixed and consumed together. By contrast, peas and potatoes are
single ingredients but are rarely combined; therefore, they will likely
be categorized as separate components if they appear in the same dish.
Respectively, unprocessed breakfasts, lunches, and dinners comprised
on average 2.86, 4.14, and 5.0 components. Processed breakfasts,
lunches, and dinners comprised 3.71, 3.64, and 4.14 components,
respectively.

Following Rogers et al. [6], for each meal component, we calcu-
lated a transformed measure of food carbohydrate-to-fat “blend index”
using the formula: ratio = 1 — ABS(2x — 1), where x = carbohydrate
energy/ (carbohydrate energy + fat energy). A blend index can vary
from 0 (contains carbohydrate but no fat energy, or contains fat but no
carbohydrate energy) to 1 (contains equal amounts of carbohydrate
and fat energy). We then did the same for whole meals consumed
(again, nonbeverage energy only).

To quantify micronutrient intakes across the 2 diets, we assessed 15
vitamins and minerals (calcium, iron, magnesium, phosphorus, po-
tassium, zinc, copper, vitamin C, thiamine, riboflavin, niacin, vitamin
B6, folate, vitamin B12, and vitamin A). Following Brunstrom and
Schatzker [14], for each meal component, we computed the extent to
which it provided a recommended daily allowance (RDA, [18]).
Separate values (%) were derived for the amount consumed and the
amount remaining at the end of the meal.

Q-Q plots are included in the Supplementary Materials. They show
predominantly at least a good fit of scores to a normal distribution [19].
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In our analysis of how meal components vary in their “carbohy-
drate-to-fat blend index,” we observed a departure from normality.
This can be problematic for sample sizes <20 [20]. However, the
Central Limit Theorem ensures that hypothesis tests are robust against
extreme skewness and kurtosis if sample sizes exceed 300 [21]. In this
case, our sample exceeded 6000. Accordingly, no data transformations
were applied, no data were missing, and no data points were excluded.

Weighted #-tests were used to compare how the composition (car-
bohydrate-to-fat blend index) of the eaten meal components differed
across diets. Linear mixed-effect models were then used to determine
how these variables impacted meal size. Models were fitted using the
restricted maximum likelihood method with a random intercept for
each participant. Continuous predictors were standardized.

Microsoft Excel and R statistical software (R Foundation for Sta-
tistical Computing) were used for data processing and analysis.
Mixed-effects models were generated using the Ime4 package. Unless
indicated otherwise, results are presented as means = SEMs.

Results

Participant characteristics

This data reanalysis was conducted in a cohort of 20 weight-stable
adults (10 men and 10 women) with a mean (+SE) age of 31.2 + 1.6y
and a mean BMI of 27.0 + 1.5 kg/mz.

Did participants select an equal proportion (%) of each meal
component?

In the first instance, we explored whether participants consumed
the same amount of food, irrespective of the meal component pro-
vided. For each meal component, we computed the average energy
consumed across meals and removed components that provided <100
kcal. This eliminated mostly condiments and other small food items;
the remaining components still accounted for 89.3% of the total
nonbeverage food energy served. Plotting ultraprocessed and unpro-
cessed components separately, Figure 2 shows the proportions (%)
consumed. For the ultraprocessed components (Figure 2A), this
ranged from 93% for “French toaster sticks” to 33% for canned gravy.
A similar range was observed in unprocessed foods (Figure 2B). Only
25% of the side salad was consumed, whereas 99% of the blueberries
were eaten. Figure 2 also shows that when meal components are or-
dered by proportion (%) consumed, we see even distributions—with
no distinct clusters of components eaten entirely, moderately, or hardly
at all. Accordingly, we conclude that participants did not tend to
consume a fixed proportion of every meal component. Instead, some
components were preferentially selected and consumed over others.
[Note that all components (including those < 100 kcal) were included
in the analyses reported below].

Blend of energy from carbohydrate and fat in meal components and
whole meals

Having established that meal components were selected and
consumed in different amounts, we then looked at their blend of car-
bohydrate and fat and how individual components were selected and
combined to influence the balance of carbohydrate-to-fat in whole
meals.

Figure 3A shows the carbohydrate-to-fat blend index of meal
components eaten at breakfast, lunch, and dinner, and for the ultra-
processed and unprocessed diets, separately. Here, weighted means are
shown, such that higher energy components contribute more to the
overall average than lower energy components. At breakfast, the
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A

French toaster sticks =

Hot dog in bun =

Blueberry muffin =

Pancake syrup =

Beef tender roast =

Pancakes =

French fries =

Pork sausages =

Turkey sausages =

Scrambled eggs =

Chicken wrap =

Cheeseburger =

Croissant =

Tater rounds =

English muffin with bacon, egg and cheese =
Oatmeal raisin cookie =

Honey nut Cheerios =

Meatball sandwich =

Chicken nuggets =

Steak and black bean burrito =
Honey buns =

Beef ravioli =

Chicken tenders =

Canned green beans =

Tortilla chips =

Macaroni & cheese =

Mashed potatoes from granules =
Shortbread cookie =

Baked cheetos -

Fig Newton cookies =

Chicken salad sandwich =
Regular mayonnaise =

Turkey bacon =

Sour cream =

Fiber enriched cream cheese =
Plain bagel =

Turkey and cheese quesadilla =
Spam & cheese sandwich =
Fiber-enriched yogurt =

Peanut butter & jelly sandwich =
Fiber-enriched chocolate pudding =
Fiber-enriched milk =

Cheddar & Monterey Jack cheese =
Parmesan cheese =

Fiber enriched blueberry yogurt =
Canned peaches =

Graham crackers =

Potato chips =

White bread =

Baked potato chips =

Canned com =

Fiber enriched Greek yogurt =
Refried beans.

Ultra-processed component

Unprocessed component name

Cheese & peanut butter sandwich crackers =
Margarine =
Canned gravy =

~
o

50
% eaten

o-
N
o
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Blueberries =
Salmon =
Chicken breast =
Scrambled egg =
Spinach & tomato omelette =
Green beans =
Scampi with spaghetti =
Omelette with tomatoes & spinach =
Black bean hummus =
Hash brown potatoes =
Beef and vegetable stir-fry =
Grapes =
Bananas -
Baked cod =
Pilaf rice =
Oranges =
Sweet potato hash =
Spinach salad with chicken breast =
Quinoa salad =
Pasta primavera =
Grilled chicken with farro =
Almonds =
Oats =
Brocoli =
Entree salad =
Chopped walnuts =
Sweet potato =
Oatmeal with walnuts, banana, & coconut =
Apples =
Balsamic vinaigrette =
Vinaigrette =
Baked potatoes =
Pecans =
Salad with beef & barley =
Berry & walnut quinoa =
Couscous with green beans =
Greek yogurt =
Barley with garlic =
Southwest salad =
Plain, nonfat, Greek yogurt =

Side salad =

o-
N
2]
a_
=]
=
o
S

% eaten

FIGURE 2. Proportion (%) of each meal component consumed. (A) Ultraprocessed (B) Unprocessed. Only components providing >100 kcal are shown.
Components are color-coded according to their energy density (kcal/g). Lighter shades of blue indicate higher energy density. Note that the ultraprocessed

fiber-enriched milk was served with breakfast cereal. ED, energy density.

ultraprocessed and unprocessed components had a similar
carbohydrate-to-fat blend index (weighted mean; ultraprocessed =
0.485 £ 0.016 and unprocessed = 0.494 + 0.014) and did not differ
significantly (weighted #(1000.8) = 0.462, P = 0.64, d = 0.028).

With lunch and dinner, however, we see a marked difference. In
both cases, the ultraprocessed components had a significantly higher
(lunch, weighted #(940.5) = 12.72, P < 0.0001, d = 0.76; dinner,
weighted #892.6) = 10.80, P < 0.0001, d = 0.71) carbohydrate-to-fat
blend index (lunch = 0.649 4+ 0.017 and dinner = 0.655 %+ 0.017) than
the unprocessed components (lunch = 0.427 £ 0.014 and dinner =
0.409 £ 0.017).

The same pattern was observed when components were combined
to form meals (Figure 3B). Here, the carbohydrate-to-fat blend index
of the ultraprocessed breakfasts was marginally higher than in the
unprocessed diet (means; unprocessed = 0.759 4+ 0.012 and ultra-
processed = 0.790 + 0.009), although this difference failed to reach
significance, F(1,19) = 2.07, P = 0.17, partial 712 =0.098). In part, this
might be because the ultraprocessed and unprocessed breakfast meal
components tended to have a more similar blend index than other
meals. By contrast, the ultraprocessed lunches and dinners had a
significantly [lunch, F(1, 19) = 18.49, P < 0.0004, partial 712 =0.493;
dinner, F(1, 19) = 24.85, P < 0.0001, partial ;72 = 0.57] higher
carbohydrate-to-fat blend index (lunch = 0.8215 + 0.006 and dinner
= 0.8217 £ 0.007) than their unprocessed counterparts (lunch =
0.7430 £ 0.010 and dinner = 0.7154 £ 0.013).

Figure 3 also shows another clear difference between individual
components and entire meals. Meals had a higher carbohydrate-to-fat
blend index than the individual components from which they were
formed. This can only happen if the participants combined compo-
nents that were predominantly a source of fat with components that
were predominantly a source of carbohydrate. A further possibility we
wished to investigate is whether ultraprocessed meals had a higher
overall carbohydrate-to-fat blend index because these meals were
formed from components that already had a higher carbohydrate-to-fat
blend index, so achieving a more balanced blend was “easier” for
participants who received this diet.

To understand the impact of specific amounts of carbohydrate and
fat on energy intake, we compared the proportion of meal energy
consumed from carbohydrate and fat across the 2 diets. In Figure 4A,
meals are binned in 10% (0.1) steps according to whether the
consumed amounts comprised almost exclusively fat (0%—-10% car-
bohydrate) through to almost exclusively carbohydrate (90%—-100%
carbohydrate). Separate means are provided for each bin and diet,
along with the number of meals in each bin.

Figure 4A shows that participants tended to choose and consume
components that formed meals with a near 50:50 blend of energy from
carbohydrate and fat. Moreover, as predicted, more energy (kcals)
tended to be consumed for meals with a more equal blend. The fact
that high-fat meals are lower in energy than more blended meals
demonstrates that the higher energy intake associated with blending is
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A Component level

1.00+

Ultra-processed

Unprocessed
P < 0.0001
—/
0.751 P < 0.0001
1
ns
—/

Mean (+/- SEM) carbohydrate-to-fat blend index

0.00+

Breakfast Lunch Dinner
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B Meal level

P < 0.0001
[

P < 0.0004
[

0.9 ns

Mean (+/- SEM) carbohydrate-to-fat blend index

0.01

Breakfast Lunch Dinner

FIGURE 3. Mean (+ SEM) transformed carbohydrate-to-fat blend index (0 = contains carbohydrate but no fat energy or contains fat but no carbohydrate
energy; 1 = contains equal amounts of carbohydrate and fat energy). (A) Ultraprocessed and unprocessed meal components consumed. Means are weighted by
the energy content of the components. (B) Ultraprocessed and unprocessed meals consumed. Separate values are provided for breakfast, lunch, and dinner.

SEM, standard error of mean.

driven by the combination of macronutrients and not the mere pres-
ence of fat (the more energy-dense macronutrient).

A comparison of unprocessed and ultraprocessed meals also
revealed something unexpected. For consumed meals with a carbo-
hydrate content in the range of 0% to 70%, more energy (kcals) was
consumed for the ultraprocessed meals than the unprocessed meals.
Although there are relatively few meals above this threshold (>70%
carbohydrate), we see the converse tendency: more energy was
consumed for the unprocessed meals.

Figure 4B shows the same binned data, this time for meals ac-
cording to their mass (g). Here, the difference between unprocessed
and ultraprocessed is more obvious. In almost all meals, a larger mass
(g) of food was consumed when participants were given the unpro-
cessed diet, and this difference is especially noticeable when meals
comprised a higher proportion of carbohydrate-to-fat.

Figure 4A and Figure 4B capture how average meal size (energy
and mass, respectively) varies with the proportion of consumed meal
calories from carbohydrate and fat. However, because the frequency of

meals varies across this range (they tend toward a balance of carbo-
hydrate and fat), the absolute impact is challenging to visualize.
Therefore, in Figure 4C and Figure 4D, we present the same data, this
time for the total energy (C) and total mass (D) consumed across the 2
diets. The patterns in Figure 4A and Figure 4B are broadly replicated.
Again, it is striking that participants consistently consumed a larger
mass of food when given the unprocessed diet, and this is particularly
the case in meals for which the consumed energy from carbohydrate
exceeded the energy derived from fat.

Meal size and energy density

Figure 5A shows the mean (+ SEM) daily difference in non-
beverage energy consumed from meals across the 2 diets. Participants
consumed 15.3% more calories in the ultraprocessed diet, equivalent
to an additional 330 kcal per participant per day. However, the
opposite is true with mass (Figure 5B). Here, the unprocessed diet
encouraged participants to consume 57% more nonbeverage food,
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100000
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FIGURE 4. Meals binned (10% steps) according to their % energy from carbohydrate versus fat. (0 = contains carbohydrate but no fat energy, 50 = contains
equal amounts of carbohydrate and fat energy, 100 = contains fat but no carbohydrate energy.) (A) Mean (& SEM) energy consumed (kcals). (B) Mean (+
SEM) mass consumed (g). Mean (+ SEM) daily nonbeverage amounts consumed by participants (N = 20) over the 2-wk diet. (C) Total energy (kcals)
consumed. (D) Total mass (g) consumed. Separate values are provided for ultraprocessed and unprocessed meals. Values overlaid on bars (A and B) indicate

the number of meals in each bin.

which amounts to an average additional 726 g per participant per day.
Indeed, every participant (N = 20) exhibited this tendency. From this,
we can conclude that participants consumed unprocessed meal com-
ponents with lower energy density (ultraprocessed = 1.96 kcal/g;
unprocessed = 1.08 kcal/g).

For both diets, Figure 6A shows the mean (£ SEM) daily mass of
nonbeverage food consumed by participants (N = 20). Values are
partitioned into separate energy density bins ranging from 0.0 to 1.0
kcal/g through to 8.0 to 9.0 kcal/g, in 1.0 kcal/g increments. Here, we
see a clear difference. In the unprocessed diet, the greatest proportion
of meal components was in the range of 0.0 kcal/g to 1.0 kcal/g, which
comprises mainly fruits and vegetables. This amounts to 52% of the
total mass of food consumed in the unprocessed diet. Thus, vegetable
and fruit consumption probably played an important role in the ten-
dency for these meals to have a relatively low-energy density. More-
over, because the unprocessed meals were significantly larger in mass,
participants were not merely selecting the same physical amount of
food across diets.

Why were low-energy-dense (<1.0 kcal/g) meal components
consumed in such large portions (mass) in the unprocessed diet? To
address this question, we investigated whether participants could have
selected more energy-dense meal components, thereby raising meal-
level energy densities to make them closer to the ultraprocessed diet.
As Figure 2 indicates, many energy-dense meal components were not
consumed in large amounts, and in many cases, lower energy-dense
components were selected instead (e.g., blueberries, green beans, and
bananas). We also note that, on average, in the unprocessed diet, par-
ticipants left 370.1 kcals of >1.0 kcal/g meal components on their plate
(compared with 217.8 kcals of < 1.0 kcal/g). Had this been consumed, it
might well have been sufficient to match the intake observed in the
ultraprocessed condition. Thus, the tendency to select and consume

very low-energy-dense components in the unprocessed diet was un-
likely to be due to a lack of access to more energy-dense alternatives.

Predicting meal-level energy intakes

Above, we report 2 key differences between the meal components
consumed in the unprocessed and ultraprocessed diets. First, we see a
relationship between meal size (kcals) and the tendency to select
components that form meals with a higher carbohydrate-to-fat blend
index (a more balanced blend of energy from carbohydrate and fat). In
the case of the ultraprocessed diet, these meal-level carbohydrate-to-
fat blend indexes were significantly higher than those associated with
the unprocessed diet.

Second, we found that participants selected large portions (mass) of
low-energy-dense meal components (<1.0 kcal/g) when they were
offered the unprocessed diet. In turn, this helped to generate unpro-
cessed meals that were significantly larger in mass, F(1,19) = 82.9, P
< 0.00001, 172G = 0.274, yet significantly lower in energy, F(1,19) =
14.9, P < 0.001, °G = 0.0457 (Figure 5A and 5B).

Isolating and quantifying the independent role of these 2 outcomes
is challenging because selecting low-energy-dense components might
limit meal size in 2 ways. First, it adds volume to the stomach, limiting
the amount of more energy-rich food that can be comfortably
consumed. Second, because fruits and vegetables comprise primarily
carbohydrates, their preferential selection will tend to bias the meal-
level carbohydrate-to-fat blend index, which, as we have seen, also
predicts meal size. In response, we opted to estimate the impact of both
factors in a single regression model. To generate a crude estimate of
the tendency to select and consume low-energy-dense components, for
each meal, we computed a “fruit and vegetable score” based on the
fraction of energy that was derived from meal components with an
energy density of <1.0 kcal/g.
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FIGURE 5. Mean (+ SEM) daily nonbeverage amounts consumed by participants (N = 20) over the 2-wk diet. (A) energy (kcals). (B) mass (g). Separate
values are provided for ultraprocessed and unprocessed diets.

A Mean daily mass consumed B Mean daily micronutrients consumed

1500 2500
l Ultra-processed =
(2]

Unprocessed £ 2250
K}
=
5

1200 S 2000
g
€

10 1750
(7]
(7]

900 £ 1500
a ©
= <

@ 2 1250
= =
o

600 @ 1000
£
€
3

2 750
{2
5

300 £ 500
=
c
[

S 250

e |
0 0
0-1 1-2 23 34 4-5 5-6 0-1 1-2 2-3 34 4-5 5-6
Energy density (kcal/g) Energy density (kcal/g)

FIGURE 6. Mean (+ SEM) daily nonbeverage amounts consumed by participants (N = 20) over the 2-wk diet. Values are binned (1 kcal/g steps) according to
their energy density. (A) Mass consumed (kg). (B) Micronutrients (summed %RDA across 15 micronutrients). Separate values are provided for ultraprocessed
and unprocessed meal components; RDA, recommended daily allowance.



J.M. Brunstrom et al.

2500

2000

1500

1000

Actual meal size (kcal)

500

0 500 1000 1500

Predicted meal size (kcal)

2000 2500

FIGURE 7. Modeled versus measured meal energy intake. A linear mixed-
effects model included 3 fixed factors: /) carbohydrate-to-fat ratio, 2) “fruit
and veg score” (tendency to consume components with an energy density
<1.0 kcal/g), and 3) meal type (breakfast, lunch, dinner), to predict ad
libitum energy intake. The model also included “participants” as a random
factor with an independent intercept for each participant. Data show 1678
meals consumed by 20 inpatient adults exposed to an ultraprocessed and an
unprocessed diet.

Following Fazzino et al. [2], along with meal type, we entered these
variables into a mixed-effects model as predictors of the energy
consumed in all meals (pooled across diets). No covariates were
entered. Both carbohydrate-to-fat blend index and fruit and vegetable
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scores are highly significant independent predictors (Supplemental
Table 1), with the former and latter associated with high- and lower
energy meals (kcals), respectively. Together, and in combination with
meal type (breakfast, lunch, or dinner), across both diets, modeled meal
energy intakes are highly correlated (» = 0.78, df = 1676, P < 0.001)
with observed ad libitum energy intakes (Figure 7), with a mean ab-
solute model error of 171.8 kcal, which is 22% of the mean meal size.

Next, to estimate the absolute impact on energy intake, for each
diet, we took the average carbohydrate-to-fat ratio blend index and the
average fruit and vegetable score and used our model to predict meal
sizes. Respectively, for the ultraprocessed diet, this returned 689 kcal,
896 kcal, and 883 kcal for breakfast, lunch, and dinner. For the un-
processed diet, our model returned estimates of 584 kcal, 810 kcal, and
785 kcal, at breakfast, lunch, and dinner, respectively. Across 3 meals
per day, this amounts to a 289.2 kcal difference, which means our 2
predictors account for 87.6% of the difference in daily nonbeverage
energy intake (330 kcal) that was observed in the nonbeverage food
intake data collected by Hall et al. [1].

Micronutrient deleveraging

A potential benefit of selecting low-energy-dense meal components
is that they are rich in micronutrients. With respect to components
consumed, when %RDA values are summed, we see that the unpro-
cessed diet delivered 36% more micronutrients than the ultraprocessed
diet. Figure 6B shows how these micronutrients were distributed
across components with different energy densities. Again, a clear
pattern is observed—in the ultraprocessed diet, only 5% of the
micronutrients were delivered by meal components <1.0 kcal/g. By
contrast, in the unprocessed diet, meal components <1.0 kcal/g
delivered 42% of the micronutrients consumed.
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To develop this further, we also explored these distributions for
individual micronutrients. Figure 8 shows the extent to which daily
RDA was met by components that differ in energy density. Values
were computed by summing the %RDA consumed in each diet.
Because amounts above 100% RDA are likely to be excreted, in any
single meal, a component delivering >100% RDA was capped at
100%. Then, for each micronutrient, we derived an estimate of the
extent to which the %RDA was met for a single participant on any
given test day [total/(20 participants x 14 test days)]. In the unpro-
cessed diet, in every case, lower energy-dense components (<2.0 kcal/
g) delivered the majority of micronutrient intakes, and a large pro-
portion was derived from components with an energy density <1.0
kcal/g (i.e., fruit and vegetables). By contrast, in the ultraprocessed
diet, micronutrients were provided by relatively energy-rich compo-
nents, some of which were micronutrient-fortified (e.g., breakfast
cereals).

Together, these data show that in the unprocessed diet, selecting
low-energy-dense, high-carbohydrate meal components was associ-
ated with meals of greater mass but lower energy. This pattern also
appeared to ensure that micronutrient requirements were met. In turn,
this assumes that micronutrient requirements could not have been met
by consuming the more energy-dense components that were left un-
eaten at the end of each meal. To test this, we replotted Figure 8, this
time showing the %RDA that remained in uneaten meal components.
Consistent with our hypothesis, Supplemental Figure 2 shows that in
the unprocessed diet, micronutrients were not generally available in
more energy-rich components. Thus, to achieve adequate micro-
nutrient intakes, it was necessary to consume low-energy-dense
components. By contrast, in the ultraprocessed diet, micronutrients
were colocated in more energy-rich components.

Discussion

In this secondary analysis, we explored why consuming an un-
processed diet might limit or cap energy intake. As hypothesized,
participants tended to combine components that delivered a meal-level
blend of energy from carbohydrate and fat. However, less-equal blends
were associated with the consumption of lower energy meals, and this
was more common in the unprocessed diet. Also, as hypothesized, the
lower energy density of the unprocessed meals was driven by the
preferential selection of micronutrient-rich components—primarily
fruits and vegetables. Prioritizing these foods over more energy-dense
alternatives had the effect of “deleveraging” energy intake.

Across both diets, we observed a clear tendency for meals to have a
higher carbohydrate-to-fat blend index than the components from
which they were formed, and when a more equal blend is achieved,
higher energy meals are consumed. In turn, this supports the idea of a
process whereby meal components are selected and combined to
promote energy intake by increasing the energy-to-satiety ratio of a
meal [6]. This tendency was more pronounced with ultraprocessed
meals, and it was associated with higher energy intake. So far as we
know, this is a new mechanism by which ultraprocessed foods might
encourage excess energy intake and deserves further study [6].
Although this strategic blending of components has not been previ-
ously documented, historical evidence suggests that humans have been
doing this for a long time, with references to meals comprising sources
of fat and carbohydrate dating back to the 18th [22], 15th [23], and
14th [24] centuries. On this basis, we contend that the general
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tendency to blend carbohydrate and fat in a meal is not unique to the
modern food environment.

As previously noted, we suggest that this history of blending car-
bohydrate and fat might reflect an underlying functional advanta-
ge—maximizing energy intake [6]. However, the modern food
environment may exploit this tendency, leading to overconsumption,
obesity, and its associated comorbidities. Future research might
examine these relationships in other datasets and in randomized
controlled trials that systematically manipulate the blend of individual
meal components to assess the effect on component selection, meal
composition, and energy intake.

These data also show that food choice is driven by factors beyond
macronutrients or their strategic combination. Given the widespread
assumption that humans tend to prefer energy-rich foods [2], it is notable
that substantial amounts of pasta, cream, olive oil, steak, spaghetti, hash
browns, potatoes, and couscous were left uneaten in the unprocessed
diet. Furthermore, large portions of vegetables such as spinach, broccoli,
and green beans were eaten, many in portions exceeding 500 g. Indeed,
these low-energy-dense components comprised 52% of the total mass of
unprocessed components consumed.

Previous laboratory studies show a linear relationship between
food energy density and both acute [25,26] and daily [27] energy
intake in children and adults. Consequently, when food energy density
is manipulated, it has little impact on the mass of food consumed [16],
suggesting insensitivity to food energy density. From this, one would
expect that the mass of ultraprocessed and unprocessed meals would
be similar. Instead, the unprocessed meals were much larger (57%).

Related to energy density are observations that food texture in-
fluences eating rate [28] and eating faster is associated with larger
meals [29]. Hall et al. [1] reported that the ultraprocessed meals were
consumed faster (48 kcal/min, 37 g/min) than unprocessed meals (31
kcal/min, 30 g/min) [1,30]. Accordingly, one hypothesis is that Hall
et al.’s [1] ultraprocessed meals were higher in calories because they
were softer and less fibrous [30]. If unprocessed meals require more
oral processing and thus are eaten more slowly, and if slower eating
leads to smaller meals (by mass), then it follows that unprocessed
meals should have been smaller (by mass) than ultraprocessed meals.
Again, our analysis shows the converse—they were significantly
larger (57%).

Energy density and eating rate may still influence energy intake.
However, they cannot explain the large mass of low-energy-dense
unprocessed components consumed, or their role in limiting energy
intake. As we have seen, this was governed mainly by the selection of
fruit and vegetables, despite the availability of more energy-dense
components. Thus, the lower energy density of the unprocessed diet
should be viewed as a consequence of choice rather than a driver of
reduced intake.

Regarding micronutrients, 2 characteristics of the diets merit
consideration. First, consistent with previous reports [31,32], the un-
processed meals delivered more micronutrients overall. However,
contrary to the widely held belief that ultraprocessed foods deliver
“empty calories” [33], Figure 8 shows that both diets probably
delivered sufficient micronutrients to meet most requirements. Sec-
ond, the distribution of these nutrients differed markedly between
diets. In the unprocessed diet, a substantial proportion was delivered
by foods with a low or very low-energy density, whereas the ultra-
processed diet featured meal components rich in both calories and
micronutrients. For example, baby carrots and spinach delivered the
largest amounts of vitamin A in the unprocessed meals. In the
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ultraprocessed meals, by comparison, the components richest in
vitamin A were French toaster sticks and pancakes.

Thus, in the ultraprocessed diet, calories and micronutrients were
colocated within the same components, so requirements for both were
met by consuming the same foods. By contrast, in the unprocessed
diet, low-energy-dense components were needed to meet micro-
nutrient requirements, which restricted the energy density of the un-
processed meals and increased their volume. It is plausible that
without consuming these very low-energy-dense (< 1.0 kcal/g) foods,
diet quality would have been compromised and, over time, micro-
nutrient insufficiencies would have occurred. Thus, an unprocessed
diet may create a previously unrecognized tension between maxi-
mizing calories and meeting nutritional needs. Accordingly, it is
possible that the selection of low-energy-dense, micronutrient-rich
components had a deleterious effect on energy intake. Similar to
“protein leveraging” [34], “micronutrient deleveraging” might occur
because the opportunity cost of meeting essential nutritional re-
quirements is the need to forego calories (see [35] for a related dis-
cussion). Unlike protein leveraging, however, this compromise results
in reduced energy intake.

In turn, ultraprocessed foods may promote energy intake because
fortification resolves the tension between meeting calorie and micro-
nutrient needs—a constraint inherent in whole-food diets. A parallel
exists in pig farming: historically, pigs were fed soy and corn, sup-
plemented with pasture to prevent deficiencies. From the late 1940s,
micronutrient fortification allowed farmers to eliminate the need for
feed rations to be supplemented with micronutrient-rich low-energy
pasture or forages [36]. This improved energy intake and growth rates
[37] by increasing the total energy density of the diet [38].

This work offers a new interpretation of Hall et al.'s [1] data, but
like others, it has limitations. Regarding the tendency to select
low-energy-dense micronutrient-containing components, these find-
ings build on evidence in other species [12,39] but reveal nothing
directly about mechanisms. Our analysis also assumes that an
optimal energy-to-satiety ratio is achieved when meal components
combine to yield equal energy from carbohydrate and fat. Although
such blending has been observed in rodents [40], there is no a priori
reason to assume this is optimal—an assumption rooted in the idea
that energy from carbohydrate and fat is equally satiating [6]. Further
research is needed to clarify the optimal ratio and whether subtle
shifts in this ratio can arise from individual differences or nutritional
context.

Our analysis also suggests the nutritional nature of unprocessed
and ultraprocessed foods—and our relationship to them—tells a more
nuanced story. Rather than simply being attracted to energy-dense
foods, we suspect humans discriminate based on a process that in-
creases energy intake by optimizing energy-to-satiety ratio, which is
partly achieved by blending sources of carbohydrate and fat. With an
unprocessed diet, this is more challenging because meal components
are less “preblended,” and, in addition, our nutritional intelligence may
promote the inclusion of low-energy-dense fruit and vegetables.

Finally, we remind readers that this work represents a reanalysis of
data collected to address a different scientific question. Although our
observations align with our hypotheses, further research is needed to
confirm them definitively. Nevertheless, given widespread concern
over the modern food environment and its impact on obesity, we
believe these ideas warrant further investigation. In this regard, re-
searchers should extend beyond NOVA to investigate other processing
frameworks [41] while exploring how an unprocessed diet leads to
healthier, lower energy meals.
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